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DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.
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Introduction

Synchrotrons designed originally for proton accel-
eration are now being modified for heavy ion accelerva
tion. . Their vacuum which is suitable for good proton
operation is usually too poor for the acceleration of
fractionally charged heavy lons and, consequently, they
can only be used to accelerate fully stripped or bare
ifons. Some kind of injector accelerator must provide
the necessary fully stripped ious with adequate inten-
sity for the planned research program which means that
the ylelds of fully stripped iouns from various idnds of
stripping foils must be known as a function of energy.

The Bevalac 18 now capable of accelerating 238y
ions to approximately 1 GeV/amu and measurements have
shown that fully stripped 89 ions are produced with
good yield at these energies. However, knowing the
stripping ylelds at different energies for 238y 4oes
oot allow an accurate prediction for other, lower 2
projectiles. (Jt.':usequeut:l.y1 extensive stripping yield
measurements were made for Au and 1 9}(e ions.

In aldition to the stripping measurements from the
direct Bevalac beam, pickup measurements were also made
with sgpecially rprepared bare, one electron, and two
electron ions. Since many research groups are consid-
ering heavy ion storage rings and/or synchrotrons, the
pickup cross section for bare ions {s important to es-
timate beam lifetime in terms of the average machine
vacuum. Since the Mylar target provides a pickup prob-
ab{lity simnat to alr, a preliminary analysis of the
Xe** and U2+ data will be presented alora_ with pre-
dictions for other {ons ranging down to Fe

Experimental Procedure

Heavy ion beams of 197581+ ¢ 200, 400, 600, and
800 MeV/amu; and '2%°Xe“S*+ at 85,140,200, and 300
MeV/amu were provided by the Beva.lac and diteCCed into
the B4D experimental area shown in Pig. 1. Var fous

- shell,

.

thickness foils or targets made of Be, Mylar, Al, Gu,
Ag, and Au can be inserted by remote control into the
focusgsed beam passing down the beam 1line. The
resulting stripped ion groups are then refocussed by a
quadrupole (B40,Q2A,Q2B) onto a position sensitive
ionization chamber after passing through two large
bending magnets (B40,M2,M3) which disperse the charge
states. The focussed charge groups are approximately 5
millimeters wide and separated from each other by
approximately 3 centimeters. These charge state
distributions are accunulated in a computer based
multichannel analyzer for display, storage and ultimate
area analysis. A complete study was made for all
charge states from the incident beaw charge state up to
the fully stripped or bare ion state; however, this
paper will only discuss the bare fon yields.

Atomic Theory Calculations

With the three sets of measurements for U, Au, and
Xe ions the data can be parameterized with atomic theor
etical calculations so that other projectile stripping
characteristics can be fairly reliably predicted. Pre-
dictions of bare ion yields for ;jlu, g3Bu, 4)Nb, and
sgFe were calculated so that accelerator designers may
interpolate from the figures for any projectile Z de-
sired.

The yield of charge fractions of relativistic ions
penetrating through foils 1s determined by a
competition hetween electron stripping ("ilonization”)
and pickup ("capt:m:e").2 Tonization occurs if the
electric fleld of the target atom transfers sufficient
nouentun to a projectile electron to eject it from its
Tonization cross sections vary approximately
proportional to th, where Zy is the target atomic
aumber . For direct capture to occur, the target elec—
tron mugst “run along™ with the relativistic projec-
tile. Tn light target fons, this is unlikely, and cap-
ture is accompanied by emission of a photon (“"radilative
electron capture™, or “inverse photoelectric effect")
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Fig. | Schematic diagram of the experimental apparatus (see text).
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to conserve mouentun and energy. In heavy target atoms,
direct ("non-radiative”™) capture dominates. The cross
section for radiative capture varies proportional to
zt. that for nomradiative capture approximately
proportional to 2. 5,6

The target thickness (t) dependence of the yleld
of a particular ion species with n electrons i{s fairly
complicated, but after a sufficient thickness ;te)
is traversed, the yield becomes independent of t. 2:
that point, there is an equilibrium between stripping
and pickup of electrons.
ions with n>2 are negligible, one can show that the
equilibrium ylelds of ioms with =0, 1 and 2 are, re-
spectively:

Fo={1+(po/81) (+py/s)1"t, (1)
Fy=(pg/31)Pgs - Fp=(py/83)¥F;, where p, 1is the pickup
and s, is the stripping cross section for am n—elec-
tron ion. One can also show, that to a good approxima=
tion the equilibriue thickness i8 given by

teqe 4-6/[np(sr+po/2)] )

where ny 1s the number of target atoms per unit

volume.

- with these measurements and others.

If the equilibrium ylelds of -

In Fig. 2 the equilibrium yleld Fy in mylar, Al
and Cu, computed for various projectiles as a function
of projectile energy is shown. Comparisons are made
For the stripping
cross sections, relativistic plane wave Born approxima-
tion calculations of Anholt were used. Expressions
based on relativistic eikonal calculations by Eichler
were uged for the pickup cross sections. Arrows oun
the figures indicate the calculated minimum energy that
must be reached in order to obtain an 80% yield of bare
ions. Table. I 1lists the corresponding equilibrium
thicknesses. TPor a particular projectile-target com=
bination, teq i3 not very energy dependent above 300
MeV/N. Hence, Table I can be used as a guide for dif=-
ferent projectile energies.

As previously discussed, it is important. to com—
pute the electron pickup probability for a bare ion
(=ngpgt) traversing large distances in an accelerator
vacuum. The pickup cross section pg in mylar, which
has a 2, composition similar to air i1is shown in
Pig. 3. Here, at higher energles, capture is nearly
all radiative, and there should be no disagreement with
measured cross sections, since the theoty (inverse
photo-electric effect) is well understood. ! The disa-
greements found may point to some difficulties in the
measurements.

Xe& Au® UR DATA

YIELD OF BARE 10N
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20Cu STRIPPER
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Pig. 2 PFractional equilibrium yields of bare ions‘atrim':ed in mylar, aluminum,

and copver foils as a function of ion energy.
projectile energy for a calculated 802 yield

(Au,U) and present work.

Arrows indicate minimum
Measured yields from Ref. 9
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F ‘ o © Strippirng Foil

i Hylrsr Aluninum Copper

rsle ) :eq B teq B ceq

(MeV/N) | (ag/ cu?) | (MeV/Y) | (mg/ a?) [ (MeV/N) [ (mg/ cm?)

26Fe| <50 S S0 =3 60 1.6
4 1ND 70 25 110 15 140 8
syXe 160 80 150 &5 210 725
§3Eu 310 | 170 ‘ ' 240 85 300 45
v 71Ee| 530 270> 370 140 380 70
79Au 750 400 576 210 500 100
920 [>1000 | >600 %1100 | =360 820 180

TABLE I

Projectile Energiles for 80Z Bare Ion Yield
and Bquilibrium Thicimess”

*hese thicknesses are well beyornd the "kmee” of the
bare fon yield vs. thickness curve. In order t nin-
imi ze multiple Coulomb scattering in good accelerator
design, 1/2 of the above thicknesses will still provide
a 65-70% bare ion yield.

Future Measurements

Since the technique of preparing 0,1, or 2 elec
tron ions has now been demonstrated for Xe, similar me~
thods may be used In the future for U ions where all of
the plickup phenomena will be under the most extreme
conditions. In addition, plans are being made to check
these cross sections in a. few gases as well as the sol-
ids used in this work. Direct measurements in R, will
be important for all of the ultra hgh vacuum heavy ion
storage rings which emd up with a residual tiay quanti-
ty of hydrogen as a background.
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