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Abstract

This report describes the protocol for an ongoing project funded by the National Institutes of 

Health (R01MH108155) that is focused on effects of childhood maltreatment (MALTX) on 

neurocircuitry changes associated with adolescent major depressive disorder (MDD). Extant 

clinical and neuroimaging literature on MDD is reviewed, which has relied on heterogeneous 

samples that do not parse out the unique contribution of MALTX on neurobiological changes in 

MDD. Employing a 2 × 2 study design (controls with no MALTX or MDD, MALTX only, MDD 

only, and MDD + MALTX), and based on a cohesive theoretical model that incorporates 

behavioral, cognitive and neurobiological domains, we describe the multi-modal neuroimaging 

techniques used to test whether structural and functional alterations in the fronto-limbic and 

fronto-striatal circuits associated with adolescent MDD are moderated by MALTX. We 

hypothesize that MDD + MALTX youth will show alterations in the fronto-limbic circuit, with 

reduced connectivity between the amygdala (AMG) and the prefrontal cortex (PFC), as the AMG 

is sensitive to stress/threat during development. Participants with MDD will exhibit increased 

functional connectivity between the AMG and PFC due to self-referential negative emotions. 

Lastly, MDD + MALTX will only show changes in motivational/anticipatory aspects of the fronto-

striatal circuit, and MDD will exhibit changes in motivational and consummatory/outcome aspects 

of reward-processing. Our goal is to identify distinct neural substrates associated with MDD due to 

MALTX compared to other causes, as these markers could be used to more effectively predict 
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treatment outcome, index treatment response, and facilitate alternative treatments for adolescents 

who do not respond well to traditional approaches.

Keywords

adolescence; maltreatment; depression; neurocircuitry; fronto-limbic; front-striatal; functional 
connectivity

INTRODUCTION

Major depressive disorder (MDD) is the leading cause of disability worldwide [1,2], and it 

frequently emerges during adolescence [3]. Adverse experiences that occur in early 

childhood, such as various types of abuse/maltreatment (MALTX), are common risk factors 

for the development of MDD, accounting for up to 50% of attributable risk [4–6]. However, 

it is important to distinguish between depressed individuals with and without MALTX 

history, as critical clinical differences (e.g., age of onset, symptom presentation, treatment 

response, clinical course) suggest the presence of two distinct subtypes [7–11]. Findings 

from adult neuroimaging studies may be influenced by the presence of MALTX within 

heterogeneous samples, with abuse history likely accounting for some structural and 

functional differences between adults with MDD and healthy controls (e.g., reduced 

hippocampal [HIPP] size and amygdala [AMG] hyper-reactivity) [11–13]. It is unclear 

whether MALTX is a qualitatively different type of stressor compared to other psychosocial 

stressors that play an etiological role in the development of MDD. Our ongoing study 

addresses this gap within the literature by applying a cohesive theoretical model 

incorporating behavioral, cognitive, and neural domains.

The overarching aim of this study is to determine whether two distinct MDD subtypes (with 

and without MALTX) are warranted through an examination of structural and functional 

neural circuits in a diverse sample of adolescents. Because adolescence is characterized as 

the period with the most pronounced neural changes and maturation in grey and white 

matter since infancy [14–17], and that the brain-based effects of MALTX appear at this stage 

[18–20], we focus on 13- to 17-year-old participants. Primary hypotheses focus on the 

neural circuits implicated in cognitive-emotional (fronto-limbic) and motivational-reward 

(fronto-striatal) processes, as they play a central role in the core depressive symptoms (i.e., 

negative mood and anhedonia; Diagnostic and Statistical Manual of Mental Disorders, 5th 

ed.; DSM–5) [21]. Using both dimensional and categorical perspectives, as well as multi-

modal imaging techniques, neural alterations associated with depressive symptom profiles 

will be examined. Although inclusion and exclusion criteria for our study will be described 

in further detail in the methods section, for the purposes of describing study aims, 

hypotheses, and background, the following group designations will be used heretofore: 

MDD (i.e., adolescents meeting DSM-5 criteria for current MDD; no history of abuse prior 

to age 10); MALTX (i.e., adolescents with history of physical, sexual, and/or emotional 

abuse prior to age 10; no psychiatric history); MDD + MALTX (i.e., adolescents with 

current MDD and a history of abuse prior to age 10); and NC (i.e., normal controls/
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adolescents with no personal or family history of a psychiatric disorder, and no abuse 

history).

Aims, Hypotheses, and Background

Aim 1: Test whether structural and functional alterations associated with depression in the 

fronto-limbic circuit are moderated by a history of abuse and identify structural and 

functional differences in this circuit between MDD and MDD + MALTX. Structural 

differences: We hypothesize that MDD + MALTX will have smaller grey matter volume in 

the HIPP and prefrontal cortex (PFC) but greater AMG volume, and lower fractional 

anisotropy (FA) in the fronto-limbic tracts (cingulum/uncinate fasciculus), compared to 

MDD. Functional differences: MDD + MALTX will exhibit reduced functional connectivity 

between the AMG, HIPP, and PFC, both at rest and in response to a cognitive-emotional 

task, and MDD will exhibit increased functional connectivity between these regions.

Aim 2: Test whether structural and functional alterations associated with depression in the 

fronto-striatal circuit are moderated by a history of abuse and identify structural and 

functional differences in this circuit between MDD and MDD + MALTX. Structural 

differences: We hypothesize that MDD will have smaller grey matter volume in ventral 

striatum (VS) and lower FA in the fronto-striatal tracts compared to MDD + MALTX. 

Functional differences: MDD will exhibit increased functional connectivity between the VS 

and PFC during resting-state as well as reward anticipation and receipt phases in response to 

a reward-processing task. Additionally, MDD + MALTX will exhibit reduced functional 

connectivity at rest and only during the anticipation phase of the reward-processing task.

Aim 3: Test whether abuse history moderates the associations of specific symptom 

constructs, such as negative or positive affect, anhedonia, or rumination, with key nodes in 

the fronto-limbic and fronto-striatal circuits. We hypothesize that a history of abuse will 

moderate the associations of negative affect and rumination with fronto-limbic circuit, and 

anhedonia with fronto-striatal circuit. However, we expect that abuse history will not 

moderate the association between positive affect and fronto-striatal circuit.

Figure 1 (a and b) presents the explanatory model described in the hypotheses with respect 

to fronto-limbic and fronto-striatal circuits in MDD and MDD + MALTX. With guidance 

from seminal adult and pediatric neuroimaging studies [20,22–35], our model hones in on 

key structures detailed in the literature focusing on samples with either abuse or MDD, as 

very few studies stratified MDD with and without MALTX in their samples [36]. We 

conceptualize and parse out history of abuse as a unique stressor compounding the 

development of depression, and therefore, highlight the crucial role of the fronto-limbic 

circuit, which comprises brain regions that are highly reactive to threat and susceptible to the 

impact of stress. For example, the AMG plays a central role in emotion-processing and is 

implicated in the rapid processing of threat-related stimuli. The PFC modulates AMG 

response through inhibitory regulation in non-threatening situations. Honing in on PFC sub-

regions that may be implicated in these processes, we identify the ventromedial PFC 

(vmPFC) and dorsolateral PFC (dlPFC) as areas of interest, as these regions are salient to 

stress response and cognitive-emotional regulation processes [37,38]. The HIPP similarly 

processes threat- and non-threat-based stimuli and facilitates the retrieval of explicit 
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memories. Early childhood abuse experiences essentially interrupt and reprogram the 

development of salient components of the fronto-limbic system, such that the AMG 

interprets non-threatening events as threatening, thereby yielding globally exaggerated 

responses [33,39]. Further, the PFC, specifically the vmPFC and dlPFC components, is 

ineffective in down-regulating this AMG response with reduced functional connectivity 

between these brain regions (blue line, Figure 1a), leading to emotional dysregulation and 

depression [20,22,23,33,40,41]. However, in depressed samples without the interplay of 

abuse history, self-referential, ruminative and negative thoughts may predominate instead of 

threat-based reactions, with PFC hyper-response and increased functional connectivity 

between the AMG and PFC (red line, Figure 1a) [37,42,43].

Figure 1b exemplifies two distinct behavioral components linked to anhedonia based on 

translational study findings—the motivational (“wanting” reward) and consummatory 

(“liking” reward/experiencing pleasure)—linked to individual reward processes and 

associated neural substrates (ventral striatum [VS] implicated in the anticipatory/

motivational component; and both VS and PFC implicated in the outcome/consummatory 

component) [44]. The chronic stress experienced by individuals with exposure to childhood 

abuse is understood to increase risk for the development of apathy/depression, thereby 

affecting the motivational component of the reward/fronto-striatal circuit (blue-cross, Figure 

1b). In non-abused MDD samples, decreased capacity to experience pleasure is a prominent 

feature in addition to reduced motivation, and both components of the reward/fronto-striatal 

circuit may be affected (red-cross, Figure 1b). Lastly, reward-processing and decision-

making also trigger socioemotional processes; fronto-limbic and fronto-striatal circuits may 

therefore be interconnected. This dynamic, which simultaneously influences emotional and 

reward processes, leads to decreased functional connectivity in MDD + MALTX and 

increased connectivity in MDD in both circuits (Figure 1a) [19,20,22–18,31,33].

Significance of the Research and Clinical Implications

The public health impact and economic burden associated with adolescent MDD are well-

recognized [1–3,45]. Adverse childhood experiences and early-life stress significantly 

increase risk for the development of depressive disorders; more than one-half of MDD cases 

are estimated to be linked to MALTX [46], with individuals exposed to early sexual, 

physical, and/or emotional abuse being 2.5 times more likely to be diagnosed with MDD in 

childhood or adolescence [47]. The strong association between MALTX and MDD has also 

been found to emerge in various stages of adulthood [7,41,48]. Indeed, while maltreatment 

occurs most commonly in early childhood [49], the impact it has on psychological and brain 

functioning often appears years later during the salient developmental period of adolescence 

[50,51]. For instance, several studies have found reduced HIPP size in adults, but not 

children, who experienced early abuse [13,19,35], with researchers indicating that 

maltreatment-related HIPP alterations frequently emerge in adolescence [17,52,53].

Incidence rates of MDD in adolescence have been estimated from 11% to 25% [3,47]. 

However, researchers have yet to make a clear distinction between MDD with and without 

MALTX, with studies reporting on differences based on post-hoc analyses in heterogeneous 

samples [11–13,54], despite data indicating that these are separate subtypes of depression 
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with respect to clinical course, symptom presentation, treatment responsiveness, and 

prognostic outcome [7,8,10,55].

Moreover, genetic and neurobiological studies have posited that depressed individuals with 

and without MALTX have different neurobiological substrates [11–13,30,34,36,56–58], 

however, the nature of these differences has not been well characterized. Of note, one of the 

most well-established markers of MDD in adult neuroimaging studies has been reduced 

HIPP volume and AMG hyper-reactivity, yet these findings were present only in the subset 

of MDD patients who also had MALTX, while MDD patients without MALTX yielded 

similar profiles to those of normal/healthy controls [11,12]. Additionally, pure MALTX 

samples (i.e., no psychiatric disorder) also exhibited reduced HIPP volume and AMG hyper-

reactivity, suggesting that these alterations are driven by MALTX and present additive 

neurobiological risk factors for MDD [13,19,22,23,33]. Of note, a small-scale adolescent-

based study found that reduced HIPP volume was associated with MALTX in both MDD 

patients and healthy controls, but that amygdala reactivity was not associated with MALTX 

[59].

The treatment and prognostic implications of identifying and differentiating the biological 

bases and neural correlates of these two depression subtypes include the opportunity to 

shape clinical formulation and strengthen intervention guidelines. Our ongoing study is 

making efforts to identify distinct neural substrates associated with MDD in MALTX 

victims, as these specific markers can be used to effectively predict treatment outcome 

[60,61] and more accurately index treatment response [62–64]. In doing so, we hope to 

facilitate the use of alternative treatments for individuals who do not respond well to 

traditional approaches. For example, findings from some clinical trials have suggested that 

depressed individuals respond differentially to traditional antidepressant treatments based on 

their childhood abuse histories [8,10,65,66]. In MDD + MALTX samples, who are prone to 

threat-based cognitive-emotional processing, pharmacological agents that attenuate AMG 

hyper-reactivity in response to threat-based stimuli (e.g., anxiolytics, cannabinoid receptor 

agonists) [67,68] may be more effective than selective serotonin reuptake inhibitors (SSRIs), 

as these agents tend to increase short-term anxiety through enhanced effects on the 

acquisition and expression of fear conditioning [69,70]. Additionally, neurofeedback 

interventions may be used to individually regulate the AMG in the two MDD subtypes, for 

instance, by down-regulating during the presentation of threat-based stimuli in MDD + 

MALTX rather than up-regulating during recall of positive autobiographical memories in 

pure MDD samples [71–74]. Correspondingly, if motivational anhedonia/reward-processing 

predominates the pathophysiology of MDD + MALTX, it may be more effective to integrate 

behavioral activation interventions in conjunction with more traditional cognitive-behavioral 

therapy [8,10,56,75–77].

We identify several shortcomings in the literature and present novel approaches to address 

these gaps, with the aim of distinguishing between the additive and interactive effects of 

MALTX and identifying distinct MDD subtypes that would inform good clinical practice. 

First, we address the methodological limitations of neuroimaging studies that focused only 

on adult, heterogeneous samples of depression by stratifying adolescent samples based on 

rigorous criteria of MDD and MALTX. By focusing on an adolescent sample, we can also 
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minimize the confounding effects that recurrent episodes and treatments can have on the 

brain, as many adolescents are more likely to be in their first depressive episode and 

treatment-naïve. Accordingly, we also screen out for the potentially confounding effect of 

psychotropic medications. Second, we comprehensively assess depressive symptoms and 

maltreatment history through multi-modal, multi-informant assessments. This study 

implements validated, clinician-led psychodiagnostic batteries and structured interviews 

with both adolescents and caregivers to determine group stratification, as many studies have 

been limited to retrospective self-reports of adverse childhood experiences and depressive 

symptoms.

Third, studies focusing on neuroimaging changes associated with MALTX have primarily 

relied on unimodal procedures [13,19] and we address this limitation by implementing 

multi-modal imaging techniques, including macro- and micro-structural, as well as resting-

state and task-based functional MRI scans. In post-hoc analyses, we will explore how 

structural alterations relate to functional changes [78–80]. These methods will enhance our 

knowledge-base on pathophysiology and potentially contribute to improved treatment 

guidelines and prognosis forecasting [55–59].

While studies focusing on single brain regions have been essential in helping to identify 

regions of interest for this population [19,31], we test the aforementioned explanatory model 

(see Figure 1) by taking a multiple circuit approach which hones in on mechanisms 

specifically implicated in core depressive symptomology (i.e., fronto-limbic circuit for 

negative mood and fronto-striatal circuit for anhedonia). Given that neural events rarely 

occur in isolation, and as maltreatment and depression impact multiple brain regions, a 

systems-level analysis increases our understanding of the existing neural models 

[13,19,27,31]. Further, there are significant benefits to using combined structural and 

functional neuroimaging methodology, particularly when aiming to understand the 

mechanisms at play in the pathophysiology of depression. For instance, one meta-analysis 

examined brain changes associated with adult depression and found under-activation of 

different parts of the dlPFC depending on scanning methodology (i.e., resting-state vs. task-

based) [31]. Lastly, our approach capitalizes on the Research Domain Criteria (RDoC) 

[81,82] by examining the neural substrates of positive and negative valence systems 

alongside broadly defined clinical categories and efficiently builds upon our current 

knowledge-base of the neurobiology of depression.

METHODS

Our study employs a 2 × 2 design to test a depression x maltreatment interaction hypothesis 

and ensuring that main effects of MALTX are not misinterpreted as simple main effects of 

MALTX for the MDD groups. We aim to enroll 240 participants equally distributed across 

four groups (MDD + MALTX; MDD; MALTX, and NC), which are group-matched on age, 

sex, pubertal stage, race/ethnicity and socioeconomic status (SES).

Recruitment and Eligibility

All human subjects research described herein was approved by the Institutional Review 

Board at University of California, Irvine in 2017 (Protocol #2017–3440). Following a NIH 
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(Sponsor) initial site-visit and approval, recruitment was initiated in February 2018. 

Participants are recruited from communities throughout Southern California. Adolescents of 

both sexes/genders and all racial/ethnic groups are eligible to participate if they are between 

13 and 17 years of age and in Tanner Stage II or greater of pubertal development. Exclusion 

criteria include contraindications for imaging procedures (e.g., metallic devices, 

claustrophobia), as well as conditions that would affect brain development, including IQ 

below 80, birth complications or premature birth, maternal substance abuse during 

pregnancy, neurological disease, or head trauma with loss of consciousness. As previously 

mentioned, youth taking psychotropic medication that may affect the central nervous system 

are excluded, unless willing to adhere to standard wash-out periods for certain medications 

(e.g., stimulants for attention-deficit hyperactivity disorder) prior to scanning. Youth who 

used alcohol and/or drugs in the week prior to study entry (based on self-report or urine drug 

screen), are suspected to be pregnant, and those who reported experiencing multiple 

unrelated forms of trauma (e.g., natural disaster, accidents, gang violence) are not eligible.

Furthermore, participants and/or their biological parents with a history of mania or 

hypomania are excluded, as unipolar and bipolar depression may have distinct neural 

markers. To further minimize diagnostic comorbidity, youth are excluded if they meet 

DSM-5 criteria for moderateto-severe disruptive disorders, substance use disorders or autism 

spectrum disorder in the previous six months, or were exhibiting psychotic symptoms or 

active suicidal ideation at recruitment. However, youth determined to meet criteria for 

anxiety and trauma-based disorders (e.g., post-traumatic stress disorder; PTSD) are eligible, 

as these diagnoses are often comorbid with MDD, have overlapping symptoms, and likely 

have shared etiological factors [83–86]. We will identify the neural correlates of MDD in 

youth with and without PTSD or anxiety disorders in exploratory analyses [87].

Assessments and Group Stratification

The assessment schedule is presented in Table 1. Following the administration of phone 

screens to determine eligibility criteria, adolescents and a parent/legal guardian attend the 

initial lab visit (Visit 1) during which informed consent from the parent and assent from the 

youth are obtained. Participants subsequently complete demographic questionnaires and 

pubertal status ratings (i.e., Tanner Stages), as well as comprehensive psychodiagnostic 

batteries and structured interviews to determine group classification.

Youth and caregivers are separately administered the computerized version of the Kiddie 

Schedule for Affective Disorders and Schizophrenia—Present and Lifetime Version (K-

SADS-COMP V2.0; K-SADS-PL) [88] by post-doctoral clinical psychologists, supervised 

by the Principal Investigator (PI) who is a licensed child and adolescent psychiatrist. 

Spanish-speaking parents are administered the 1.0 Spanish computerized version by a 

Spanish-speaking clinician. The K-SADS-PL/K-SADS-COMP is a DSM-5-based semi-

structured interview that assesses for symptom onset, course, duration, severity, and 

impairment in order to ascertain present and lifetime history of psychiatric disorders. 

Diagnosis is subsequently determined by using a consensus of child and caregiver 

interviews. The web-based version has strong convergent validity and high inter-rater 

reliability for depressive disorders [88].
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The Childhood Adversity Interview (CAI) [89] is also a semi-structured interview 

administered individually to adolescents and caregivers. This instrument focuses on various 

types of adversities (i.e., separation and loss of primary caretaker(s), life-threatening illness/

injury to self or others, witnessing domestic violence) and maltreatment experiences (i.e., 

emotional abuse, physical abuse, sexual abuse, and neglect) [90]. Taking into account 

contextual factors and circumstances, interviewers use information from both informants to 

determine severity of adversity in each domain on a 5-point scale (1 = no adversity; 3 = 

moderate; 5 = extreme). The CAI was modified from the Childhood Trauma Interview [91], 

and has shown good inter-rater and test-retest reliability [92]. Previous studies have shown 

good discriminative power to detect neurobiological differences in adolescents by using a 

threshold score of ≥3 on the three abuse items (emotional, physical and sexual abuse) 

compared to scores of 1 on abuse, neglect and domestic violence items for those without 

MALTX [53,90,93]. As the current study aims to understand the enduring, long-term effects 

of maltreatment history on neurobiology, adolescents are eligible for the MALTX groups if 

they meet threshold criteria for abuse occurring prior to age 10. Scores are calculated for 

both lifetime abuse as well as abuse experienced prior to age 10. Exploratory analyses will 

compare MALTX groups with abuse only prior to age 10 and those that also had abuse after 

age 10 years. Further, although we will be examining all adverse experiences in exploratory 

analyses, our primary focus is on the aforementioned abuse items, as these incidents are 

more reliably documented.

Participants in the MDD + MALTX group meet DSM-5 criteria for current unipolar MDD 

based on K-SADS-COMP consensus ratings and meet the threshold for significant abuse 

history prior to age 10 based on ratings of ≥3 (at least moderate severity) on any of the three 

abuse items on the CAI. The MDD group meets criteria for current unipolar MDD and does 

not have any significant abuse history (score 1/none on each abuse, domestic violence, and 

neglect items on the CAI). Adolescents categorized in the MALTX group meet threshold 

criteria for significant history of abuse but do not have significant current or lifetime 

psychiatric history, with the exception of phobias. The NC group does not have any 

significant abuse or psychiatric history, as indicated above.

Parental psychopathology is assessed using a semi-structured interview, the Family History-

Research Diagnostic Criteria (FH-RDC) [94], administered by post-doctoral clinical 

psychologists under the PI’s supervision, with the primary caregiver as the informant. For 

the MDD and MDD + MALTX groups, a current or past history of mania or hypomania in 

either of the biological parents is an exclusion. For NC, any major Axis I disorder on the 

FH-RDC is an exclusion.

Visit 1 assessments, as indicated in Table 1, also include clinician administration of the 

Children’s Depression Rating Scale–Revised Version (CDRS-R) to assess for symptom 

severity [95,96], and a self-reported depression scale (Beck Depression Inventory) [97]. 

Additional self-report measures include the Temporal Experience of Pleasure Scale (TEPS) 

to assess individual traits in anticipatory and consummatory experiences of pleasure [98], 

and the rumination subscale of the Children’s Response Style Questionnaire (CRSQ), which 

asks about participants’ use of self-focused thoughts regarding the causes and consequences 

of depressed mood [99]. Supplemental to clinician-determinations of abuse severity on the 
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CAI, participants also complete MALTX experiences using the Childhood Trauma 

Questionnaire (CTQ) Short Form [100].

With respect to measures used in exploratory analyses, affect and mood (the Positive and 

Negative Affect Schedule) [101], parent and youth ratings on anxiety symptoms (Screen for 

Child Anxiety-Related Emotional Disorders) [102], PTSD symptomology (PTSD Checklist 

for DSM-5) [103], stress (Adolescent Stress Questionnaire) [104], social support (UCLA 

Social Support Inventory) [105] social functioning (Social Adjustment Scale-Self Report) 

[106] and parent-rated autism traits (Social and Communication Disorders Checklist) [107] 

are also assessed. Lastly, parent-child relationships are measured with the Parental Bonding 

Instrument [108], the Child-Parent Relationship Scale [109], and the parent- and youth-rated 

Questionnaire of Unpredictability in Childhood [110].

At Visit 1, a urine drug screen and MRI safety screen (to determine the presence of metallic 

devices and implants) are administered. Medication and treatment history are also gathered.

At visit 2, adolescents complete a neurocognitive battery to test whether executive 

functioning measures correlate with neural markers or psychiatric symptoms. The battery 

assesses for verbal and non-verbal reasoning (Vocabulary and Matrix Reasoning subtests of 

Wechsler abbreviated Scales of Intelligence) [111], working memory (N-Back Task) [112], 

inhibitory control (Color-Word Interference Subtest of Delis Kaplan Executive Function) 

[113], attention (Visual and Auditory Continuous Performance Test) [114], and parent- and 

youth-reported executive functioning (Behavior Rating Inventory of Executive Function) 

[115]. Participants also complete a mock scan to acquaint themselves with upcoming 

scanner environment and procedures, practice experimental fMRI tasks, and for researchers 

to assess for potential claustrophobia. Visit 3, often completed immediately following visit 

2, is comprised of the neuroimaging tasks described in subsequent sections. Participants 

complete the same MRI safety screen that was completed at the initial visit to confirm the 

absence of metallic objects/devices and/or claustrophobic symptoms.

Neuroimaging

The multi-modal imaging techniques include structural MRI (sMRI), diffusion tensor 

imaging (DTI), resting-state functional MRI (rs-fMRI) and task-based fMRI, all of which 

amount to approximately 90 min of scanning. Scans are acquired on a 3.0 Tesla Siemens 

Prisma (Erlangen, Germany) scanner, using a standard radiofrequency 12-channel head coil. 

T2-weighted scans, co-planar to the functional images (TR/TE = 6400/67 ms, FOV = 24 cm, 

matrix 256 × 256, flip angle = 149°) and high resolution T1-weighted scans (TR/TE = 

2300/2.96 ms, FOV = 256 mm, 1 mm isotropic resolution, flip angle = 9°), are acquired for 

registration purposes. Functional images are acquired with a gradient-echo, EPI sequence: 

34 oblique axial slices (4 mm thick, 1 mm gap), oriented to the AC-PC line, and 

encompassing the entire cerebrum and most of the cerebellum (TR/TE = 2000/25 ms, FOV 

= 24 cm, matrix = 64 × 64, flip angle = 77°). For rs-fMRI, which measures intrinsic 

functional connectivity, participants are instructed to remain awake, relax with their eyes 

open, and look at a fixation cross for approximately 10 min. For task-based fMRI scans, 

stimulus presentation is completed using E-Prime with the images projected onto an 
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overhead LCD panel and a 5-button box for recording behavioral data. An automated higher-

order shim procedure is applied to minimize magnetic field inhomogeneities.

Structural MRI

FreeSurfer image analysis suite is used to perform cortical reconstruction and volumetric 

segmentation [116]. Surface thickness and volumetric measures are extracted for each region 

of interest described in primary hypotheses (Figure 2a,b). The resulting maps are capable of 

detecting small differences between the groups. An experienced neuroimaging data-analyst 

performs quality assurance and manual review of all results on an ongoing basis, with 

monthly reports submitted to a primary supervisor and senior analyst. In secondary analysis, 

voxel-wise grey matter density (VBM) is compared using FSL-VBM [117], an optimized 

VBM protocol [118] carried out with FSL tools [119]. Using Automated Segmentation of 

Hippocampal Sub-field (ASHS) software [120–122], HIPP sub-fields are identified by 

fusing standard isotropic T1-weighted structural with high-resolution coronal T2-weighted 

data (Figure 3).

Diffusion Tensor Imaging (DTI)

DTI data are corrected for image distortions due to eddy currents [123] and static B0 errors. 

The diffusivity of the brain is analyzed using the conventional diffusion tensor model [124] 

and our generalization based on spherical deconvolution is implemented using the high 

angular resolution diffusion imaging (HARDI) method (2.5 mm isotropic resolution; 92 

diffusion directions; b = 1000 s/mm2; less than 15 min) [125]. HARDI provides information 

on crossing and diverging white matter fibers that allow tracking algorithms to perform well, 

in contrast with tensor-based algorithms which often break down. Although whole-brain 

DTI data can be acquired in 60 s, data can be unreliable in voxels containing more than one 

fiber orientation. Therefore, we use an advanced method that has been found to improve 

brain connectivity measurements [125] to track fibers between cortical parcels, defined 

using FreeSurfer (Figure 4) [126], with the number of fibers connecting each pair of cortical 

parcels used to construct a connectivity matrix for each adolescent [127,128].

Probabilistic fiber tractography is performed using the FMRIB FDT toolbox, which uses 

Bayesian techniques to estimate the most probable location of a pathway between two seed 

points [129–132]. Fiber tracking is initiated from all voxels within each seed mask, and a 

multi-seed-mask approach in which anterograde and retrograde tracts are summed together; 

these methods are used to robustly characterize each tract within the fronto-limbic and 

fronto-striatal circuits, as relevant to the study aims. Tests for between-group differences are 

conducted using general linear models with p values estimated using permutation testing 

(FMRIB Randomise tool; 5000 permutations). Appropriate covariates are included in the 

model and data are corrected for multiple comparisons using a cluster-forming threshold 

[90,133].

We use tract-based spatial statistics (TBSS) to examine voxel-level differences in FA 

between groups [123,134] which compares FA values of each group on skeletons/centers of 

white matter fiber bundles in order to avoid errors due to mis-registration between subjects. 

This method has the advantage of determining if a specific white matter tract is altered 
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entirely and identifying local changes along the tract, which has clinical/functional 

significance [90,130]. The EVA single subject FA map is used as the model template in 

order to enhance alignment with the digital white matter atlas from Johns Hopkins 

University (JHU ICBM-DTI-81) [135]. Post-hoc analyses of radial diffusivity and parallel 

diffusivity are performed to facilitate the interpretation of any between-group FA 

differences.

Neuroimaging Tasks and Functional Analyses

Adolescents complete an Emotional Go/No-Go fMRI Task (EmoGnG), which targets 

emotional and cognitive processes, and allows us to measure responses in the fronto-limbic 

circuit [136]. Participants are presented with images of faces (calm, fearful or happy 

expressions) for 500 ms and asked to quickly and accurately respond to the “Go” stimuli and 

not to respond to the “No-Go” stimuli. Participant reaction times are measured with respect 

to targets (Go), defined by distinct emotional expressions, as well as their ability to withhold 

responses to non-targets (No-Go) (e.g., click only for fearful faces). Our version of the task 

includes six runs totaling 48 faces, with targets occurring in 75% of the trials, and with each 

5-minute run comprising of the following conditions presented in a pseudorandom order: 

Happy-Neutral (HN), Neutral-Happy (NH), Sad-Neutral (SN), Neutral-Sad (NS), Fearful-

Neutral (FN), and Neutral-Fearful (NF). Contrasts generated for analyses include responses 

(Go and NoGo), stimuli type (emotional expressions), and trial phase (early, middle, and 

late). EmoGnG has been used in prior studies to demonstrate functional connectivity 

between the AMG and PFC in response to negative emotional stimuli, such that increased 

activity in the PFC is associated with decreased AMG activity [136].

Participants also complete a Monetary Reward Task, which has been shown to reliably elicit 

striatal and medial PFC responses to anticipation and receipt of reward in both adolescent 

and adult subjects, including individuals with mood disorders [137–140]. Adolescents are 

instructed that they can win or lose money by guessing whether an upcoming card’s value is 

going to be high or low. Unknown to the participants, the outcome of each trial is 

predetermined and, of the 24 trials, there are 6 win, 6 loss, 6 no-win and 6 no-loss trials, all 

presented in a pseudorandom order. Contrasts generated for analyses include reward 

anticipation > baseline and reward win > baseline.

Rest and task-based images are aligned using rigid-body co-registration to reduce the effects 

of head motion and subsequently co-registered to the high-resolution T1-weighted structural 

image. The transformation of the structural image to atlas space is then applied to the 

functional images, followed by resampling, yielding functional images at 3mm isotropic 

resolution in the atlas space. These are spatially smoothed using a 6mm-FWHM Gaussian 

kernel. After initial pre-processing, time series at each voxel have white matter, 

cerebrospinal fluid and motion-related signals removed via regression [141], then are low-

pass filtered at 0.1 Hz to retain low frequencies relevant for connectivity estimation. Head 

motion, which can be a significant confound in fMRI connectivity studies using adolescent 

participants [142], may be used as a potential covariate if it is found to differ between 

groups. To minimize potential confounds, we identify volumes that show large displacement 
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(>0.5 mm) or large change in global signal (>0.5%) relative to the preceding volume, and 

remove them prior to conducting connectivity analyses [142].

Resting-state functional connectivity is calculated as Z-transformed correlation coefficient 

between pre-processed time series, using the CONN toolbox [143] and connectivity between 

seed region time series and each grey matter voxel is calculated to create connectivity maps 

for each seed region. In addition to the commonly used seed-based analysis, we utilize 

generalized psychophysiological interaction (gPPI) for task-based analyses, which allows us 

to understand how brain regions interact in a task-dependent manner with greater sensitivity 

and specificity than the standard PPI (sPPI) [144,145]. For both types of functional 

connectivity, we utilize seed-region approaches, defined using probabilistic atlases derived 

from structural tracings, with the following seeds: laterobasal, centromedial and superficial 

sub-regions of the AMG (Figure 5) [146–149], anterior and posterior regions of the HIPP 

(Figure 6) [150], and inferior and superior parts of the VS [151,152]. The resulting T maps 

are then thresholded at p < 0.05, using random field theory to correct for the multiple voxel 

comparisons based on spatial smoothness [153,154] to identify brain regions where the 

groups have differences in connectivity.

Integration of Structural and Functional Analyses

Adult depression studies have shown the significant complimentary benefits of combining 

structural and functional neuroimaging techniques with respect to deepening our 

understanding of pathophysiology and treatment responsiveness [155,156]. Therefore, our 

multi-modal imaging methods enhance our ability to determine whether observed functional 

group differences indicate underlying structural changes, or if they are in fact distinct, 

thereby potentially uncovering the underlying mechanisms of brain changes in depressed 

adolescents. Correlations between grey matter density and functional activation are tested 

using the biological parametric mapping toolbox that provides voxel-level correlations 

between two imaging modalities [157]. We will use analysis of variance or covariance 

(ANOVA/ANCOVA) to test for group differences in the structure-function correlations 

across the whole brain, corrected for multiple comparisons (FWE < 0.05), a method 

previously used to demonstrate associations between grey matter volume and AMG 

responses to emotional faces [158].

Functional connectivity is tested by integrating structural and functional data using two 

different approaches. First, we compare groups on the correlation between overall strength 

of the structural connectivity (i.e., FA values) and functional connectivity (i.e., beta values) 

for the fronto-limbic tract (e.g., cingulum bundle and uncinate fasciculus) and the fronto-

striatal tract (e.g., fronto-caudal). Values for each group are then r-to-z transformed and 

tested using ANOVA/ANCOVAs, thereby implementing a conservative test of structure-

function association for the entire tract. Second, because there may be more specific 

relationships between structure and function, we use regression analyses to test for 

differences at each voxel within the path. Functional connectivity values, group, and group × 

functional connectivity interaction are all used as predictor variables. P-values are then 

estimated using permutation testing (FMRIB Randomise tool) and corrected for multiple 

comparisons using a cluster-forming threshold in FSL.
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Data Management and Statistical Analyses

Data management is completed through the HIPAA-compliant remote electronic data 

capture (REDCap) system [159], whereby respondents are able to complete self-report 

measures directly into the system under their respective participant ID numbers. Handling 

method of missing data will depend upon the sample size used in the analyses and the 

randomness status of missing variables [160]. Missing data are accounted for by including 

“missingness” as a covariate in analyses, and multiple imputation methods, for example, are 

used in variables when more than 5% are missing completely at random [161,162]. Primary 

variables used to test each study hypotheses are indicated in Table 1 as associated with each 

aim.

To test for the moderation effects of maltreatment on structural and functional alterations 

associated with MDD within the fronto-limbic circuit (Hypothesis 1) and fronto-striatal 

circuit (Hypothesis 2), multiple regressions will be used and will include MDD and MALTX 

as main effects and MDD × MALTX as an interaction term; demographic and clinical 

covariates will be included if these differ by group. Focus will be placed on simple main 

effects when interactions are significant. Subsequently, we will assess for structural and 

functional differences in the depressed samples between participants in the MDD and MDD 

+ MALTX groups. Secondary analyses will include testing for differences between NC and 

MALTX (non-depressed adolescents), between MALTX and MDD + MALTX (maltreated 

adolescents), and between NC and MDD (non-maltreated adolescents).

In the event that analyses do not yield significant interactions, we will focus on the main 

effects of MDD and MALTX when testing group differences. Accordingly, we aim to 

answer the following questions with our findings: (a) whether the neural substrates of MDD 

participants differ from those without MDD, irrespective of abuse history; and (b) whether 

the neural substrates for MALTX participants differ from those without MALTX, 

irrespective of depression. Within-group analyses will include the covariates of clinical (e.g., 

depression severity, maltreatment severity) and demographic (e.g., age, sex/gender, SES) 

variables. Similar analyses will be conducted to test for the moderation effects of 

maltreatment on the association between distinct depressive symptom profiles and structural/

functional connectivity measures in fronto-limbic and fronto-striatal circuits (Hypothesis 3). 

In these analyses, various domains of depression will either be dichotomized (e.g., 

anhedonia: yes/no) or tested as dimensional variables by mean centering the scores.

For exploratory analyses, we will examine the relationship between structural connectivity 

changes and functional connectivity, and between resting-state and task-based functional 

connectivity. In finding alterations in the key nodes common to cognitive-emotional and 

reward circuits, we seek to establish whether they influence both emotion- and reward-

processing. Whole-brain analyses will be performed to identify changes in the extended 

parts of these circuits (e.g., bed nucleus of the stria terminalis, globus pallidus, thalamus). 

Various covariates will be included in our models as moderators on brain changes, such as 

age of depression onset, PTSD symptoms, and social support, and these will be examined in 

relation to behavioral and neurocognitive variables.
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Based on power analyses utilizing traditional criteria (G power 3.1.9.2; alpha = 0.05 two-

tailed, power = 80%) [163], our projected sample size of 240 adolescents within the four 

groups will allow us to detect an effect size of f2 = 0.05, indicating small-to-medium- effect 

sizes [164]. Given the recommended sample size of 40 per group in order to yield reliable 

estimates of group differences in fMRI studies [165], as well as the multiple variables of 

interest included in our protocol, we aim to enroll 60 adolescents per group.

NIH Grant Reviewer Comments

The grant application received an Impact Score of 20 and a 6th Percentile Score. The main 

weaknesses expressed by the review committee include the unreliability of participants’ 

recollections about maltreatment history and the cross-sectional study design. Specifically, 

the cross-sectional design may not be able to reveal the dynamic effects of maltreatment and 

brain changes. Some reviewers indicated that the approach, in and of itself is not necessarily 

innovative, but the question is critical and significance of the study substantial. The 

committee indicated that these weaknesses did not diminish the reviewers’ enthusiasm and 

they agreed that the neural markers associated with the two depression subtypes may lead to 

better-informed treatments.

We acknowledge that retrospective reports of maltreatment are not very reliable. However, 

we instituted a multi-informant, multi-method assessment to improve reliability. Both youth 

and parent are interviewed using a standardized instrument (CAI). Additionally, we obtain 

information from Child Protective Services, when feasible. Youth also complete a self-report 

detailing past traumas (CTQ). Furthermore, given the shorter life history, retrospective bias 

is less in adolescents compared to adult samples.

We agree that prospective studies are the gold standard for identifying temporal changes in 

neurocircuitry in relation to maltreatment history, depression outcome and the associated 

neural changes, and we gave it considerable thought. However, given our current knowledge 

in this field and relative costs, we decided that the best course of action is a well-designed, 

cross-sectional study as the first step to distinguish unique and interactive effects of 

maltreatment and depression before embarking on a more expensive and intensive 

longitudinal study.

This study’s innovation is primarily conceptual. We felt it was important to use established 

methods to compare findings from existing data in adolescent/adult samples to distinguish 

the two depression phenotypes. We also use the latest advances in MRI data collection and 

analysis methods to provide exceptional resolution to facilitate distinction between the 

groups.

Current Status

We are currently at the end of Year 2 of a 5-year project. As of March 2020, we recruited 

and completed 131 participants, with 24 adolescents in MDD + MALTX, 37 in MDD, 13 in 

MALTX, and 57 in NC. Only seven participants (not counting the 131 completed) were 

withdrawn thus far following informed consent due to various reasons (e.g., the age of onset 

of first incident of abuse; not meeting severity threshold for single CAI abuse item despite 

high total scores; MRI incompatibility; and scheduling conflicts). Additionally, of the 
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adolescents screened, the most common reasons for ineligibility are MRI incompatibility 

(e.g., dental braces), current psychotropic medication, MDD history but no current episode, 

and personal or family history of bipolar disorder.

As per NIH mandate for this Award, we cannot ask for abuse history during the phone 

screen. We continue to make strides toward recruiting these high-risk youths, including 

reaching out to over 150 community organizations and agencies across Southern California, 

including agencies working with victims of trauma. The Governor of California has 

allocated $45 Million in the 2020–2021 fiscal year budget to reimburse Medicaid providers 

for screening of Adverse Childhood Experiences (ACEs) and an additional $50 Million to 

train primary care providers on administering these screenings (https://

chronicleofsocialchange.org/child-welfare-2/californias-surgeon-general-readies-statewide-

screening-for-child-trauma/37658). The California Department of Health Care Services has 

just implemented training to all Medi-Cal (Medicaid) providers on ACEs screening (https://

www.dhcs.ca.gov/provgovpart/Pages/TraumaCare.aspx). With these new initiatives, we 

anticipate that we will be in a better position to recruit the MALTX and MDD + MALTX 

groups.

Scientific Presentations

Preliminary results from the available data suggest structural and functional differences 

between MDD and MDD + MALTX as well as evidence of neurobiological changes in the 

MALTX group which do not manifest any psychiatric disorders [165–171].

• Thirion B, Pinel P, Meriaux S, Roche A, Dehaene S, Poline JB. Analysis of a 

large fMRI cohort: Statistical and methodological issues for group analyses. 

NeuroImage. 2007;35(1):105–20 [165].

• Van Erp T, Jirsaraie R, Faulkner M, Scambray K, Fong J, Taylor D, Rao U. 

Dentate gyrus volume is associated with childhood maltreatment and depression 

severity in adolescents. Presented at the 57th Annual Meeting of the American 

College of Neuropsychopharmacology; 2018 Dec 9–13; Hollywood, FL, USA 

[166].

• Faulkner M, Jirsaraie R, Zurita T, Fong J, Scambray K, Rao U. Unpredictability 

in childhood predicts executive function impairment in depressed and non-

depressed adolescents. Presented at the 6th Annual Symposium Organized by the 

Conte Center at UCI; 2019 Mar 12; Irvine, CA, USA [167].

• Sharma A, Scambray K, Jirsaraie R, Faulkner M, Rao U. White matter changes 

in fronto-limbic pathways in adolescent depression. Presented at the 6th Annual 

Symposium Organized by the Conte Center at UCI; 2019 Mar 12; Irvine, CA, 

USA [168].

• Sharma A, van Erp TGM, Scambray K, Jirsaraie R, Faulkner M, Rao U. 

Sustained amygdala response to fearful faces in depressed adolescents with 

childhood maltreatment. Presented at the 66th Annual Meeting of the American 

Academy of Child and Adolescent Psychiatry, 2019 Oct 14–19; Chicago, IL, 

USA [169].
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• Sharma A, van Erp TGM, Faulkner M, Forbes E, Rao U. Decreased striatal 

response to monetary reward in depressed adolescents. Presented at the 58th 

Annual Meeting of the American College of Neuropsychopharmacology; 2019 

Dec 8–11; Orlando, FL, USA [170].

• Millwood SN, Gillespie M, Sharma A, Huszti H, Rao U. Amygdala volume 

differences in depressed adolescents with and without childhood maltreatment. 

Presented at the 7th Annual Symposium Organized by the Conte Center at UCI; 

2020 Feb 25; Irvine, CA, USA [171].

DISCUSSION

The current study aims to understand the unique contribution that maltreatment history can 

have on the neurobiology of adolescent depression, with the goal of identifying two distinct 

depression subtypes. We address current gaps in the neuroimaging literature by focusing on 

adolescents, reducing participant heterogeneity by using stringent depression and 

maltreatment criteria, using comprehensive psychodiagnostic interviews, and implementing 

state-of-the-art, multi-modal neuroimaging techniques. We expect to differentiate structural 

and functional alterations in fronto-limbic and fronto-striatal circuits between MDD and 

MDD + MALTX groups, and determine whether maltreatment history moderates the 

association between depressive symptom profiles and these neural circuits. Moreover, we 

expect to discover whether maltreatment-induced neural differences are distinct or whether 

they reflect associated alterations in brain structures. We will also assess whether individual 

differences in neural correlates among these groups serve as risk or resiliency markers for 

depression. Exploratory analyses will allow us to examine the correlations between various 

clinical and demographic variables and neural changes in the MDD + MALTX group. The 

findings from this study will broaden and deepen our understanding of the neurobiological 

correlates of adolescent MDD versus MDD + MALTX, which may have important 

implications for shaping clinical formulation and treatment guidelines, predicting treatment 

outcomes more effectively, and indexing treatment response for the two MDD subtypes. 

Such knowledge will also be helpful in developing new treatments for subgroups that do not 

respond well to traditional interventions. With well-characterized samples of adolescents and 

promising results from this cross-sectional study, we hope to follow these cohorts 

longitudinally with new intramural and/or extramural funding to better characterize the 

neurobiological vulnerability and resiliency factors associated with depression onset and 

recurrence during the developmental transition to adulthood.
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Figure 1. 
Neural Deficits in MDD and MDD + MALTX (a) Left (brain): Fronto-limbic and Fronto-

striatal Circuits; (b) Right (explanatory model): Anhedonia and Reward-Processing.
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Figure 2. 
(a) Frontal Lobe Regions: Caudal Middle Left (1) and Right (4); Rostral Middle Left (2) and 

Right (5); Superior Left (3) and Right (6). (b) Subcortical Regions: Hippocampus Left (1) 

and Right (4); Amygdala Left (2) and Right (5); N. Accumbens Left (3) and Right (6).
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Figure 3. 
Right Hippocampus Sub-fields.
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Figure 4. 
Diffusion Tensor Imaging Data: A color-coded anisotropy map (left) reveals white matter 

fiber orientation (red = right/left, green = ant/post, blue = sup/inf). The fiber pathways are 

reconstructed (right; color-coded as on the left).
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Figure 5. 
Amygdala Sub-regions (blue: centromedial; red: laterobasal nucleus; and green: superficial).
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Figure 6. 
Functional Connectivity (FC): Anterior and posterior Hippocampus (HIPP) show different 

patterns of FC; anterior HIPP exhibits stronger FC with default network (left) and anterior 

temporal lobe (right).
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Table 1.

Assessment schedule.

Assessment Type
Informant

Visit Purpose
Youth Caregiver

Demographics self-report × × Screen Eligibility

MALTX and psychiatric history self-report × × Screen Eligibility

Additional demographic information interview × × 1 Covariate; supplementary independent variable 
(Aims 1–3)

Tanner stage self-report × 1 Eligibility; covariate; supplementary independent 
variable (Aims 1–3)

Psychopathology (K-SADS-PL) clinician × × 1 Eligibility; independent variable (Aims 1–2)

Depressive symptoms/severity (CDRS-
R) clinician × 1 Covariate (Aims 1–2); supplementary dependent 

variable (Aim 3)

Depressive symptoms/severity (BDI) self-report × 1 Covariate (Aims 1–2); supplementary dependent 
variable (Aim 3)

Depressive symptoms/anhedonia 
(TEPS) self-report × 1 Dependent variable (Aim 3)

Depressive symptoms/rumination 
(CRSQ) self-report × 1 Dependent variable (Aim 3)

Mood/positive-negative valence 
(PANAS) self-report × 1 Dependent variable (Aim 3)

Anxiety symptoms (SCARED) self-report × × 1 Covariate (Aims 1–3); independent variable 
(exploratory analysis)

PTSD symptoms (PCL-5) self-report × 1 Covariate (Aims 1–3); independent variable 
(exploratory analysis)

Family psychiatric history (FH-RDC) clinician × 1 Eligibility; covariate (exploratory analysis)

Childhood adversity (CAI) interview × × 1 Eligibility; covariate (Aims 1–3); independent 
variable (exploratory analysis)

Child/adolescent trauma (CTQ) self-report × 1 Covariate (Aims 1–3; exploratory analysis)

Adolescent stress (ASQ) self-report × 1 Covariate (Aims 1–3); independent variable 
(exploratory analysis)

Social support (SSI) self-report × 1 Covariate (Aims 1–3); independent variable 
(exploratory analysis)

Social functioning (SAS-SR) self-report × 1 Independent variable (exploratory analysis)

Parent-child relationship (PBI & C-
PRS) self-report × × 1 Covariate (Aims 1–3); independent variable 

(exploratory analysis)

Questionnaire of Unpredictability in 
Childhood self-report × × 1 Covariate (Aims 1–3); independent variable 

(exploratory analysis)

Autistic traits (SCDC) self-report × 1 Eligibility

Handedness (Edinburgh Scale) self-report × 1 Covariate (Aims 1–3; exploratory analysis)

MRI safety screen self-report × × 1 Eligibility for neuroimaging

Neurocognitive battery assessor × 2 Dependent variable (exploratory analysis)

Neuroimaging (mock scan) task × 2 Eligibility for neuroimaging

Neuroimaging (sMRI, DTI, rs-fMRI, 
fMRI) task × 3 Dependent variable (Aims 1–3; exploratory 

analysis)

Note: K-SADS-PL: Kiddie Schedule for Affective Disorders and Schizophrenia – Present and Lifetime Version; CAI: Childhood Adversity 
Interview; CDRS-R: Children’s Depression Rating Scale–Revised Version; BDI: Beck Depression Inventory; TEPS: Temporal Experience of 
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Pleasure Scale; CRSQ: Children's Response Style Questionnaire; PANAS: Positive and Negative Affect Schedule; SCARED: Screen for Child 
Anxiety-Related Emotional Disorders; PCL-5: PTSD Checklist for DSM-5; FH-RDC: Family History-Research Diagnostic Criteria; CTQ: 
Childhood Trauma Questionnaire; ASQ: Adolescent Stress Questionnaire; SSI: UCLA Social Support Inventory; SAS-SR: Social Adjustment 
Scale-Self Report; PBI: Parental Bonding Instrument; C-PRS: Child-Parent Relationship Scale; SCDC: Social and Communication Disorders 
Checklist; sMRI: structural magnetic resonance imaging; DTI: diffusion tensor imaging; rs-fMRI: resting state functional MRI; fMRI: functional 
MRI.
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