
UC Davis
IDAV Publications

Title
Boundry Determination for Trivariate Solids

Permalink
https://escholarship.org/uc/item/4v32t65c

Authors
Joy, Ken
Duchaineau, Mark A.

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4v32t65c
https://escholarship.org
http://www.cdlib.org/

BOUNDARY DETERMINATION FOR
TRIVARIATE SOLIDS

Kenneth I. Joy1

Center for Image Processing and Integrated Computing
Department of Computer Science
University of California, Davis

and

Mark A. Duchaineau2

Center for Advanced Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 95616

Abstract

The trivariate tensor-product B-spline solid is a direct extension of the B-spline patch and

has been shown to be useful in the creation and visualization of free-form geometric solids.

Visualizing these solid objects requires the determination of the boundary surface of the solid,

which is a combination of parametric and implicit surfaces. This paper presents a method

that determines the implicit boundary surface by examination of the Jacobian determinant

of the defining B-spline function. Using an approximation to this determinant, the domain

space is adaptively subdivided until a mesh can be determined such that the boundary surface

is close to linear in the cells of the mesh. A variation of the marching cubes algorithm is

then used to draw the surface. Interval approximation techniques are used to approximate

the Jacobian determinant and to approximate the Jacobian determinant gradient for use in the

adaptive subdivision methods. This technique can be used to create free-form solid objects,

useful in geometric modeling applications.

Keywords: splines; boundary surface determination; trivariate B-Spline solids; Jacobian de-
terminant.

1Corresponding Author, Department of Computer Science, University of California, Davis, CA 95616-8562, USA;
e-mail: joy@cs.ucdavis.edu

2Center for Advanced Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551,
USA; e-mail:duchaine@llnl.gov

1

1. Introduction

A trivariate parametric equation of the form

p(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w))

for u ∈ [ua, ub], v ∈ [va, vb], andw ∈ [wa, wb], represents a solid model in 3-dimensional

space. To render this model in conventional surface-based rendering systems, it is necessary

to identify the boundary surfaces that surround the solid.

The solid contains six “boundary faces,” each the image of a rectangle representing the

boundary of the domain space. These six faces

{p(ua, v, w) : v ∈ [va, vb], w ∈ [wa, wb]}

{p(ub, v, w) : v ∈ [va, vb], w ∈ [wa, wb]}

{p(u, va, w) : u ∈ [ua, ub], w ∈ [wa, wb]}

{p(u, vb, w) : u ∈ [ua, ub], w ∈ [wa, wb]}

{p(u, v, wa) : u ∈ [ua, ub], v ∈ [va, vb]}

{p(u, v, wb) : u ∈ [ua, ub], v ∈ [va, vb]}

comprise a portion of the boundary of the solid, but in general, they are not sufficient to de-

scribe the complete boundary surface. It is straightforward to develop solids for which the

boundary faces do not form the complete boundary of the solid. Figure 1 illustrates a solid

model defined by

p(u, v, w) = (cosπu+ 3w, sinπu, v) .

This solid represents a half-cylinder that has been swept along a linear path. The parametric

boundary faces of the solid are shown, but the top surface is an implicit surface, and not a

boundary face. These parametric trivariate solids arise naturally through modeling operations

(e.g., sweeping or lofting of bivariate models). It has been shown by Joy [7, 8] that solids

formed in this way frequently have the property that their boundary surface is not representable

by the boundary face patches.

In this article, we limit ourselves to a discussion of the trivariate tensor-product B-spline

solid and methods by which the boundary surface of the solid can be determined. In this case,

the boundary face patches are B-spline patches and can be directly calculated. Based upon

the Jacobian determinant of the defining function, a robust test is developed that indicates

2

(a) (b)

FIGURE 1: Images of the boundaries of the domain space are not sufficient to describe the boundaries of the solid.

This model was generated by a linear sweep of a half-cylinder, creating a trivariate function. (a) the images of the

boundaries in the domain space. (b) the complete solid.

the presence of an implicit boundary surface in a region of the domain space. An adaptive

subdivision procedure is generated which splits regions of the domain into cells that (1) do

not contain the solid, or (2) cells that may contain the solid. We use a variation of “marching

cubes” [11] to generate the implicit surface, fixing up the cracks that may appear in the surface

due to the adaptive nature of the algorithm. The union of the face patches together with the

implicit boundary surface then give a superset of the boundary surface of the solid.

In Section 2, we review research related to trivariate solid models. Section 3 introduces the

trivariate B-spline solid and the mathematical properties of the solid that we require. Definition

of the boundary surface of a trivariate solid is discussed in Section 4. Interval methods to

approximate the Jacobian determinant over a domain cell are given in Section 5. The adaptive

subdivision algorithm that isolates the implicit boundary surface is defined in Section 6. The

isosurface generation algorithm is presented in Section 7. Here, we discuss the prevention

of cracks that are naturally generated from the adaptive algorithm. Results of the use of the

algorithm are shown in Section 8.

3

2. Related Work

Trivariate B-Spline and B́ezier solids have been treated by a number of researchers. Stantonet

al. [18], Casale and Stanton [3] and Farouki and Hinds [6] all discuss the trivariate form, but

avoid the questions of construction of the general boundary surfaces. Lasser [10] discusses the

general trivariate B-spline form, the generation of points in the volume and the generation of

derivatives for these solids.

Sederberg and Parry [16] utilized the free-form trivariate B-spline solid for deformations.

They embed an object in a deformable region of space defined by the trivariate solid such that

each point of the object has a unique parameterization that defines its position in the region.

The trivariate region is then altered by moving its control points. Using the trivariate form

gives great flexibility to the definition of the deformable regions, and gives few parameters

(the control points) which can be used to control the deformation.

Joy [7] described a modeling system for trivariate B-spline solids. These solids were ren-

dered by using the parametric face patches where possible. Heuristic methods were developed

to render the implicit surface, but these were not robust and did not work in many cases.

Joy [8] also generalized his method to sweeping, generating trivariate B-spline solids from the

sweeping operations. The trivariate generators of the sweeping operations, however, must be

representable by the boundary face patches for this method to work.

Rappaportet al. [13] have incorporated physical properties into free-form trivariate solids.

They utilize volume preservation and energy measures to limit the flexibility of the deforma-

tions of the solids. Reuset al. [14] have also treated the trivariate tensor-product solid in a

physical manner.

In this paper, we are interested in a boundary-surface description of the trivariate tensor-

product B-spline solid. On a surface-based rendering system, we must find the surface that

represents the boundary of the solid. We provide a robust method that guarantees the presence

of the implicit boundary and renders it to a desired accuracy. To do this, we approximate

the Jacobian determinant using interval techniques, and subdivide the domain space to isolate

rectilinear cells in the domain that contain the implicit surface. We adapt the marching-cubes

algorithm to generate a crack-free surface that represents the complete surface of the solid.

4

FIGURE 2: A cubic trivariate B́ezier solid. The solid is defined by 64 control points, shown in blue. The boundary

faces are the images of the boundaries of the domain interval.

3. The Trivariate Tensor-Product B-Spline Solid

The trivariate tensor product B-spline solid is defined by an a set of(n1+1)×(n2+1)×(n3+1)

control points{pi1,i2,i3 : 0 ≤ i1 ≤ n1, 0 ≤ i2 ≤ n2, 0 ≤ i3 ≤ n3, } and three sets of knots

{u0, u1, ... un1+m1}
{v0, v1, ... vn2+m2}
{w0, w1, ... wn3+m3}

where

p(u, v, w) =
n1∑
i1=0

n2∑
i2=0

n3∑
i3=0

pi1,i2,i3Ni1,m1(u)Ni2,m2(v)Ni3,m3(w)

for u ∈ [um1−1, un1+1], v ∈ [vm2−1, vn2+1] and w ∈ [wm3−1, wn3+1]. The products

Ni1,m1(u)Ni2,m2(v)Ni3,m3(w) are the trivariate tensor-product B-spline normalized blending

functions defined by the knot sequences, andm1, m2 andm3 are the orders of the spline in

each of the parametric variables.

The trivariate B-spline provides a robust set of solids for design purposes. One can easily

5

define many polygonal solids and close approximations to spheres, cylinders, cones and tori

(with exact specification if one wishes to use the rational form of the spline). In addition,

complex solids can also be defined by using control-point specification with a variety of curve

and patch fitting algorithms. The solid can be refined/subdivided by a trivariate adaptation

of the a B-spline subdivision algorithm [2, 4]. They satisfy the convex-hull property, so that

bounding volumes can be calculated by examining only the control points. The B-spline solids

may be refined/subdivided into a set of Bézier solids whose union is the original – similar to

the refinement of a B-spline patch into its Bézier components (see [1, 5]).

Partial derivatives of trivariate B-splines functions are also trivariate B-splines. The control

points of the partial-derivative B-spline functionsDup = ∂
∂up,Dvp = ∂

∂vp andDwp = ∂
∂wp

are given by

(Dup)i,j,k =
m1 − 1

ui+m−1 − ui
(pi,j,k − pi−1,j,k)

for 1 ≤ i ≤ n1,

(Dvp)i,j,k =
m2 − 1

vj+m−1 − vj
(pi,j,k − pi,j−1,k)

for 1 ≤ j ≤ n2 and

(Dwp)i,j,k =
m3 − 1

wk+m−1 − wk
(pi,j,k − pi,j,k−1)

for 1 ≤ i ≤ n3, respectively. These control points are vectors, and each derivativeDup,Dvp,

andDwp is of degree one less than the degree ofp in u, v, andw, respectively.

4. The Boundary of a Parametric Solid

We can state a simple result that gives a superset of the topological boundary of a parametric

solid.

Theorem 4.1

Given a rectilinear cell B = [ua, ub] × [va, vb] × [wa, wb] and a trivariate B-Spline function

p(u, v, w) defined over B. Then the surface boundary of the solid p is contained within the

union of the boundary faces of the solid over B, and the points where the determinant of the

Jacobian of p over B vanishes.

For a proof of this theorem see [12].

6

The boundary faces of a trivariate B-Spline solid are each bivariate B-spline patches. Thus

the boundary of the solid is a combination of parametric B-spline patches and the isosurface

where the determinant of the Jacobian ofp is zero. The determinant of the Jacobian ofp is

defined by

J (p(u, v, w)) =

∣∣∣∣∣∣∣∣
Dup(u, v, w)

Dvp(u, v, w)

Dwp(u, v, w)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∂x
∂u(u, v, w) ∂y

∂u(u, v, w) ∂z
∂u(u, v, w)

∂x
∂v (u, v, w) ∂y

∂v (u, v, w) ∂z
∂v (u, v, w)

∂x
∂w (u, v, w) ∂y

∂w (u, v, w) ∂z
∂w (u, v, w)

∣∣∣∣∣∣∣∣
= Dup(u, v, w) · (Dvp(u, v, w)×Dwp(u, v, w))

Thus, we have thatJ (p(u, v, w)) = 0 if and only if the triple scalar product

Dup(u, v, w) · (Dvp(u, v, w)×Dwp(u, v, w)) = 0

or, equivalently, when the three vectorsDup(u, v, w), Dvp(u, v, w), andDwp(u, v, w) are

linearly dependent.

Using this theorem, we can state that the boundary faces of a trivariate solid accurately

represent the boundary of the solid only if the Jacobian determinant of the defining function

does not vanish over its domain. If this determinant does vanish, then the boundary may also

be represented by an implicit surface, defined to be the isosurface whereJ = 0. It is this

surface that we wish to calculate.

5. Approximating the Jacobian Determinant

Given a set of unit vectors~v1, ~v2, ..., ~vn, we can bound these vectors by a coneC, defined by

an axis~a and a “spread” angleα, such that the angle between each vector~vi and the axis~a

is less thanα . A cone gives an “interval” approximation to a set of unit vectors. Each cone

can be associated with a region on the unit sphere – the intersection between the cone, with its

apex at the origin, and the unit sphere. The construction of a cone that satisfies these properties

was described by Sederberg and Meyers [15], or by Kim [9], and an example is shown in

Figure 3. For a general set of vectors, with varying lengths, we determine a cone bounding the

unit vectors, which are determined by dividing each of the vectors by its length.

7

FIGURE 3: A cone approximation to a set of unit vectors.

Given two conesC1 andC2, we define the scalar productC1 · C2 to be the interval defining

the range of scalar products for pairs of vectors taken fromC1 andC2, respectively. We can also

define the cross product of two cones to be the smallest cone surrounding all cross products of

vectors fromC1 andC2, respectively (see [15], and Figure 4).

The convex hull property holds for trivariate B-spline solids,i.e., the solid is contained in

the convex hull of its control points. This implies that for a given cellB in the domain, the

conesCu, Cv, andCw, constructed from the control points ofDup,Dvp, andDwp, respectively,

bound the range of directions of the respective partials. This implies that a bound on the

Jacobian determinant overB is given by

J (p) = Dup · (Dvp×Dwp) ⊆ L (Cu · (Cv × Cw)) (1)

whereL is an interval with positive entries1, defined to be

L = [Lmin, Lmax]

1We assume none of our vectors have zero length.

8

FIGURE 4: The cross-product cone. The blue cone is the smallest cone that surrounds the cross products of vectors

in the two green cones. This cone can be directly calculated by bounding the four vectors that form the normals to the

four great circles of the unit sphere tangent to the green cones. The yellow region is the actual region spanned by the

cross products calculated from vectors in the two cones.

9

where

Lmax = max {|~vu||~vv||~vw| : ~vu ∈ Cu, ~vv ∈ Cv, and~vw ∈ Cw, } , and

Lmin = min {|~vu||~vv||~vw| : ~vu ∈ Cu, ~vv ∈ Cv, and~vw ∈ Cw, } .

The quantityL (Cu · (Cv × Cw)) is an interval product, and produces an interval bounding the

range of values ofJ (p) overB. If L is interval with positive components, it is clear that if

0 6∈ Cu · (Cv × Cw) thenJ (p) 6= 0 in B. Therefore, given a cellB, and a trivariate B-spline

solidp defined overB, we can state that the implicit boundary surface is not contained inB if

0 6∈ Cu · (Cv × Cw)

whereCu, Cv, andCw are the bounding cones forDup,Dvp, andDwp, respectively.

6. Adaptively Subdividing the Domain Space

To generate the implicit boundary surface, we adaptively subdivide the domain space, isolat-

ing rectilinear cells in the domain where the isosurface lies. We then use an adaptation of

the marching-cubes algorithm to find the isosurface (see Lorensenet al.[11], or Wyvill and

McPheeters [19] for a similar algorithm). We use a priority queue of domain cells, ordered

by decreasing values of the widths of the intervalsCu · (Cv × Cw). The full domain space is

initially placed on the queue.

When a cellB is removed from the queue, it is subdivided into two piecesB1 andB2 via

a plane through the center of the cell and parallel to thexy, xz, or yz plane. For eachBi, the

cone approximationCu · (Cv × Cw) is calculated, yielding an interval. If zero is contained in

this interval, the cell is inserted into the queue. If zero is not contained in the interval, the cell

is discarded. By this process, we construct a binary tree of cells, keeping the relevant cells

in a priority queue. This process is continued until the widths of the intervals of all cells in

the queue are less than a prescribed minimum, or the number of cells in the queue reaches a

predetermined number.

If the queue becomes empty, then the implicit boundary surface does not exist over the

domain space, and the parametric boundary faces represent the boundary surface of the solid.

We have three planes by which we can split each cell. Since we will use a marching-cubes

method to generate the isosurface, we would like the isosurface to be relatively flat, relative to

the cell size.

10

The gradient of the Jacobian determinant at a point(u, v, w) is normal to the isosurface

through this point. Thus, To accurately predict when a linear approximation of the isosurface

is accurate over a boxB, we wish to subdivide cells such that the variation of these gradients

is minimized.

The gradient of the Jacobian determinant∇J is the vector given by

∇J (u, v, w) =
(
Ju(u, v, w) Jv(u, v, w) Jw(u, v, w)

)
where

Ju(u, v, w) =

∣∣∣∣∣∣∣∣
Duup(u, v, w)

Dvp(u, v, w)

Dwp(u, v, w)

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
Dup(u, v, w)

Duvp(u, v, w)

Dwp(u, v, w)

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
Dup(u, v, w)

Dvp(u, v, w)

Duwp(u, v, w)

∣∣∣∣∣∣∣∣
Similarly,

Jv(u, v, w) =

∣∣∣∣∣∣∣∣
Duvp(u, v, w)

Dvp(u, v, w)

Dwp(u, v, w)

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
Dup(u, v, w)

Dvvp(u, v, w)

Dwp(u, v, w)

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
Dup(u, v, w)

Dvp(u, v, w)

Dvwp(u, v, w)

∣∣∣∣∣∣∣∣
and

Jw(u, v, w) =

∣∣∣∣∣∣∣∣
Duwp(u, v, w)

Dvp(u, v, w)

Dwp(u, v, w)

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
Dup(u, v, w)

Dvwp(u, v, w)

Dwp(u, v, w)

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
Dup(u, v, w)

Dvp(u, v, w)

Dwwp(u, v, w)

∣∣∣∣∣∣∣∣
We can approximate each of the three quantities on the right side of these equations by

Equation (1). This gives an interval for each determinant, and we can sum the three intervals

to get a bound on the range of the gradient. This gives an approximation to the gradient over

the cell.

If Iu, Iv andIw are the intervals approximatingJu, Jv, andJw, respectively, then we

examine the three quantities:

gu = width(Iu)(ub − ua), gv = width(Iv)(vb − va), andgw = width(Iw)(wb − wa),

whereB = [ua, ub]× [va, vb]× [wa, wb]. We subdivide by a plane parallel to thexy plane ifgw

is the maximum, parallel to thexz plane ifgv is the maximum, and parallel to theyz plane if

11

FIGURE 5: A crack in a generated isosurface. The underlying surface was colored green to enhance the crack.

gu is the maximum. Thus, we subdivide in the direction where the gradient has the maximum

variance over the cell, with respect to the cell size..

7. Isosurface Generation

At the finish of the adaptive subdivision process, we have a binary tree of cells. The children of

each cell have been created by splitting the parent cell by a plane through the center of the cell

and parallel to thexy, xz, oryz plane. The standard way of calculating the isosurfaceJ (p) =

0 is to use a marching cubes or similar algorithm, see Lorensenet al.[11], and Wyvill and

McPheeters [19]. However, adaptive subdivision algorithms produce non-uniform cells, and

the marching cubes algorithms typically produce cracks in the isosurface when applied to these

collections of cells (see Shuet al.[17], and Figure 7). Shekharet al.has published an algorithm

that patches the cracks by comparing the isolines on abutting cell faces and modifying the

isolines on the faces of the smaller cells to correspond to the isolines on the faces of the larger

ones.

We use a variation of the marching cubes algorithm that subdivides each cube into tetrahe-

dra. We can easily determine the isosurface in the tetrahedra, as there are only three cases to

consider (see Zhaoet al. [20], and Figure 6). We can also adaptively generate the tetrahedra

12

(a) (b)

FIGURE 6: Two of the three cases for marching tetrahedra. A type-I tetrahedra, shown in (a), has one vertex that

differs in sign from the other three. In this case, one triangle represents the isosurface. A type-II tetrahedra, shown in

(b), has two pairs of vertices that differ in sign. In this case, two triangles represent the isosurface. In the third case,

not shown, the vertices are all of the same sign and no isosurface exists in the tetrahedron.

representing a cell, such that the generated isosurface does not have cracks.

We first make a pass through our binary tree of cells and identify the cells that can possibly

generate cracks. These cells have neighbors that have been subdivided, as shown in Figure 7.

For those cells that do not require repair, we split the image of the cell underp into twelve

tetrahedra, as shown in Figure 8. This subdivision has two tetrahedra per face, each connected

to the image of the center point of the cell.

For those cells that may generate cracks we can identify two abutting faces, and we split

the face of the smaller cell such that the faces of the generated tetrahedra lie in the planes of

the tetrahedra generated for the larger cell. Figure 9 illustrates this process. Here the face in

the smaller cell is split into three tetrahedra. The three tetrahedra all contain the center point of

the smaller cell, and the face points are determined from the larger cell. Three new points are

calculated on the edges of the tetrahedra from the larger cell, with Jacobian values interpolated

from the values on the larger cell. This insures that the faces of the tetrahedra actually abut,

and also that the isolines will be the same – removing the possibilities of cracks.

8. Results

We have implemented this algorithm and used it to generate a number of solids. The algorithms

has three major steps: (1) the adaptive subdivision of the cells to isolate the implicit boundary

surface; (2) The identification of the cells that could potentially cause cracking; and, (3) the

generation of the isosurface.

13

(a) (b)

FIGURE 7: With adaptive subdivision, cracks can appear in the resulting isosurface. When two adjoining cells are

subdivided differently, as shown in (a), the resulting cells in the range space, shown in (b), will appear to have a crack

between the cells.

FIGURE 8: Splitting a cell into twelve tetrahedra. This is the default configuration.

14

(a) (b)

FIGURE 9: Repairing the cracks. The faces of two adjoining cells are shown in (a). The faces are shown with the

triangles induced on the face by the tetrahedrazation of the cells. Cracks will appear in the generated isosurface. We

can adaptively generate the tetrahedrazation of the smaller cell such that the faces induced by the tetrahedrazation

adjoin the faces induced by the tetrahedrazation of the larger cell, shown in (b). This eliminates the cracking problem.

Figure 10 shows a bivariate B-spline patch swept along a linear curve. The resulting func-

tion is expressed as a trivariate patch. In this case, the isosurface corresponds to a plane

with constantv value in the domain space. Since the defining functionp hasDup = 0 and

Dwp = 0, the algorithm adaptively subdivides the domain space only with planes having con-

stantv value. The resulting tree contains only one cell. The algorithm subdivides this cell into

12 tetrahedra, and represents the isosurface with 14 triangles.

The model of Figure 11 uses the bivariate patch from the Figure 10 and rotates the patch

35◦ as it is swept along a linear path. Four samples of the patch are taken and the trivariate

solid is generated by lofting the four bivariate samples. The algorithm produced 900 cells, and

generated 5,161 triangles. Figure 12 shows the reduction in the Jacobian interval bound during

the operation of the algorithm. Note the smooth reduction of the bounds as the cells are split.

The model of Figure 13 uses a bivariate patch which is swept along another B-spline curve.

Again, sections are taken and the trivariate solid is produced by lofting.

We have illustrated these surfaces with Gouraud shading removed so that the reader can

see the generated sections of the isosurface. If Gouraud shading is enabled, the surfaces are

smoothly rendered.

15

(a) (b)

FIGURE 10: Sweeping a bivariate patch along a linear curve. The boundary face patches are shown in (a), and the

full solid is shown in (b).

(a) (b)

FIGURE 11: Sweeping a bivariate patch along a linear curve with rotation. The boundary face patches are shown in

(a), and the full solid is shown in (b).

16

300 600 900

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Number of Cell Splits

Maximum
Interval
Width

FIGURE 12: Reduction in the width of the Jacobian determinant approximation interval during the operation of the

algorithm.

(a) (b)

FIGURE 13: Sweeping a bivariate patch along a curve. The boundary face patches are shown in (a), and the full solid

is shown in (b).

17

9. Conclusions

We present a robust method that calculates the boundary surfaces of a trivariate tensor-product

B-spline solid. We define the boundary surface as a combination of the boundary face patches

of the solid – images of the two-dimensional boundaries of the domain space – and an implicit

boundary surface, defined where the Jacobian determinant of the defining function is zero.

We describe robust approximation methods, using cone approximates, to bound the Jacobian

determinant over a region in the domain and use these approximates to generate an adaptive

marching cubes algorithm that defines the isosurface. We present new methods, based upon

tetrahedral decomposition, for patching the cracks in the isosurface generation routine.

Future work in this area is to use these techniques to describe the envelopes of general

swept solids. Many of these swept surfaces can be described as a trivariate spline, and the

techniques we present can be used. However, more general techniques are required to describe

general surface envelopes.

10. Acknowledgments

This work was supported by the Office of Naval Research under contract N00014-97-1-0222,

the Army Research Office under contract ARO 36598-MA-RIP, the NASA Ames Research

Center through an NRA award under contract NAG2-1216, the Lawrence Livermore National

Laboratory through an ASCI ASAP Level-2 under contract W-7405-ENG-48 (and B335358,

B347878), and the North Atlantic Treaty Organization (NATO) under contract CRG.971628

awarded to the University of California, Davis. We also acknowledge the support of Silicon

Graphics, Inc.

We would like to thank the members of the Visualization Group at the Center for Image

Processing and Integrated Computing (CIPIC) at the University of California, Davis, for their

support.

18

References

[1] BARTELS, R., BEATTY, J., AND BARSKY, B. An Introduction to Splines for Use in

Computer Graphics and Geometric Modeling. Morgan Kaufmann Publishers, Palo Alto,

CA, 1987.

[2] BOEHM, W. Inserting new knots into B-spline curves.Computer-Aided Design 12(July

1980), 199–201.

[3] CASALE, M. S., AND STANTON, E. L. An overview of analytic solid modeling.IEEE

Computer Graphics and Applications 5, 2 (Feb. 1985), 45–56.

[4] COHEN, E., LYCHE, T., AND RIESENFELD, R. Discrete B-splines and subdivision

techniques in computer-aided geometric design and computer graphics.Comput. Gr.

Image Process. 14(Oct. 1980), 87–111.

[5] FARIN , G. Curves and Surfaces for Computer Aided Geometric Design. Academic

Press, 1993.

[6] FAROUKI , R. T., AND HINDS, J. K. A hierarchy of geometric forms.IEEE Computer

Graphics and Applications 5, 5 (May 1985), 51–78.

[7] JOY, K. I. Utilizing parametric hyperpatch methods for modeling and display of free-

form solids.Internat. J. Comput. Geom. Appl. 1, 4 (1991), 455–471.

[8] JOY, K. I. Visualization of swept hyperpatch solids. InVisual Computing : Integrating

Computer Graphics with Computer Vision (Proceedings of Computer Graphics Interna-

tional 92)(June 1992), T. L. Kunii, Ed., Springer-Verlag, Tokyo, pp. 567–582.

[9] K IM , D.-S. Cones on B́ezier Curves and Surfaces. PhD thesis, Department of Industrial

and Operations Engineering, University of Michigan, Ann Arbor, MI, June 1990.

[10] LASSER, D. Bernstein-b́ezier representation of volumes.Computer Aided Geometric

Design 2(1985), 145–149.

[11] LORENSEN, W. E., AND CLINE , H. E. Marching cubes: A high resolution 3D surface

construction algorithm.Computer Graphics 21, 4 (July 1987), 163–169.

[12] O’NEILL , B. Elementary Differential Geometry. Academic Press, New York, NY, 1966.

[13] RAPPOPORT, A., SHEFFER, A., AND BERCOVIER, M. Volume-Preserving Free-Form

Solids. IEEE Transactions on Visualization and Computer Graphics 2, 1 (Mar. 1996),

19–27.

19

[14] REUS, J. F., MISH, K. D., AND JOY, K. I. Mechanical deformations of hyperpatch

solids. InProceedings of Compugraphics ’92(Dec. 1992), pp. 147–158.

[15] SEDERBERG, T., AND MEYERS, R. Loop detection in surface patch intersections.Com-

puter Aided Geometric Design 5, 2 (1988), 161–171.

[16] SEDERBERG, T. W., AND PARRY, S. R. Free-form deformation of solid geometric

models. InComputer Graphics (SIGGRAPH ’86 Proceedings)(Aug. 1986), D. C. Evans

and R. J. Athay, Eds., vol. 20, pp. 151–160.

[17] SHU, R., ZHOU, C., AND KANKANHALLI , M. S. Adaptive marching cubes.The Visual

Computer 11, 4 (1995), 202–217. ISSN 0178-2789.

[18] STANTON, E., CRAIN , L., AND NEW, T. A parametric cubic modelling system for

general solids of composite material.International Journal for Numerical Methods in

Engineering 11(1977), 653–670.

[19] WYVILL , B., MCPHEETERS, C., AND WYVILL , G. Animating soft objects.The Visual

Computer 2, 4 (1986), 235–242.

[20] ZHOU, Y., CHEN, B., AND KAUFMAN , A. Multiresolution tetrahedral framework for

visualizing regular volume data. InIEEE Visualization ’97(Oct. 1997).

20

