
UCSF
UC San Francisco Previously Published Works

Title

MicroRNA regulation of CD8 + T cell responses

Permalink

https://escholarship.org/uc/item/4v27286m

Journal

Non-coding RNA Investigation, 3(0)

ISSN

2522-6673

Authors

Gagnon, John D
Ansel, K Mark

Publication Date

2019-08-01

DOI

10.21037/ncri.2019.07.02
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4v27286m
https://escholarship.org
http://www.cdlib.org/


MicroRNA regulation of CD8+ T cell responses

John D. Gagnon, K. Mark Ansel
Sandler Asthma Basic Research Center, Department of Microbiology & Immunology, University of 
California San Francisco, San Francisco, CA, USA

Abstract

MicroRNAs (miRNAs) are a class of short noncoding RNAs that play critical roles in the 

regulation of a broad range of biological processes. Like transcription factors, miRNAs exert their 

effects by modulating the expression of networks of genes that operate in common or convergent 

pathways. CD8+ T cells are critical agents of the adaptive immune system that provide protection 

from infection and cancer. Here, we review the important roles of miRNAs in the regulation of 

CD8+ T cell biology and provide perspectives on the broader emerging principles of miRNA 

function.
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Introduction

The vertebrate immune system is a finely tuned and remarkably flexible instrument of host 

defense. A combination of innate pathogen associated molecular pattern recognition and the 

astonishing diversity and specificity of adaptive immunoreceptors provides protection from 

omnipresent and ever-changing pathological insults. From viruses to bacteria to eukaryotes 

to cancer, the diversity and abundance of potential threats that we are constantly 

encountering is a testament to our immune system’s protective capacity.

CD8+ T cells are adaptive immune cells with an exceptional ability to specifically recognize 

and kill cells presenting foreign antigens (1). Each CD8+ T cell expresses just one of over a 

thousand trillion possible versions of the T cell receptor (TCR) with a unique specificity for 

an antigen that consists of a short peptide presented on class I MHC molecules by potential 

target cells (2). Upon encountering their cognate antigen, naïve CD8+ T cells become 

activated, undergo several rounds of cell division thereby generating clones of cells with the 

same receptor specificity, and differentiate to adopt a diverse multitude of specialized 
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behaviors depending on the context of their activation (1). The factors that govern these cell 

fates include the abundance of peptide-MHC antigen, TCR affinity for the antigen, the 

presence or absence of co-stimulatory signals, the local cytokine milieu, and cell-intrinsic 

factors such as transcription factors and epigenetic regulators of gene expression.

Among the cell-intrinsic factors that regulate T cell differentiation are microRNAs 

(miRNAs). miRNAs are short (21–24 nucleotide) noncoding RNAs that post-

transcriptionally regulate target genes through interaction with their corresponding mRNAs 

(3). Functional expression of miRNAs is a complex process regulated by machinery that are 

regulated themselves, to an extent, by miRNAs (4). miRNAs are transcribed (mainly by 

RNA polymerase II) as long primary transcripts (pri-miRNAs) containing a hairpin structure 

that contains the mature miRNA sequence. These hairpins are cropped out of pri-miRNAs 

by the Microprocessor complex, consisting of the RNA binding protein DGCR8 and the 

RNase III family endoribonuclease Drosha, liberating precursor miRNAs (pre-miRNAs). 

Pre-miRNAs are exported from the nucleus via exportin 5 where they become accessible to a 

second RNase III, Dicer, which removes the pre-miRNAs hairpin loop, generating a short 

RNA duplex. One strand of this duplex becomes a mature miRNA upon its loading into an 

Argonaute (AGO) protein, forming a miRNA-induced silencing complex (miRISC) (3,4). 

The miRNA provides specificity to the miRISC, guiding AGO-mediated repression of target 

mRNAs via Watson-Crick base pairing between the miRNA “seed” sequence and “seed-

match” sites found mainly within 3’UTRs. In this manner, miRNAs facilitate translational 

repression as well as deadenylation and degradation of their target mRNAs.

Adding to the complexity of miRNA regulation, the expression of miRNAs, their target 

genes, and the machinery required for miRNA function varies between cell types and 

differentiation states. Therefore, the role of a particular miRNA in one cell type can be 

dramatically different than its role in another. Depending on the expression level of a 

particular miRNA and a target RNA, the miRNA may exert little to no effect on protein 

abundance, tune protein abundance to appropriate levels, or even reduce protein abundance 

beyond a threshold necessary for effective function in the cell (5). These properties endow 

miRNAs with the ability to confer robustness to biological processes (6), and to buffer noisy 

and stochastic transcription that can be leaky and occur in bursts (7–9). Mathematical 

modeling supported by single-cell reporter assays confirmed a broad role for miRNAs in 

reducing noise in weakly expressed genes, while surprisingly increasing noise in highly 

expressed genes (10).

Like transcription factors, miRNAs mediate their biological functions through the regulation 

of networks of target genes. The magnitude of direct miRNA repression of an individual 

target mRNA and its corresponding protein is modest, almost never exceeding a two-fold 

effect. Nevertheless, individual miRNA:target interactions are biologically relevant, as 

suggested by the evolutionary conservation of many miRNA binding sequences, and 

supported by naturally occurring variants in miRNA binding sites that alter physiology or 

confer risk for pathology (11–13). In a few cases, the in vivo requirement for an individual 

miRNA:target interaction has been interrogated experimentally by mutating a binding 

sequence by gene targeting in mice (14–17). Each of these mutations was sufficient to 

produce a profound phenotype, yet none of them could account for the full effect of 
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removing the miRNA entirely. Indeed, all of them involve mutating a single binding site for 

the same miRNA (miR-155) in different target genes.

Exemplifying the broad nature of miRNA targeting, algorithms that take into account the 

conservation of miRNA seed-matches within 3’UTRs predict that over 60 percent of all 

RefSeq annotated genes can be regulated by one or more miRNAs (11). Biochemical 

methods that detect miRISC occupancy on mRNAs, such as AGO2 high-throughput 

sequencing of RNAs isolated by crosslinking immunoprecipitation (AGO2 HITS-CLIP or 

AHC) (18) and differential AHC, in which AHC data from cells sufficient or deficient for a 

particular miRNA are compared (19), generally support these predictions, but indicate that 

they likely underestimate the extent of miRNA:target interactions. Including all mRNAs 

with 3’UTR seed-matches, regardless of conservation, expands the list of predicted miRNA 

targets to include over 98 percent of all RefSeq annotated genes (Figure 1A). Prediction 

based on sequence alone is not sufficient evidence that targeting occurs. However, it can 

guide biochemical analyses of miRNA binding to transcripts, as well as expression analyses 

that measure the context-specific functional effects of miRNAs. Comparative measurement 

of nascent and mature mRNA levels and quantitative proteomics showed that only 99 targets 

were stabilized by miR-144/451 deficiency in erythroblasts (20). AHC supported these 

findings by demonstrating that for most transcripts with miR-144/451-dependent AGO2 

binding, there was no appreciable stabilization in miR-144/451 deficient erythroblasts. 

Further work will be necessary to determine the generalizability of these findings among 

other miRNAs in different contexts. Importantly, a single RNA can be targeted by multiple 

miRNAs, and each miRNA influences the expression of tens to hundreds of direct target 

RNAs (Figure 1B). These targets often include sets of genes that function in common 

biological pathways, providing opportunities for miRNAs to produce additive phenotypic 

effects, and to control multiple potential limiting factors in noisy or dynamic gene 

expression programs.

miRNAs are required for the normal behavior of almost every vertebrate cell type in which 

their biogenesis or function has been experimentally disabled. In this review, we focus on the 

regulatory mechanisms that govern CD8+ T cell fate and function within immune responses, 

emphasizing the roles of miRNAs in controlling or modulating these mechanisms. 

Additionally, we provide commentary on emergent principles of miRNA regulation.

miRNA regulation of CD8+ T cell function

In response to activation by their cognate antigen, T cells adopt gene expression profiles 

conducive to rapid proliferation and the deployment of effector functions. While many of 

these changes occur at the transcriptional level, as much as 50 percent are mediated post-

transcriptionally (21). miRNAs also exhibit profound changes in abundance in response to T 

cell activation owing at least in part to the rapid turnover of miRNA processing machinery 

and Argonaute proteins (22,23). miR-16, miR-142–3p, miR-150, miR-142–5p, miR-15b, 

and let-7f are the most abundantly expressed miRNAs in naïve CD8 T cells and all of these 

miRNAs are down-regulated with in vitro activation (24). Globally, the majority of miRNAs 

are immediately down-regulated in response to T cell activation (23). However, some, such 
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as miR-155, are transcriptionally upregulated and increase in abundance during T cell 

activation (25–27).

Essential to an effective cytotoxic T cell response is the proliferation and accumulation of 

sufficient quantities of antigen-specific cells capable of killing infected cells and cancer. 

CD8+ T cells lacking miR-155 fail to appropriately expand in response to LCMV infection 

(28). In fact, in the absence of miR-155, there is a ten-fold reduction in antigen-specific 

CD8+ T cell accumulation (29) and this appears to be driven by miR-155 effects on both 

proliferation and survival (30). Members of the miR-17~92 cluster of miRNAs are also up-

regulated in response to CD8+ T cell activation in vivo (31,32). Consistent with previous 

reports describing lymphoproliferative disease resulting from overexpression of the 

miR-17~92 cluster (33), the proliferative capacity of antigen-specific CD8+ T cells is 

diminished in the absence of miR-17~92 (32). miR-17~92 has been demonstrated to directly 

target the tumor suppressor PTEN and the pro-apoptotic protein Bim, providing at least two 

targets with shared functionality by which miR-17~92 may act. miR-15/16 has been shown 

to directly target a network of cell cycle and survival associated genes including Ccne1 and 

Bcl2 (34–36). Consistent with these observations, deletion of miR-15/16 results in increased 

proliferative capacity and survival among antigen-specific CD8+ T cells (36,37).

Highlighting the importance of miRNAs in restraining CD8+ T cell effector function, Dicer-

deficient CD8+ T cells exhibit increased production of perforin, granzyme B, and interferon-

gamma (IFN-γ) (38). T cell migration out of central lymphoid organs is a critical component 

to effector responses and is mediated by surface expression of S1P1 (39), which is inhibited 

by CD69 (40). Dicer-deficient CD8+ T cells are defective in their ability to migrate out of 

central lymphoid organs and fail to accumulate in response to infection, likely due to 

retained surface CD69 expression (41). Several miRNAs that participate in this restraint are 

downregulated upon T cell activation, linking activating signals to diminishment of a 

miRNA barrier to T cell differentiation and acquisition of effector functions. Naïve T cells 

strongly express several members of the let-7 family of miRNAs. Inhibiting let-7 production 

by overexpression of the regulatory RNA binding protein LIN-28 leads to increased baseline 

CD8+ T cell proliferation (42). Conversely, let-7 overexpression inhibited antigen-specific T 

cell clonal expansion and effector function. Retroviral over-expression of pri-miRNAs 

revealed that miR-139–3p can lead to downregulation of perforin and the transcription factor 

EOMES, while miR-150 indirectly regulated expression of the high affinity interleukin 

(IL)-2 receptor, CD25 (38). miR-29 is also down-regulated in response to T cell activation, 

and is capable of regulating the expression of IFN-γ both directly (43) and indirectly by 

targeting the transcription factors, T-BET and EOMES (9).

On the other hand, miR-155 deficiency in CD8+ T cells results in reduced cytotoxicity (28) 

and effector cytokine production (29). In addition to its role in these effector functions, 

miR-155 enhances the responsiveness of CD8+ T cells to the homeostatic cytokines, IL-7 

and IL-15 (44) as well as IL-2 (30). Socs1 knockdown rescues the decreased IL-2 

responsiveness of miR-155 deficient T cells. Additionally, Socs1 knockdown in CD8+ T 

cells phenocopies the tumor-protective effect of miR-155 over-expression. However, while 

miR-155 plays a critical role in the responsiveness of CD8+ T cells in both acute and chronic 

infection models, target site mutation indicated that Socs1 repression by miR-155 is only 
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sufficient to mediate a measurable effect in chronic models (17). In addition to Socs1, 

miR-155 represses Ship1 and Ptpn2, two other negative regulators of AKT and STAT5 

signaling (44), among many other direct target mRNAs (19). Overexpression of miR-155 

leads to a remarkably improved anti-tumor response by tumor-specific CD8+ T cells (30) 

suggesting that this approach may be beneficial in adoptive T cell therapies for cancer. The 

carefully dissected biology of miR-155 in T cell responses provides an edifying example of 

how miRNAs mediate pleiotropic effects through regulation of a network of target genes.

miRNA regulation of CD8+ T cell memory

In response to infection or cancer, antigen-specific CD8+ T cells may take on the properties 

of terminally differentiated effector (TE) cells armed with the ability to find and kill infected 

or abnormal cells, or those of memory precursor (MP) cells capable of persisting long after 

antigen clearance to provide protection from future encounters. In mice, TE and MP cells 

can be distinguished early in the immune response based on their surface expression of killer 

cell lectin like receptor G1 (KLRG1) (45) or the IL-7 receptor alpha chain, CD127 (46), 

respectively.

A single naïve CD8+ T cell has the potential to give rise to both TE and MP cells (47–49). 

Asymmetric cell division occurs during clonal selection of antigen-specific T cells, 

providing one plausible mechanism by which a single antigen-specific T cell could give rise 

to daughters with differing predetermined lineage fates (50). Noisy expression of lineage-

determining factors may also promote stochasticity in these lineage decisions. Responding T 

cells exhibit a great deal of heterogeneity with respect to proliferative capacity, cytokine 

production, and the expression of KLRG1 and CD127, and these properties can be 

intrinsically biased by the TCR even as they are regulated by external cues (51).

No single master transcription factor regulates the differentiation of TE and MP cells, but 

many contributing factors have been identified. Positive regulators of MP cell differentiation 

include EOMES (52), TCF1 (53), ID3 (54,55), BCL-6 (56), STAT3 (56), FOXO1 (57,58), 

BACH2 (59), and MYB (60). Those found to bias cells towards TE fate include T-BET 

(45,61), BLIMP-1 (62,63), ID2 (50), STAT4 (64), and ZEB2 (65,66). Given that most of 

these lineage-biasing transcription factors only differ by approximately two-fold in their 

expression across TE and MP populations, it is likely that the fate of an activated CD8+ T 

cell is driven by the integration of their effects on downstream target gene networks (50).

Among memory CD8+ T cells, there is a great deal of further heterogeneity. T central 

memory (Tcm) cells, marked by high expression of CD127, CD62L, CD27, CXCR3, and 

CCR7, are more proliferative in response to antigen re-challenge. In addition, they tend to 

exhibit polyfunctionality with respect to effector cytokine secretion, producing IL-2, IFN-γ, 

and TNF. Conversely, they tend to express lower levels of the cytotoxin granzyme B. Due to 

their expression of the homing molecules CD62L, CXCR3, and CCR7, Tcm cells circulate 

through secondary lymphoid organs (SLOs), enhancing their probability of encountering 

antigen presenting cells (APCs) displaying their cognate antigen. CD27 is a member of the 

tumor necrosis factor receptor superfamily that acts as a co-stimulatory molecule on Tcm 

cells, but is absent from TE populations (67). Tcm cells provide superior anti-tumor 

Gagnon and Ansel Page 5

Noncoding RNA Investig. Author manuscript; available in PMC 2019 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



immunity (68,69) and protection against re-infection with virus (70,71). T effector memory 

(Tem) populations express high levels of CD127, but little or no CD62L, CXCR3, CD27, 

and CCR7. Instead, they often express chemotactic and adhesion molecules that allow entry 

into peripheral, non-lymphoid tissues while excluding them from SLOs. Functionally, Tem 

cells have enhanced killing capacity due to high expression of the inflammatory cytokines 

IFN-γ and TNF, as well as the cytotoxic molecules, perforin and granzyme B.

Defining the roles of miRNAs in TE and MP regulation is an active area of research. Several 

individual miRNAs, or families of miRNAs with identical seed sequences, are known to 

promote TE or MP differentiation. For example, we recently found that the abundant 

miR-15/16 family restricts the accumulation of MP cells (36). T cells lacking miR-15/16 

exhibit early and sustained increases in MP cell production during the course of viral 

infection. In wildtype T cells, miR-15/16 bind and repress the expression of hundreds of 

target genes. Among these targets are a sizable network of memory cell associated genes, 

including Il7r, which encodes CD127. CD127 is required for the long-term survival of 

memory cells (72), and IL-7 availability can limit memory cell formation (73). Thus, 

miR-15/16 may restrict MP differentiation, proliferation and survival in part by tuning their 

expression of CD127. However, even transgenic over-expression of CD127 is insufficient to 

enforce memory cell differentiation (72), consistent with the expectation that others among 

the large number of potentially relevant miR-15/16 targets contribute to this phenotype (36). 

Of note, transfection of CD8+ T cells with miR-15b mimics led to reduced apoptosis in 

response to stimulation with anti-CD3 in vitro and was attributed to the down-regulation of 

the programmed cell death-mediator, DEDD (74). These seemingly conflicting findings 

among in vivo and in vitro systems highlight the context-dependent nature of miRNA 

biology in T cells.

At the lower limits of gene expression, the fine tuning function of miRNAs can effectively 

enforce the silencing of genes with very low or leaky transcription (75). For example, 

miR-29 regulates IFN-γ production by Dicer-deficient CD4 T cells in part by silencing 

Eomes, a gene that can co-opt a transcriptional program usually enacted by another miR-29 

target, T-BET (9). miR-29 overexpression in CD8 T cells reduces KLRG1+ TE cell 

production while boosting the frequency of MP cells (9). miR-15/16 may help to enforce 

silencing of CD127 expression in TE cells, providing robustness to the restriction of IL-7 

responsiveness to MP cells. CD127 is maintained at low levels in TE cells via GFI-1 

mediated transcriptional silencing (76).

miR-155 increases CD8+ T cell sensitivity to the common gamma chain receptor signaling 

cytokines, IL-7, IL-15, and IL-2 (30,44). As such, one might predict miR-155 to be a 

positive regulator of MP cell accumulation. Yet miR-155 is down-regulated in response to in 
vitro culture of CD8+ T cells with IL-15, and miR-155 deficiency boosts the frequency of 

CD127+ CD62L+ IL-2 producing MP cells in response to infection with murid herpesvirus 

(77). In LCMV infection, miR-155 deficiency disrupts the formation of both MP and TE 

populations, while miR-155 over-expression enhances accumulation of Tem cells (78). 

Similar observations were reported by several groups, though their attribution of these 

phenotypes to direct miR-155 target genes varied. SHIP-1 was particularly implicated for its 

role in the negative regulation of AKT phosphorylation and T-BET expression (28). 
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However, once again it appears likely that miR-155 acts through a network of targets with 

additive or synergistic cell intrinsic effects on antiviral CD8+ T cell responses (29).

The transcription factors ZEB1 and ZEB2 play reciprocal roles in the promotion of MP and 

TE cell differentiation respectively (79). ZEB2 is expressed among terminally differentiated 

cytotoxic T cells in a T-bet-dependent manner and plays a critical role in the suppression of 

MP associated genes while positively regulating TE-associated genes (65,66). Although the 

miR-200 family of miRNAs have been shown to negatively regulate both Zeb1 and Zeb2 in 

the context of epithelial differentiation (80), only Zeb2 mRNA appears to interact with, and 

be efficiently targeted by, miR-200 family miRNAs in T cells. Consistent with these 

findings, miR-200 was essential for normal memory CD8+ T cell differentiation (79). This 

study documents the importance of cellular context to miRNA-target interactions, further 

highlighting the utility of empirical target identification by co-immunoprecipitation with 

AGO proteins.

Metabolism plays a critical role in the proliferation and differentiation of CD8+ T cells. 

Inhibition of mTOR, for example, enhances memory cell persistence through the switch 

from glycolysis to fatty acid metabolism (81,82) and through the regulation of T-BET and 

EOMES (83). Over-expression of the miR-17~92 cluster of miRNAs enhances TE 

differentiation, while miR-17~92 deficient CD8+ T cells are biased towards a MP phenotype 

(32). miR-17~92 regulates PI3K-AKT-mTOR signaling in T cells, and many other cell 

types, by targeting PTEN, a tightly tuned lipid and protein phosphatase that counteracts this 

signaling axis. These results do not rule out other targets as players. In fact, miR-17~92 also 

downregulates additional negative regulators of mTOR (e.g., Pdcd1, Btla, and Fcgr2b), 

though direct targeting and functional relevance of these putative targets has not been 

confirmed (31). The importance of functional testing of targets and consideration of the full 

suite of targets of a miRNA is highlighted by the case of mir-15/16, which regulates both 

mTOR and Rictor (37,84), but nevertheless restricts, rather than enhances, memory cell 

differentiation.

In human CD8+ T cells, miR-143 overexpression enhanced the production of cells 

expressing the memory markers CD127, CD27 and CD28, whereas miR-143 inhibition 

reduced them (85). These effects were attributed to the miR-143 target Glut1, whose 

knockdown produced a phenotype consistent with that produced by miR-143 

overexpression. The rate-limiting glycolysis enzyme HK2 was also down-regulated upon 

miR-143 overexpression (85), consistent with previous reports of direct targeting by 

miR-143 (86). Thus miR-143 coordinates the expression of at least two key targets in a 

pathway (glycolytic metabolism) critical to the regulation of CD8+ T cell responses.

The roles of miRNAs in the transitions between memory cell states remains poorly 

understood. Transfer of CD62Lhi and CD62Llo antigen-specific CD8+ T cells supports a 

model of linear transition from naïve to Tem to Tcm cell identities (70). And KLRG1+ 

CD127+ Tem cells can lose KLRG1 expression and seed Tcm cell compartments in a Bach2-

dependent manner (87). While over-expression of miR-150 decreases CD127+ CXCR3+ 

Tcm populations, subsequent reduced expression at later timepoints leads to an increase in 

Tcm cells (88). In some systems, miR-150 deficient memory T cells remained defective in 
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recall responses and cytolytic function (89). Overexpression of the miR-150 target MYB 

was sufficient to partially rescue some of the memory cell defects associated with miR-150 

over-expression (88). This may be at least in part attributable to the indispensable role of 

MYB in regulating CD8+ T cell stemness, memory, and polyfunctionality (60). Another 

study confirmed that miR-150 restrains memory CD8+ T cell differentiation but attributed 

these effects to another direct target, Foxo1, a transcription factor that drives memory cell 

differentiation through induction of TCF1 (90). The established miR-150 target network 

contains several other functionally relevant target genes, including Trp53 (91), Slc2a1 (92), 

Mtor (93), Ptrx7 (94), Egr2 (95), in addition to indirect effects on CD25 expression (38).

miRNA regulation of CD8+ T cell exhaustion

Effective memory generation requires the clearance of the pathogen or tumor. Persistent 

antigen exposure induces CD8+ T cell “exhaustion”, characterized by upregulation of 

inhibitory receptors including PD1, LAG3, and CTLA4, concomitant with reduced 

proliferation capacity, effector function and cell survival (96). Understanding the drivers and 

maintainers of T cell exhaustion is especially pressing in the context of tumor immunology. 

Over the two past decades, it has become evident that the reversal of T cell exhaustion can 

unleash existing tumor-specific cytotoxic T cells to attack and kill cancerous cells. Blocking 

inhibitory receptors can reverse exhaustion and induce productive antiviral and antitumor 

immunity (97–99). PD-1 blockade only temporarily reinvigorates exhausted CD8+ T cells if 

the causative antigen is not cleared, indicating that targeting these surface receptors alone 

may be insufficient for many immunotherapies (100). Effective strategies for durably 

reprogramming exhausted T cells may improve existing and developing immunotherapies 

for cancer.

A growing number of transcription factors have been implicated in T cell exhaustion 

including T-BET, EOMES, Spry2, BLIMP-1, VHL, FOXO1, IRF, BATF, and NFATC1 

(96,101) and more recently, the NR4A family members, NR4A1, NR4A2, and NR4A3 

(102). Interestingly, many of these transcription factors are also critical to functional effector 

and memory CD8+ T cells, suggesting a complexity to the drivers of exhaustion that remains 

to be fully understood. For example, IRF4 and BATF are essential for CD8+ T cell effector 

function during infection with LCMV (103), but they can also elevate PD-1 expression and 

repress TCF1, thereby promoting exhaustion while inhibiting memory formation (101).

miRNAs also play a role in CD8+ T cell exhaustion. In the context of cancer, tumor-derived 

TGF-β can lead to elevation of miR-23a expression, thereby downregulating BLIMP-1 and a 

loss of effector function (104). Functional inhibition of miR-23a led to improved effector 

function and a more durable response to established tumors. In response to chronic infection 

with LCMV clone 13, miR-31 deficient CD8+ T cells express reduced levels of exhaustion 

markers and retain characteristics of effector cells, including production of cytotoxins and 

cytokines (105). Mice lacking miR-31 expression only in T cells were protected from the 

wasting associated with chronic infection and harbored lower viral titers. miR-155 

overexpression enhances the persistence of exhausted CD8+ T cells during chronic infection 

(106). Uncoupling persistence from effector function, miR-155 overexpression fails to 

restore cytokine production and cytotoxic potential, and actually increases inhibitory 
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receptor expression in these cells. Unlike memory cells, exhausted CD8+ T cells do not 

require the homeostatic cytokines IL-7 and IL-15 to persist and instead rely on constant 

exposure to their cognate antigen (107). Thus, miR-155’s ability to alter CD8+ T cell 

sensitivity to common gamma chain cytokine receptor signals is unlikely to be responsible 

for increased persistence of miR-155-overexpressing exhausted T cells. Conversely, in the 

chronic setting of cancer, miR-155 overexpression delays CD8+ T cell contraction, prolongs 

cytokine production, and increases their sensitivity to common gamma chain cytokines (44). 

miR-31 may reduce exhaustion in part by increasing CD8+ T cell sensitivity to type I IFNs 

(105). However, miR-155 decreases IFN sensitivity (29), so this is also unlikely to play a 

role in the persistence of miR-155 overexpressing exhausted T cells. The varied effects of 

miR-155 on T cells responses to acute and chronic infection as well as cancer highlight the 

context specific nature of miRNAs regulation of immunity.

Perspective

miRNAs are important regulators of CD8+ T cell function in host defense, infection, and 

cancer immunosurveillance. They regulate almost every aspect of CD8+ T cell behavior 

from survival and proliferation, to the acquisition and deployment of effector functions, to 

fate decisions that dictate the formation of immunological memory and tolerance. Individual 

miRNA-target interactions can have profound impacts on cell behavior, but mounting 

evidence indicates that miRNAs mediate context-specific biological effects by binding and 

tuning the expression of large networks of target genes. There remains much to learn about 

miRNA regulation in CD8+ T cells, and perhaps even more to learn about CD8+ T cell 

programming from the study of miRNAs. While somewhat useful in the validation of target 

sites, assays that remove the 3’UTRs of putative target genes from their endogenous context 

(e.g., luciferase assays) suffer from a potential for both false-positive and false-negative 

findings. Furthermore, the singling out of individual targets and the highlighting of the 

capacity for their 3’UTRs to be regulated by a particular miRNA draws attention away from 

the underlying nature of miRNAs as network regulators of gene circuits. The field of 

miRNA biology will benefit greatly from a more systematic identification of miRNA targets 

within each cellular context and formulating a catalog of the pathways and gene sets 

involved. To this end, future studies should expand on efforts to map the full target repertoire 

of functionally relevant miRNAs using a combination of bioinformatics, biochemistry 

(AHC), and analysis of endogenous miRNA effects on gene expression in biologically 

relevant contexts. These target-agnostic approaches invite the discovery of novel targets and 

will lead to better assessment of how their associated pathways integrate with phenotype.
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Figure 1. 
MicroRNAs (miRNAs) target broad, overlapping networks of target genes to elicit 

phenotypes. (A) Characterization of RefSeq annotated genes with the potential for targeting 

by miRNAs based on TargetScan prediction algorithm or 3’UTR seed-match. (B) Schematic 

of how individual miRNAs can regulate networks of genes shared between pathways and 

individual mRNAs can be regulated by multiple miRNAs.
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