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Abstract

Towards Data Reliable, Low-Power, and Repairable

Resistive Random Access Memories

by

Amirali Ghofrani

A series of breakthroughs in memristive devices have demonstrated the potential of memris-

tor arrays to serve as next generation resistive random access memories (ReRAM), which are

fast, low-power, ultra-dense, and non-volatile. However, memristors’ unique device characteris-

tics also make them prone to several sources of error. Owing to the stochastic filamentary nature

of memristive devices, various recoverable errors can affect the data reliability of a ReRAM.

Permanent device failures further limit the lifetime of a ReRAM. This dissertation developed

low-power solutions for more reliable and longer-enduring ReRAM systems.

In this thesis, we first look into a data reliability issue known as write disturbance. Writing

into a memristor in a crossbar could disturb the stored values in other memristors that are on the

same memory line as the target cell. Such disturbance is accumulative over time which may

lead to complete data corruption. To address this problem, we propose the use of two regular

memristors on each word to keep track of the disturbance accumulation and trigger a refresh to

restore the weakened data, once it becomes necessary.

We also investigate the considerable variation in the write-time characteristics of individual

memristors. With such variation, conventional fixed-pulse write schemes not only waste

significant energy, but also cannot guarantee reliable completion of the write operations. We

address such variation by proposing an adaptive write scheme that adjusts the width of the write

pulses for each memristor. Our scheme embeds an online monitor to detect the completion of

a write operation and takes into account the parasitic effect of line-shared devices in access-
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transistor-free memristive arrays. We further investigate the use of this method to shorten the

test time of memory march algorithms by eliminating the need of a verifying read right after a

write, which is commonly employed in the test sequences of march algorithms.

Finally, we propose a novel mechanism to extend the lifetime of a ReRAM by protecting it

against hard errors through the exploitation of a unique feature of bipolar memristive devices.

Our solution proposes an unorthodox use of complementary resistive switches (a particular

implementation of memristive devices) to provide an “in-place spare” for each memory cell at

negligible extra cost. The in-place spares are then utilized by a repair scheme to repair memristive

devices that have failed at a stuck-at-ON state at a page-level granularity. Furthermore, we

explore the use of in-place spares in lieu of other memory reliability and yield enhancement

solutions, such as error correction codes (ECC) and spare rows. We demonstrate that with the

in-place spares, we can yield the same lifetime as a baseline ReRAM with either significantly

fewer spare rows or a lighter-weight ECC, both of which can save on energy consumption and

area.
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Chapter 1

Introduction

1.1 Motivation

CMOS-based memory technologies cannot keep up with the ever-increasing demand for

denser and lower-power memories. As the memory cell size is mainly limited by the size of its

access-transistor, CMOS technology scaling is reaching its limit due to the increased leakage

current of the access-transistors and the yield drop induced by fabrication imprecision [1].

As an alternative, emerging resistive memory technologies such as phase change memories

(PCM) [2], spin-transfer torque magneto-resistive memories (STT-MRAM) [3], and metal oxide

valence change resistive random access memories (ReRAM) [4] have been investigated recently

that offer ultra-small and low-power memory elements with fast switching speeds. Among them,

metal oxide valence change ReRAMs, generally referred to as memristors [5], are especially

promising as they exhibit unique electrical characteristics which enable the elimination of the

access-transistor, while maintaining the same power/speed/endurance advantages [6].

A memristor is a two-terminal passive programmable resistor, which typically has a

metal/insulator/metal (MIM) structure shown in Figure 1.1a. The resistance of a memris-

tor is maintained in the absence of an electric field. 0/1 logic values can be represented by

1
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(a) (b)

R
eset

Se
t

-Vthw

Vthw

I
dR/dt

V

Metal

Metal

Insulator

Filament

Figure 1.1: A memristor’s exemplar realization, and its non-linear dR/dt-V characteristic. a) A
typical metal/inuslator/metal structure. Formation of a conductive filament inside the insulator
layer changes the resistance of the device. b) Electrical characteristics of memristive devices:
the solid line shows the non-linearity in the rate of change for the resistance of the device
based on the applied voltage. The dashed lines shows the linear I-V characteristic observed in
a typical memristive device.

ranges of high/low resistances. The resistance of the device can be changed by applying ade-

quate voltage (or current) pulses. The change in the resistance happens due to the non-volatile

formation of a conductive filament inside the insulating oxide layer and has a strong non-linear

dependency on the amplitude of the applied pulse [7], as shown in Figure 1.1b: while applying

voltages above a write threshold, Vthw, effectively switches the internal state of the device,

applying voltages below Vthw has negligible effect on the device’s state. This non-linearity

combined with proper voltage application schemes could effectively provide the functionality

of an access-transistor, and thus, obviate the need for an access-transistor for each memory cell.

The elimination of the access-transistor and the simple structure of memristors facilitates

the realization of ultra-high density access-transistor-free (ATF) memory arrays with sub 10-nm

feature sizes [8]. Such arrays demonstrate lower power consumption than existing technologies,

verified by analysis and preliminary experimental measurements, due to the ATF memory

structure and the passiveness of the devices [9, 10]. Such characteristics make memristive

memories attractive as an extremely dense and low-power non-volatile memory [6]. Several

nanoscale memristive crossbars have been successfully demonstrated recently [11, 12, 13].

2
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However, the elimination of the access transistor as well as the intrinsic characteristics of the

memristive devices, also introduce several challenges. Such challenges should be addressed to

enable the use of memristive devices as the next generation memory technology. Data reliability

issues arise from the elimination of the access-transistors, where the logic value of non-selected

devices might get affected during a write operation due to what is known as the write disturbance

problem. Furthermore, successful write operations cannot be guaranteed for memristive devices,

as memristors have a significant write time variation. Finally, memristive devices are prone to

device failures, necessitating low-cost repair schemes to replace the failed devices in order to

improve the lifetime of memristive memories. In this thesis, we focus on finding innovative and

low-cost solutions to address these problems.

1.2 Addressing Write Disturbance

Write disturbance is an undesired coupling effect during write operation that affects several

other memristors that share the same word- and/or bit-line [14, 11]. Due to the write disturbance,

writing a logic value into one memristor may disturb the resistance of the line-shared memristors

that store the opposite logic value. This effect is due to the access-transistor-free structure

of the memory array, in which writing into a target cell also applies a notable partial voltage

(e.g. , Vw/2) across line-shared devices. The resistance degradation due to the write disturbance

could accumulate over several write cycles and may eventually result in corruption or complete

inversion of the stored logic value.

Here we propose a solution [15] to address this problem. Our solution confines the write

disturbance effect to word-line-shared devices by applying asymmetric voltages to the word-

line and the bit-line (e.g. , −Vw/3 on target bit-line and 2Vw/3 on target word-line): bit-line-

shared devices will experience less partial bias (e.g. , Vw/3), which has a very negligible write-

disturbance effect. Then, two regular devices on each word-line are assigned as canary cells,

3
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Logic 0 canary cells

0 0 0 0

0

0

0

0

2Vw
3

-Vw
3

Logic 1 canary cells
ROFF

RON t

R

Target cell

ROFF

RON t
Line-shared cells

Canary cell

ROFF

RON t

RTH

Target cell

Figure 1.2: Write disturbance effect and solution. Applying Vw across the target cell effectively
switches the target device to logic 1 (top-right), while degrading the logic 0 stored in other
line-shared devices (middle-right). Two regular memristors per word-line, storing logic 1 and
0 respectively and placed on green and blue bit-lines, keep track of the worst-case logic 1 and
0 write disturbance effect on the line (bottom-right), and trigger a refresh operation when the
degraded resistance reaches a close-to-corruption threshold, RT H .

in which undisturbed logics 1 and 0 are stored initially. The canary cells cannot be accessed

through the standard write interface and are meant to keep track of the worst-case, cumulative

write disturbance effect for their corresponding logic on each word-line: while they are affected

by the write disturbance effect similar to other memristors on the same word-line, they cannot

be restored to the strong logic values via the standard write operations.

During a write operation on word-line W , the resistance values of W ’s two canary cells

are monitored to avoid data corruption: As canary cells experience the worst disturbance

accumulation of all devices on W (explained in the last paragraph), therefore, as long as the

4
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resistance value of each canary cell is in its valid range, the validity of the data stored on other

devices on W can be guaranteed. Whenever the resistance value of a canary cell reaches a

known close-to-corruption threshold, RT H , a refresh operation is triggered that refreshes all

memristive devices on W . Fig. 1.2 illustrates write disturbance effect as well as the proposed

solution. Chapter 2 discusses the write disturbance problem and the proposed solution in more

details.

1.3 Addressing Write Time Variation

Another intrinsic issue with the memristive devices is the significant variation in their write

time characteristics. The length of the required write pulse to switch the state of a device, varies

from device to device, and even from cycle to cycle for the same device, and is not known

beforehand. Hence, a method is required to find the proper length of a write pulse for each

device/cycle to ensure a successful write operation.

Adaptive methods are commonly utilized for this purpose. In an adaptive write operation,

the length of the write pulse is adjusted for individual devices by terminating the write pulse as

soon as the target device completes the switching. This is typically done by monitoring (i.e. ,

sensing) the write-current through the target cell, Itarget, to detect a sudden jump in the current

that indicates the completion of switching.

However, the existence of partially-selected devices in an ATF crossbar renders the conven-

tional adaptive schemes useless: During the write operation, line-shared devices are partially-

biased. Such a partial voltage introduces a leakage current on the target bit-line, as shown in

Fig. 1.3. The leakage current is also data-dependent: the larger the number of ON devices on

the bit-line, the greater the leakage current. Hence, in ATF crossbars, Itarget is mounted on top of

a considerable data-dependent leakage current Ileak, due to the bit-line-shared devices. A typical

sensing circuitry cannot detect the switching in such noisy conditions.

5
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0 0 0 0

0

0

0

0

Itarget

Word-line-shared devices

Bit-line-shared devices

Unselected devices

Logic 0 (OFF/High res.)

Logic 1 (ON/Low res.)

Vw
2

-Vw
2

Ileak

Figure 1.3: Vw/2 voltage application scheme for a write operation. Black (dotted white) cells
represent stored logic 0 (1). Highlighted areas show the word- and bit-line-shared devices and
the unselected devices respectively. A leakage current inversely proportional to the resistance
of the bit-line-shared devices leaks into the bit-line during the write operation.

To address this problem, we propose a leakage-current-filtering mechanism. In this method,

each adaptive write operation consists of two stages. In the first stage, the data-dependent

leakage current of the bit-line-shared devices is latched. The latched Ileak is then subtracted

from the total current observed on the bit-line in the second stage, to obtain the write-current

contributed only by the target cell, i.e. , Itarget. This filtered current is then sensed by a typical

sensing circuit to detect the switching event. As there exists significant temporal variation in

memristive devices for a complete switching of the write operation [16], this method yields a

considerable energy saving in ATF memristive crossbars by enabling adaptive write operation

in such crossbars. Chapter 3 provides more details on the write-time variation problem and the

proposed solution.

6
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1.4 Extending ReRAM Lifetime

Owing to their stochastic filamentary nature, memristive devices are prone to device fail-

ures [17]. Physical defects and endurance problems could lead to permanent “hard errors” that

can adversely affect the lifetime of memristive memory modules. This necessitates low-cost

repair schemes to replace the failed devices in order to improve the lifetime of memristive

memories. Several solutions exist for conventional memory technologies to address hard errors,

such as error correction codes (ECC) [18] and spare row/columns [19]. However, such solu-

tions impose significant area and energy overheads on the memory module. When applied to

memristive memories, such overhead becomes even more noticeable, considering the highly

dense and ultra-low-power characteristics of memristive memories.

In chapter 4, we propose a zero-area-overhead in-place spare for each bit to repair the failed

devices [20]. The proposed low-cost memory repair scheme is inspired by the possibility of

stacking two memristive devices at the footprint of a single device at negligible extra cost,

shown in complementary resistive switches [21]. The proposed method requires only minor

modifications to the memory architecture. We further explore the possibility of using our

in-place spares to enable lighter-weight ECC for the memory module while yielding a similar

lifetime as a baseline ReRAM.

1.5 Permissions and Attributions

1. Chapter 1 contains material taken from “Toward Large-Scale Access-Transistor-Free

Memristive Crossbars,” by Amirali Ghofrani, Miguel-Angel Lastras Montaño, and Kwang-

Ting Cheng, which appears in IEEE Asia South-Pacific Design Automation Conference

(ASPDAC), 2015.

2. Chapter 2 contains material taken from “Towards Data Reliable Crossbar-Based Memris-

7
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tive Memories,” by Amirali Ghofrani, Miguel-Angel Lastras Montaño, and Kwang-Ting

Cheng, which appears in IEEE International Test Conference (ITC), 2013.

3. Chapter 3 contains material taken from “A Low-Power Variation-Aware Adaptive Write

Scheme for Access-Transistor-Free Memristive Memory,” by Amirali Ghofrani, Miguel-

Angel Lastras Montaño, Melika Payvand, Siddharth Gaba, Wei Lu, Luke Theogarajan,

and Kwang-Ting Cheng, which appears in ACM Journal on Emerging Technologies in

Computing Systems (JETC), Vol. 12, Issue 1, July 2015.

4. Chapter 4 contains material taken from “In-place Repair for Resistive Memories Uti-

lizing Complementary Resistive Switches” by Amriali Ghofrani, Miguel-Angel Lastras

Montaño, Yuyang Wang, and Kwang-Ting Cheng, which is submitted to International

Symposium on Low Power Electronics and Design (ISLPED), 2016.
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Chapter 2

Towards Data Reliable Crossbar-Based

Memristive Memories

A series of breakthroughs in memristive devices have demonstrated the potential of using

crossbar-based memristor arrays as ultra-high-density and low-power memory. However, their

unique device characteristics could cause data disturbance for both read and write operations

resulting in serious data reliability problems.

This chapter discusses such reliability issues in detail and proposes a comprehensive yet low

area-/performance-/energy-overhead solution addressing these problems. The proposed solution

applies asymmetric voltages for disturbance confinement, inserts redundancy for disturbance

detection, and employs a refreshing mechanism to restore weakened data. The results of a

case study show that the average overheads of area, performance and energy consumption for

achieving data reliability, over a baseline unreliable memory system, are 3%, 4%, and 19%

respectively.

9
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2.1 Introduction

The evolutionary improvement of current memory technologies cannot keep up with the

fast-growing demand for denser, lower-power, and higher-bandwidth memories. In traditional

transistor-based memories, high leakage current is becoming a major concern, and imprecision

in the fabrication process is reducing the yield to an alarming level as the technology feature size

continues to shrink [22]. To address such problems, several new memory technologies have been

proposed. Redox-Based Resistive Switching Memories [4], Phase Change Memories [2], and

Spin-Transfer Torque Magneto-resistive Memories [3] are some of the emerging technologies

that could possibly serve as the next-generation memories for various applications. Among these

candidates, metal oxide valence change ReRAMs (more generally referred as memristor [5]) are

especially promising due to excellent scaling prospects, high endurance and high speed which

can also be combined with great retention [23, 24].

A memristor is a passive non-linear resistive device, the resistance of which depends on the

time integral of current applied across its terminals. Hence, it maintains its resistance in the

absence of electrical current, which makes it suitable as a non-volatile memory element. The

theoretical foundation of memristors goes back to 1971, when L. Chua predicted the existence of

such a device [25]. However, it took researchers decades to unify the theory with experimental

observations [26].

There have been very active research efforts recently, in both industry and academia on

various aspects of memristors [27, 28, 7, 29, 30]. Memristive devices of a feature size 15

nm has been fabricated in academia [31] to form a crossbar-based memory array [11]. A

crossbar architecture has been used due to its high density and regularity. It is anticipated

that feature sizes as small as 3 nm are feasible [32] due to simpler and imprecision-resistant

fabrication process [33]. The fabrication process is CMOS-friendly [34], and efficient methods

exist to stack layers of such memories [35] which facilitate the integration of 3D memristive

10
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Figure 2.1: Memristor realization and typical hysteretic I-V behavior. (a) OFF state: An initial
filament is formed during a one-time formation process. No conductive channel exists, thus
the device is in high resistance state. (b) Set process: Applying a positive voltage drifts the
dopants toward the filament, forming a channel, and decreasing the resistance. (c) ON state: a
low-resistance channel is formed between the two electrodes. (d) Reset process: Applying a
negative voltage repels the dopants and ruptures the channel, increasing the resistance.

memories with CMOS computing cores and decoding logic. Estimations as well as preliminary

experimental measurements in their power consumption show considerable improvement over

existing technologies [9, 23], as maintaining the data stored in memory does not incur any

power consumption, and there is no active leakage current (as they are two-terminal passive

elements). Reported experimental data show very fast write operations [36], while the speed

of a read operation is limited by that of its CMOS sensing circuitry. All these characteristics

make memristive memories ideal for integration with computing cores as an extremely dense

and low-power on-chip non-volatile memory in the near future [6, 37].

However, there are some intrinsic characteristics of memristive memories that result in

data reliability issues when memristors are used to form a crossbar-based memory. One issue
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with such memories is an undesired coupling effect with which writing into one memristor

may affect the data in several other memristors sharing the same word and/or bit lines. The

effect is referred to as write disturbance [14, 11]. Moreover, as the resistance of a memristor is

current-history-dependent, reading its resistance value by applying a read voltage across the

memristor and measuring the resulting current can slightly change the strength of the stored

data [38]. This effect is referred to as read disturbance. Both effects could be accumulative for

a series of read/write operations which could result in data corruption and degrade the reliability

of memory data. Thus these issues must be addressed before memristive memories can serve as

system memories.

In this chapter, we first describe the data reliability issues of memristive memories in

detail, and then present a comprehensive solution to address them. Our proposal is based on

restraining the write disturbance effect, detecting data corruption by adding redundancy, and

restoring/refreshing the disturbed data before corruption. We then evaluate the cost of the

proposed solution in terms of the area, performance and energy overheads beyond the baseline

crossbar structure.

The main contribution of this work is that it solves the data reliability problems of crossbar-

based memristive memories. In addition, the proposed solution achieves the following goals:

• Incurring low area-, performance-, and energy-overheads.

• Using only standard memristive elements without adding any special elements, thus

preserving the regularity and the scalability to achieve high-density memristor arrays.

The rest of the chapter is organized as follows: Section 2.2 provides the readers with

the necessary background on memristors and memristive memory architectures. Section 2.3

describes the data reliability issues of memristive memories in detail. Section 2.4 presents our

proposed solution followed by the experimental results in Section 2.5. We also elaborate on a

comprehensive electrical model for the memristor crossbar array which is used to analyze the
12



Towards Data Reliable Crossbar-Based Memristive Memories Chapter 2

performance and energy overheads of our solution. Section 2.6 concludes the chapter.

2.2 Background on Memristors

2.2.1 Device Physics

Figure 2.1 shows one possible realization of memristors. A simple memristor consists of

three layers: two metallic electrodes, such as Pt, on top and bottom, and a doped thin film, such

as TiO2, in between.

In the initial state, a filament of conductive TiO2−x is formed in the non-conductive TiO2 film

in an irreversible forming step [39]. However, the filament does not connect the two electrodes

together, thus the device is in a High Resistance State (HRS). In order to turn ON the device, a

sufficiently high positive voltage is applied across the electrodes of the device. This makes the

filament connected to the top electrode attract positively charged vacancies in the oxide. This

essentially grows the filament, as the vacancies start to drift in the applied electric field through

the most favorable diffusion paths, and form a channel between the two electrodes [39]. Once

such highly conductive channels are formed, the device is in Low Resistance State (LRS) and

considered as ON.

To switch the device to the high resistance OFF state, a voltage with the opposite polarity

should be applied on the electrodes. This repels away the vacancies that formed the conductive

channel, thus shifting the device back to its high resistance state.

The state of the device and thus its resistance only changes when an electric current is

passing through the device, and this change is continuous between two extremes: the RHRS

and the RLRS. The change can be modeled according to the time integral of the current. RHRS

and RLRS depend on the initial filament and are set in the forming step. However, forming

free-devices are also under research [40].
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Figure 2.2: Different resistance regions.

2.2.2 Data Storage

In order to use memristors as memory elements to store binary data, the possible resistance

range of the memristor is divided into three regions, as illustrated in Figure 2.2. Lower

resistances are considered as logic 1 and higher resistances are considered as logic 0. Any

resistance that falls in the marginal region in between is considered as unknown to ensure

accurate distinction of logic 0 and 1.

Throughout this chapter, the term value is used to refer to a memristor’s resistance value,

while the actual binary data is referred to as data. Moreover, the term LRS (HRS) is generally

used to refer to the range of resistance values representing logic 1 (logic 0).

2.2.3 Read and Write Operations

In order to write a binary data into a memristor, a proper write voltage (Vw) pulse of width

twrite is applied across the device to set its resistance to the desired value. Vw and twrite are

chosen so that the write pulse can completely shift the memristor’s resistance to RHRS or RLRS,

based on the polarity. That is, a negative pulse shifts the resistance toward RHRS and a positive
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Figure 2.3: A typical I-V characteristic of a memristor. Three different voltage regions can be
observed.

pulse shifts it toward RLRS.

The read operation decides if the resistance is in LRS or HRS. To do so, a read voltage (Vr)

is applied across the memristor terminals. This results in the injection of a current through the

memristor, the magnitude of which depends on the memristor’s resistance. The stored data can

be read by measuring this current.

2.2.4 I-V Characteristics

Without loss of generality, Figure 2.3 can be used as a model of a memristor’s I-V character-

istics [41], based on which the following three regions can be defined:

• Diode Voltage Region (DVR): Applying a small voltage across the memristor terminals

would not generate any noticeable current, and ideally would not change the device

resistance. For example, this could be due to integrated Metal-Insulator-Metal (MIM)

structure in series with the memristive layer. For a relatively small applied voltage, the

bias would drop mostly across the MIM layer resulting in a negligible change of the

resistance in the memristor.

However, as the resulting current is negligible regardless of the memristor resistance,
15
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an applied voltage in this region cannot determine the stored data. This kind of diode

behavior has been further strengthened by the introduction of complementary resistive

switches [42].

• Read Voltage Region (RVR): As the applied voltage rises above a certain threshold,

the resulting current starts to increase considerably. This current is still small and just

slightly changes the resistance of the device, but is large enough to differentiate between

the current of a memristor in HRS or LRS and determine the stored data. Voltages in this

range (both negative or positive) can be used for the read operations.

• Write Voltage Region (WVR): By further increasing the applied voltage, the resulting

current increases even further, having exponentially higher altering effect on the resistance

of the memristor. This is due to the highly nonlinear kinetics typically associated with

truly non-volatile memristors [24]. Such voltages can effectively change the memristor’s

state from LRS to HRS (or vice versa, depending on the polarity of the applied voltage),

and are used to write data into a memristor.

2.2.5 Memory Architecture

Different architectures have been proposed to utilize memristors to form a memory array.

The most popular architecture is the crossbar organization, shown in Figure 2.4, which consists

of two perpendicular layers of parallel nanowires forming a memristor at each cross section.

The memory controller and address decoding circuitry are implemented in a peripheral CMOS

subsystem [11].

However, the simple crossbar architecture encounters some scalability limitations: (1)

voltage drop along long nanowires, can prevent effective application of read or write voltages

on the desired cross-point, and (2) there is an upper limit on the maximum possible number

of cross-points on each nanowire, imposed by noise margin requirements. To address such
16
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limitations, in [43], authors proposed an innovative crossbar-based architecture called CMOL,

that addresses the scalability issues by segmenting the crossbar nanowires, thus limiting their

length and the number of cross-points per nanowire, while preserving the cross-point density.

In this chapter we use the simple crossbar architecture as the underlying memory architecture

to illustrate the problem and our solution for the following reasons:

• It is easier, but without losing generality, to explain the concept using the simple crossbar

architecture.

• Currently functional memristive memories are built in the form of a simple crossbar [11].

• The proposed solution can also be generalized to architectures such as [43], which are

variants of the simple crossbar architecture, with minor modifications.

Here we are assuming an n-by-n crossbar memory, where Mi j refers to the memristor at

the cross section of ith row (also referred to as word-line) and jth column (also referred to as

bit-line).

2.2.6 Read and Write Operations in Crossbar

To write data into Mi j, a sufficiently wide pulse with an amplitude Vw in the WVR is applied

across its terminals. Among several methods proposed to apply the Vw on the memristor [44, 30],

the least intrusive one is applying Vw/2 on the ith word-line, −Vw/2 on the jth bit-line, and

grounding all other word- and bit-lines.

For a read operation, a sufficiently wide pulse of amplitude Vr in the RVR is applied across

the memristor in a similar way. Then a sensing and comparing (S&C) circuitry is used to read

the resistance value. One possible implementation of such circuitry is shown in Figure 2.5.

As the current passing through a transistor is a function of its gate-source voltage, the diode-

connected transistor T in S&C circuitry makes the gate voltage (Vout) follow the transistor’s
17
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Figure 2.4: Crossbar memory architecture. To access each memristor, a bit-line and a word-line
are selected and applied with appropriate voltages which depend on the read or write access.
Other lines are grounded.

current, essentially converting the current to a voltage. Since the transistor’s and the memristor’s

currents are identical, and depend on the memristor’s resistance, Vout reflects the value of

the memristor’s resistance. This voltage is then compared with a reference voltage (Vref) to

determine the stored binary data. Ideally, Vref is set between the Vout of a memristor in LRS

and that of a memristor in HRS.

2.3 Data Reliability Issues in Memristive Memories

2.3.1 Read Disturbance

As current flows through the device during the read time, the device’s resistance might

slightly change. This read disturbance effect, mostly affects the target memristor, and not the
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Figure 2.5: Sensing and Comparing circuitry. The comparator is an Op-Amp. The memristor’s
read current passes through transistor T. By connecting T’s gate to its drain, the drain voltage
Vout reflects the read current, as T’s current depends on its VGS.

other memristors in the crossbar array. The read voltage Vr is chosen to meet two criteria: (1) it

is within RVR, and (2) Vr/2, the voltage applied to other memristors that share the same word-

or bit-line with the target memristor, falls within the DVR. The second criterion ensures that the

side-effect of the read operation on other line-shared memristors is negligible.

It should be noted that not every read operation is disturbing. For a given polarity of Vr,

only one of the two logic values will be disturbed. For example, assume a positive Vr is applied

for the read operation. If the stored data is logic 0 (i.e. its resistance value is within HRS), the

resulting current will slightly shift its resistance toward RLRS, making the stored data a weaker

0. However, if the stored data is logic 1 (i.e. LRS) the read current will have a healing effect, by

shifting its resistance toward RLRS, thus making the stored data a stronger 1.

Few articles in the literature addressed the read disturbance problem. In [38] the authors
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propose the use of more complex read pulses consisting of alternating Vr and −Vr pulses to

compensate for the destructive effect of the read operation. The alternate pulse, appended to

the original read pulse, heals the destructive effect of the original read. However, this method

doubles the read time and energy unnecessarily, as not all read operations are disturbing. The

incurred overhead is particularly expensive as the read operations are more time consuming

than the write operations for memristive memories.

In Section 2.4, we propose a couple of different restoring schemes to address this issue. Our

solution reduces energy overhead of a reliable read operation by triggering data restoration only

for disturbing reads and expedites the data restoration by utilizing other existing voltages in the

system.

2.3.2 Write Disturbance

Applying Vw/2 and−Vw/2 on the word- and bit-lines respectively to write data to a memristor

has an undesired side effect: a Vw/2 voltage (which falls within RVR) is also applied to all

memristors that share either the word- or the bit-line with the memristor under write, which

can slightly change their resistances. This effect can be disturbing or healing based on the

written logic and the logic stored in the line-shared memristors: If memristor M stores a logic

0, writing a logic 1 (logic 0) to one of its line-shared memristors shifts M’s resistance toward

logic 1 (logic 0), weakening (strengthening) the stored logic. Same thing happens to all other

memristors on the same line as the memristor-under-write and storing a logic 0. Note that the

write disturbance problem is harder to deal with than read disturbance due to its broad impact.

Figure 2.6 illustrates the effect of write disturbance on other line-shared memristors.

One solution is to add a switch (i.e. transistor) for each memristor to enable the isolation

of a memristor from the rest of the memory array [45] (referred to as the 1T-1M technique),

thus avoiding the destructive effect on the line-shared memristors. However, this technique
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encounters the same technology scaling limitations as other transistor-based memories, due to

the integration of the transistors.

In Section 2.4, we propose a solution to this problem by having additional ordinary mem-

ristors with known data content in the memristor layer. These extra memristors are used as

references for detecting possible data corruption. This solution, to the best of our knowledge, is

the first solution to the write disturbance problem that preserves the scalability advantages of

the memristor technology.

2.3.3 Disturbance Accumulation

The data reliability problem arises from the fact that the effects of read and write disturbances

are accumulative and could eventually lead to data corruption. That is, a memristor’s resistance

can be shifted to the unknown region or even the opposite logic region. Figure 2.7 illustrates the

disturbance accumulation after a sequence of write operations.

2.4 Addressing Memristor Data Reliability

Read and write disturbances are intrinsic features of memristors, which if not addressed,

will result in frequent data errors, that cannot be handled only by system-level solutions such as

Error Correction Codes (ECC). Here we try to prevent, detect, and resolve data errors caused by

such disturbances by proposing a circuit- and architecture- level solution. However, ECC can

always be used in conjunction with our method to provide additional protection.

2.4.1 Read-Restore solution for Read Disturbance

The read-restore mechanism in [38] can be optimized for energy efficiency by detecting

destructive reads. Then, only in case of a destructive read, the read operation is extended by
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Figure 2.6: Write Disturbance. Vw is applied between times t1 and t2 to set the memristor-un-
der-write to logic 1 (LRS). Black (white) memristors are in HRS (LRS). The data is written
into the target memristor correctly (top-right). The white memristors sharing the same row or
column are either not affected (top-left) or slightly healed (bottom-left), but the black ones are
slightly disturbed (bottom-right).

applying a voltage of an opposite polarity to heal the destruction. That is, if the original read

uses Vr (−Vr) which causes disturbance, then the value is restored by applying −Vr (Vr). Note

that after the original read operation, both the stored data and the polarity of Vr are known.

Hence it is known if the read operation was destructive or not. The peripheral memory controller

circuitry is extended to differentiate a disturbing read from a non-disturbing one. Moreover,

during restoration, the power-hungry S&C circuitry is turned off which helps minimizing the

energy overhead.

However, restoring by applying Vr roughly doubles the read time, because the restoring

pulse with the opposite polarity needs to have the same pulse width as the original read pulse in

order to recover the disturbing effect.

To accelerate the restoring process, we propose applying a larger voltage Vw instead. This

can improve the performance of restoring operation by one order of magnitude since the higher
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Figure 2.7: Adding redundancy for corruption detection. (A) The initial state of the memory.
The gray-scale color coding is used to show the resistance (i.e. Black for logic 0, and white
for logic 1). Discrete resistance levels are assumed for illustration. A1 contains logic 1 and
A0 contains logic 0, while the rest of cells have random data. (B) Status after writing logic
0 (w0) to D0. As D0’s resistance was already RHRS, it is not changed. However, it shifts the
resistance of the cells storing logic 1, referred to as 1-bits hereafter, (D1, D3 and A1) one
level toward logic 0. (C) Status after w0 in D1. This changes the value of D1, and further
weakens the data in 1-bits. (D) Status after writing 1 (w1) in D0. This changes the value of D0,
weakens the data in memristors storing logic 0, called 0-bits hereafter, (D1, D2 and A0), but
strengthens the data in 1-bits (A1 and D3). (E) Status after w0 in D1. This changes the value
of D1, weakens the data in 1-bits (A1, D0, D3), and strengthens the data in 0-bits (A0 and D2).
(F) Status after w0 in D2. At this point, the resistance value of A1 has reached the corruption
level, which triggers the refreshing of 1-bits (A1, D0, D3). It can be observed that A1 has the
worst-case disturbance among the 1-bits on the word-line, since other bits are either equally or
less disturbed.

Vw can heal the degraded data faster and more efficiently. Moreover, since the voltage Vw is

already available, as it is used for the write operation, no extra voltage resources are needed to

implement this method.

The potential problem with the idea of restoring by Vw is the write disturbance effect on

other line-shared cells. However, our write disturbance solution described in the next subsection,

resolves this side-effect and makes it possible to use the Vw for data restoration. Note that the

width of a restorative Vw pulse is shorter than that of a normal write Vw pulse, thus its negative

effect is also less significant.

Applying a higher restorative voltage Vw incurs higher energy consumption as: (1) larger

current passes through the target memristor, (2) other line-shared memristors will experience
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higher partial voltage Vw/2, which is in RVR region, thus generates more current. The energy

and performance trade-offs of this method will be illustrated in Section 2.5.

2.4.2 Redundancy-based Corruption Detection for Write Disturbance

Write disturbance affects all memristors sharing the same word- or bit-line with the target

memristor. Our solution addresses the problem by employing the following principles: (1)

limiting the disturbance to only those memristors sharing the same word-line with the target, (2)

adding the capability of detecting the disturbance accretion, and (3) refreshing the disturbed

data before it is corrupted.

The reason that both word- and bit-lines are affected by the write operation is the common

assumption of applying symmetric voltages of ±Vw/2 on word-lines (bit-lines). In order to

confine the domain of disturbed memristors, we propose asymmetric application of Vw, i.e.,

applying a higher absolute voltage on the word-lines, and a lower voltage which falls within the

DVR of memristors, on the bit-lines. This makes it easier to address the write disturbance effect,

by protecting the memristors on the bit-line from write disturbance at the cost of having more

destructive effect on the word-line-shared memristors. For asymmetric voltage application, we

propose applying 2Vw/3 on the word-line and −Vw/3 on the bit-line, where we assume:

Vw

3
=

Vr

2
⇒ 2Vw

3
=Vr (2.1)

This offers several advantages: (1) the bit-line-shared memristors will not experience write

disturbance as Vw/3 (i.e. Vr/2) is always within the DVR. (2) The voltage applied to the word-line-

shared memristors is equal to Vr, making it possible to read other cells in the same word-line

simultaneously as the target memristor is written, by just enabling their S&C circuitry (i.e.

sensing and comparing). (3) The number of required voltage levels remains the same (i.e.

{±2Vw/3, ±Vw/3, GND} instead of {±Vw/2, ±Vr/2, GND}). Note that while other asymmetric
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voltage applications are also feasible (i.e. ±3Vw/4 and ∓Vw/4, etc.), that will increase the

number of required voltage levels.

In the next step, we add the capability of detecting data corruption before the resistance

change accumulates to the level of moving the memristor to the unknown state. The key

difficulty for such detection is that if the correct data stored in the memristor is unknown, it is

not possible to distinguish a weakened but correct data from an already corrupted (inverted)

data.

To address this challenge, we propose the addition of an always-1 (A1) and an always-0

(A0) memristors in each word-line, as shown in Figure 2.8, to facilitate the detection of data

corruption. Such bits are ordinary memristors, initially set to their corresponding states (LRS

for A1 and HRS for A0). The only difference is that the user does not have write access to these

cells, which can be ensured by a proper decoder design. There are two nice features of having

such bits on the word-line: (1) As their correct binary data is always known, detection of data

corruption for them becomes feasible, and (2) A write operation disturbs them in the same way

as it disturbs other memristors on the same word-line. This makes them experience the worst

possible case of accumulated disturbances among all cells on the same word-line, as they are

never written into through standard memory accesses. Unlike them, other cells may have been

written into by write accesses, which offset the accumulated disturbance.

This means that the A0 (A1) cell always has the weakest 0 (1) on their word-line. Thus,

as long as the resistance value of the A0/A1 cells stays within the correct range, which can be

ensured by continuously monitoring them, the integrity of the data stored in other cells on the

same word-line can be guaranteed. Figure 2.7 illustrates the idea.

According to the asymmetric voltage application for the write operation which applies 2Vw/3,

that is Vr, to the memristors on the word-line, the value of other cells on the same word-line,

thus the A0 and A1 cells, can be read and monitored simultaneously in every write cycle, using

the same Sense and Compare (S&C) circuitry as shown in Figure 2.5.
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Note that A0/A1 bits intend to detect a potential corruption before it actually happens to

trigger the refreshing mechanism. Hence, the reference voltages (Vref) of the S&C circuitry

on the A0 and A1 bit-lines, are chosen accordingly to ensure that the output of the comparator

is asserted close to but before the corruption. When this happens, a refresh is required on

the close-to-corruption logic. That is, if the output of the A0 (A1) bit-line is asserted, all the

memristors on the same word-line storing a 0 (1) should be refreshed.

Note that here it is assumed that A0 and A1 are disturbed exactly in the same way as any

other memristor on the word-line for clarification purposes. In general case, there might be

small variations. The small resistance of the nanowires may result in a voltage drop along

the line, which in turn causes the memristors to experience slightly different disturbing effect.

This can be addressed by placing the A0/A1 bits closest to the word-line driver. Hence, they

experience the worst case disturbance effect, as they are not affected by the voltage drop.

Moreover, the disturbing effect might slightly differ among memristors due to the process

variation. Conservative adjustment of A0/A1 corruption threshold (Vref), can take this variation

into account to consider the worst case.

The next step is refreshing the close-to-corruption data. That is, if A0 cell’s 0 becomes

too weak, all the 0s on the line are refreshed. Refreshing the memristors storing logic 0 (0-

bits) consists of two steps: (1) Finding out which memristors are 0-bits, for which all bits

on the word-line of interest are read simultaneously, by applying Vr = 2Vw/3 on the target

word-line, grounding all bit-lines, and turning on the S&C circuitry, and (2) Refreshing the

0-bits simultaneously by applying a write voltage −2Vw/3 on the word-line, and Vw/3 on all the

bit-lines whose corresponding memristors need to be refreshed, while grounding other bit-lines.

During the refresh procedure, A0 is also refreshed, thus it experiences the same refreshing

imperfection, if any, that other 0-bits might encounter (e.g. not wide enough refreshing pulses,

etc.). Similarly, during the refresh, the A1 bit on the same word-line will experience the same

side-effects as other memristors storing logic 1 (e.g. disturbance of their value due to the
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Figure 2.8: The configuration of the A0 and A1 on the word-line, assuming a word-line of 4
bits. All the word-lines would be similar.

refreshing of 0-bits). Hence the method is robust and will not be affected by such imperfections

or side-effects.

The main parameter affecting the refresh rate is the Write Disturbance Tolerance (WDT),

which is defined as the number of consecutive writes of only logic 1 (0) before corrupting the

resistance of the line-shared memristors from a strong 0 (1) to the unknown state. The higher

the WDT, the lower the number of refreshes needed. This number depends on two factors: (1)

the applied write voltage Vw, as a lower write voltage has a smaller destructive effect, and (2)

the non-linearity of the device’s I-V curve, as higher non-linearity would help decrease the

destructive side effects of write accesses. Hence, with technology advancement and introduction

of devices with better non-linear kinetics, WDT would continue to improve. Measurements

in [16] show that applying partial voltage of 2/3Vw (i.e. the partial voltage that causes write

disturbance) takes 100× more time (i.e. 100 write operations) to completely change the state

of the device compared to when Vw is applied. Hence, assuming equal division of the possible

resistance range into logic 0, logic 1, and unknown regions, it can be deduced that WDT for

current memristive devices is ≈ 33 (i.e. 100
3 ).

The average number of random write operations (logic 0 or 1) that necessitates a refresh is

estimated based on WDT and is called ψ(WDT ) hereafter. ψ is used for energy and performance

overhead estimation and is calculated by Monte Carlo simulations. In that, we count the number

of refreshes required during a run of 109 write operations for different WDTs. ψ is then obtained

by dividing the total number of write operations by the number of refreshes. Figure 2.9 shows

the number of refreshes and the resulting ψ versus WDT.
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As the disturbance effect is confined to the word-lines, the number of bit-lines has no effect

on ψ . Moreover, as it is assumed that write operations on any memristor on the word-line affect

the A0/A1 bits similarly, the number of memristors on the word-line does not affect ψ either. It

should be noted that the proposed method guarantees the data integrity regardless of ψ(WDT ),

which only changes the refresh rate.

The energy and performance overheads of the proposed solution, as well as the effect of

WDT on those metrics will be discussed in Section 2.5.

2.5 Experimental Results

We derived an electrical model for crossbar-based memories using the Cadence Virtuoso

tool, and designed the peripheral CMOS Comparing and Sensing, and decoding circuits. With

these circuits and models, we simulated the electrical properties of the crossbar and evaluated

the energy consumption and performance of the proposed solution.

In the following, we first elaborate on the electrical model, based on which we discuss the

overhead figures of our solution.

2.5.1 Electrical Model and Experimental Setup

The crossbar structure is shown in Figure 2.10, which is represented as two perpendicular

layers of parallel nanowires. The separation of parallel nanowires is α×Fnano, where Fnano is

the width of the nanowire and α would be 2 for the highest density. t×Fnano in Figure 2.10

represents the thickness of nanowires.

In order to electrically model each nanowire, they are partitioned into nanowire segments of

length αFnano and a resistor and a capacitor are used to model each segment. The resistance per

nanowire segment can be extracted using the cross-sectional area and the resistivity ρ of the
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Figure 2.9: The number of required refreshes in a run of 109 write operations (dashed) and
the average number of writes before a refresh is required, called ψ (solid), for different WDT
numbers. As WDT increases, the number of refreshes drops significantly, which in turn
increases ψ considerably.

material:

Rseg = ρ
αFnano

tF2
nano

= ρ
α

tFnano
(2.2)

It is a well-known effect that in nanometric scales, the electrical resistivity (ρ) of a material

increases when the mean free path of the electrons in the bulk material becomes comparable to

the dimensions of the structure. The expected increment in the resistivity [46] is considered and

is plugged in Equation 2.2 to estimate the resistance of the segment.

As for the capacitive effect, we use the results obtained in [37] in which the capacitance per

nanowire segment can be approximated as:

Cseg ≈ 0.48×10−10
εαFnano (2.3)

where ε is the relative dielectric constant of the insulating material. For SiO2, ε = 3.9.

Hence, for a given feature size Fnano, pitch αFnano, and relative wire thickness t, we can
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extract the capacitive and resistive components for each nanowire segment and form an RC

network that is driven by lateral circuitry, as shown in Figure 2.11.

The memristive devices, formed at every cross-point, are modeled based on the model

proposed in [47] which considers the dynamic characteristics of the device.

The peripheral S&C circuitry (i.e. Sense and Compare) is implemented in 45 nm CMOS

technology and uses a latch-based comparator based on [48] to produce the output. This

comparator only latches the output at selected times and is effectively turned off at other times

for energy saving. However, the energy consumption of read operation is mainly consumed in

the S&C circuitry.

Crossbar memories of size 1Kb to 64Kb are modeled and simulated to estimate the perfor-

mance and energy overheads. We do not show simulation results for larger memory due to the

following reasons: (1) The use of spice-level simulation limits the memory size for simulation.

(2) Simple crossbar does not scale well for larger memories. Instead, as stated earlier, other

crossbar-based architectures such as CMOL [43], enhanced from the simple crossbar but with

a similar number of cross-points per nanowire segment, has a much larger capacity and thus

addresses the scalability issue. While the proposed method can be adapted to these architectures,

in order to show results of a significantly larger memory size under these architectures, the

results must accompany an in-depth explanation of these architectures which is prevented due to

space limitation. Therefore, we illustrate the trends using the memory sizes in the range of 1Kb

to 64Kb (i.e. 32 to 256 cross-points per nanowire) under simple crossbar architecture. Larger

memories under those enhanced architectures should follow a similar trend.

Table 2.1 summarizes the estimated energy consumption and timing numbers of baseline

(unreliable) read and write operations, based on our electrical model. Memories with higher

number of cross-points per nanowire have considerably higher energy consumption due to the

increase in the number of partially activated line-shared devices.
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Figure 2.10: Physical characteristics of crossbars

2.5.2 Read Disturbance

Figure 2.12 illustrates the timing and energy consumption of different restoring methods in

our simulations. The estimated energy consumption and timing numbers of those methods are

demonstrated in Table 2.2 for different memory sizes. Performance and energy overheads are

calculated over the baseline read operation, based on the numbers shown in Table 2.1.

It can be observed in the sixth column that restoring by Vr has a prohibitively large (≈80%)

Table 2.1: estimated energy consumption and timing numbers for baseline read and write operations

Xpoint per 

nanowire

Memory 

(Kb)
read write decoder read write decoder

32 1 5.00 2.44 0.30 36.7 37.2 160

64 4 5.00 2.45 0.34 36.9 49.7 130

128 16 5.00 2.48 0.38 37.6 74.1 120

256 64 5.00 2.52 0.43 39.1 119.8 118

Size Time (ns) Energy (fJ)

31



Towards Data Reliable Crossbar-Based Memristive Memories Chapter 2

performance overhead, as the restorative pulse has approximately the same width as the original

read pulse to heal the destructive effect. However, as shown in the eighth column, this method

offers very low energy overhead (<1%), because the power-hungry S&C circuitry for the typical

read operation is turned off during restore operation. Moreover, the restorative pulse width is

a bit shorter than the original pulse, as it is directly applied to the bit-line, rather than being

applied through the sensing circuitry that delays the effective application of the voltage. This

also contributes to the lower energy overhead.

By applying a restorative Vw pulse instead, the performance overhead can be improved

significantly (to ≈8%), as shown in the seventh column. This is due to the high non-linearity

of memristive devices: a higher voltage changes the device state significantly faster. However,

as demonstrated in the ninth column, this method incurs higher energy consumption (<4%),

since the partial voltage on the line-shared memristors is not in the DVR range anymore, thus

injecting more current through those partially selected memristors.

It can be observed that the energy consumption increases with more memristive devices on

each nanowire, as more devices will be partially activated due to the partial restorative voltage

applied on the line-shared memristors. However, the effect of memory size on performance is

negligible, as the increase in restoring time is small.

There is an energy-performance trade-off between the proposed restoring methods. How-

ever, considering the fact that memristors offer a huge improvement in energy rather than

Table 2.2: estimated energy consumption, timing, and overheads of the reliable read operation

Size

Xpoint per 

nanowire

restore 

by Vr

restore 

by Vw

restore 

by Vr

restore 

by Vw

restore 

by Vr

restore 

by Vw

restore 

by Vr

restore 

by Vw

32 4.32 0.435 0.73 2.00 81.4 8.20 0.185 0.51

64 4.23 0.436 0.86 3.38 79.1 8.16 0.257 1.01

128 4.20 0.441 1.18 6.24 77.9 8.19 0.374 1.98

256 4.22 0.462 1.95 12.32 77.8 8.52 0.623 3.93

Time (ns) Energy (fJ)
Performance 

Overhead (%)

Energy 

Overhead (%)
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Figure 2.11: Electrical model of a nanowire in the crossbar

in performance, using restorative Vw pulses would be a better choice. Application of other

restorative voltages is also feasible, but generating additional voltage levels would increase

energy consumption and is not desirable.

2.5.3 Write Disturbance

The performance overhead of our write disturbance solution is due to the refresh opera-

tion. The refresh procedure takes tread + twrite, which is due to (1) simultaneous read of all

memristors on the word-line, and (2) concurrent refreshing of those memristors storing the

close-to-corruption data.

The meantime between refreshes (MTBR) depends on: (1)

ψ(WDT ) (i.e. the average number of random writes before a refresh is required), and (2) the

probability of having write accesses, as lower write probabilities (Pwrite) slows down the accumu-

lation of the write disturbances, thus decreases the refresh frequency. That is, if α = Pread/Pwrite,

then for every ψ(WDT ) write operations (that on average necessitate a refresh), α ×ψ(WDT )

read operations have been performed, which increases the MTBR, thus reducing the perfor-

mance overhead. Moreover, since each read/write operation should be decoded as well, tdec (i.e.

decoding time) is also considered for every operation.
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Figure 2.12: Different restoring schemes. The top part shows the target memristor’s resistance
that is disturbed during the read operation. Applying Vr takes longer to restore the value with
negligible energy overhead, while a restoring Vw pulse quickly restores the value but with
larger energy overhead.

Equation 2.4 estimates the performance overhead of the proposed method:

Perf. Ovhd. =
tre f resh

Meantime between refreshes

=
tread + twrite

ψ(WDT)
(
(1+α)tdec +αtread + twrite

) (2.4)

Assuming equal read/write access probabilities, WDT equal to 33, and timing parameters

extracted from simulation (Table 2.1), the performance overhead would be ≈0.15%, which is

insignificant.

The energy overhead of the proposed method is due to the energy consumed for: (1) reading

the A0/A1 bits, which is required for every write operation, and (2) performing the occasional

refreshing process.

Refreshing energy overhead is caused by: (1) reading the value of all memristors on the
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word-line, and (2) writing data back in those cells which should be refreshed. Hence, as multiple

memristors should be read/refreshed, the refreshing energy also depends on the number of

memristors on the word-line, WS, and the number of cells to be refreshed, RC. Since refresh

procedure is triggered only when necessary, the refreshing energy should be divided among all

the write operations performed between two refreshes (i.e. ψ(WDT )) to get the average energy

overhead per write operation.

Equation 2.5 estimates the average energy overhead, where Ex shows the energy consumption

of operation x:

Energy Overhead =

2 ·Eread +
WS ·Eread +RC ·Ewrite

ψ(WDT)

Ewrite +Edecode
(2.5)

Table 2.3 summarizes the estimated energy and performance overheads of the reliable

write operation, calculated based on Equations 2.4 and 2.5 and the timing and energy numbers

presented in Table 2.1. Numbers are calculated for exemplar WDT value equal to 33.

Memories with fewer number of cross-points per nanowire have lower (≈40%) energy

overheads, as fewer memristors are written (refreshed) and the energy consumption per write

operation is small, while decoding is done in CMOS and consumes more energy. As the number

of cross-points per nanowire increases, the energy consumption due to refreshing increases since:

Table 2.3: Energy and performance overhead of the reliable write operation over the baseline
write operation for different memory sizes.

Xpoint per 

nanowire

Memory Size 

(Kb)

Performance 

Overhead (%)
Energy Overhead (%)

32 1 0.161 38.7

64 4 0.159 45.0

128 16 0.157 47.3

256 64 0.156 51.5
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Figure 2.13: Write Disturbance Tolerance (WDT) vs. energy overhead of a reliable write over
the baseline write.

(1) more memristors should be refreshed, and (2) the refreshing is more energy consuming

due to the increase in the number of partially activated devices (due to the partial 2Vw/3 on

the word-line-shared memristors). However, note that in scalable crossbar-based architectures

such as CMOL [43], the number of cross-points per nanowire segment does not increase as the

memory scales. Thus, when applied to such structures, our proposed method will not suffer

from this increment in energy overhead.

Figure 2.13 shows the effect of different WDT’s on reliable write operation’s energy overhead

for different memory sizes in logarithmic scale. Smaller Write Disturbance Tolerances (WDT)

necessitate frequent refresh operations, thus increasing the energy overhead of a reliable write

operation. As WDT increases, the refresh rate and thus the energy overhead of a reliable write

operation decreases to ≈40%. It is also shown that having higher number of cross-points per

nanowire increases the energy overhead, as described before.

As for area overhead, the proposed method adds only two memristors (i.e. A0 and A1) on

each word-line regardless of the word size. Hence, the area overhead depends on the word size

and is equal to 2
Word Size . For an exemplar word-line containing 64 memristors, this overhead is
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3.12%.

2.5.4 Discussion on the Effect of the Device Variation

The degrading effect of the write disturbance could vary from device to device on the

same word-line due to the variation in the switching characteristics of memristive devices.

Hence, the corruption threshold for the A0/A1 cells, Vref, should be adjusted conservatively to

accommodate for devices that show the highest sensitivity to the write disturbance effect. Such

a conservative corruption threshold translates into a smaller WDT, which in turn could increase

the refresh rate and thus the energy overhead of the proposed method. However, according to

Figure 2.13, the energy overhead of the proposed method tends to saturate for larger WDTs.

Hence, with a large WDT (e.g. > 40), the reduction of the effective WDT due to a conservative

threshold selection would have negligible effect on the energy overhead of the proposed method.

In order to have a reliable memristive memory module, one should consider that the sen-

sitivity of memristive devices to write disturbance could also change over their lifetime. To

accommodate for such over-time variations, a calibration scheme should be employed to adjust

the corruption threshold of A0/A1 monitoring cells periodically.

2.6 Conclusion

In this chapter we addressed the data reliability issues of the emerging crossbar-based

memristive memories.

The read disturbance problem is addressed by a read-restore mechanism. Utilizing the

voltage levels already available in the memory system, two restoring methods are proposed and

are evaluated for their energy-performance trade-offs.

The write disturbance issue, that affects the memristors on the same word-/bit-line as

the memristor-under-write, is addressed by first limiting the disturbance domain only to the
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memristors sharing the same word-line, through asymmetric distribution of the write voltage

Vw. Furthermore, the possible corruption of data is detected by adding two extra memristors

without write access on each word-line, which store logic 0 and 1 respectively and are used as

references to check corruption trend and status. A refreshing scheme is also proposed to refresh

the disturbed cells.

One main advantage of the proposed solution is that the design-for-reliability hardware

uses only regular memristors in the memristor layer plus some CMOS circuitry that can

be implemented outside the memristor arrays. Hence, unlike other methods which require

integration of transistors to decouple memristors, our solution maintains array regularity and

will not suffer from technology scaling issues.

Our case study shows that the performance overheads of the proposed reliable read and

write operations, are 8% and 0.1% respectively and the energy overheads are 0.5% and 38%

respectively in comparison with the baseline, unreliable implementation. This should be

affordable due to the ultra-low-power characteristics of the memristive memories.
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Chapter 3

A Low-Power Variation-Aware Adaptive

Write Scheme for Access-Transistor-Free

Memristive Memory

Recent advances in access-transistor-free memristive crossbars have demonstrated the potential

of memristor arrays as high-density and ultra-low-power memory. However, with considerable

variations in the write-time characteristics of individual memristors, conventional fixed-pulse

write schemes cannot guarantee reliable completion of the write operations and waste significant

amount of energy.

We propose an adaptive write scheme that adaptively adjusts the write pulses to address

such variations in memristive arrays, resulting in 7×-11× average energy saving in our case

studies. Our scheme embeds an online monitor to detect the completion of a write operation and

takes into account the parasitic effect of line-shared devices in access-transistor-free crossbars.

This feature also helps shorten the test time of memory march algorithms by eliminating the

need of a verifying read right after a write, which is commonly employed in the test sequences

of march algorithms.
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3.1 Introduction

Traditional memory technologies cannot keep up with the ever-increasing demand for denser,

faster, and lower-power memories. CMOS technology scaling is increasing the leakage current

in transistors thus making the CMOS-based memory chips even more power hungry while

the yield is dropping due to fabrication imprecision [1]. Various emerging resistive memory

technologies (such as Phase Change Memories [2] and Spin-Transfer Torque Magneto-resistive

Memories [3]) have been investigated to replace the conventional CMOS-based memories.

However, the requirement of having an access-transistor per memory cell limits the overall

power reduction and shrinkage of the memory cell size. To address these limitations, Metal oxide

valence change ReRAMs [4], generally referred to as memristors [5], have been investigated

extensively. They can be used to implement high-endurance non-volatile memories with a fast

switching speed [24] without requiring an access-transistor for each memory cell [11].

A memristor is a two-terminal passive programmable resistor that maintains its resistance in

the absence of an electric field. Hence, it is an excellent candidate as a low-power non-volatile

memory. High/low resistances can be used to represent logic 0/1. The resistance of the device

can be changed by applying adequate voltage/current pulses. The change to the resistance has

a strong non-linear dependency on the amplitude and the duration of the applied pulse. This

non-linearity opens up opportunities to obviate the need for an access-transistor for each memory

cell. The elimination of the access-transistor and the simple structure of the memristors make it

possible to shrink its feature size to a sub-10nm scale [8] for implementing ultra-high density

memory arrays. Furthermore, both estimations and preliminary experimental measurements

indicate considerable potential of such memristive memories consuming significantly lower

power than existing technologies [9, 10, 49, 50] due to the passiveness of the memory cell and

the access-transistor-free memory structure. These characteristics make memristive memories

attractive as an extremely dense and low-power non-volatile memory [6]. Several nanoscale
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access-transistor-free memristive crossbars have been demonstrated recently [11, 51, 13].

One major obstacle before the potential commercialization of these devices is the significant

variation in their temporal characteristics for the write operation (i.e. write time) [52]. Such

variations exist both between different devices and between different operation cycles of the

same device. This can be a major challenge for memory applications in which a very low failure

rate (e.g. lower than 10−12 [1]) is required. Hence, write pulses with a long duration (longer

than necessary for the majority of the memory cells) are used in order to guarantee a sufficiently

high completion rate for the write operations which results in considerable waste of power.

Moreover, such long pulses still cannot guarantee a correct write operation due to significant

temporal variations and a non-trivial probability for the existence of ultra-slow devices/write

cycles. This necessitates a read-after-write operation to verify the correctness of the write

operation which further grows the power figure and degrades the performance.

In this chapter, we propose a low-power adaptive write scheme to address write-time

variation of memristive devices in access-transistor-free crossbars. The proposed scheme

addresses the temporal variation of memristors by dynamically adjusting the duration of write

pulses for individual devices. Our method monitors (i.e. reads) the resistance value of the

target cell during the write operation while filtering the data-dependent parasitic effect of the

neighboring cells, and terminates the write pulse, as soon as a desired resistance value is reached.

This reduces the energy consumption of our method over the conventional, fixed-length write-

pulse method. We evaluate its power saving based on SPICE-level circuit simulation. We use

the measurements made on our experimental devices [16] to derive the parameters used in the

simulation to ensure the accuracy of the results. The embedded read operation that monitors

the state of the device also offers the advantage of verifying the successful completion of the

write operation. This advantage helps reduce the test time of most march algorithms for testing

memories as the self-verification capability of our adaptive write operation eliminates the need

of a read operation in some march elements of the test algorithms.
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The rest of the chapter is organized as follows: Section 3.2 provides the necessary back-

ground on memristors and Section 3.3 elaborates on the write-time variation issue in memristive

devices. The proposed method is described in details in Section 3.4. Section 3.5 provides

experimental and simulation results to evaluate the proposed scheme and validates the energy

saving and test time improvement of the method. Section 3.6 concludes the chapter.

3.2 Background on Memristors

Memristors typically have a metal/insulator/metal (MIM) structure. The change in the

resistance happens due to the non-volatile formation of a conductive filament inside the insulator

layer. Such filament is formed by applying a voltage/current pulse across the device. The

applied electric field mobilizes the conductive particles (e.g. oxygen vacancies, metallic ions,

etc.) to form a filament by making them drift inside the insulator layer [53]. With the formation

of such highly conductive channel, the device goes into a low resistance state (ON state). To

program the device back to a high resistance state (OFF state), a pulse with an opposite voltage

polarity is applied. This will disperse the conductive particles and rupture the filament. Figures

3.1a and c show one possible realization of memristors and the filament formation and rupture

processes.

Typical memristive devices exhibit a non-linear behavior in their I-V characteristics and

in the rate of the change in their resistance values based on the applied voltage (as shown in

Figure 3.1b) [24, 7]. Utilizing these non-linearities, access-transistor-free crossbar architectures

are proposed in [51, 13] to implement memristive memory arrays. Such crossbars consist

of two perpendicular layers of parallel nanowires forming a memristor at each cross section

(Figure 3.2a). It is worth noting that while individual memory cells do not need an access-

transistor, a select-transistor is still needed per crossbar nanowire. Hence, this structure is

referred to as 1TnR, where 1T refers to the line-select transistor of the nanowires, which is
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Figure 3.1: A memristor’s sample realization and I-V characteristics. a & c) Applying a
negative/positive write voltage to the device can destroy/form a low-resistance filament, by
dispersing/attracting conductive particles, thus writing logic 0/1 to the cell. b) The non-linear
behavior of a typical memristive device. The solid line shows the non-linearity in the I-V
characteristics, while the dashed curve illustrates the non-linearity in the rate of change for the
resistance of the device based on the applied voltage. Three regions can be observed. In the
Diode Voltage Region (DVR), the device acts like a diode and the applied voltage pulse results
in negligible currents and does not change the state of the device. This region is small in typical
memristive devices. In the Read Voltage Region (RVR), the device acts like a fixed-value
resistor: the resulting current depends on the state (resistance) of the device, and operating a
device in this region has a negligible effect on the state/resistance. In the Write Voltage Region
(WVR), higher currents result in exponentially higher altering effect on the resistance of the
memristor, thus effectively switching the device from an ON state to an OFF state or vice versa
based on the applied polarity.

shared among n access-transistor-free memristive devices on that nanowire (nR).

To read a single cell in a 1TnR structure, a read voltage pulse of amplitude Vr (in the Read

Voltage Region shown in Figure 3.1b) is applied to the target cell, by applying Vr/2 on the target

word-line (horizontal line), −Vr/2 on the target bit-line (vertical line), and grounding other lines

as shown in Figure 3.2a. This method is known as the all-holding V/2 scheme [44], since all

the lines are held at a known voltage value. The resulting current on the bit-line is then sensed

by a sense circuit to identify the state of the target cell. In this scheme, the Vr pulse applied

to the target cell generates distinct current values for the two possible states of the target cell,

while other devices sharing the same bit- or word-line, only experience half of Vr which, due to

the strong non-linearity of the memristors’ I-V curves, results in very low leakage currents (i.e.
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Figure 3.2: Different memory architectures. a) 1TnR: showing a V/2 voltage application
scheme to access the target cell. Ileak is due to half-selected devices on the bit-line. The
select-transistors of the bit- and word-lines are not shown. b) CMOL: nanowires in memristor
layer are segmented and accessed via an area-distributed interface from the underneath CMOS
chip, that are connected to bit- and word-lines in the CMOS layer. c) 1T1R: each memristive
device requires an access-transistor.

Ileak in Figure 3.2a). Such low leakage currents generally would not cause errors in read if the

sensing circuitry is designed properly.

Similarly for the write operation, a proper write voltage pulse of amplitude Vw (within the

Write Voltage Region in Figure 3.1b) and width twrite is applied across the device following

the same V/2 scheme. The write pulse effectively changes the target cell’s state, while the

states of the half-selected devices which experience only Vw/2 remain unchanged as this partial

voltage is not strong enough to change a cell’s state [24]. Note that due to the non-linearity in

I-V characteristics of memristive devices, applying write voltages (Vw > Vr) may incur larger

Ileak caused by the line-shared devices. However, this current does not interfere with the write

operation as there is no current sensing involved.

It worth mentioning that an all-floating flavor of the V/2 accessing scheme exists in which

V/2 and −V/2 pulses are applied on the target word- and bit-line respectively, while all other
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lines are floated [54]. The all-floating method offers lower overall power consumption [44].

However, with an all-floating scheme, all memristive devices in the crossbar will experience

a non-deterministic and data-dependent partial voltage bias [55]. During the write operation,

this partial bias could become comparable to the write threshold voltage for several non-target

devices, resulting in an undesired partial switching in such devices. Moreover, the all-floating

scheme is more susceptible to the sneak path problem in access-transistor-free crossbars [44].

In this work we employ the all-holding V/2 scheme to avoid such issues.

In the case of large-scale simple 1TnR crossbars, in which each nanowire has many cross-

points, the small leakage currents due to half-selected line-shared devices may collectively

become too large for the sense circuitry to accurately determine if the target cell is in the ON

or OFF state during the read operation. Architecture-level solutions have been proposed to

address this issue [13, 43]. The general idea behind these solutions is to limit the number of

cross-points per nanowire (i.e. n in 1TnR), while maintaining the high memory-density of a

large-scale crossbar.

To this end, Likharev et al. proposed an innovative architecture designed for many-layer

memristive memories, called “CMOL” [43]. In CMOL, long crossbar nanowires are segmented

to limit the number of crosspoints on each nanowire segment, which effectively limits the

level of the aggregated leakage current. Each segment is then accessed via an area-distributed

interface from the beneath CMOS circuitry, as illustrated in Figure 3.2b [56]. A realization of

CMOL was shown in [12], where the number of cross-sections per nanowire is limited to 16.

Kawahara et al. proposed another architecture-level solution in which a hierarchical bit-line

structure is employed [13] . In this structure, a long bit-line is segmented into several shorter

segments, only one of which can be selected at any given time. Each short bit-line segment is

restricted to have only 16 cross-points, which limits the level of leakage current. Note that both

CMOL and hierarchical bit-line architectures can offer high memory bandwidth as they divide a

large memristive crossbar into many electrically-decoupled mini-crossbars that can be accessed
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simultaneously.

The ideas proposed in this chapter are applicable to any 1TnR crossbar architecture with

an all-holding voltage application scheme. Nevertheless, due to the limited scalability of the

general 1TnR, 1TnR architectures with a limited n, such as CMOL and hierarchical bit-line,

are better and more practical platforms for implementation of the proposed ideas. However,

describing the ideas on such architectures requires an in-depth explanation of their structure

which is out of the scope of this thesis. Hence, without losing generality, we use the simple

1TnR crossbar architecture to explain the proposed method. In our explanation, the number

of cross-points per nanowire is limited to mimic 1TnR architectures with a limited n, such as

CMOL and hierarchical bit-line.

3.3 Write Time Variation in Memristors

One major challenge of memristive devices is the substantial spatiotemporal randomness

experienced during the write operation [52]. Device to device (or spatial) variation is caused

by issues like line edge roughness and film thickness irregularity, that can be ameliorated

through improved fabrication processes. The more serious problem is the substantial temporal

randomness experienced during the normal operation. This randomness is due to the filamentary

nature of resistive switching. Filament formation involves physical processes like oxidation, ion

transport and reduction, all of which are thermodynamically driven [57] and require overcoming

specific activation energies. Typically one of the processes is rate-limiting so that switching is

associated with thermal activation over a dominant energy barrier and is thus probabilistic. As

a result, even for the same filament in the same device, the write time (aka wait time, that is

the time delay between application of a write pulse and the toggling of the device state) has

significant variations.

It is shown in [57] that if only one dominant energy barrier limits the switching process, the
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write time is expected to follow an exponential distribution and the probability that a switching

event occurs within ∆t at a given time t is given by:

PSwitch(t→t+∆t) =
∆t
τ
· e(−t/τ) (3.1)

where τ is the average write time of the memristive device. This shows that while individual

write times are random, their overall statistical distribution is not completely random and can be

captured well mathematically. This insight provides an important tool at the architecture level

to design variation-aware circuits.

Several methods have been proposed to address the variation in temporal switching char-

acteristics of memristive devices. A common method is to apply a long write pulse to switch

the slowest devices, ensuring a high “success rate” for the write operation. However, such long

pulses are not necessary for fast devices and waste power. Moreover, even after applying a long

pulse, it is still necessary to verify the success of the operation, due to a non-zero probability of

having ultra-slow write cycles or devices. In an attempt to avoid over-application of write pulses,

Alibart et al. proposed the application of multiple short write pulses, each followed by a read

operation, for quicker detection of the completion of the switching [58]. However, this method

suffers from the power and performance overheads incurred by the additional read operations.

Another scheme was proposed by Yi et al. which measures the current during the write operation

and compares it with a fixed reference to detect the completion of the switching [59]. However,

this method is only applicable to a single device but not to memory arrays as it does not consider

the considerable parasitic current (Ileak) during the write operation due to the line-shared devices

in a 1TnR crossbar (Figure 3.2a). The Ileak value is not known beforehand and depends on the

data pattern stored in the line-shared devices: The more devices at the low resistance ON state,

the higher the aggregated leakage current. Hence, even for a moderate number of line-shared

devices (e.g. 16), the parasitic Ileak can range from a negligible amount to as high as 8X the
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Table 3.1: Variation-aware write schemes

Method 1TnR Crossbar Fast Power Verified
Compatible Efficient Write

Fixed-Length Pulse (FLP) [62] 3 7 7 7

High Precision Tuning [58] 3 7 7 3

Adaptive Single Cell [59] 7 3 3 3

Adaptive 1T1R [60] 7 3 7 3

Proposed Low-Power Variation-Aware (LPVA) 3 3 3 3

current drawn by the target cell (Itarget). Typical sensing circuitry to monitor the state of a

device has sensitive noise margins and does not work under such severe noisy conditions. Jo et

al. [60] propose another adaptive scheme in which an access-transistor is added to each memory

cell (aka 1T1R architecture as shown in Figure 3.2c) to filter the parasitic effect of line-shared

memristors (Ileak). However, this method suffers from the intrinsic technology scaling issues

of CMOS-based memories as the access-transistor limits the reduction of the memory cell’s

footprint and incurs static power consumption at all times.

Our proposed method resolves the shortcomings of the previous methods by utilizing (1)

a monitor-while-write scheme that can detect the switching event to terminate the write pulse

and verify the success of the write operation, and (2) a leakage current filtering scheme that

is engineered for 1TnR crossbar arrays to take care of the parasitic effect of the line-shared

devices. Moreover, the monitor-while-write scheme can directly benefit memory testing: The

test time of most march algorithms [61] can be reduced as the read operation following a write

for verification of successful write can be eliminated. To the best of our knowledge, our work

proposes the first adaptive write scheme engineered for the Ileak-prone access-transistor-free

crossbars. Table 3.1 summarizes the features of the existing schemes and the proposed method.
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Figure 3.3: The proposed method. a) step 1: Ileak is latched b) step 2: Itarget is measured by
subtracting the latched Ileak from Itotal and is then compared with Iref.

3.4 Low-Power Variation-Aware Writing Scheme

Our write-time-variation-aware writing scheme for 1TnR architectures adapts the length

of the write pulse for individual memristive devices. The major challenge of this solution is to

filter the Ileak caused by the bit-line-shared devices during the write operation, so that only the

current drawn by the target device is extracted to detect the completion of the switching. Our

proposed method consists of two consecutive steps as illustrated in Figure 3.3:

Step 1: In the first step, the Ileak is latched. Both word- and bit-lines of the target cell

are held at −Vw/2 while all other bit- and word-lines are grounded (Figure 3.3a). With this

configuration, the current flowing through the bit-line will be only due to the bit-line shared

devices and it will be identical to the Ileak incurred during the write operation. This is due to the

fact that in both steps, the line-shared devices (1) experience the same voltage pattern, and (2)

maintain the same data-pattern. This current is latched for later processing.

Step 2: Next, the write voltage Vw is applied to the target device using the V/2 scheme

(Figure 3.3b). In this case, the current flowing through the bit-line (Itotal) is equal to Itarget + Ileak.

49



A Low-Power Variation-Aware Adaptive Write Scheme for Access-Transistor-Free Memristive
Memory Chapter 3

Since Ileak is previously recorded, it can now be subtracted from the total current to obtain Itarget.

Itarget is then compared against a reference current (Iref) to determine if the target memristor

has reached the desired value, i.e. Itarget > Iref for OFF→ON switching, and Itarget < Iref for

ON→OFF switching. Hence, the Iref’s value is chosen in between the expected current levels

of a target cell in the ON state (ION) and that in the OFF state (IOFF). The same Iref is applied

to all memristors since the ranges of possible ON resistances for different devices is generally

separated by orders of magnitude difference from that of OFF resistances [11]. The “Write

Complete” output of the comparator is used to terminate the write pulse and indicate the success

of the write operation.

3.4.1 Circuit Implementation Details

Figure 3.4 shows a simplified circuit-level implementation of the proposed write scheme.

The op-amp and the N1 transistor are used to accurately maintain the voltage on the bit-line at a

desired value (Vbias) to ensure that a right voltage level is applied to the device.

In the first step, the current flowing through the bit-line (IBL) is Ileak which is latched for

further use in step 2. To latch this current, first it is mirrored twice on Lines X and then Y,

using NMOS (N2-N3) and PMOS (P1-P2) current mirrors, when the transmission gate T1 is

open. In our implementation, current mirrors are realized using cascode current mirrors [63] for

increased mirroring accuracy. “Current latching” works by converting the mirrored Ileak to a

voltage (i.e. the common gate voltage of P1 and P2) and latch that voltage in a capacitor (C1) by

closing T1 after a latching period tL. Since current mirrors operate based on the application of

the same gate voltages to similar transistors, by later applying the latched voltage in C1 to the

gate of P2, the same Ileak current can be reproduced. The latching time tL mainly depends on the

C1’s charge time and is often negligible. C1’s capacitance variations are typically small [64],

hence, conservative selection of tL value could render the circuitry insensitive to such variations.
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Figure 3.4: The circuit implementation. The size of each transistor is noted in nanometer
({Width/Length}). The currents shown are according to the second step of the method: the
latched Ileak is subtracted from the total current on the bit-line. The resulting Ifiltered, that is
ideally equal to the current flowing through the target cell, is compared with Iref to read the
target cell.

In the second step, Itotal (i.e. Ileak + Itarget) flows through the bit-line. This current is mirrored

on Line Y, using the current mirror 3 (N2-N4). Meanwhile, P2 is reproducing the Ileak on the

same line (i.e. Line Y) by having the voltage latched in C1 applied on its gate. Thus, the current

extracted from the comparator, Ifiltered, is the difference of Ileak and Itotal, which gives the desired

Itarget that flows through the target cell. A winner-take-all (WTA) design is then used to compare

the Ifiltered (i.e. equal to Itarget) with a reference current Iref to read the target cell’s value and

thus detect the switching event after a detection time tD. The reference current can be accurately

generated by pinning the voltage across a DAC controlled resistor. The detection time depends

on the response time of the WTA.

It should be noted that the Ifiltered observed by the WTA comparator might have some

deviations from the actual Itarget. While layout-variation-induced deviations can be ameliorated

using an accurate common-centroid layout method [65], there are other reasons of deviation

that should be considered: (1) non-ideal mirroring because of unequal drain voltages in current
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Figure 3.5: The energy trade-off during a) OFF→ON and b) ON→OFF switching. The blue
and red regions illustrate the power-vs-time of the baseline FLP scheme and the proposed
LPVA scheme respectively. OFF→ON switching offers better energy saving as the extra
energy consumption of the FLP baseline, i.e. for t > τ , is larger when the target memristor is
in the ON state.

mirror’s transistors, (2) switching noise on the voltage stored in C1 incurred by the closure of

the transmission gate T1, and (3) C1 voltage drop during the write operation due to C1’s leakage.

While such deviations are small in general (≈1% of total Ileak), they should be considered to

ensure that they do not violate the necessary margins of the comparator. The SPICE-level

simulation results in Section 3.5.2 illustrate the effect of such non-idealities and verify the

correct functionality of the proposed circuit in the presence of the worst-case deviations.

The structure in Figure 3.4 is designed to detect ON values in the target cell (i.e. OFF→ON

switching). Similar circuitry with a loser-take-all comparator can be used to detect the OFF

values.

3.4.2 Energy Trade-offs

Figure 3.5 shows the energy trade-off of our low-power variation-aware (LPVA) method

versus the baseline fixed-length-pulse (FLP) write method for both OFF→ON and ON→OFF

transitions. The baseline FLP applies Vw pulse for a long period, tFLP = α× τ , where τ is the

average write time, and α depends on the required success rate (e.g. α = 14 to ensure that the
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probability of an unsuccessful write at the end of the write period is less than 10−6, assuming

that the write times of devices follow an exponential distribution). In contrast, our method

terminates the write pulse right after switching, which on average happens at t = τ . In order to

avoid excessively long write pulses in our method in case of very slow write cycles or devices,

we set an upper bound on the duration of the write pulse to be equal to tFLP, similar to the FLP

method. Hence, as both methods have the same maximum write pulse duration, they both yield

the same “success rate” for the write operations.

As a result of the earlier termination of the write pulse in our method, much less energy is

consumed inside the memristive crossbar. Moreover, unlike FLP, our method reveals if a write

operation is successful or not, indicated by the “Write Complete” signal, as shown in Figure 3.4.

On the other hand, the extra circuitry required for the proposed method consumes some power

(PLPVA) which is not needed for the baseline FLP. Extra times for latching and detection (tL and

tD) are also required for the proposed method, that contribute to the overall energy consumption,

which are not needed for the FLP.

In Section 3.5.3, we will evaluate the merits of the proposed method in terms of energy

saving by considering different data patterns on the line-shared devices and for both ON→OFF

and OFF→ON transitions.

3.5 Results

To assess the amount of energy saving, we first verified, by taking measurements of our

experimental devices, that if the write time of fabricated memristive devices indeed follows an

exponential distribution. Next, SPICE-level simulation was performed based on the parameters

extracted from measurements on fabricated devices, to validate the functionality and to evaluate

the energy consumption of the proposed method. Finally, the impact of the proposed method on

test time reduction of memory testing algorithms is discussed.
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Figure 3.6: The write time distribution for Ag/a-Si/p-Si devices at different write voltages, that
follows the predicted exponential distribution: a) 2.5V, b) 3.5V, c) 4.5V [16].

3.5.1 Write Time Variation Measurements

Our recent study on write time variation [16] shows that the switching probability of

memristive devices has a good fit to Equation 3.1. In this study, to achieve accurate and robust

measurement of the write times, single Ag/a-Si/p-Si devices are particularly engineered to have

longer write times for this experiment. The write time distribution is obtained at different write

voltages (2.5V, 3.5V, and 4.5V). It is observed that while the average write time (τ) decreases

exponentially with higher write voltages, the distribution preserves the predicted exponential

behavior at all write voltages, as shown in Figure 3.6.

Individual write times were obtained by resetting the device to the high-resistance OFF state

and applying a constant DC bias of Vw to the device. Meanwhile, the current through the device

is continuously monitored to detect the sharp increase in the current that indicates the device’s

successful transition to the ON state. Once the device was switched to ON, the device was reset

to the same OFF state again and the measurement was repeated 100 times.

3.5.2 Electrical Model and SPICE-Level Simulation Results

Both baseline FLP and the LPVA write circuitry were implemented in Cadence Virtuoso

tool using a 90nm IBM CMOS process. They are simulated along with an electrical model
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Table 3.2: Electrical parameters of the 1TnR crossbar

Param. Value Param. Value Param. Value

Vw 2.2V RON 200KΩ Rnw 0.02Ω/nm
τ 50ns ROFF 100M−1GΩ Cnw 1.2aF/nm

of the 1TnR crossbar-based memristive memory. The crossbar is modeled based on electrical

characteristics of the cross-points (memristors) and the nanowires in the memristive layer [15].

We used Ag/a-Si/SiGe/W devices [11] to derive the electrical characteristics of the memristors

(i.e. RON, ROFF, average write time, etc.). These devices offer better electrical characteris-

tics (such as higher Ron values, faster switching speed, lower write voltage, etc.) compared

to the Ag/a-Si/p-Si devices and are thus more suitable for memory applications, while they

are expected to preserve the exponential write-time distribution due to the same underlying

“dominant-filament” mechanism. The crossbar nanowires are modeled based on their intrinsic

resistance (Rnw) and capacitance (Cnw) that are extracted according to their physical characteris-

tics. Table 3.2 summarizes the derived circuit parameters that are used to model the crossbar

and memristive devices [15, 11].

A 1TnR crossbar architecture with 16 memristors per nanowire is modeled and simulated

as a case study to evaluate the proposed method. A moderate number of cross-points is used

to resemble limited-n 1TnR architectures, such as CMOL [43] and hierarchical bit-line [13]

discussed in Section 3.2.

Figure 3.7 shows the SPICE simulation results for the Ifiltered input of the WTA comparator

during an OFF→ON switching. The simulation is based on the circuit parameters listed in

Table 3.2. The result is shown for two different cases in which all the bit-line-shared devices are

in ON and OFF states, which produce the largest and the smallest Ileak respectively. Ideally the

comparator’s Ifiltered input should be exactly equal to the Itarget, the current flowing through the

target cell: During the latching phase (step 1), Itarget is equal to zero, and in the writing phase
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Figure 3.7: Ifiltered values in different steps of the method and for different data patterns on the
line-shared devices. While the ION and IOFF currents passing through the target cell are apart
by more than three orders of magnitude, as shown in the inset, the ION/IOFF ratio observed at
the input of the comparator is much smaller due to the current latching and mirroring errors.
Nevertheless, a wide decision margin exists to detect the switching of the device. The inset
illustrates the typical I-V characteristics of an Ag/a-Si/SiGe/W device [11]. Note that higher
ION values can be achieved by adjusting the current compliance.

(step 2), it is equal to IOFF/ION, before/after switching. However, it is observed that the Ifiltered

input of the comparator may deviate from the Itarget values resulting in a “range” of currents,

representing the target cell in the ON or the OFF state. This is anticipated and is due to limited

accuracy in the mirroring operation and dependency on the stored data pattern as discussed in

Section 3.4.1.

Ifiltered has greater deviation when the target cell is in the OFF state (i.e. Ifiltered <Iref):

considering the schematic shown in Figure 3.4, the comparator tries to pull up the drain of N4,

which results in higher drain-voltage mismatch between N2 and N4 transistors, and thus reduces

the accuracy of the mirroring. After the switching, the comparator drops the drain voltage of N4,

which reduces the drain-voltage mismatch between N2 and N4, and leads into a more accurate

mirroring.
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Despite the deviation of Ifiltered that the comparator experiences, there still exists a wide

“decision margin” between the ranges of Ifiltered current resulted by a target cell in the OFF or

ON state. This confirms that our leakage-current-filtering scheme can effectively filter Ileak

and the WTA comparator can detect the switching by comparing the observed Ifiltered with a

reference current Iref, in spite of possible deviations of Ifiltered.

In order to maximize energy saving, the currents involved in the latching and monitoring

circuitry are scaled down by a factor β . This is done by adjusting the transistor channel width in

the transistor pairs of the NMOS current mirrors, as shown in Figure 3.4. This scales down the

Ifiltered input to the comparator and thus, the Iref is adjusted accordingly. An optimized sizing

factor β = 6 is found experimentally which provides maximum energy saving while providing

a noise margin greater than 1µA.

Table 3.3 lists the power and timing numbers acquired from SPICE simulation. PL and

PLPVA indicate the power consumption of the extra write circuitry during the latching phase

(i.e. step 1) and the writing phase (i.e. step 2) respectively. PLS and PTC represent the power

consumption of the line-shared devices and the target cell respectively. Note that these power

numbers depend on the data patterns stored in the line-shared devices: With more devices in

the ON state, greater current flows through line-shared devices and the proposed write circuitry,

resulting in higher power consumption. Hence, SPICE simulation is performed for all possible

data configurations, resulting in a range of numbers for each power figure. Unlike the power

figures, the latching and detection times (tL and tD) show negligible data-dependency.

Table 3.3: Energy/timing figures of the proposed LPVA method

Parameter Value Parameter Value

tL 1ns tD 3ns
PL {28.6-228}µW PLPVA {42.8-243}µW

P OFF/ON
TC 0.045 / 23.9µW PLS {0.36-182}µW
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Figure 3.8: Energy saving vs. the number of low-resistance (ON) line-shared devices for
various success rates of write operation. Solid and dashed lines are for OFF→ON and
ON→OFF transitions in the target cell respectively. OFF→ON yields higher energy saving
ratios.

3.5.3 Energy Saving

Equation 3.2 calculates the average energy saving ratio that the proposed method can achieve

over the FLP baseline method for an OFF→ON transition:

τ ·P OFF
Xbar +(tFLP− τ) ·P ON

Xbar

tL · (PL +P OFF
Xbar )+ τ · (P OFF

Xbar +PLPVA)+ tD · (P ON
Xbar +PLPVA)

(3.2)

where PXbar is the total power consumed in crossbar due to the line-shared devices (PLS) and

the target cell (PTC). P ON/OFF
TC and P ON/OFF

Xbar show the power consumption of the target cell and

the whole crossbar respectively, when the target cell is in the ON/OFF state. Other variables in

the equation have been defined in Section 3.5.2. The equation is derived based on the energy

trade-offs shown in Figure 3.5(a).

Figure 3.8 illustrates the dependency of the energy saving figures on the data pattern stored

in the bit-line-shared devices for both ON→OFF and OFF→ON transitions. The OFF→ON
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Figure 3.9: The energy saving offered by the method. a) Weighted average of energy saving vs.
success rate of write operation. The plot illustrates the energy saving for both ON→OFF and
OFF→ON transitions as well as the average case. b) Average energy saving vs. the average
write time of the memristive device for different required success rates.

transition (solid lines) results in greater energy saving: the energy consumption of FLP is

significantly higher in this case, as it applies a long write pulse to a target cell which is switched

to and remains in the more power-consuming ON state (i.e. low-resistance state) for most of the

write cycle.

For ON→OFF switching (dashed lines), only for the case where all the line-shared mem-

ristors are in the OFF state, FLP can do slightly better than our method since (1) line-shared

devices are all OFF thus consuming little power, (2) similarly the target cell is in the OFF state

during most of the tFLP, while (3) the WTA comparator in the proposed method incurs some

energy overhead which is greater than the energy consumption of FLP in that particular data

configuration with ultra-low energy consumption. However, with more devices in the ON state,

the increase in energy consumption of the FLP quickly surpasses the overhead of the proposed

method.

Different line colors in Figure 3.8 show the effect of the required success rate of the write

operation on the energy saving ratio: a higher required rate for successful write yields a higher

energy saving ratio. This is because a higher desired success rate demands a longer worst-case
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write pulse, and thus greater energy consumption, for the FLP method, while the average write

time and thus the average energy consumption of the proposed method is constant regardless

of the required success rate. Note that in our adaptive method the write pulse is terminated

immediately after the completion of the switching, which on average occurs at τ . Given a

desired success rate, the corresponding pulse length for the FLP method can be derived based

on the cumulative switching probability of Equation 3.1:

tFLP =−τ · ln(1−Success Rate) (3.3)

To characterize the average energy saving figure, we assume a uniform probability for all

possible data patterns stored in the line-shared devices and then evaluate the weighted average

of the energy saving. The weighted average considers the distinct probability of having different

number of line-shared devices in the ON state:

Weighted Average = 2−(Xpt−1) ·
Xpt−1

∑
i=0

(
Xpt−1

i

)
·ESi (3.4)

where ESi represents the energy saving ratio while having i line-shared cross-points in the

ON state, and Xpt stands for the total number of cross-points on the line. Figure 3.9a shows

the weighted average of energy saving versus the desired success rate. Different lines show

the trends for both ON→OFF and OFF→ON transitions, as well as the average case. It can

be observed that with a reasonable requirement that the probability of an unsuccessful write

operation at the end of the write period should be less than 10−8, our method offers an average

of ≈7× saving in energy consumption. Note that the actual energy saving could be even more

significant: Equation 3.2 does not consider the power consumption of CMOS interconnects,

PIC, which is highly dependent on the memory size and structure. By taking PIC into account,

the instantaneous power consumption of both FLP and LPVA methods are increased by the
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same PIC amount, decreasing the
PLPVA

PFLP
ratio. In such a case, the LPVA’s extra write circuitry

introduces lower power overhead relative to the baseline FLP. Hence, the faster termination of

the write pulse in the LPVA write-scheme leads to better energy saving figures.

3.5.4 Discussion on the Effect of Circuit and Device Parameters

While the proposed method is tailored for Ag/a-Si/SiGe/W devices, it can serve a wide

range of memristive devices with different parameters. One requirement to adopt this method is

a µA-scale difference between ION and IOFF. Since the leakage-current filtering scheme is not

perfect, in the case of having a memristive device with higher RON (>MΩ), the deviation in the

filtering scheme might become larger than the actual difference between ION and IOFF values.

The RON is also required to be much larger than the resistance of the nanowire (i.e., Rnw) to

ensure that the line-shared devices experience the same voltage pattern in both steps. This is

true for practical memory applications because RON has to be larger than a few KΩ to avoid

reaching mA-scale currents in the memory module.

In order to ensure very similar leakage current in both steps, the line-shared devices should

maintain their resistance when a Vw/2 bias is applied across them. Such a partial bias could

change the resistance of typical memristive devices, and thus the total leakage current on the

bit-line. However, according to [24], the change is less than 0.01% during a write cycle and

is thus negligible considering the fact that the decision margin of the proposed circuit is set to

account for the presence of ≈ 1% error due to the current latching and mirroring imperfection.

The average write times of memristive devices, τ , can also affect the amount of energy

saving of our method. This effect is illustrated in Figure 3.9b for different success rates. As

expected, the method offers better energy saving figures when the average write time is much

larger than the detection time, i.e., τ >> tD. However, given a 3ns detection time, it can be

observed that even in the case of having memristive devices with τ ≈ 500ps, our method still
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Table 3.4: Test time improvement to march algorithms

Marching Original Effective Test Time
Algorithm Test Len. Test Len. Reduction

March MSL [66] 23n 21n 9%
March B [67] 17n 15n 12%
MATS++ [61] 6n 5n 17%

March-12n [68] 12n 10n 17%
March Y 8n 6n 25%

Marching 1/0 14n 10n 29%
March AB [69] 22n 14n 36%

offers improvements in the energy consumption. Note that faster memristive devices can be

supported by decreasing the detection time, that can be achieved by employing smaller CMOS

technology nodes, or decreasing the sizing factor β .

3.5.5 Self-Verifying Write Operation to Improve March Algorithms

Another advantage of the proposed method is that it verifies the correctness of each write

operation. At the end of the write cycle, the “Write Complete” signal of the comparator shows if

the target state has been reached correctly. Hence, the proposed write scheme effectively offers

an atomic “write and read” operation, “wr”. This feature provides a flag indicating erroneous

write operations and helps keep track of degraded memory elements. Moreover, it also reduces

the test time of most memory testing algorithms in which a read, r, is often performed right after

a write, w, to verify that the correct value is indeed written into the memory cell. For example,

in MATS++ [61], the following test sequences are applied to test the memory:

m (w0);⇑ (r0,w1);⇓ (r1,w0,r0) (3.5)

With the proposed self-verifying write scheme, the last two operations (i.e. {w0, r0}) are
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merged into one operation, effectively reducing the test length from 6n to 5n:

m (w0);⇑ (r0,w1);⇓ (r1,wr0) (3.6)

Table 3.4 lists some of the marching algorithms that benefit from the proposed write scheme.

Note that the conventional march algorithms can be directly utilized for memory testing of

memristive memories since similar fault models (e.g. stuck-at faults, various coupling faults,

delay faults, address faults, etc.) are also applicable to such memories [70]. The availability of

the atomic “write and read” operation, “wr”, may also offer opportunities for developing new

march algorithms, instead of just directly employing the existing algorithms, for further test

quality improvement and test time reduction of such emerging memories.

3.5.6 Performance and Area Overheads

The proposed method offers energy saving advantages and monitoring capabilities without

affecting the performance. While individual write operations are completed at different times,

and on average they require much shorter write pulses, the write cycle time is still determined

by the worst-case write time.

The custom-sized transistors of the extra write circuitry occupy ≈ 55µm2 of area in the 90

nm technology node, following the standard layout guidelines [71]. Note that one such circuit

is required for each bit of data written simultaneously. Hence, given a word-size of 64 bits,

our method incurs a total area overhead of 3502µm2. To evaluate the area overhead, we used

NVSim [72] to estimate the area requirements of an exemplar 1Mb 1TnR memristive memory

with the same word-size. We configured NVSim to use the same CMOS technology node,

device characteristics, and architectural characteristics as those used in our SPICE simulation

setup. The overall area reported by NVSim is 128146µm2, which indicates that our method

incurs an area overhead of less than 3%.
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Note that our method is addressing the write-time-variation in the access-transistor-free

crossbars. Thus, compared to the variation-tolerant schemes that are proposed for “1T1R” arrays

in [60], our method saves one access-transistor per memory element which is very significant.

3.6 Conclusion

In this chapter we address the energy consumption and data reliability problems caused by

write time variation of memristive devices in emerging access-transistor-free crossbar-based

memories. The proposed method applies a write pulse with a just-enough width to switch

the target cell’s state. The proposed write circuitry can correctly detect switching events in a

noise-prone 1TnR memory system by a two-step noise filtering approach: the data-dependent

leakage current is first latched, which is then removed from the total current captured in the

second step, enabling accurate monitoring. The proposed write scheme automatically verifies

the correctness of a write operation as it monitors the target device’s state during the write

operation. This self-verification feature can be utilized to reduce the memory test time as

most march algorithms used for testing memories include test sequences which require a read

immediately after a write to verify the correctness of the write.

Our case study demonstrates that the proposed method achieves significant reduction in

energy consumption over the conventional fixed-pulse write scheme, in addition to the real-time

verification capability. The exact energy saving ratio depends on the data pattern as well as the

desired rate of correct write operations. For exemplar success rates at 1−10−8 and 1−10−12

combined with random data patterns, our method offers an average of 7× and 11× energy

saving respectively.
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Chapter 4

In-place Repair for Resistive Memories

Utilizing Complementary Resistive

Switches

Recent advances in resistive memory technologies have demonstrated their potential to serve as

next generation random access memories (RAM) which are fast, low-power, ultra-dense, and

non-volatile. However, owing to their stochastic filamentary nature, several sources of hard

errors exist that could affect the lifetime of a resistive RAM (ReRAM).

In this chapter, we propose a novel mechanism to protect resistive memories against hard

errors through the exploitation of a unique feature of bipolar resistive memory elements. Our

solution proposes an unorthodox use of complementary resistive switches (a particular imple-

mentation of resistive memory elements) to provide an “in-place spare” for each memory cell at

negligible extra cost. The in-place spares are then utilized by our repair scheme to extend the

lifetime of a resistive memory. Our repair scheme detects data errors during regular memory

accesses and triggers repair using the in-place spares at a page-level granularity. We show

that in-place spares can be used along with other memory reliability and yield enhancement
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solutions, such as error correction codes (ECC) and spare rows.

We develop a statistical model to evaluate our method’s effectiveness on extending ReRAM’s

lifetime. Our analysis shows that the in-place spare scheme can roughly double the lifetime of a

ReRAM system. Alternatively, our method can yield the same lifetime as a baseline ReRAM,

with either significantly fewer spare rows or a lighter-weight ECC, both of which can save on

energy consumption and area.

4.1 Introduction

CMOS-based memory technologies cannot keep up with the ever-increasing demand for

denser and lower-power memories, as technology scaling results in increasing leakage and

degraded reliability of memory elements. As an alternative, emerging metal-oxide valence-

change resistive memory technology, generally referred to as memristors [5], have demonstrated

great potential as the next generation random access memories.

A memristor is a two-terminal passive programmable resistor, that maintains its resistance

in the absence of an electric field. High/low resistances are used to represent logic value 0/1.

Memristors exhibit a set of desirable characteristics, including low-power operation [9], fast

switching speed [73], possible elimination of the access-transistor per memory cell [7], and

CMOS compatibility [74]. Ultra-high density memristive memory arrays can be realized as

memristor’s feature size can be shrunk to a sub-10nm scale [8]. Multiple layers of such arrays

can be stacked on top of each other to further increase the density [13]. Minor modifications to

the device stack, can further provide a double-memristor cell in place of a regular memristor,

also known as complementary resistive switches (CRS) [75].

However, different sources of error could affect memristive devices, owing to their stochastic

filamentary nature [17]. Physical defects and endurance problems could lead to “hard errors”,

which are permanent failures of memory cells [76]. This is in contrast to “soft errors”, that
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are random recoverable errors due to causes such as retention failures [77] or write time

variation [52]. Hard errors are commonly addressed by adding redundancy, e.g., by remapping

a row with defective bits to a healthy spare row. The existing redundancy-based repair schemes

come with the area overhead of the spares, as well as the area and performance overhead of the

remapping logic [19]. Alternatively, error correction codes (ECC) have been proposed to detect

and correct few erroneous bits, hard or soft, by encoding the data and adding parity bits [18].

However, ECC incurs considerable overhead in terms of area and energy. The energy overhead

becomes even more prominent when the ECC is applied to ultra-low-power ReRAMs.

In this chapter we propose a novel use of complementary resistive switches (CRS) to provide

a zero-area-overhead in-place spare for each bit. A repair mechanism is also presented to

activate the in-place spares. The proposed method extends the lifetime of memristive memory

modules with minor modifications to the memory architecture. We derive a statistical model

to evaluate the effectiveness of the proposed method for lifetime improvement of ReRAMs.

Our model incorporates the impact of the ECC and the spare rows on ReRAM’s lifetime. We

also explore the possibility of using the in-place spares to yield a similar lifetime as a baseline

ReRAM, for the objective of minimizing spare rows or using a lighter-weight ECC. We quantify

the possible reduction in the area and energy consumption of a ReRAM if the in-place spare

scheme is employed.

The rest of the chapter is organized as follows: Section 4.2 covers the necessary backgrounds

on memristors. Section 4.3 discusses the origins of errors in memristive devices, as well as the

solutions employed in conventional memory technologies. The use of in-place spares is detailed

in Section 4.4. Section 4.5 presents a statistical model and evaluates the effectiveness of the

proposed method. Section 4.6 concludes the chapter.
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4.2 Background

4.2.1 Memristive Devices

A memristor, or a memristive device, is a passive programmable resistor, experimentally

found by the HP Labs in 2008 [78]. Memristors are typically fabricated as a stack of thin layer(s)

of non-conductive switching oxide, sandwiched between conductive metallic electrodes, as

shown in Figure 4.1a.

Most devices need a forming step, in which a large forming voltage, Vf orm, is applied on the

device[79]. The forming step breaks the oxide and migrate a large number of oxygen ions to the

cathode, resulting in one or several filaments of oxygen vacancies inside the oxide layer [76].

These oxygen vacancies are conductive. Figure 4.1b shows a memristor after forming.

The resistance of the device can be reversibly switched between a high-resistance OFF

state and a low-resistance ON state, by applying negative or positive voltage (current) pulses

respectively. Applying a negative pulse mobilizes oxygen ions to recombine with the oxygen

vacancies. The recombination partially ruptures the conductive filament and switches the device

into an OFF state, as depicted in Figure 4.1c (i.e. a RESET operation). A positive pulse

regenerates the oxygen vacancies and rebuilds the filaments (i.e. a SET operation). Memristors

typically exhibit a very high OFF to ON resistance ratio [24].

Figure 4.1e shows a typical electrical characteristics of a memristor. Applying write voltages

above a memristive write threshold, ±Vthm, changes the resistance of the device, while applying

smaller voltages has negligible effect on its state [24]. The resistance value of a memristor is

read by applying a small read voltage and monitoring the resulting current.
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Figure 4.1: A possible realization of a memristor. a) A memristive device stack before forming,
b) A formed memristive device in the ON state. c) RESET process d) a memristor in an OFF
state e) a typical electrical characteristics of a memristor.

4.2.2 Complementary Resistive Switches

In 2010, Linn et al. [21] proposed the concept of complementary resistive switches (CRS)

by anti-serially stacking two memristors sharing a common electrode, as shown in Figure 4.2a.

Simpler CRS structures were proposed later by removing the common electrode and having two

layers of the same oxide material but with different stoichiometries (e.g. Ta2O5 and TaO) [75],

as illustrated in Figure 4.2b. The latter structure makes the cost and complexity of fabricating a

CRS similar to that of a regular memristor.

The CRS was proposed to store data based on the combined state of the top and bottom

memristors, Mt and Mb, rather than the overall device resistance. A CRS represents logic 0 (CRS-

0) when the {Mt ,Mb} pair is in the {ON,OFF} state. Similarly an {OFF,ON} configuration
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represents a logic 1 (CRS-1). With Mt and Mb being in series, both configurations exhibit a very

high resistance which leads to lower current requirements and reduced power consumption [80].

Figure 4.2c illustrates a typical I-V characteristics of a CRS device, that exhibits two types

of switching: CRS switching and memristive switching. Applying a voltage pulse above a CRS

write threshold, V+
thc, results in a CRS switching which forms a strong conductive filament in Mb

while turning Mt OFF. Hence, a CRS is switched to an {OFF,ON} configuration (i.e. transition

1© in Fig 4.2c). With such a strong filament in Mb, applying voltages in the memristive write

region (i.e. [V−thc,V
−

thm] and [V+
thm,V

+
thc]) provides a regular memristive write access to the top

device Mt without affecting Mb: The top device exhibits a regular memristive switching behavior,

and can switch between ON (i.e. transition 2©) and OFF states (i.e. transition 3©). Figure 4.2c

shows memristive and CRS switching behaviors with blue and red lines, respectively.

Similarly, applying voltage pulses below V−thc switches a CRS into an {ON,OFF} state

and forms a strong filament in Mt (i.e. transition 4©). With a strong filament in Mt , applying

a voltage pulse in the memristive write region switches Mb between OFF and ON states, i.e.

transitions 5© and 6© respectively. Note that Mt and Mb are anti-serially connected, thus they

require opposite voltage polarities to switch.

In a nutshell, when one of the devices in a CRS stack is set to a strong ON state via a

CRS switching, the other device can be written to exclusively, with regular memristive write

accesses. Such voltage-range-controlled state transitions in CRS devices present a unique yet

uninvestigated feature of such devices: to provide a dual-memristor memory cell with individual

accesses to each of the constituent devices at the exact same footprint of a regular memristor. We

explore this feature to provide a spare for each memory bit and extend the lifetime of ReRAMs.
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4.3 Failure Mechanisms and Solutions

Several mechanisms have been observed in memristors that result in recoverable data errors

(i.e. soft error) or permanent device failures (i.e. hard errors). Such errors can be described by

the stochastic and filamentary nature of the device.

4.3.1 Soft Errors

Soft errors in memristive devices are generally due to an “unintended” formation/rupture of

the conductive filament inside a memristor. Retention failure [77] is an example, which occur

when a weak conductive filament is ruptured due to the stochastic movement of the conductive

particles, causing an ON→OFF flip.

71



In-place Repair for Resistive Memories Utilizing Complementary Resistive Switches Chapter 4

The cycle-to-cycle variation in the write time of memristive devices, i.e. the time required

to switch a device, is another source of soft errors in ReRAMs. Memristive devices could have

ultra-slow write cycles for which the duration of the applied write pulse is not enough to switch

the device [52]. An adaptive write mechanism can be used to address this issue, which monitors

the state of the target cells during a write operation, and report any unsuccessful bit-write to

trigger a re-write [81].

4.3.2 Hard Errors

Hard errors are due to permanent structural transformations inside a memristive cell. Several

mechanisms lead to stuck-at-ON (S@ON) hard errors in memristors. Extra vacancy attributed

failures result in an “irreversible” increase in the diameter of the conductive filament. The

depletion of the cathode from oxygen ions is another reason behind S@ON failures that reduces

the recombination probability of oxygen vacancies and oxygen ions and decreases a memristor’s

OFF resistance [76].

As for stuck-at-OFF (S@OFF) failures, over-reset phenomena has been reported in which

over-stressing the device with consecutive RESET operations could lead to a complete dissolu-

tion of the conductive filaments inside the device. An over-reset device cannot be recovered

with regular SET operations [73].

While S@OFF hard-errors might be fixed by applying high-voltage pulses (i.e. an extra

forming step), S@ON errors are harder to address. In a S@ON, a memristor is shorted and

has a very low electrical resistance that is comparable to that of the voltage drivers’ transistors.

Hence, even in the case of applying a high-voltage RESET pulse, the effective voltage on the

device would be small due to the large IR-drop on the line drivers’ transistors, and thus cannot

reverse the failure, .

To the best of our knowledge, there is no comprehensive study on the relative error rate
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of S@ON and S@OFF errors in ReRAMs. However, the abundance of studies on S@ON

failures [76, 82, 83], as well as the reversibility of some S@OFF errors (e.g. by another

forming step)[73] suggests a higher error rate for S@ON failures.

4.3.3 Potential Solutions

Soft errors are commonly addressed by the use of error correction codes (ECC). An ECC

encodes the data and adds parity bits which enables the correction of T bits of errors during

a read access. An ECC can also detect up D faulty bits, where D is greater than T . There

is a myriad of ECCs in the literature, providing various levels of protection against errors.

Among the most commonly used ECCs for memories are Hamming codes [84], that offer

single-error-correction (i.e. T = 1), and Bose-Chaudhuri-Hocquenghen (BCH) codes [85], that

are a family of ECC with multi-bit error correction capability.

Memory scrubbing is another method to address soft errors [86]. A scrubbing controller

periodically reads data words, check them for errors through the use of ECC, and write the

corrected data back in case of an error.

ECC can also be utilized to address hard errors. Scrambling methods are applied to distribute

the faulty bits into different code-words such that the number of faulty-bits per code-word is less

than the correction capability of the adopted ECC [87]. However, using ECC to correct hard

errors reduces its effective correction capability against random soft errors. Moreover, ECC

comes with noticeable energy overhead as it surcharges an encoding/decoding phase to each

memory access. This is in addition to the area overhead of the parity bits and the ECC logic.

The overhead increases with the ECC strength: stronger ECCs can correct more errors, but also

incur more overhead.

Redundancy-based repair schemes are used to specifically address hard errors. Such repair

schemes detect hard errors and use embedded “spare rows” to replace faulty rows [88, 18].
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The row replacement is accomplished with the help of a remapping logic which relies on a

content addressable memory (CAM). A CAM stores the addresses of the faulty rows along

with the addresses of existing spares to replace them. The remapping logic uses the CAM to

redirect future accesses to faulty rows to their corresponding spares [19]. To support the use of

spare-rows, an additional access to the remapping CAM is necessary for each memory access,

which adds a performance penalty to all memory accesses. Increasing the number of spares

provides greater protection against hard errors, at the cost of increased area and performance

penalty due to a larger CAM.

4.4 Motivation and Proposal

Existing solutions to extend the lifetime of memories and protect them against failures,

such as spare rows and ECC, come with considerable energy and area overhead. This overhead

becomes even more noticeable for emerging ReRAM technologies which are ultra-small and

ultra low power. Hence, low-cost solutions that can help reduce such overheads will be attractive

and valuable. To this end, we explore the use of complementary resistive switches, to provide

“virtually-free” in-place spares per each memory element to extend the lifetime of a ReRAM.

4.4.1 CRS Devices as In-place Spares

A complementary resistive switch can be used to realize dual-memristor memory elements.

It is shown that the unique electrical characteristics of a CRS provides exclusive write accesses

to each of the two constituent devices by controlling the range of applied write voltages [80].

Furthermore, an exclusive read access to either of the devices in a CRS stack can be realized

by keeping the other device in an ON state. Note that a CRS read operation reads the “total”

resistance of the constituent devices that are in series. Hence, keeping either of the devices

in an ON state makes it transparent to the read operation, in view of the orders of magnitude
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difference between the ON and OFF resistance values of a memristive device [24].

Inspired by the possibility of such an exclusive read and write accesses, we propose the use

of the extra memristor in a CRS cell as a spare. For clarity, we consider the top memristor in a

CRS stack, Mt , as the spare, and the bottom one, Mb, as the primary device. The idea is to first

utilize the primary device as the active memory element, and then use the spare, upon the failure

of the primary device. The primary device is “activated” by applying a CRS write pulse below

V−thc, as shown in Figure 4.3a. Such pulse initializes the {Mt ,Mb} pair to an {ON,OFF} state

and keeps the spare in an ON state that is transparent to read or write accesses. When activated,

the primary device can be written to through regular write accesses without affecting the spare.

That is, Mb can be switched between ON and OFF states (i.e. {ON,ON} and {ON,OFF}

CRS configurations), as shown in Figure 4.3b, until it fails due to a hard error. If the primary

device fails into a S@ON state (which is more likely to happen than S@OFF , as discussed in

Section 4.3.2), the memory element can be repaired by activating the spare device. To this end,

a one-time CRS write pulse above V+
thc sets the CRS to an {OFF,ON} state (Figure 4.3c). From

there on, the spare device becomes the active memory element that can switch between ON and

OFF states, while the S@ON primary device is transparent to the memory accesses.

A S@OFF failure of the primary device could render the spare useless, as in that case, the

whole CRS cell becomes S@OFF . In section 4.5 we examine the effect of S@OFF failure

rates and show that even under a pessimistic assumption that the S@ON and S@OFF error

rates are equal, our method can still improve the memory lifetime considerably.

The use of such “in-place” spares provides two main advantages over the conventional

redundancy-based repair schemes such as spare-rows: 1) No area-overhead is incurred, as the

spare devices are fabricated on top of the primary devices and as part of the same device stack,

and 2) in contrast to the spare-rows, such in-place spares exist at the exact same address as the

failed memory element. Hence, there is no need for address remapping to activate the spares,

and thus the overhead associated with the remapping logic can be avoided.
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of the primary device with a V−thc pulse. b) Use of the primary device as a regular memristor
with ON↔ OFF switching. c) Spare activation with a V+

thc pulse. d) The spare is used as the
active memristor.

In order to differentiate the proposed use of a CRS as a dual-memristor-cell (DMC) with

in-place spares, from the original CRS concept, hereafter we refer to a CRS stack as DMC.

4.4.2 Architectural Modifications

The anti-serially connected memristors in a DMC are accessed with opposite polarities:

while applying a positive write pulse switches an active primary device into an OFF state, the

same pulse would turn ON the spare device if it is activated. Hence, the memory management

system needs to track which device in a DMC is active to ensure that for a write operation, the
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right voltage polarity is applied to the active device.

We propose the use of a “polarity bit”, pbit, to track the active device in a DMC. The pbit is

accessed prior to each write operation to select the proper write voltage polarity. To minimize

the overhead of bookkeeping, we use only one pbit per block: either all DMCs in a block use

the primary device as their active device, or all of them use the spare.

To avoid the performance penalty of accessing the pbit, we take advantage of the paging

system commonly implemented in the OS [86]. The OS maintains validity, permission, and

address translation information for fixed-length contiguous blocks of memory that are called

pages, in a page table entry. Page table entries are loaded into an extremely fast CAM called

translation look-aside buffer (TLB), and are accessed as a part of each memory operation.

Hence, by storing the DMC polarity data, i.e. pbit, at a page-level granularity, the pbit can be

stored in the corresponding page table entry and accessed with no extra performance penalty

during a write operation. Figure 4.4 highlights the minor modifications made to the datapath of

a ReRAM to track the page polarity in green.

4.4.3 Repair Mechanism

The ECC can only correct up to T bits of errors per word-line. To extend the lifetime of a

ReRAM, we propose a repair scheme that employs in-place spares to repair word-lines with

more than T bits of errors. Our repair scheme reuses commonly adopted reliability improvement

mechanisms, i.e. ECC and the adaptive write mechanism, to detect the number of errors during

regular memory accesses: an adaptive write mechanism reports the exact number of bit-errors

during a write operation, while ECC can detect up to D bits of errors during a read access, where

D is larger than T .

Knowing the number of bit-failures, Ne, our repair scheme triggers the replacement of a word

with a spare, as soon as Ne exceeds the correction capability of the ECC. Possible spare rows
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enable the repair: The existing repair controller is extended to activate in-place spares for the
whole page once all spare rows are exhausted.

are utilized first to replace a defective word, Wf . The “address remapping” logic is configured to

remap Wf to an available spare row. Once the spare rows are exhausted, the repair mechanism

is triggered and the in-place spares are activated for the whole page.

The activation process of the in-place spares consists of three phases: For each word in

a page, 1) the word is read and stored in a buffer, 2) spare devices are activated by applying

a V+
thc voltage pulse to the device stack, and 3) the buffered values are written back to the

spare-activated word-line. The repair controller also updates the pbit and resets the remapping

logic for the spare-activated page. Figure 4.4 shows a ReRAM equipped with in-place spares.
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4.5 Analysis and Results

4.5.1 Viability Model

In order to evaluate the effect of the in-place spares on extending the lifetime of a ReRAM,

we derive a statistical model to assess the viability of a ReRAM system in the presence of

hard and soft errors. A viability function, V (t), is defined as the probability that by time t, a

ReRAM system has not yet experienced a failure, i.e. an error that cannot be corrected by ECC

or repaired by spares. We use the Poisson distribution to model the probability of a S@ON (or

S@OFF) bit-failure at time t, PS@1(or 0)(t), with a fixed error rate, λ1 (or λ0) [88]:

PS@1(0)(t) = 1− e−λ1(0)t (4.1)

Similarly, a fixed error rate λs is assumed for soft errors. We further consider a correction

rate, µ , to model soft error mitigation mechanisms such as scrubbing. Equation 4.2 derives the

probability of having a faulty bit due to a soft error, PSE(t):

PSE(t) =
λs

µ +λs
(1− e−(µ+λs)t) (4.2)

With the use of ECC, a B-bit word-line (that has BD data bits and BP parity bits) is viable as

long as the total number of hard and soft bit-errors per word does not exceed T . Note that the

number of parity bits depends on the ECC correction capability. VW (t, ta) captures the viability

of a word-line:
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VW (t, ta) =
T

∑
i=0

T−i

∑
j=0

T−i− j

∑
k=0

(
B
i

)
PS@0(t)i(1−PS@0(t))B−i

.

(
B− i

j

)
PS@1(t− ta)) j(1−PS@1(t− ta))B−i− j

.

(
B− i− j

k

)
PSE(t)k(1−PSE(t))B−i− j−k (4.3)

where i, j, and k represent the number of S@OFF , S@ON, and soft errors respectively, and

ta denotes the activation time of the in-place spares. Note that activating the in-place spares

resets S@ON errors in a DMC ReRAM. Hence, for the calculation of the S@ON bit-failure

probability, the time origin is adjusted accordingly. The ta equals 0 when measuring the viability

of a word with regular memristors or a DMC word but before the activation of the in-place

spares.

Considering S spare rows per page, a page with W words remains viable as long as the

number of faulty words in the page does not exceed S. Equation 4.4 captures the page viability,

Vpage(t, ta), assuming hot spare rows:

Vpage(t, ta) =
S

∑
i=0

(
W +S

i

)
Vw(t, ta)W+S−i(1−Vw(t, ta))i (4.4)

The viability of a regular ReRAM page is obtained by setting ta equal to 0 in Equation 4.4.

In case of a DMC memory, the page viability both before and after the activation of the in-place

spares should be considered, as given in Equation 4.5:
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Table 4.1: Simulation parameters

Parameter Description value

λs Soft error rate 10−12

λ1 stuck at ON error rate 10−10

λ0 stuck at OFF error rate ρλ1
ρ S@ON to S@OFF error ratio {1,10,100}
µ Soft error correction rate 10−11

T ECC Correction capability {0,1,2}
W # of words per page 1024
S # of spare words per page [0-64]

BD # of data bits per word {64,128,256}

VDMC(t) =Vpage(t,0)+
∫ t

0
−V ′page(ta,0)Vpage(t, ta)dta (4.5)

The first term in Equation 4.5 represents the viability of a page prior to the in-place spare

activation. The activation of the in-place spares at time ta provides an additional viability,

Vpage(t, ta). However, ta is a random variable in the [0, t] range. Hence, the viability component

due to the spare activation is integrated over this range, with regard to the probability distribution

function of ta, that is −V ′page(t,0).

The lifetime of a memristive page can be derived based on the viability function, according

to Equation 4.6:

Li f etime =

∫
∞

0
−tV ′DMC(t)dt (4.6)

Note that while our calculations employ a Poisson distribution for hard and soft errors, other

distributions can be applied by customizing Equations 4.1 and 4.2. Furthermore, a ReRAM

with no spare rows and/or ECC, can be modeled simply by setting S and/or T to 0, respectively.
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Figure 4.5: Viability of a DMC ReRAM versus a regular ReRAM for different S@ON to
S@OFF error rate ratios.

Table 4.1 summarizes the employed parameters and their exemplar values.

4.5.2 Effect of In-place Spares on Lifetime

Figure 4.5 illustrates the viability of a DMC ReRAM page (solid lines) versus that of a

baseline regular ReRAM (dashed lines). Results are shown for an exemplar case of T = 2,

BD = 64, W = 1024, S = 8, λs = 10−12, λ1 = 10−10, µ = 10−11, and for different S@ON to

S@OFF error rate ratios, ρ . To quantify the viability improvements, we consider the time at

which a memory page shows 99% viability, t99%. For ρ = 100 (green lines), a DMC ReRAM

extends t99% by 119%. Even with equal S@ON and S@OFF error rates (red lines), t99% is still

improved by over 65%.

Figure 4.6 illustrates the effect of the in-place spares on the lifetime of a ReRAM page as a

function of S and T , while ρ is set to 10. For example, with S = 8 and T = 2, use of the in-place

spares can increase the lifetime by 91%.
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Figure 4.6: The effect of in-place spares, ECC correction capability, and the number of spare
rows on the lifetime of a ReRAM page.

Figure 4.6 demonstrates the possibility of using in-place spares to reduce the number of

spare rows. For example, with T = 2, a DMC ReRAM page with four spare rows provides the

same lifetime as a regular memristive page with 24 spare rows.

The use of in-place spares also provides an opportunity to use lighter-weight ECCs in a

ReRAM system to save on the area and energy requirements of the ECC, while maintaining

a similar ReRAM lifetime. For an exemplar ReRAM page with 48 spare rows, i.e. 4% row

redundancy, a DMC ReRAM page protected by a single-error-correcting (SEC) ECC exhibits a

lifetime that is only 11% short of that of a regular page with a double-error-correcting (DEC)

ECC.

4.5.3 Energy and Area Reduction

Figure 4.7 illustrates the possible reduction in area and power consumption by using the

in-place spares to reduce the number of spare rows. This reduction is mainly attributed to the
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Figure 4.7: Power consumption and area requirements of the remapping logic CAM. A DMC
ReRAM provides a similar lifetime with significantly lower number of spare rows, thus saves
on the CAM’s area and power consumption.

reduction in the size of the CAM module in the remapping logic. The horizontal axis shows the

number of spares in pairs of {SDMC,SReg}, where SReg is the necessary number of spare rows

in a regular ReRAM, to provide a lifetime similar to that of a DMC ReRAM with SDMC spare

rows. The vertical axis shows the area and power overhead of a CAM to support SDMC and SReg

spare rows, respectively. For example, a DMC ReRAM page with six spare rows, provides the

same lifetime as a regular ReRAM page with 36 spare rows. Hence, with smaller number of

spare rows required, the power and area requirements of the remapping CAM can be reduced

by 81% and 83%, respectively. Power and are numbers are obtained by synthesizing different

CAM sizes with Synopsys design compiler at a 45nm CMOS technology node targeting a 200ps

latency.

Figure 4.8 shows the potential of the in-place spares to reduce the area and energy con-

sumption of a ReRAM system by enabling lighter-weight ECCs while maintaining a similar

lifetime. SEC and DEC BCH encoder/decoders are synthesized using Synopsys design compiler,

targeting a 400ps latency in a 45nm CMOS technology. For 128-bit data words, reducing the a

BCH’s correction capability from two to one reduces the area and power consumption of the
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Figure 4.8: Power consumption and area requirements of a SEC and a DEC BCH ECC logic.
The in-place spares enable employing a lighter-weight ECC, thus saving on area and power.

ECC logic by 41% and 35%, respectively. The savings improve further for words with more

data bits. Note that reducing the ECC complexity results in greater savings compared to the

savings resulting from reducing the number of spare rows.

4.6 Concluding Remarks

We propose a novel use of complementary resistive switches, to provide a dual-memristor-

cell (DMC) with an in-place spare for ReRAM at negligible extra cost. The in-place spares

can repair stuck-at-ON defects that are prevailing in a ReRAM system. Unlike conventional

redundancy-based schemes, the proposed method incurs no area overhead due to the spares and

does not require a remapping logic.

We present a statistical model to evaluate the effectiveness of the proposed method on

extending the ReRAM’s lifetime. The use of the in-place spares can roughly double the lifetime

of ReRAMs. Alternatively, a DMC ReRAM exhibits a similar lifetime to a regular ReRAM, but

with a lighter-weight ECC. The reduction in the complexity of the ECC can save an average of
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39-43% on the area and 33-35% on the energy consumption of a BCH ECC module. Similarly,

use of a DMC ReRAM can save on power and area by reducing the number of spare rows

required to attain a given lifetime, which results in ≈6X reduction in the area overhead and

power consumption of a CAM module inside the remapping logic.
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Conclusion

In this thesis we focus on addressing several sources of error and unreliability in the emerging

memristive memory technology. One of the main advantages of this technology is the possibility

of realizing access-transistor-free (ATF) memristive crossbars. The elimination of the access-

transistor is enabled by the super exponential non-linearity in the switching characteristics

of memristive devices versus the amplitude of the applied voltage pulse [7]. However, the

elimination of the access-transistors comes with a cost: accessing a target memristor in an ATF

crossbar applies a partial voltage across many other devices sharing the same word- or bit-line.

We address several challenges caused by the existence of such partially-biased devices.

One of such issues is a data reliability problem known as the write disturbance. During a

write operation, the write disturbance potentially degrades the resistance value of the memristive

devices that are on the same word- or bit-line as the target memristor in an ATF crossbar. Such

disturbance can accumulate over several write cycles and eventually corrupt the logic value

stored in the affected devices. A major complexity before addressing this issue is the 2D domain

of the affected devices that are both on the word- and bit-line. Hence, to address the write

disturbance problem, we first confine the domain of the disturbance only to the word-line-shared

memristors, via asymmetric distribution of the write voltage. The degradation of the data is
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then monitored by having two regular memristors on each word-line. These memristors store

logic 0 and 1 respectively and are used as references to check corruption trend and status. By

monitoring these memristors, we can trigger a refresh operation to restore the disturbed data

when necessary, and ensure data reliability.

The major advantage of the proposed method is the fact that the design-for-reliability

hardware does not affect the regularity of the memristive crossbar, as it uses only regular

memristors in the memristor layer, and requires no access-transistors. Hence, our method

maintains all the benefits of an ATF crossbars while ensuring a reliable write operation. A case

study shows that our method has less than 1% performance overhead and a moderate energy

overhead of 41% to realize a reliable write operation in comparison with the baseline, unreliable

implementation. This should be affordable due to the ultra-low-power characteristics of the

memristive memories.

The other issue addressed in this thesis is the data reliability problem caused by significant

variation in the write time characteristics of memristive devices. Such write time variation

becomes particularly troublesome in ATF crossbar-based memories, where the leakage currents

due to the partially-biased devices make it hard to detect the completion of a write operation.

To address this problem, we propose an adaptive write circuitry that applies a write pulse

with a just-enough width to switch the state of the target cell. The proposed write circuitry

correctly detects switching events in a leakage-prone ATF memory system by employing a

leakage-filtering approach. Our method first latches the data-dependent leakage current, so that

the current only through the target cell can be then retrieved to enable accurate monitoring. The

proposed method has an advantage of verifying the completion of the write operation as it keeps

monitoring the state of the device during a write operation. This self-verification feature can

be further utilized to reduce the test time of many march memory testing algorithms, as most

of such algorithms have test sequences in which a read operation is required immediately after

the write operation to verify the correctness of the write. With the proposed write scheme, the
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verifying read operation can be omitted, resulting in up to 36% reduction in the test time of

memory testing algorithms.

Our case study further shows the potential of the proposed method to achieve significant

reduction in energy consumption over the conventional fixed-pulse write scheme. The exact

energy saving ratio depends on the data pattern as well as the desired rate of correct write

operations. For example, our method offers an average of 7X and 11X energy saving ratio, for

random data patterns and exemplar success rates at 1−10−8 and 1−10−12, respectively.

Finally, we found a low-cost solution to repair stuck-at-ON device failures that are prevailing

in ReRAM systems. The proposed solution makes a novel use of complementary resistive

switches, to provide a dual-memristor-cell (DMC) with an in-place spare. Our method can

be used both for conventional 1T-1R and the ATF memory architectures and incurs no area

overhead to the memory. This is unlike traditional redundancy-based schemes which have the

area overhead of the spares and a remapping logic. Presenting a statistical model to evaluate the

effectiveness of the proposed method on extending the ReRAM’s lifetime, we show that the use

of the in-place spares can roughly double the lifetime of ReRAMs.

We further explore the possibility of using the in-place spares to replace the conventional

spare-rows and/or reduce the complexity of the required error correction code (ECC) while

maintaining a similar lifetime to a baseline ReRAM with spare-rows and ECC. We demonstrated

that by using the proposed method to reduce the complexity of the required ECC, we can reduce

an average of 39-43% on the area and 33-35% on the energy consumption of a BCH ECC

module. Similarly, we showed that the use of a DMC ReRAM can reduce the number of spare

rows required to attain a given lifetime by a factor of six.

The methods that are proposed throughout this thesis make future memristive memory

modules more reliable and less prone to errors. Moreover, similar ideas can be used to address

other open problems in ATF crossbars. One of such problems is the adverse effect of the leakage

current of the bit-line-shared devices, Ileak, on a current compliance circuitry [11]. A current
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compliance is used to ensure that the amount of current passing through the target memristor,

Itarget, does not exceed a given threshold. This is required for an accurate tuning of memristor’s

resistance which is needed to enable multi-bit storage in a single memristor. Current compliance

is further utilized during electro-forming process [89]. However, in an ATF crossbar, we do not

have a direct access to the Itarget. Instead we can only observe and control the current at the

end of the bit-line which has an extra Ileak current component. To address this issue, we can

utilize the current-latching idea proposed in chapter 3. The leakage current can be latched and

measured first, and the current compliance can be tuned to accommodate for the existing Ileak.
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