
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Studying OSS Sustainability via Socio-technical Structure and Institutional Governance

Permalink
https://escholarship.org/uc/item/4v32w9jm

Author
Yin, Likang

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4v32w9jm
https://escholarship.org
http://www.cdlib.org/


Studying OSS Sustainability via Socio-technical Structure and
Institutional Governance

By

Likang Yin

Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Vladimir Filkov, Chair

Premkumar Devanbu

Charles Schweik

Committee in Charge

2023

-i-



Copyright © 2023 by

Likang Yin

All rights reserved.



This dissertation is dedicated to my wife and my parents. For their endless love,

support, and encouragement.

-ii-



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction 2

1.1 From Socio-technical to Institutional . . . . . . . . . . . . . . . . . . . . 2

1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Chapter 2: Team Discussions and Dynamics During DevOps Tool

Adoptions in OSS Projects . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Chapter 3: Sustainability Forecasting for Apache Incubator Projects 6

1.2.3 Chapter 4: Open Source Software Sustainability: Combining Insti-

tutional Analysis and Socio-technical Networks . . . . . . . . . . 7

1.2.4 Chapter 5: On the Self-Governance and Episodic Changes in Apache

Incubator Projects: An Empirical Study . . . . . . . . . . . . . . 8

1.2.5 Chapter 6: Exploring Apache Incubator Project Trajectories with

APEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.6 Chapter 7: How do OSS projects govern themselves in the wild?

An Empirical Study on Governance.md Markdown Files . . . . . 10

2 Team Discussions and Dynamics During DevOps Tool Adoptions in OSS

Projects 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Background and Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Tools, Teams and Adoptions . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Diffusion of Innovations Theory . . . . . . . . . . . . . . . . . . . 16

2.2.3 Social Judgment Theory . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Hypotheses and Research Questions . . . . . . . . . . . . . . . . . . . . . 18

-iii-



2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Data Collection and Cleaning . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Variables Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Topics Identification . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.3 Linear Mixed-effect Regression . . . . . . . . . . . . . . . . . . . . 26

2.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 RQ1: Tool Adoption and Team Dynamics . . . . . . . . . . . . . 27

2.6.2 RQ2: Discussion Topics and Sentiment . . . . . . . . . . . . . . . 28

2.6.3 RQ3: Influencers and Adoptions . . . . . . . . . . . . . . . . . . . 31

2.6.4 RQ4: Adoption & Discussion Determinants . . . . . . . . . . . . 33

2.7 Takeaways for Practitioners . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Threats to Validity and Conclusion . . . . . . . . . . . . . . . . . . . . . 38

3 Sustainability Forecasting for Apache Incubator Projects 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Background and Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Apache Software Foundation Incubator . . . . . . . . . . . . . . . 44

3.2.2 OSS Projects Success and Sustainability . . . . . . . . . . . . . . 45

3.2.3 Socio-technical Systems Theory . . . . . . . . . . . . . . . . . . . 46

3.2.4 Contingency Theory . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Hypotheses and Research Questions . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 STS and Socio-technical Networks . . . . . . . . . . . . . . . . . . 50

3.4.3 Features/Metrics of Interest . . . . . . . . . . . . . . . . . . . . . 51

3.4.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

-iv-



3.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 RQ1 Graduated vs. Retired Projects . . . . . . . . . . . . . . . . 55

3.5.2 RQ2 Interpretable Forecasting . . . . . . . . . . . . . . . . . . . . 56

3.5.3 Case Study: Change of Fate . . . . . . . . . . . . . . . . . . . . . 60

3.5.4 RQ3 Actionable Recommendation . . . . . . . . . . . . . . . . . . 62

3.6 Threats to Validity and Conclusion . . . . . . . . . . . . . . . . . . . . . 67

4 Open Source Software Sustainability: Combining Institutional Analysis

and Socio-Technical Networks 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Institutional Theory and Commons Governance . . . . . . . . . . 73

4.2.2 Socio-Technical System Theory . . . . . . . . . . . . . . . . . . . 75

4.2.3 Contingency Theory, or There Are No Panaceas in Self-Governance 76

4.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Constructing Socio-technical Networks . . . . . . . . . . . . . . . 80

4.4.3 Extracting Institutional Statements . . . . . . . . . . . . . . . . . 81

4.4.4 Topics Identification in Institutional Statements . . . . . . . . . . 85

4.4.5 Variables of Interest . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.6 Granger Causality . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.1 RQ1: Are there institutional statements contained in ASF Incu-

bator project discussions? If any, can we effectively identify the

content of ISs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.2 RQ2: Is OSS project evolution toward sustainability observable

through the dual lenses of institutional and socio-technical analy-

sis? And how do such temporal patterns differ? . . . . . . . . . . 91

-v-



4.5.3 Case Study: Association Between Institutional Governance and Or-

ganizational Structure . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.4 RQ3: Are periods of increased Institutional Statements frequency

followed by changes in the project organizational structure, and

vice-versa? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 On the Self-Governance and Episodic Changes in Apache Incubator

Projects: An Empirical Study 105

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Background and Theoretical Framework . . . . . . . . . . . . . . . . . . 108

5.2.1 Theory of Governing the Commons . . . . . . . . . . . . . . . . . 108

5.2.2 Organizational Change Theory . . . . . . . . . . . . . . . . . . . 109

5.2.3 Socio-Technical System Theory . . . . . . . . . . . . . . . . . . . 110

5.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 Constructing Socio-technical Networks . . . . . . . . . . . . . . . 113

5.4.2 Identifying Institutional Statements (IS) . . . . . . . . . . . . . . 113

5.4.3 Identifying Change Intervals (CI) . . . . . . . . . . . . . . . . . . 114

5.4.4 Variables of Interest . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.5 Sentiment Detection . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5.1 RQ1: Are there episodic changes in socio-technical structure during

project incubation? Likewise, can we identify institutional discus-

sions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5.2 RQ2: Are there significant resistances in IS-related discussions as-

sociated with episodic change? How do such temporal patterns

differ across graduated and retired projects? . . . . . . . . . . . . 120

-vi-



5.5.3 Case study: Association between episodic change and institutional

statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5.4 RQ3: What are the associations between episodic change direction

and the sentiment to IS-related discussions? . . . . . . . . . . . . 126

5.6 Takeaways for Practitioners . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.7 Threats and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Exploring Apache Incubator Project Trajectories with APEX 132

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Data and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Dashboard Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Use Case Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5 Using APEX Beyond ASF . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6 Limitations and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 141

7 How do OSS projects govern themselves in the wild? An Empirical

Study on Governance.md Markdown Files 142

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2 Related Work and Theories . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2.1 Theory of Governing the Commons . . . . . . . . . . . . . . . . . 145

7.2.2 Ostrom’s Design Principles and Rules . . . . . . . . . . . . . . . . 146

7.2.3 Governance in Open Source Software . . . . . . . . . . . . . . . . 148

7.3 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3.1 The Role of GOVERNANCE.md . . . . . . . . . . . . . . . . . . . . . 149

7.3.2 Classifying Ostrom’s Governance Rule Types . . . . . . . . . . . . 150

7.4 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.5 Prospective Endeavors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8 Conclusion 157

8.1 Studying OSS Team Dynamics in Adopting DevOps Tools . . . . . . . . 157

8.2 Forecasting OSS Sustainability Using Socio-technical Networks . . . . . . 158

-vii-



8.3 Investigating Temporal Patterns of Socio-technical Structure and Institu-

tional Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.4 Quantifying Episodic Changes and Their Effects in OSS projects . . . . . 160

8.5 Discovering Apache Incubator Project Trajectories with APEX . . . . . . 160

8.6 Fostering Self-governance in GitHub Projects . . . . . . . . . . . . . . . . 161

-viii-



List of Figures

2.1 The adoption time distributions of tool adoption events of five tool categories. 24

2.2 The monthly aggregated numbers of five variables (x-axis unit is in month),

relative to the adoption month (x = 0), over all projects. Error lines show

the ±1 standard error away from the mean. . . . . . . . . . . . . . . . . 27

2.3 The per-developer negative comments posted by new developers and senior

developers (left), and developers with prior tool exposure and developers

without prior tool exposure (right). Adoption event happens at month x

= 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Negativity toward tools in the same category, illustrated both before the

adoption (red) and after adoption (green). . . . . . . . . . . . . . . . . . 29

3.1 The workflow of our mixed-methods study. . . . . . . . . . . . . . . . . . 43

3.2 The descriptive variables between graduated projects (in green, left) and

retired projects (in red, right). The corresponding p-value of the Student’s

t-test is in the brackets, suggesting significant statistical differences exist

between them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Performance metrics of the full LSTM model across incubation months

(top 2 curves), showing the significant contribution of the socio-technical

metrics. Curves are plotted using loess. Grey area shows the standard

errors. The red vertical line shows 93% accuracy at 8 months of incubation.

The inset shows project density over total incubation time. . . . . . . . . 57

3.4 The coefficients of all variables from a graduated project (‘Empire-DB’),

aggregated over all incubation months, showing that LIME delivers stable

estimation at the project-level. . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 The overall-level coefficients of all variables of interest (blue is positive,

while red is negative to graduation). It shows that some variables have

same effect on almost all projects, while others do not. . . . . . . . . . . 59

-ix-



3.6 The overall-level coefficient of two selected variables: mean degree in tech-

nical network (in red) and the number of active developers (in green) in

different incubating quarters. . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 The graduation forecast of the marginal projects. Commonsrdf (ID: 82,

in green) and Etch (ID: 103, in blue) are graduated projects that almost

failed while retired project Ariatosca (ID: 256, in red) almost succeeded. 60

3.8 Bounce-up after downturns in graduation forecasts for graduated (green)

and retired projects (red). . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.9 Graduation forecasts for all graduated (green) and retired projects (red)

over the first 24 incubation months. . . . . . . . . . . . . . . . . . . . . . 68

4.1 Comparing graduated (in blue) vs retired (in red) projects along the num-

ber of Institutional Statements (IS) (color online). The Mann-Whitney U

test p-val is sufficiently small (in brackets), suggesting significant differ-

ences in means between groups. . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Topics Evolution for graduated projects (in blue) compared to retired

projects (in red). The x-axis indicates the i-th month from their incu-

bation start and the y-axis represents the relative volume of the topics.

Mann-Whitney U test found 10 out of 12 topics are significantly different

in their means between graduated and retired projects (p-val ¡ 0.01). Not

significant were topic 9 (licensing policy) and topic 12 (software distribution). 92

4.3 The averaged monthly IS and ST variables between graduated projects

and retired projects. On the top are the IS measures; On the bottom are

ST measures. Shades indicate one st. error away from the mean. Month

index 0 indicates the incubation starting month (color online). . . . . . . 94

-x-



4.4 The Granger Causality between Institutional Statements and Socio-Technical

networks. The blue/purple directed links indicate Granger causality from

ST/IS measures, respectively. A green bi-directional link indicates that

there is two-way significant temporal relationship (p-val < .001). Gradu-

ated projects seem to have fewer links from ST variables to IS variables,

suggesting a more unidirectional flow from institutional to sociotechnical

changes in successful projects (color online). . . . . . . . . . . . . . . . . 98

5.1 An illustration of a change interval (CI). . . . . . . . . . . . . . . . . . . 117

5.2 The distribution of the change interval duration (in months) and percent-

age w.r.t. projects’ incubation time averaged across all socio-technical

variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 The monthly num. of institutional statements by sustainability status. . 119

5.4 Responsiveness over pre-, within-, post-CI periods. . . . . . . . . . . . . . 121

5.5 Engagement over pre-, within-, and post-CI periods. . . . . . . . . . . . . 121

5.6 Negativity over pre-, within-, and post-CI periods. . . . . . . . . . . . . . 122

5.7 Responsiveness over graduated and retired projects. . . . . . . . . . . . . 123

5.8 Engagement over graduated and retired projects. . . . . . . . . . . . . . 124

5.9 Negativity over graduated and retired projects. . . . . . . . . . . . . . . 124

5.10 The aggregated ratio of two-way transmission effects from CI to IS, and

vice versa. From left to right, they stand for graduated (CI˃IS), graduated

(IS˃CI), retired (CI˃IS), retired (IS˃CI). We show the standard deviation

in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1 The APEX pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Layout of the APEX Dashboard . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Using the sustainability forecast to understand and explore downturns

(red) and upturns (green) of project DataFu. . . . . . . . . . . . . . . . . 138

6.4 Aggregating project Clerezza’s social networks over a range of months (7-

26) shows longer-term engagements . . . . . . . . . . . . . . . . . . . . . 139

-xi-



6.5 Parallel windows can contrast technical networks between project AWF

(retired, top) and project Airflow (graduated, bottom) . . . . . . . . . . 140

7.1 The number of changed Ostrom’s rule types distribution (position rule and

boundary are combined) categories on a monthly basis. The adoptions are

smoothed using a 6-month moving average. . . . . . . . . . . . . . . . . . 153

7.2 Rule Adoption Distribution across different sizes of projects. The project

size is measured in deciles by the number of unique committers in projects.

All values are logged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.3 The boxplots of newcomer and tenured developers of six rule categories.

The number of rules is logged. Wilcoxon test shows that the difference

between newcomers and tenured committers is significant with p-values <

0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

-xii-



List of Tables

2.1 Tool adoption event summary . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Summary statistics for our 10 variables over all 1,085 adoption events (after

removal of top 2% as outliers) . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Topics Discovered in Discussions . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 adoption success glmer model, tool as random effect. . . . . . . . . . . . 35

2.5 discussion length glmer model, tool as random effect. . . . . . . . . . . . 37

3.1 Statistics of the 176 graduated and 46 retired projects in the ASFI dataset.

c and e correspond to technical networks and social networks, respectively. 53

3.2 Positive Actions for Each Feature. . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Selected Examples of Institutional Statements Found in ASFI Project

Email Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Summary statistics for the monthly socio-technical variables and the counts

of institutional statements from project mentors, committers, and contrib-

utors after removal of the top 2% of outliers. The numbers in parentheses

denote the values after the removal of inactive months (i.e., absent of

emails/commits). Prefix s denotes features in the social network while t

represents the technical network. . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Topics Identified in Institutional Statements. . . . . . . . . . . . . . . . . 90

5.1 Definition of variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 The temporal association between episodic Change Interval (CI) and sen-

timent in the Institution Statement (IS). The value shows the occurrences

of respective cases (ratio in parentheses). The underlined cells indicate the

variables that have the most frequent pattern. . . . . . . . . . . . . . . . 127

7.1 Definitions for Seven Types of Ostrom’s Governance Rule in OSS context. 147

-xiii-



Abstract

Studying OSS Sustainability via Socio-technical Structure and Institutional

Governance

Open Source Software (OSS) projects have become an integral part of our digital land-

scape, revolutionizing the way we develop, distribute, and consume software in various

sectors. From operating systems to complex data analysis tools, OSS projects are the

backbone of the global digital infrastructure. They offer a collaborative platform for de-

velopers worldwide, fostering the development and maintenance of high-quality software

by leveraging the collective knowledge and expertise of a diverse, global community. How-

ever, despite their undeniable potential and benefits, OSS projects often face challenges

related to sustainability, requiring effective governance, and a committed community of

volunteering contributors. Understanding and addressing these challenges is crucial for

maintaining the sustainability of OSS projects, ultimately benefiting the broader digital

ecosystem.

This thesis aims to investigate the dynamics of OSS projects to understand the un-

derlying factors contributing to their sustainability or lack thereof. This investigation

primarily provides insights into the following research questions: How effective can we

predict sustainability based on socio-technical traces of OSS projects? Can we identify

the determinants for OSS sustainability along with their weights and directions? And,

are there temporal associations between socio-technical structure and institutional gov-

ernance? Answers to the above questions can help us design tools and methodologies

to forecast the sustainability trajectory of OSS projects. This would allow stakeholders,

such as project managers, contributors, and sponsors, to make informed decisions about

resource allocation, project involvement, and risk management.

-xiv-



Acknowledgments

I would like to express my deepest gratitude to my advisor, Professor Vladimir Filkov, for

the continuous support of my Ph.D. study and related research. Your guidance, patience,

and intellectual insights have been invaluable. Your mentorship has nurtured my scientific

thinking and has equipped me with the necessary skills to undertake and complete this

journey.

I would also like to thank the members of my committee, Professor Premkumar De-

vanbu, and Professor Charles Schweik, for their insightful comments and encouragement,

which expanded my perspective on this research. Your comprehensive expertise and valu-

able feedback were instrumental in shaping this dissertation.

Finally, my sincere appreciation goes to my colleagues and friends in the research

groups at UC Davis and UMASS for their camaraderie and collaborative spirit.

-xv-



Preface

All chapters in this dissertation (except the introduction and conclusion chapters)

correspond to work that has been published through peer review or will be submitted

soon. The following are said works:

1. L. Yin, V. Filkov. Team Discussions and Dynamics During DevOps Tool Adoptions in

OSS Projects. The 35th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2020).

2. L. Yin, Z. Chen, Q. Xuan, V. Filkov. Sustainability Forecasting for Apache Incubator

Projects. The 29th ACM Joint European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering (ESEC/FSE 2021).

3. L. Yin, M. Chakraborty, Y. Yan, C. Schweik, S. Frey, V. Filkov. Open Source Soft-

ware Sustainability: Combining Institutional Analysis and Socio-Technical Networks. The

25th ACM Conference on Computer-Supported Cooperative Work And Social Computing

(CSCW 2022).

4. L. Yin, X. Zhang, V. Filkov. On the Self-Governance and Episodic Changes in Apache

Incubator Projects: An Empirical Study. The 45th IEEE/ACM International Conference

on Software Engineering (ICSE 2023).

5. A. Ramchandran*, L. Yin*, V. Filkov. Exploring Apache Incubator Project Trajectories

with APEX. The 19th IEEE/ACM International Conference on Mining Software Reposi-

tories (*Co-first Author, MSR Tool Demo 2022).

6. L. Yin, C. Atkisson, M. Chakraborty, C. Schweik, S. Frey, V. Filkov. How do OSS projects

govern themselves in the wild? An Empirical Study on Governance.md Markdown Files.

1



Chapter 1

Introduction

Throughout history, from ancient bridge builders to modern software engineers, human

beings have always aspired to create artifacts that embody long-term sustainability [1, 2].

Traditionally, research in software engineering has been primarily oriented toward the

technical aspects of the software, e.g., algorithmic performance [3], software security [4],

and code quality [5, 6], with technical metrics serving as the primary predictors of suc-

cessful software [7]. However, the landscape has been progressively shifting, recognizing

that the production of software requires developers’ interactions [8]. This shift is partially

attributed to the prevalence of Open Source Software (OSS) projects, which rely heav-

ily on voluntary participation, e.g., feature suggestions, bug reports, and documentation

of individuals from diverse backgrounds [9]. In this context, the path to a sustainable

software product involves several stages that require not only proficient coding but also

developers’ interaction [10].

1.1 From Socio-technical to Institutional
Enhancing the technical parts of the software contributes directly and additively to the

software’s functionality and makes it more competitive, while undeniably crucial, often

yields a ‘one-time’ increment in the software’s overall value. However, investing in the

social aspects of a project, such as fostering a healthy community and facilitating effective

communication among team members, can amplify the value of the technical work done.

This is because an engaged and cohesive community can lead to network effects where

2



the value of the project grows exponentially with the number of active participants. Each

new participant brings unique perspectives and skills, which can lead to novel solutions,

more thorough testing, faster bug identification and resolution, and a richer and more

comprehensive knowledge base. In this sense, improving the social aspects of software

projects can be viewed as boosting the social capital that strengthens the technical efforts

undertaken [11]. Therefore, while it’s important not to neglect the technical aspects of

software engineering, it’s equally important to invest in the social infrastructure of the

project to fully leverage the potential of network effects [12]. Similar belief has guided

Apache Software Foundation (ASF), one of the most impactful OSS foundations, that

‘community over code’1. This simple yet profound statement encapsulates a perspective

that is becoming increasingly significant in the realm of software development, particularly

in OSS projects [13].

Therefore, the socio-technical modeling approaches have been shown to be highly pre-

dictive of project outcomes over the past years [14, 15, 16]. On one hand, the technical

aspect is typically gleaned from developers’ code commits [17]. These commits represent

the tangible contributions of OSS developers, showing how they collaboratively write,

modify, and enhance the code. By analyzing the pattern, frequency, and nature of these

commits, one can gain valuable insights into the technical progression of the project. On

the other hand, the social aspect is often captured through the communication between

OSS developers, predominantly through their email exchanges [8]. These discussions form

the backbone of the social interactions within the project and can encompass a wide array

of topics - from solving technical issues and proposing new features to strategizing project

direction and coordinating collaborative efforts [18]. These email threads are informative

data, revealing the social structures, relationships, and communication dynamics within

the project [19]. As contributors engage with the complexities of code, they simultane-

ously navigate evolving social interactions, shaping unique configurations that exert a

substantial influence on the project’s outcomes [20]. Therefore, the integration of data

from code commits and email communications in socio-technical models provides a holis-
1Apache Software Foundation ‘Community Over Code’: Link

3

https://news.apache.org/foundation/entry/announcing-our-annual-event-community-over-code


tic view of the OSS project. This combined perspective enables the models to accurately

capture the interplay between the social and technical elements of the project and thus

yields a high predictive power concerning the project’s outcome. Thus, socio-technical

modeling offers a robust analytical framework for understanding, predicting, and guiding

the success of OSS projects.

However, OSS projects, while often starting as small-scale endeavors, have the po-

tential to scale dramatically [21]. This rapid growth with a high abandon rate brings

sustainability to the forefront, shifting the focus from immediate success to long-term

sustainability [22]. To study this, we draw upon the theoretical framework posited by

Elinor Ostrom for shared resource systems [23]. Ostrom’s design principles, grounded

in the governance of common-pool resources such as forests [24] and fisheries [25], un-

derline the imperative of established rules, norms, and governance mechanisms for their

efficacious stewardship and long-term sustainability [26]. The significance of governance

in managing such traditional commons elucidates its potential importance in the sphere

of digital commons, with OSS representing a prime exemplar [27]. Therefore, it becomes

evident that institutional governance could be instrumental in overseeing and ensuring

the sustainability of OSS projects.

Approaching this from a metaphorical perspective, we can conceive the institutional

rules and governance of OSS projects as the anchor to ships, keeping OSS projects within

safe boundaries amid the fluctuating digital tides. We consider the integral role of gov-

ernance in setting the course, standardizing the conduct, and structuring collaborative

development, ensuring the project stays its course and remains robust under varying con-

ditions. On the other hand, the socio-technical structure can be likened metaphorically to

a weather vane to the ship. Just as a weather vane is finely attuned to changes in wind and

provides immediate weather insight, the socio-technical structure is acutely sensitive to

alterations within the project and its surrounding environment. Moreover, the project’s

socio-technical structure allows for the effective detection of shifts in collaboration dy-

namics, fluctuations in contribution patterns, or the advent of new technological trends.

Thus, the project’s socio-technical framework delineates the trajectory for cooperative

4



development and interaction, it is the incorporation of robust governance mechanisms

that emerges as a crucial counterpart, underpinning the long-term sustainability of OSS

projects [28].

1.2 Summary of Contributions
This subsection serves to succinctly encapsulate the motivations underpinning each indi-

vidual work incorporated in this thesis. Given that every piece of work included herein has

undergone the rigor of peer review for submission to conferences in software engineering

and human-computer interaction, readers might find some repetitions in the contextual

description and methodological elaborations in each chapter. This repetition is inten-

tional, designed to allow each chapter to stand on its own merit, thereby facilitating

independent comprehension. Detailed expositions of all research activities described in

this thesis are presented comprehensively in the respective chapters.

1.2.1 Chapter 2: Team Discussions and Dynamics During De-
vOps Tool Adoptions in OSS Projects

In this chapter, we delve into the ongoing adoption events of DevOps tools in Open Source

Software (OSS) development. These practices are progressively moving away from de

novo programming and towards the utilization of pre-made tools. This trend can largely

be attributed to the popularity of the DevOps software development movement which

advocates for rapid production changes, without compromising software quality. This is

achieved primarily through automation of processes for building, testing, and deploying

software, negating the need for coding from scratch.

However, DevOps engineers often lack the necessary support to make informed deci-

sions about the tools they should use, due to a lack of comprehensive empirical evidence

on the effectiveness of DevOps practices. Consequently, decision-making often relies on

scattered knowledge, anecdotal evidence, and team members’ individual strengths and

experiences. Previous related studies have been conducted in narrower settings and are

often based on a small number of commercial software projects, making their findings

hard to generalize, especially for OSS projects. These studies relied heavily on surveys,

5



thus being dependent on individual experiences and feedback.

Motivated by the availability of large, comprehensive datasets on tool adoptions from

various GitHub projects, we undertake a deep investigation into the social determinants

of team discussions and dynamics leading up to tool adoption events in OSS projects.

Through our research, we treat the adoption of a tool by a project team as the adoption

of an idea by a community, utilizing the diffusion of innovation theory and social judgment

theory to discern the significant factors underlying tool adoptions. Using a dataset of so-

cial and technical traces from numerous GitHub projects, along with project-tool adoption

data, we undertake exploratory data analyses, and in-depth case studies, and build regres-

sion models. We find that initiating a project-wide change, such as adopting a new tool,

is also a complex social process, especially when the team is diverse in terms of developer

tenure, prior exposure to the tool, and day-to-day involvement in the project. Moreover,

we find substantial changes in team dynamics around the time of DevOps tool adoptions,

which are further associated with discussion length and tool adoption likelihood.

In summary, this chapter presents a comprehensive look at DevOps tool adoptions,

focusing not just on the effects of tool choices on software engineering outcomes but also

on the underlying social dynamics and discussion patterns within development teams.

1.2.2 Chapter 3: Sustainability Forecasting for Apache Incuba-
tor Projects

OSS has revolutionized the software development landscape, attracting developers for

various reasons, from honing their skills to contributing to significant goals. However,

more than 80% of OSS projects are abandoned over time. This chapter seeks to address

the crucial question: Why do some nascent OSS projects succeed while others do not, and

can the latter be helped?

To answer the questions, we turn to Apache Software Foundation’s (ASF) Incubator,

which provides mentorship and guidance to nascent projects, helping them adhere to ASF

rules and regulations and progress towards self-sustainability. However, even with this

support, many projects fail due to challenges in understanding and meeting the graduation

requirements, which demand not just coding skills, but effective teamwork and sustainable

6



community development.

This chapter, therefore, aims to model the process that ASF incubator projects follow

towards becoming sustainable and predict project binary outcomes (graduation/retire-

ment) early on. Using the socio-technical modeling perspective and historical data from

the ASF incubator, we identify features that distinguish graduating projects from retir-

ing ones and build temporal forecasting models to predict sustainability outcomes at any

point in project development. Our methodology includes gathering project technical and

social traces, constructing temporal social and technical networks for each project, and

conducting exploratory data analyses and case studies to build a forecast model and offer

timely advice. Our contributions include a novel longitudinal dataset of OSS projects

under ASF regulation, the first OSS project sustainability predictor with over 90% of F-1

score with only the first 8 months of the project’s data, findings about the project socio-

technical metrics associated with sustainability, and a strategy for real-time monitoring

of sustainability forecasts.

In summary, the chapter demonstrates that the end results of OSS projects’ sustain-

ability trajectories can be effectively forecasted and potentially corrected in time.

1.2.3 Chapter 4: Open Source Software Sustainability: Com-
bining Institutional Analysis and Socio-technical Networks

In this chapter, we first explore two prominent perspectives that attempt to explain OSS

sustainability: a software engineering angle, which investigates the socio-technical aspects

serving as the abstraction of organizational structure, and a management perspective,

which emphasizes institutional designs serving as the abstraction of institutional gover-

nance. We utilize the ASF incubator dataset that comprises historical traces of OSS

developers’ activities. We use these digital traces to analyze the differences between suc-

cessful (graduated) and unsuccessful (retired) projects from both the socio-technical and

institutional governance perspectives.

Then, motivated by Ostrom’s Nobel prize-winning theory, we merge these two ap-

proaches in order to understand and address the sustainability challenges faced by OSS

projects in a holistic way. On the socio-technical side, we construct longitudinal so-

7



cial and technical networks for each project and compute various measures that describe

the socio-technical networks. Simultaneously, on the institutional governance front, we

trained a sentence-level classifier on manual annotations of institutional statements in

the ASF participants’ email exchanges. We find that successful projects tend to be more

socially active, often showing active contributions to documentation and communicating

policy guidance. Additionally, we find that the institutional governance in OSS projects,

such as rules, norms, and regulations, serve as guiding structures that facilitate temporal

collective actions in OSS development.

In closing, we bridge the gap in previous studies by investigating the relationship

between socio-technical systems and institutional governance in OSS projects. We believe

that the simultaneous analysis of structural and institutional factors will pave the way

for novel approaches to studying emergent properties like OSS sustainability.

1.2.4 Chapter 5: On the Self-Governance and Episodic Changes
in Apache Incubator Projects: An Empirical Study

The chapter stresses that many OSS projects fail to maintain their sustainability due to

various factors, it is underscored that efficient governance can significantly impact their

socio-technical trajectory through episodic changes, which are intentional, periodic, and

intermittent.

To illustrate this point, the chapter provides a motivating example of how the Apache

Software Foundation project OpenWhisk managed to avert a decline in its active developer

base and potential abandonment by proactively enforcing regulations and engaging more

volunteers. The chapter hypothesizes that sustainable OSS projects can translate gover-

nance more efficiently into a socio-technical structure than those that are not, through

episodic change intervals.

The chapter proceeds to validate this hypothesis by analyzing data from hundreds of

OSS projects in the Apache Software Foundation (ASF) incubator, a perfect exemplary

foundation that fosters sustainability through robust institutional policies and governance.

The sustainability status will be assigned to a project upon its exit from the incubator

and is determined through an evaluation by ASF committees, an external approach that

8



provides valuable insights into the concept of sustainability.

An empirical study was conducted to identify patterns in sustainable and unsustain-

able projects by comparing episodic changes in their socio-technical structure with insti-

tutional discussions. This exercise was operationalized by matching episodic time-series

events with sentence-level institutional discussions. We find significant associations be-

tween episodic changes in the socio-technical structure and the sentiment attached to

institutional discussions. It was also observed that episodic changes impacted both in-

dividuals and projects differently, based on their sustainability levels. Notably, we find

that sustainable projects proved more adept at translating institutional rules into practice

during periods of episodic changes.

In summary, the chapter concludes by emphasizing the novelty of this unified ana-

lytical approach toward understanding the episodic changes in OSS projects and their

self-governance.

1.2.5 Chapter 6: Exploring Apache Incubator Project Trajec-
tories with APEX

In this chapter, we introduce an online, interactive, dashboard-like tool, ‘APEX’ 2 to

empower OSS projects to act proactively and adjust their sustainability forecasts.

The tool APEX is designed for nascent projects housed in the ASFI incubator, en-

abling them to monitor their sustainability trajectories over time. This leads to timely

course corrections and increases the likelihood of projects graduating into the ASF incu-

bator. APEX, while tailored for ASF projects, is generically designed, allowing for easy

adaptation to accommodate data from other repositories.

We contrast APEX with existing tools, such as the ASF’s Clutch tool, demonstrating

how APEX complements Clutch by offering more comprehensive analytics into the socio-

technical facets of projects and actionable insights. By integrating our work that showed

early predictions of OSS project sustainability, in comparison to other tools outside the

ASF domain like Augur and GrimoireLab, APEX stands out by providing a synthesis of

metrics into longitudinal sustainability forecasts and permitting deeper analysis of socio-
2APEX is available online: https://ossustain.github.io/APEX/

9

https://ossustain.github.io/APEX/


technical features.

To demonstrate the functionality and utility of APEX, we provide a detailed intro-

duction of the tool, followed by use cases showcasing its use in monitoring events in

ASF projects, pinpointing long-term engagements in developers, and enabling within-

ASF project comparisons.

1.2.6 Chapter 7: How do OSS projects govern themselves in the
wild? An Empirical Study on Governance.md Markdown
Files

In this chapter, we examine the increasing prominence of (OSS) repositories on GitHub as

digital commons, bearing resemblances to traditional commons such as fisheries, forests,

and irrigation systems. However, OSS projects present unique challenges regarding sus-

tainability, necessitating innovative approaches due to their undegradable nature. For

this purpose, we draw upon Elinor Ostrom’s governance theories, typically employed for

managing natural resources, to interpret the dynamics and organizational mechanisms of

OSS projects.

Recognizing the need to bridge the gap between Ostrom’s governance theory and its

application to OSS, we harness the rich timestamped data from OSS repositories, and

specifically, the GOVERNANCE.md files. These markdown files contain a recorded history

of project rules, enabling a deep understanding of a project’s governance evolution. The

overarching proposition of our research is the criticality of striking a balance between

under-governance and over-governance in OSS projects, similar to the dosage effects in

medicine. We aim to guide software communities in creating optimal governance rules by

drawing on insights from Ostrom’s theory.

The merits of this research extend to both management science and software engi-

neering fields. We gathered project historical data, including code commits, issues, and

comments, from 703 GitHub repositories containing GOVERNANCE.md files. Using a man-

ually annotated dataset, We develop a high-performing sentence-level classifier capable of

identifying seven different types of Ostrom’s design rules within the Governance.md files,

facilitating an automated, large-scale analysis of OSS project governance mechanisms.

10



Our findings provide insights into the evolution of governance rules within a project, of-

fering guidance for software engineers on when and how to modify rules for the project’s

benefit.

In conclusion, this chapter represents an innovative endeavor to apply Ostrom’s gov-

ernance rule to study the sustainability of OSS projects. While our research focuses on

GitHub projects, the implications could prove significant for numerous other software

projects seeking sustainability in the digital commons.

11



Chapter 2

Team Discussions and Dynamics
During DevOps Tool Adoptions in
OSS Projects

2.1 Introduction
OSS software development practices are evolving away from de novo programming and

toward adopting pre-made tools for various tasks, which are then integrated into existing

development and production pipelines [29, 30]. Part of the reason for this has been the

popularity of the DevOps software development movement, which seeks to bring changes

into production as quickly as possible without compromising software quality, primarily

by automating the processes of building, testing, and deploying software. In practice,

DevOps is supported by a multitude of configuration management, cloud-based continuous

integration, and automated deployment tools, short-circuiting the need for coding from

scratch [31, 32]. Using pre-made tools can shorten the development process, so long as

an appropriate set of tools is used and properly integrated into a development pipeline.

Tool adoption decisions, however, are often not well informed. DevOps engineers

frequently lack the decision-making support to help them discern the best choices among

the many tools available [32]. In large part, that’s because current empirical evidence

on the effectiveness of DevOps practices is, at best, fragmented and incomplete. While

questions about best tools and practices in DevOps abound in online forums, the existing

12



answers are typically generic rules of thumb, or dated advice, mostly based on third-party

experiences, often non-applicable to the specific context. While they likely consider that

scattered knowledge, teams seem to leverage their strengths and experiences in making

tool adoption decisions. Some tool adoption events in projects are preceded by a discussion

among team members on the issues involved [32], but it is not clear what is discussed in

them among team members and how those discussions correlate with adoption decisions.

Moreover, instituting a project-wide change is a complex social process when there are

many stakeholders [33]. Adopting a new tool, e.g., can require a team-wide adjustment

in practices that affect every developer–thus they are all stakeholders in the adoption

decision. This is especially true when the team is more diverse in terms of developer tenure

with the project, their prior exposure to the tool being considered for adoption, and their

day-to-day involvement in the project. Naturally, supporters and detractors can and do

arise over decisions when developers espouse different views toward a tool, resulting in

champions and detractors, and sometimes arguments can get emotional [34, 35]. Many of

these individual and team-level factors may contribute to the ultimate adoption decision,

but which ones actually do? And in what proportion?

Inspired by the availability of large, comprehensive data sets on tool adoptions from

diverse GitHub projects, here we undertake both qualitative and quantitative methods to

uncover the social determinants of team discussions and dynamics leading to tool adoption

events in OSS projects. We operationalize our study at the team-level instead of at the

individual level. Central to our study is the analogy that a project team adopting a tool

is akin to a community adopting an idea. We use theories on diffusion of innovation

and individual and team social judgment to guide us in discerning the important factors

underlying tool adoption.

We start from a data set of social and technical traces from a large number of GitHub

projects, together with project-tool adoption data for each. Then, we perform exploratory

data analyses, do deep-dive case studies, and built regression models to determine how

team properties and their communication behaviors are associated with tool adoptions.

We find that:

13



• Team dynamics changes around adoption time in substantial ways, and some of

those changes remain with the project.

• Project teams undergo meaningful discussions and exhibit significant dynamics

changes in the period before and after a new tool is adopted.

• Influencer developer’s participation is associated with shorter discussion length, and

likelier tool adoption.

• New developers are positively associated with longer discussion length and lower

adoption success.

Related questions have been asked before, in narrower settings. Zhu et al. [36] use

code accept/ignore rate to compare the goodness between issue tracker and pull request

systems, but less focus on the adoption dynamics. Using surveys Xiao et al. [37] find that

coworker recommendation is a significant determinant of security tool use. Witschey et

al. [38] find that the strongest predictor of using security tools is the ability to observe their

coworkers using those tools. These findings are based on a small number of commercial

software projects and can be difficult to generalize, especially to OSS projects. Moreover,

surveys, by their nature are based on individual experience and feedback. Kavaler et

al. [32] have looked more comprehensively at a large swath of JavaScript projects, but

have focused more on the effects of tool choices on software engineering outcomes, and

found that some choices are better than others.

2.2 Background and Theories
Here we position our current work in the space of representative prior work on tools, tool

adoptions, and OSS teams, as well as present two most relevant sociological theories that

will guide our hypotheses and research questions.

2.2.1 Tools, Teams and Adoptions

Software developers use various techniques to implement and maintain software, includ-

ing, at times, adopting new technology [39]. T. Gorschek et al. [40] describe five different

14



stages in technology transfer, including identifying potential problems, formulating issues,

proposing candidate solutions, validations, and releasing solutions. S.L Pfleeger [41] pro-

posed a model of technology transfer that can be tailored to a particular organization’s

needs. Riemenschneider et al. [42] find that opinions of developers’ coworkers and super-

visors on using some technology matters to an individual developer when they consider

whether to use this method. Our paper extends such implications to tool adoptions in

OSS projects.

Marlow et al. [43] find that length of tenure may be associated with attitudes toward

new tools. More senior developers may get more attached to a working style, thus making

them less flexible to adopt new tools. New developers [44], in contrast, need less time

to adapt to a new working style due to lack of history in the project, and eagerness

to learn/follow technology trends. Xiao et al. [37] find developers are more likely to

adopt a tool if their peers or co-workers are using or have used it. Also, if experienced

individuals join a project, their knowledge and social ties move with them to the project

[45, 46]. Thus, the sum-knowledge of the whole team is constantly changing as the

project evolves. Likewise, previous research has found that emotional contagion from

co-workers can percolate within the team [47, 17] causing a slowdown in communication

and productivity.

With publicly available traces of working records and discussions, it is possible for

researchers to study team dynamics before, during, and after a change. However, studying

tool adoptions is complex because of the variety of contributing factors. Previous work [48]

has found that changing previous practices can force software developers out of their safe

zone, resulting in nonconformity with the methodology. Zelkowitz et al. [49] find that

many software professionals are resistant to change, and that timing is of importance

when adopting new technology. Johnson et al. [50] consider that having intuitive defect

presentation may contribute to the willingness of using static analysis tools. Related

literature [37, 38] shows that developers’ social networks (e.g., through discussions about

tools [51]) benefit the spread of tools. Poller et al. [52] pointed out correlations between

organizational factors and the success of security practices.

15



2.2.2 Diffusion of Innovations Theory

Diffusion of innovations (DOI) theory was first proposed by Rogers in 1983 [53], and has

since become popular in socio-technical fields. Rogers considered diffusion as the pro-

cess by which an innovation unfolds over time through communication channels among

the population, and found that some properties of innovation are crucial to an adoption:

perceived usefulness, perceived complexity, peer pressure, etc. The innovation diffusion

process at an organizational level can be summarized as having two stages [53, 54]: ini-

tiation (perceiving the issues, and knowing they can be addressed by adopting certain

innovations), and implementation (adopting the innovation and customizing it to fit own

culture if necessary, then the team-collected information reinforces/devitalize the adoption

until the innovation becomes a part of the organization).

In the context of software engineering, DOI theory can be of vital value to offer

understandings of the phenomenology and consequences. E.g., tool builders want to know

if anyone will use the tool they built, and how to persuade the community to use it. For

general developers, they want to know if there exist tools to help them be more efficient.

However, even if a tool can be beneficial, individual resistance may still exist. To reduce

such individual resistance, organizational mandate has been shown to have influence on

adoptions [48, 42]. However, those authors also find that the organizational mandate is not

sustainable compared to other factors. A catalog of non-coercive adoption patterns has

been proposed [54], to help organizations achieve successful software engineering practices

in a more persuasive manner.

In GitHub OSS projects, Bertram et al. [55] found that communication and knowledge

sharing exist for coordinating work in issue trackers. This suggests that developers within

a project communicate and learn from each other [56]. Moreover, knowledge sharing exists

even across projects. Singer et al. [54] noted that some developers use GitHub to learn

how other projects use the same tools in their projects. Thus, developers in the GitHub

ecosystem, and in its tighter sub-ecosystems, share and distribute knowledge about tools

through participation in different projects, thus creating a diffusion process.

16



2.2.3 Social Judgment Theory

Social Judgment Theory (SJT) [57] was proposed to study how people self-persuade to

adopt a new idea when they encounter it. According to SJT, when people are exposed to

new information or a new environment, they tend to consider three things. First is their

previously formed attitude, or anchor to which they compare the new idea [58]. Then

they look at available alternatives. In this process, people recognize themselves, form

their views, and express their ideas. Finally, there is the ego involvement or the centrality

of the issue being considered to a person’s life, which can explain why people can accept

some ideas and novelty easier than others. Individuals with high ego involvement on an

issue tend to be more passionate on the topic and are more likely to evaluate all possible

positions [59]. High-ego individuals also have a larger latitude of rejection, and it is

difficult to persuade them to adopt a new idea. In contrast, low-ego individuals tend to

have a larger non-commitment latitude, meaning they often do not take a stance on an

issue, and they do not care much about the arguments.

There are several ways to aggregate the judgments of individuals from a group into a

group judgment [60, 61]. Mathematical aggregation amounts to simple counting/averaging

of individual judgment. On the other hand, behavioral aggregation is the outcome of group

members agreeing after discussing the matter. Experimental evidence suggests that group

judgment is generally more accurate than individual judgment, and how it is measured

can be significant to the outcome [60]. However, others found that the superiority of

group judgment is due to reliability produced by larger samples [62].

In the context of OSS projects, team discussions on tool adoptions transpire during

which possible options are proposed. These discussions can be considered a form of

behavioral aggregation of individual opinions. However, group judgment may get biased,

as high-ego individuals with strong opinions can potentially sway a group decision in their

direction, even if it offers no overall benefit.

17



2.3 Hypotheses and Research Questions
Central to this paper is the analogy that adopting a tool is akin to adopting an idea.

An OSS project involves a social organization in which activities are coordinated through

communication to achieve both individual and collective goals. By coordinating activities,

the organizational structure has to be created to assist individuals to communicate. In

GitHub projects, in particular, the two main communication channels are through code

committing and issue posting. Moreover, contributing code changes and approving others’

pull requests suggests that the developers are mutually aware of each other, and this forms

the basis for communications and discussions.

The DOI theory suggests that innovations and new technologies can be spread to

teams through diffusion. For tool adoption in GitHub projects, this diffusion happens

through information exchange within and between projects, through their developers.

One mechanism is through reading/participating in discussions that are accessible to all

team members in a project. The publicly available traces of commits and comments allow

us to study discussion dynamics of how tools are perceived, discussed, and then finally

adopted. Thus, a hypothesis arising from DOI is that developers who have previously

had exposure to certain tools will be more knowledgeable of them and contribute to a

discussion on it, to make the adoption process smoother and faster.

On the other hand, SJT suggests that since it is likely some developers prefer adopting

a tool more strongly than other developers do, the former naturally will have high-ego

on adoptions. A hypothesis arising is that developers who post more comments on tools

than others will be the influencers in the discussions, and will affect the direction of the

adoption. Moreover, contributing to cognitive dissonance, people will react more strongly

to negative information than positive information [63]. Therefore, another hypothesis is

that the people’s discussion sentiment (positive or negative) may correlate with eventual

tool adoption.

We formalize the above into our Research Questions (RQs), as follows. First, we seek

to uncover the patterns and changes happening at team-level, in the period surrounding

tool adoption events.

18



RQ1: What is the team dynamics when a project team goes through the process of

adopting a new tool?

Then, we want to understand what goes on in the discussions before and after the

tools are adopted.

RQ2: What topics are discussed during tool adoptions? How are people’s sentiments

evolving toward the tools they are adopting?

Next we look at notable individuals in the discussions. According to the aforemen-

tioned theories, people who care the most and comment voluminously, i.e. influencers,

may play a significant role in the innovation diffusion process. Namely,

RQ3: Are tool adoption events associated with influencers? How much does their

opinion weigh in on others?

In the final thrust, to comprehensively understand tool adoption and discussions, we

quantitatively model adoptions and discussion length in terms of our chosen variables

using multiple regression.

RQ4 What are the quantitative determinants of project-wide tool adoption and the

preceding discussion length?

2.4 Data
We start from a data set by Trockman et al.[64] of GitHub npm projects that have

adopted any of 19 different DevOps tools 1. They were collected by gathering tool badges

from the projects’ README.md files. Some projects use badges to signal important in-

formation [65], e,g, code coverage percentage , number of downloads per

month , package dependencies , and continuous integration status

. The tool adoption data is current as of Jan 2019. The data set consists of

52,923 distinct GitHub projects, the adopted tools, and the adoption dates. In total,

96,176 tool adoptions are identified, or about 2 tool adoptions per project on average.

Among them, 28,430 projects adopted only one tool, 11,272 projects adopted two tools,

8,900 projects adopted three tools, and 3,378 projects adopted four tools. Projects which

have adopted more than four tools are fewer than 2% of the total.
1Data and code is available at https://github.com/lkyin/tool_adoptions

19

https://github.com/lkyin/tool_adoptions


The collected tools can be classified into the following six categories according to their

functionality. We illustrate each category with an example tool. Browser testing: e.g.,

Selenium is an automated testing framework for automated testing of web applications

and User Interfaces (UIs) [66]. Test Coverage: e.g., Coveralls measures software quality

in terms of test cases line coverage, function coverage, branch coverage, and statement

coverage [67]. Minifier: e.g., Uglifyjs is a JavaScript compressor tool used to merge and

minimize JS resources by removing blank rows, shorten the variables and functions names

to make the web applications load faster [68]. Testing: e.g., Mocha has good support for

testing asynchronous code, allowing any use of failed exception test libraries [69]. Linters:

e.g., ESLint is a plug-in JavaScript code style/error detection tool [70], thereby achieving

effective control of the quality of the project. Dependency managers: e.g., Snyk helps

developers track the dependency tree to find which module introduces the vulnerability

[71, 72]. The categories and the summary statistics of adoption data is given in Table 2.1.

2.4.1 Data Collection and Cleaning

We use the GitHub API (v3) [73] to collect and extract historical records of the commits

and discussions from the GitHub projects. For commits data, the author is the one

who made the changes, while the committer is the one who committed the changes to

GitHub. Thus, we align the ‘author’ with each commit. For discussions, since the commit

messages are usually not meaningful [74], we only collect and use issues and comments as

their discussions.

Some projects have very low levels of activity, while others have team sizes that may be

too small to study their dynamics. To avoid those, in this paper commits and comments

of only the durable and persistent projects are collected. We set three requirements:

(1) Durable: The projects that have commit records spanning at least two years. (2)

Persistent: The projects having at least 6 months of commit history before and after

the tool adoption event and have at least 50 total commits. (3) Related: The projects

having at least one comment related to the adopted tools. After filtering, the final data

set consists of 684 distinct GitHub projects.

Since we focus on discussion comments which specifically associate with tools, we

20



Table 2.1. Tool adoption event summary

Tool Task Class Per Tool Per Tool Category

karma
Browser

4116
6157sauce 1654

selenium 387

coveralls

Coverage

14430

21626
codecov 4239
codeclimate 2731
codacy 213
coverity 13

uglify
Minifier

2018
2124minimist 62

minifier 44

mocha
Testing

33280
47119istanbul 11864

jasmine 1975

eslint
Linter

10978
18969standard 4827

jshint 3164

snyk
Dependence Manager

179
181gemnasium 2

filter out all discussion comments which do not explicitly mention a tool name (of the

19 tool names), with the following exception. If an issue starts a thread and mentions

a tool name, the replies to that thread are likely a part of the discussion, therefore, all

comments following the tread are also included even if they do not contain a tool name.

On the other hand, some issues are automatically posted, e.g., by continuous integration

(CI) tools; we identify the comments by checking the title of the comments (e.g., ‘[Snyk

Update]’) and exclude the comments from the data set.

We identify and remove the following strings from comments that do not comprise

text, as they would bias downstream analysis: non-ASCII characters (by checking if all

characters are from ‘u4e00’ to ‘u9fff’), code snippets (by checking if the comments are

21



enclosed with single or triple backticks), URLs (by using the regular expression from

the re module in Python 3.7 with pattern ‘https?://S+’), and emojis by checking the

encoding of the characters. Finally, since some comments mention multiple tools at the

same time, therefore, they are counted multiple times. To avoid such duplication by those

comments (about 1.77% of the total), we manually re-label these comments with only one

tool, we achieve this mainly by referring the outcome of the adoption (which one is finally

adopted) and context of the discussion.

2.4.2 Variables Used

The variables that we use in this study have been identified based on our discussion and

consideration of the underlying theories. They include the following.

Outcomes: Adoption success and discussion length. Adoption success (adoption success)

is a binary variable (0=”No” or 1=”Yes”) indicating whether a tool was adopted in a

project. A successful adoption is if a tool is being used in a project, regardless of whether

discussions on it ever happened. An unsuccessful adoption is if a project’s team had a

discussion on a tool yet they never adopted it. Discussion length (discussion length) for

a project and a tool is calculated as the number of months from the first day the tool was

mentioned in the project discussion, until the tool was adopted. The discussion length

suggests how long it takes for teams to reach an agreement and eventually adopt the tool,

although in practice can be much longer if the team keeps coming back to discussing a

tool after longer breaks without mentioning it. To address those cases we introduce a

control variable num mentions, see below, which measures the volume of tool mentions

in a discussion.

Controls: Project Age, Number of Commits, Number of Comments/Mentions. Project

age (project age) at the time of adoption of a tool is the number of months from the first

commit date in the project to that specific tool’s adoption date. Number of Commits

(num commits) at the time of adoption is the number of commits made during the

discussion (based on the discussion length above) on that tool, in the project. Number

of Comments (num comments) / Mentions (num mentions) is defined as the number

of comments (including all follow-up comments in the same thread) made in that tool’s

22



discussion interval, while the number of mentions only counts the number of comments

which explicitly mention the tools, for a given project. Tool (tool) is the full name in

lowercase of the corresponding tool (e.g., eslint).

Team Metrics: We calculate team measures for each project, for each tool discus-

sion. New Developers (num new dev) at time t in the project are those developers who

have made their first contribution (either by committing code changes or participating

in discussions) within the 3 months prior to t. For convenience, we refer to all other

developers who are not new developers as Senior developers. Developers with prior tool

exposure (num w tool expos) are the developers who had already been in a project before

time t that had used that tool, and have committed code changes before time t to cur-

rent project (but after their contributions to the other, tool using project). In contrast,

the developers without prior exposure are the ones who did not participate in a project

that had used the tool before time t. Involved Developers (num involved dev) are the

developers who have been involved (i.e., participated) in the tool discussion. Positive

Developers (num pos dev) are the developers who have posted overall more comments

with positive sentiment than negative sentiment in the tool discussion. While Negative

Developers (num neg dev) are the opposite. The descriptive statistics for the metrics are

shown in Table 2.2.

2.5 Methods
2.5.1 Topics Identification

We use Latent Dirichlet Allocation (LDA) [75] to study topics in discussions. LDA is a

statistical technique used to identify topics in large documents and high-frequency words

associated with the topics. LDA yields a topic probability distribution for each document,

enabling topic clustering and/or text classification across all documents in a set.

Before training the LDA model, we pre-processed the GitHub comments by tokenizing

with the Apache Open NLP library [76], and stemming with the Porter stemmer (this

removed all stop-words from the comments). Due to the large number of discussions we

have, many high-frequency words are not very meaningful. To get a corpus with a higher

23



Table 2.2. Summary statistics for our 10 variables over all 1,085 adoption events (after
removal of top 2% as outliers)

Statistic Mean St. Dev. Min Max

adoption success 0.798 0.402 0 1

discussion length 9.927 11.428 0.033 56.633

project age 33.542 20.688 6 100

num comments 15.852 32.792 1 272

num commits 338.246 588.521 0 4,163

num new dev 18.852 32.933 0 252

num w tool expos 7.724 13.973 0 133

num involved dev 2.373 2.377 1 23

num neg dev 0.678 1.077 0 7

num pos dev 0.641 0.975 0 8

2012 2013 2014 2015 2016 2017 2018 2019
0.0

0.1

0.2

0.3

0.4
sauce
selenium
karma

(a) Browser

2013 2014 2015 2016 2017 2018 2019
0.0

0.2

0.4

0.6 coverity
codeclimate
codecov
codacy
coveralls

(b) Coverage

2012 2013 2014 2015 2016 2017 2018 2019 2020
0.0

0.2

0.4

0.6

0.8 minimist
uglify
minifier

(c) Minifiers

2012 2013 2014 2015 2016 2017 2018 2019
0.0

0.1

0.2

0.3

0.4
jasmine
mocha
istanbul

(d) Testing

2013 2014 2015 2016 2017 2018 2019
0.0

0.1

0.2

0.3

0.4

0.5
standard
jshint
eslint

(e) Linter

Figure 2.1. The adoption time distributions of tool adoption events of five tool cate-
gories.

concentration of topics [77], we removed both the 5% words with the lowest frequency

(e.g., user names) and the 5% words with the highest frequency (e.g., bugs). After this,

24



the LDA model is more able to distinguish topics from each other.

2.5.2 Sentiment Analysis

A sentiment analysis tool identifies the emotional characteristic of a text, typically in terms

of its aggregate positivity or negativity. Many sentiment analysis tools used in software

engineering are trained solely on social media corpora, e.g., Twitter, Facebook, and Yelp.

However, some words in the context of software engineering can represent a different

meaning compared to social media corpus [17, 78]. For example, to ‘kill a process’ is

neutral in the context of programming, while some sentiment analysis predictors trained

on other media corpus, treat it as a strong indicator for negative emotion. To avoid

such issue, we use Senti4SD to predict the sentiment of the GitHub comments. It has

been trained on Stack Overflow annotated comments, and it has been shown to be more

accurate in the software engineering domain [79, 80]. Senti4SD yields ternary sentiment

for each comment, i.e., positive, neutral, or negative. The following are examples from

our data of positive, neutral, and negative comments, as per Senti4SD (sensitive words

are anonymized and replaced by ¡notation¿). Positive: “sure ¡user¿! appreciate your

point, thanks for the suggestion.” Neutral: “Let’s have this project actually be ¡tool¿ and

not try to duplicate on our own what ¡tool¿ does internally. Let’s just let ¡tool¿ handle

all merging itself.” Negative: “BTW, ¡tool¿ failed because you added a function without

tests.”

GitHub discussion comments can still be different from the Stack Overflow comments.

To verify that Senti4SD can effectively identify sentiment in comments on GitHub, we

selected a random set of 50 comments and via observation determined them to contain 25

comments of neutral, 13 comments of negative, and 12 comments of positive sentiment.

Then we ran them through Senti4SD and found that 6 were mispredicted by Senti4SD,

showing the accuracy of 88% (2 neutral comments were deemed negative, while 1 positive

and 3 negative comments were deemed neutral).

We aligned each post with their Senti4SD derived ternary sentiment (i.e., positive,

neutral, and negative). We find that 23.8% of the discussions are positive, 48.4% of

the comments are neutral, and 27.8% of them are negative. The average length of the

25



comments is 194 characters for neutral, 242 characters for positive, and 422 characters

for the negative. This suggests that the negative comments may carry more information

than other two types.

2.5.3 Linear Mixed-effect Regression

We use Generalized Linear Mixed Effect Regression (GLMER) models (glmer package in

R) to study the contribution of our independent variables to explain the variability in the

outcome variable, while mixing fixed and random effects. The tool is used as the random

effect in the models.

We use logistic regression for modeling the adoption success and generalized regres-

sion with the Poisson family for the modeling discussion length. To avoid convergence

issue we use the bobyqa optimizer. We use scale() function to z-normalize each variable

as they vary across orders of magnitude between variables. To avoid influential points

caused by outliers in the fixed effects, we remove the projects with top 2% num commits,

num comments, and with top 1% of the rest variables. We also use nonlinear log trans-

form for two variables: num new dev and num involved dev, containing extreme values

and high variance. We use the Variance Inflation Factor (VIF) to check whether multi-

collinearity exists between the independent variables in the regression models, which can

lead to regression coefficients that are difficult to interpret. Typically, if the VIF values

are smaller than 5 then multicollinearity is not significant. This is the case with all our

models. To describe the goodness of fit of our models, we use the squared GLMM() func-

tion in R to report two pseudo-R2 values: the marginal R2, interpreted as the variance

solely described by the fixed effects, and the conditional R2, interpreted as the variance

introduced by both fixed and random effects in the model [81]. We also report the stan-

dard goodness of fit measures of log-likelihood and the Bayesian information criterion,

the latter often used for model choice.

26



4 2 0 2 4 6
0

2

4

6

8
Nu

m
 o

f D
ev

s w
/ E

xp
os

ur
e

(a) Number of Devs

/w Exposure

4 2 0 2 4 6
0

2

4

6

8

Nu
m

 o
f I

nv
ol

ve
d 

De
vs

(b) Number of In-

volved Devs

4 2 0 2 4 6
0

1

2

3

4

5

Nu
m

 o
f N

ew
 D

ev
s

(c) Number of New

Devs

4 2 0 2 4 6
0

10
20
30
40
50
60

Nu
m

 o
f C

om
m

its

(d) Number of

Commits

4 2 0 2 4 6
0

1

2

3

4

Nu
m

 o
f C

om
m

en
ts

(e) Number of

Comments

Figure 2.2. The monthly aggregated numbers of five variables (x-axis unit is in month),
relative to the adoption month (x = 0), over all projects. Error lines show the ±1
standard error away from the mean.

2.6 Results and Discussion
2.6.1 RQ1: Tool Adoption and Team Dynamics

First, to study tool adoption events over time, we align all projects around their adoption

dates and plot those adoptions for each tool. The results, per tool category and per tool

are shown in Figure 2.1. The figures suggest that adoptions in OSS projects spread in

a non-constant speed, some group of people adopt a tool much sooner than the average

adoption time, while others adopt it only if they are fully convinced, i.e., have an adoption

lag. This fits well within the predictions of the DOI theory. Note that the tool category

Dependence manager is not included because of lacking enough data points.

Second, to study the team dynamics around adoption events, we examine the temporal

data of our five team-level metrics: the number of developers with prior exposure, new

developers, involved developers, comments associated with tools, and commits at monthly

intervals, as illustrated in Figure 2.2.

We see from Figure 2.2 that the average number of involved developers is almost

linearly increasing over time, likely correlating with the general GitHub trend. This

implies that more developers participate in the discussions of adopting tools.

We also observe a significant discontinuity in the steady numbers of commits and

comments just before and even more so after the adoption event, in the positive direction.

This is arguably associated with increased activities related to the adoption. Also notable,

is that the number of developers with prior exposure to the tool is steadily growing in the

period before the adoption, thereby likely increasing the adoption chances.

27



0.1

0.2

0.3

0.4

−10 −5 0 5 10
Relative months to Adoption

P
er

 D
ev

 N
eg

 C
om

m
en

ts group

New
Senior

0.1

0.2

0.3

0.4

−10 −5 0 5 10
Relative months to Adoption

P
er

 D
ev

 N
eg

 C
om

m
en

ts group

With Exposure
Without Exposure

Figure 2.3. The per-developer negative comments posted by new developers and senior
developers (left), and developers with prior tool exposure and developers without prior
tool exposure (right). Adoption event happens at month x = 0.

Table 2.3. Topics Discovered in Discussions

Topic Sample vocabulary

1 Testing run, test, use, report, case, mocha

2 Development js, setup, window, browser, npm

3 Debugging fail, stack, error, timeout, check

4 General ideas work, support, dependency, need

5 Integration CI, function, module, nodejs, client

Answer to RQ1: Successful adoption distributions are in line with DOI theory, with

some projects adopting early and others late. We observe that new developer numbers

increase slower than involved developer numbers but significantly more so after the

tool adoption.

2.6.2 RQ2: Discussion Topics and Sentiment

Pre- and Post-adoption Discussions LDA is regularly used to reveal the frequent topics

in text information. However, different from the corpus gathered from social media, the

comments from GitHub, by their nature, are in a much narrow domain. Therefore, the

number of different discussion topics on GitHub is much fewer compared to social media

corpus. Even though, many topics still overlap with each other. We uncover the top-

ranked topic features and their associated sample vocabulary in the tool discussions, and

summarized them in Table 2.3.

To understand and identify topics and emerging patterns in the discussions, we go

28



istanbul−istanbul
istanbul−jasmine
istanbul−mocha

jasmine−istanbul
jasmine−jasmine
jasmine−mocha
mocha−istanbul
mocha−jasmine
mocha−mocha

−0.2 −0.1 0.0 0.1 0.2
Relative Negativity

C
om

pa
re

d 
To

ol
s

status
post
pre

(a) Testing Tools

eslint−eslint
eslint−jshint

eslint−standard
jshint−eslint
jshint−jshint

jshint−standard
standard−eslint
standard−jshint

standard−standard

0.0 0.2 0.4
Relative Negativity

C
om

pa
re

d 
To

ol
s

status
post
pre

(b) Linter Tools

Figure 2.4. Negativity toward tools in the same category, illustrated both before the
adoption (red) and after adoption (green).

through 3,342 discussion comments within the 6 months prior to the adoption date. By

using the topic-vocabulary pairs as the keywords, we find the following three topics in

tool discussions are prominent:

Perceiving Demands of Tools: ”right now the ¡file¿ is extremely distracting and the

test output is impossible to read (just the result). We need a ¡tool¿ PR to solve this.”

Choosing One Tool Over Another : ”¡dev 1¿ thanks. I should have done this, to begin

with. I set up ¡tool 1¿ because that’s what ¡tool 2¿ was using before. But you are correct,

that is better for testing.”

Deciding When to Adopt: ”Thank you for sending us these contributions! Moving to

¡tool¿ is, in fact, something we have hoped to do, I just wanted to let you know it might

take us a few more days before we’re ready to engage.”

We also analyze 4,278 discussions from the same projects set for the 6-month post-

adoption period. The two identified prominent topics of discussions are about:

Adoption Feedback: ”Not sure how I to write a test for this. I can’t figure out how to

get the output from ¡tool¿”

Switching Tools: ”But when comparing/choosing a testing framework you will defi-

nitely need to say one is better for you or a project at some point. I would be open to

using ¡tool¿.”

In summary, we find the following prominent patterns exist in the tool-related discus-

sions: a discussion seems to be initiated by an individual who found an issue and asked for

addressing such issue with a tool, and it ends with an individual who has previously used

similar tools presenting their experience, by them recommending a tool to adopt. We also

29



find that discussion threads are goal-oriented, well structured, and proceed logically, and

they are likely to be beneficial for developers to decide on which tool to adopt.

Developer Sentiment To test our hypotheses from SJT about ego involvement and from

DOI about tool adoption, here we compare the sentiment in tool adoption discussions

between the comments of a) new developers and senior (i.e., not new) developers, and b)

between developers with prior tool exposure and the ones without prior tool exposure. To

do that, we compare the negative comments posted separately by both new developers

and senior developers. As shown in Figure 2.3(a), before the adoption, new developers

are much less negative to adopting new tools than senior developers, even though their

negativity significantly grows just before and more so after the adoption events, if only

for a short time. This is consistent with SJT: new developers have less involvement in the

projects and thus lower emotional attachment than senior developers, while the latter have

to (perhaps begrudgingly) adapt to the changes in the project. Even more interestingly,

the negative sentiment of the senior developers persists, which can in the longer term

affect project cohesion and effective management.

On the other hand, as shown in Figure 2.3(b), the per-developer negativity of de-

velopers with prior exposure is much lower than the developers without exposure, for

all time-bins. And after implementing tool adoptions, the negativity of developers with

prior exposure is very close to developers without exposure, however, the negativity of

developers with prior exposure drops faster right after the adoption and remains lower

in the long term. This validates the assumption that developers with prior exposure are

less negative toward the tools than the ones without exposure. Moreover, we find that

the curves of the two types of developers are similar to some degree, suggesting both are

reacting to the same events, or are communicating together.

Relative sentiment. To understand why developers choose one tool t1 over another

tool t2 from the same category (e.g., both t1 and t2 are linters), we compare the relative

negativity of their corresponding discussions. First, we calculate the baseline negativ-

ity for each project (i.e., the ratio of negative comments over all comments). Then we

calculate the aggregated negativity of a tool as the ratio of negative over all comments

30



in the discussion, minus the project’s baseline negativity. In Figure 2.4, each row repre-

sents a pair of two tools (t1-t2) from the same category. The bars show the aggregated

(team-level) negativity to tool t2 of the projects before (red) and after (green) adopt-

ing tool t1. If tool t1 and t2 are the same (i.e., t1 = t2), the bar simply represents

the change of negativity after adopting the tool t1(i.e., t2). As shown in Figure 2.4(a),

the bar Jasmine-Jasmine shows that, the post-negativity becomes more negative than

pre-negativity, suggesting that developers find Jasmine more difficult to use than ex-

pected. In Figure 2.4(b), standard-jshint bar shows that after adopting tool standard,

the sentiment toward jshint becomes less negative (i.e., more positive).

Answer to RQ2: We identify three most significant scenarios in the tool discussions:

perception of tools, choosing a tool over another, and deciding when to adopt a

tool. We also find that sentiment toward a tool is associated with developer seniority

and prior exposure to the tool. Finally, sentiment toward a tool is associated with

adoptions, and it can change after adoptions.

2.6.3 RQ3: Influencers and Adoptions

In the sentiment data set, we find that 5% of developers posted 35% of total negative com-

ments, indicating there might exist some strong ego-involvement and possibly influencers

during the discussion period. Here, we seek to answer if influencers exist, identify them,

and see how they affect tool adoptions. We first define influencers as those developers

who post more than 50% of the total comments in the tool adoption discussions. To have

reliable data to study developers who frequently comment in each discussion, we decided

to only consider adoption discussions with more than ten comments. That filter leaves

us 592 distinct adoption events to study. Among them, 379 adoptions are successful, and

213 adoptions are unsuccessful. We define the Successful Adoption Rate (SAR) as the

ratio of the successful adoptions to the total, i.e., 379/592 = 64.02%.

A very common situation is that a project member wants to have a testing tool for

their project, and the developers create an issue to query other’s opinions on whether to

adopt this tool. If the majority of main contributors agree on adopting a testing tool,

31



then they would be discussing which tool to adopt. Our hypotheses, arising from the

ego-involvement considerations in SJT, are that: 1) a project with an influencer has a

higher likelihood to have adopted a tool, and 2) the higher the negativity of a strong

influencer, the less likely it is for the tool to have been adopted.

We test the first hypothesis by comparing successful adoption rates in projects with

strong influencers to those without. We find that for the former, the SAR is 68.86% and

for the latter 57.75%.

To test the second hypothesis, among the adoptions that have had an influencer, we

found that if the sentiment of the strong influencer was positive on the tool, the SAR is

72.18%, while if the sentiment of the strong influencer was negative, the SAR is 64.71%.

In contrast, and as predicted by SJT, without an influencer integrating the democratic

opinions into a consensus decision may be more difficult and take longer, while the influ-

encer can speed up the adoption process. We find that without an influencer, the average

discussion length is about 15 months, while with an influencer, the length decreases to 13

months, on average.

Answer to RQ3: We identify strong influencers in the projects, and show that projects

having strong influencers have more successful adoptions and shorter adoption discus-

sions. Moreover, the sentiment of the strong influencer correlates with the adoptions.

2.6.3.1 Case Study

We give examples from two comparably sized projects testem/testem and bower/bower to

illustrate how a strong influencer can be of help in tool adoptions. The project sizes are

similar to each other (number of commits: 2, 305 v.s. 2, 726; number of contributors: 157

v.s. 209).

With a strong influencer In the project testem/testem, the following discussion tran-

spired, on using a tool to automate testing, where [Dev 2] is the strong influencer in the

team.

[Dev 1]: ”... I think it would be convenient to render the page as template and pass

there...”

32



[Dev 2] ”Why do you need this? Please give more details about your use case.”

[Dev 1] ”... I use testem not just to run unit tests to see standard test report page, but

as a watching tool that automatically reloads my web application when sources changed

...”

[Dev 2] ”I get most of what you are saying. Are you using [tool 1]? The hash issue I

think I need to rethink how to handle that ...”

[Dev 1] ”Now I switched to [tool 2] (as it really more robust and convinient), I used

[tool 1] as well it doesn’t actually matter. And I use dependency management tool to

load scripts ...”

Without a strong influencer In contrast, the project bower/bower encountered an issue

when trying to use a tool for automated testing. A developer asked for help from the

community, however, no one presented strong opinions in favor of continued use of this

tool. One member suggested to not use ¡tool¿ anymore and switch to another tool.

[Dev 1]: ”Should we have a common way to declare the tests for any component? For

example, I’d specify [tool] and file in [file]. I’d then run [command], which would open

the [tool] page in a browser. Thoughts?”

[Dev 2]: ”what we could support is something similar to ¡package name¿ which is

common scripts specified in the [file] ... what do [Dev 3] and [Dev 4] think?”

[Dev 4]: ”[Dev 5] has said it was a mistake to make them all globals. they should be

triggered with [file] ...”

[Dev 6]: ”... Any component with unit tests that I’ve written just ends up using a

separate node module (like [tool]) to automate the test workflow. I’d be in favor of closing

this.”

The two decisions are in contrast. In the first project, tool adoption happened after a

strong influencer insists on it. In the second, multiple project members are involved, and

the project adopted a different tool than the one discussed.

2.6.4 RQ4: Adoption & Discussion Determinants

In the previous RQs, we conducted exploratory and qualitative studies of team discussion

and dynamics before and following an adoption event. Here we triangulate those with

33



quantitative studies, to understand the determinants, as well as the direction of their

effects, on adoption success and discussion length.

Our data is naturally hierarchically organized based on the tool being discussed. We

use tool as a random effect in our models, allowing all projects adopting a specific tool to

have the same random intercept. All other variables are used as fixed effects in our mixed

effect models.

We model each of the two outcomes with a base model, comprised of the control

variables, and a full model, which adds to the base the complement of team variables.

We perform the likelihood ratio test between the base and full models using the anova()

function, and present both models for each outcome variable.

Modeling Adoption Success. The results are shown in Table 2.4. We see from the AIC

that the full model fits the data significantly better than the base model, with the three

significant team variables explaining about 5% of the total variance, as per the marginal

R2. Overall, the fixed effects alone do not present a good model, but together with the

random effect, the model is much better, at 48% conditional R2. This, together with the

vif’s being smaller than 5, gives us confidence that we can interpret the coefficients of the

variables.

Of the controls, the variables discussion length, num comments and num commits have

significant, sizeable negative effect on tool adoptions, holding all else constant. This is

consistent with the SJT prediction that group judgment needs more time to form in

larger teams, and that an adoption may be more difficult to succeed since an agreement

is needed from more people. num mentions, on the other hand, shows a sizeable positive

effect, which makes sense from a DOI perspective, that an adoption needs a wider spread

to succeed.

Of the team variables, num involved dev is positively associated with adoption suc-

cess, all else held constant. When multiple developers are highly involved in the project,

they may all be on the same page concerning the project’s needs. This is consistent with

SJT, as aligned egos will easier agree. The predictor num w tool expos also has a signif-

icant, sizable positive effects on adoption success. One possible reason for this is that

34



Table 2.4. adoption success glmer model, tool as random effect.

Base Model Full Model

scale(discussion length) −0.477∗∗∗ (0.110) −0.484∗∗∗ (0.129)

scale(project age) −0.051 (0.105) −0.115 (0.108)

scale(num mentions) 0.612∗∗∗ (0.150) 0.448∗∗ (0.214)

scale(num comments) −0.183∗ (0.110) −0.268∗∗ (0.115)

scale(num commits) −0.208∗∗ (0.097) −0.222∗∗ (0.108)

scale(log(num new dev + 0.1)) −0.464∗∗∗ (0.163)

scale(num w tool expos) 0.617∗∗∗ (0.141)

scale(log(num involved dev + 0.1)) 0.419∗∗ (0.181)

scale(num pos dev) −0.126 (0.141)

scale(num neg dev) −0.120 (0.140)

Constant 1.264∗∗∗ (0.410) 1.434∗∗∗ (0.399)

Observations 1,085 1,085

Log Likelihood −407.502 −391.491

Akaike Inf. Crit. 829.003 806.981

Bayesian Inf. Crit. 863.929 866.854

Marginal R2 9.94% 14.79%

Conditional R2 46.72% 47.97%

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

the developers who had previously been active in projects that have used the tool, are

more familiar with the tool. Consistent with DOI theory, those are the developers that

contribute to the diffusion (spread) of information on the tool in their new projects, which

can lead to successful adoptions. Refined temporal diffusion models can offer a more de-

tailed, temporal view of this diffusion process, and are left for future work. An interesting

35



finding is that num new dev is significant and negatively associated with adoptions. We

can see several explanations. First, new developers may not feel comfortable to state their

opinions publicly, which practically, may amount to a negative overall opinion. Second,

as they do not understand the ins and outs of the projects yet, they may not perceive the

need for the change, especially since they have just recently started contributing. Also,

we find that neither num neg dev nor num pos dev have a significant effect on adoptions.

We see this in the context of SJT: high ego developers are likely to be the ones partici-

pating in the discussions, and their arguments, emotional or not, are unlikely to change

the opinions of other high ego developers.

Modeling Discussion Length. As we see in Table 2.5, the AIC tells us that the full

model fits the data significantly better than the base model, with the three significant team

variables explaining about 40% of the total variance, as per the marginal R2. Overall, the

fixed effects alone present a good model, but together with the random effect, the model

is excellent, at 91% conditional R2. This, together with the vif’s being smaller than 5,

gives us confidence that we can interpret the variables coefficients and trust the model.

Of the control variables only project age has a significant, sizeable positive effect. It is

in line with expectations: older active projects will have more participants and this likely

longer discussions. In the team variables, num new dev is sizeable and positively associ-

ated with the discussion length, all else kept constant. Both DOI and SJT are consistent

with these findings, as the new people, who have little ego involvement, can be the ones

with questions or comments about tools and the project. The other team variables are

negatively associated with the discussion length, but their effects are small. In particular,

num involved dev and num w tool expos are negatively associated with discussion length,

in line with expectations that involved developers and those exposed to the tool previously

may not need long discussions to decide. The num pos dev variable has a small, but a

significant negative effect on discussion length, suggesting that more positive developers

can be beneficial to shortening discussions.

36



Table 2.5. discussion length glmer model, tool as random effect.

Base Model Full Model

scale(project age) 0.360∗∗∗ (0.010) 0.242∗∗∗ (0.010)

scale(num mentions) 0.038∗∗∗ (0.009) 0.059∗∗∗ (0.014)

scale(num comments) 0.072∗∗∗ (0.009) −0.072∗∗∗ (0.010)

scale(num commits) 0.183∗∗∗ (0.008) −0.006 (0.009)

scale(log(num new dev + 0.1)) 0.922∗∗∗ (0.020)

scale(num w tool expos) −0.062∗∗∗ (0.009)

scale(log(num involved dev + 0.1)) −0.038∗∗ (0.016)

scale(num pos dev) −0.030∗∗ (0.013)

scale(num neg dev) −0.013 (0.012)

Constant 1.838∗∗∗ (0.155) 1.644∗∗∗ (0.098)

Observations 1,085 1,085

Log Likelihood −5,868.721 −4,451.806

Akaike Inf. Crit. 11,749.440 8,925.611

Bayesian Inf. Crit. 11,779.380 8,980.494

Marginal R2 31.50% 77.99%

Conditional R2 86.71% 91.33%

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Answer to RQ4: For adoption success, the positive significant variables are the num-

ber of mentions, developers with prior exposure, and involved developers. As for

discussion length, the number of new developers seems to be the most significant

indicator to extend the discussion, while the exposure factor has a positively sizable

effect on shorting the discussion.

37



2.7 Takeaways for Practitioners
Here we distill from our findings some practical takeaways and suggestions. Generally,

OSS project team discussions are helpful for community building. But they are sorely

lacking during tool adoptions, and since we also found that the discussions tend to be

goal-oriented and rational, we recommend that they should be encouraged in the OSS

community.

Our finding that having more people on the project with prior exposure to a tool is

associated with successful adoption is evidence toward proceeding with adoptions after

a team has multiple members with prior exposure. However, longer discussions can be

distracting to a team, and we found they are not associated with better adoption outcomes;

on the other hand, having an influencer as a champion for the adoption may help.

We also found that some tools are associated with longer discussions than others,

perhaps because they demand certain prior exposure and further research. Setting expec-

tations for the team ahead of time can limit feelings of frustrations arising out of lengthy

discussions. And while we found no association between negative (or positive) developers

and adoption success, discussions tend to be shorter as the number of positive developers

increases. Thus, being more positive than negative may help keep things shorter.

Further, more new developers are associated with lower adoption and longer discus-

sions. While the number of new developers cannot be modulated much, perhaps timing

tool adoptions during periods of low influx of new people may help the proposed tool

adoption. Finally, more commits and comments are associated with lowered success of

adoption, thus, planning tool adoptions away from busy project times may result in more

successful adoptions.

2.8 Threats to Validity and Conclusion
Threats. Both adoption data and commits/comments data were gathered from GitHub,

thus, generalizing the results beyond GitHub, or even beyond the gathered corpus, carries

some risk. However, the projects were selected randomly (with some minimum activity

requirements), thus lowering this risk. Also, we do not consider any offline/in-person

communication channels between developers except through GitHub. Previous work has

38



found that there exists a notable decrease in communications associated with same com-

pany affiliation, implying that developers may share their opinions offline. Also, Senti4SD

is trained on communications among developers in Stack Overflow. GitHub comments can

be different than Stack Overflow comments, though our small sample study here capped

that to 12%.

Conclusion. Motivated by the availability of multiple tools per use category in DevOps

settings, and the general lack of guidance about their appropriateness for specific projects,

we studied team level determinants of tool adoptions and discussions.

In terms of the relative timing of tool adoptions, we found that there is a significant

difference between the distribution of adoption times for tools in the same use category,

making it challenging to choose which tool to adopt for projects that are laggards.

We considered tool adoption as a project-wide phenomenon, affecting every member

in the group. But also depending on the opinion of many of them, including their prior

impressions of tools and linguistic sentiment, we demonstrated that the involvement,

tenure, and more importantly, prior exposure to the tool play significant roles in the

discussion. We also find that strong influencers are associated with more, successful

adoptions.

We find that the attitude towards adoptions varies across different groups of people,

and that a team’s relative negativity is tool-specific, and can change after adoption,

suggesting that the usability of tools can be over- and underestimated. We conducted

topic analysis, and in-depth case studies on how and why some similar projects choose

one tool over another one. We conclude that tool adoption is akin to a reasonable team

negotiation, that proceeds through multiple phases. We hope our results can be of help

in future tool adoption decisions.

39



Chapter 3

Sustainability Forecasting for
Apache Incubator Projects

3.1 Introduction
Open source has democratized software development. Developers flock to OSS projects

hoping to add certain functionality, contribute to a worthy goal, and sharpen their skills.

However, more than 80% of OSS projects become abandoned over time, especially the

smaller and younger projects [82]. Certainly not all OSS projects are meant to be widely

used or even to persist beyond a college semester. However, even the large, popular OSS

software, widely used in our daily lives and by fortune 500 companies, started out as small

projects. Thus, from a societal perspective, it is important to ask: Why do some nascent

OSS projects succeed and become self-sustaining while others do not [83]? And can the

latter be helped?

To aid developer communities to build and maintain sustainable OSS projects, non-

profit organizations like the Apache Software Foundation (ASF) have been established.

ASF runs the ASF Incubator (ASFI) [84], where nascent projects aiming to be a part of

the ASF community are provided with stewardship and mentor-like guidance to help them

eventually become self-sustaining and even top-level projects in ASF. Projects in ASFI,

called podlings, are required to adhere to ASF rules and regulations, including keeping

all commits and emails public. When certain conditions are satisfied, project developers

and ASF committees decide if a podling should be graduated, referred to as a successful

40



sustainability outcome. Otherwise they get retired. Per ASFI, ‘A major criterion for

graduation is to have developed an open and diverse meritocratic community. Graduation

tests whether a project has learned enough and is responsible enough to sustain itself as

such a community’1.

Podlings in ASFI receive a mentor, file monthly reports, and get feedback. In spite

of this support, many podlings fail. Most ASFI committers do not lack coding expertise,

but graduating from the incubator requires more: it asks for effective teamwork and

sustainable, community development. These requirements are most challenging to meet.

From comments in ASFI, we see that developers are confused by the expectation of ‘The

Apache Way’, especially initially. E.g., from project Flex on 05 Jan 2012, ‘...I think

there is a need to keep things as simple as possible for people who [are] already confused

with what’s going on with the move to Apache...’ The frustrations sometimes persist

beyond the initial period. A comment from project Flex on 06 Jan 2012, states ‘...many

people are confused and lost as to what to do. Who is providing that direction for

them?’ In large part, understanding how to achieve the graduation requirements seems

to be the culprit, likely due to the abstract nature of those concepts. Another reason

is that comparison to others is difficult. From project Rave on 28 June 2011: ‘[sporadic

adherence to requirements] makes it very confusing and difficult to compare against what

other projects as some are doing too little while others are doing too much...’

Thus, there is a need to connect the proverbial dots on how to get from the point

of entry into ASFI to checking all the graduation requirement boxes. That brings us

to the motivation of our paper. The extrinsically labeled ASFI dataset offers heretofore

unavailable, fine-grained records of historical trajectories of projects under policies and

regulations of ASFI. We posit that:

The process that ASFI projects follow toward becoming sustainable can be mod-

eled as a function of a small set of project features, so that the outcome (grad-

uation/retirement) can be predicted early on, from the successes and failures of

others, allowing for trajectory adjustment if needed.

1https://incubator.apache.org/guides/graduation.html

41

https://incubator.apache.org/guides/graduation.html


To deliver on that, in addition to the historical, outcome-labeled ASFI data, we also

need a theoretical framework that can capture the complexity of OSS development. Over

the past 30 years research in organizational behavior and management has documented

the evolution in project management practices [85], as they have moved toward more

successful models [86]. The socio-technical view of an organization [87] has emerged as one

of the more successful hybrid models recognizing the benefits that integrated treatment

of the technical aspect (code, machines, device, etc.) and the social aspect (people,

communication, well-being, etc.) has on an organization [88]. Likewise, OSS projects

have been effectively studied from the socio-technical system (STS) perspective [89], with

the social side capturing humans and their communication channels, and the technical

capturing the content and structure of the software [90].

Here, inspired by the socio-technical systems modeling perspective, and the availabil-

ity of extrinsically labeled historical data of project sustainability from ASFI, our goals

are: (1) to identify socio-technical features distinguishing projects that graduate from the

ASF Incubator from those that do not (i.e., find the determinants of OSS project sus-

tainability), and (2) to build temporal forecasting models that can predict sustainability

outcomes at any time point in the project development, and thus (3) to offer practical

and timely advice on intervening to correct a project’s course, especially early on. To

approach these goals, we conduct a mix of quantitative and qualitative empirical studies.

We start by gathering project technical traces (commits) and social traces (emails) from

the ASF Incubator website 2. From those, we construct the temporal social and technical

networks for each project, and perform exploratory data analyses, deep-dive case stud-

ies, build an accurate forecasting model, and finally implement the interpretable model

presenting timely advice. We illustrate our workflow in Figure 3.1.

Our contributions in this paper are:

• We provide a novel longitudinal dataset of hundreds of OSS projects’ development

traces under ASF regulation, with extrinsically labeled project sustainability status.
2http://incubator.apache.org/projects/

42

http://incubator.apache.org/projects/


ASFI 

Mailing Lists

ASFI 

SVN Commits

Social Nets

Technical Nets

LSTM-based 

Model

Quantitative 

Analysis

Qualitative 

Analysis

Part I:

Data Collection 

and Cleaning

Part II: 

Longitudinal Socio-

technical System

Part III:

Deep Learner & 

Actionable Model

Part IV:

Mixed Method 

Analysis 

Actionable 

Model

Figure 3.1. The workflow of our mixed-methods study.

• We propose the first OSS project sustainability forecast measure modeled from

tens of socio-technical network and project features. Our model shows excellent

predictive performance (≥ 93% accuracy as early as 8 months into incubation).

• We find that ASF incubator projects with fewer but more focused committers and

more but distributed (participating in asynchronous discussions) communicators are

more likely to gain momentum to self-sustainability.

• We describe a strategy for real-time monitoring of the sustainability forecast for any

project, derived from an interpretable version of our DNN model.

This paper is a first step toward showing that end-results of OSS projects’ sustain-

ability trajectories can be effectively forecast and possibly corrected upward, if needed.

Our motivation goes beyond ASFI as many more nascent projects fail outside of ASFI,

so self-monitoring and self-adjustment may be more pertinent to them.

3.2 Background and Theories
We present background on the Apache Software Foundation (ASF) and OSS success, and

then we introduce related theories through which we generate our Research Questions.

43



3.2.1 Apache Software Foundation Incubator

Community over code is the tenet of the Apache Software Foundation (ASF) commu-

nity [10]. Their belief is that if they take good care of the community, good software will

emerge from it.

However, conflicts are ubiquitous in OSS projects [91], and not even ASF can escape

them. To minimize conflicts, ASF requires projects to make all communication publicly

available on the mailing lists, summarized popularly as if it did not happen in the mailing

lists, it did not happen [92]. The communication records benefit developers as they re-

flect on previous decisions and trace their precursors, therefore improving efficiency and

productivity.

The ASF community adopts a democratic way in many of their affairs. For example,

contributors are invited to vote +1 (yes), 0 (okay), or −1 (no) to project-wide changes.

However, ASF committers can live in different time zones, and their response to a project

decision can delay largely. Regarding that, ASF community adopts the Lazy Consen-

sus [93]. Moreover, the ASF community also believes in Earned Rights, that newcomers

should be treated the same way if they have proven their technical skills.

The goal of the ASF Incubator (ASFI) is to help projects become self-sustained and

eventually join ASF. Like many OSS developers, ASFI committers work at will and there

are no formal obligations on them. Thus, ASFI projects are required to show they are able

to recruit new committers, and fill existing technical debt [94]. However, attracting new

committers is difficult as they can be affected by both social and technical barriers [95].

To address this issue, the ASFI community has established a set of specific rules that

emphasize providing mentorship to newcomers [96].

During incubation, ASFI projects need to adopt ASF procedures to develop and culti-

vate the projects’ community, and standardize their working style. To graduate from the

incubator and finally become a part of the ASF, projects are required to demonstrate they

can self-govern and be self-sustained [97]. The specific requirement of sustainability can

vary from one project to another [2, 98]. A project’s graduation is ultimately approved

for its self-sustainability by ASF’s Project Management Committee via several rounds of

44



public voting3.

3.2.2 OSS Projects Success and Sustainability

Recently, substantial work has focused on modeling the success of OSS projects [99, 100,

33]. Even though there is no universally agreed definition of OSS success [101], there are

two main perspectives. The first one is from the development process viewpoint, which

is often measured by technical metrics of software [102], e.g., code defect density [103],

response time [104], and error resolution rate [105]. The second one is more from the

social angle, including contributor growth [106], community participation [107], and com-

munication patterns [108]. In effect, K. Crowston et al. [109] studied the operationalizing

success measures under the context of FLOSS projects. N. Cerpa et al. [110] provide

survey evidence that factors in the logistic regression models are not as predictive as ex-

pected. D. Surian et al. [111] identify discriminative rich patterns from socio-technical

networks to predict project success in the context of SourceForge projects. J. Coelho et

al. [112] conduct mixed-method analysis on GitHub projects, and they find that most

of modern OSS projects fail due to project characteristics and team issues. M. Valiev et

al. [113] conducted studies on sustained activity within the PyPI ecosystem, and find that

relative position in the dependency network has a significant impact on project sustain-

ability. None of these consider forecasting over time and thus are not useful for real-time

monitoring, which is the major contribution of this work.

Although OSS success and sustainability measure similar aspects of projects [114],

they are, in fact, not the same thing. There are two main differences between the two.

First, OSS success is measured statically while sustainability is measured dynamically.

Second, sustainability is a measure related more to the human and social aspect (e.g., the

ability to take responsible collective action, and an open and inclusive atmosphere, etc.)

than the technical aspect (defect density, technical advantage, etc.).

Therefore, the sustainability of an OSS project becomes even more important when it

is a part of a larger ecosystem [115, 113]. Such OSS projects are inter-dependent to each

other, the sustainability and stability of one project can introduce tremendous network
3https://incubator.apache.org/guides/graduation.html

45

https://incubator.apache.org/guides/graduation.html


effect to its ecosystem.4 Therefore, the sustainability of OSS projects becomes even more

significant as they can influence many other OSS projects in the ecosystem that rely on

them.

3.2.3 Socio-technical Systems Theory

Socio-technical structure plays an important role in achieving collective success in OSS

projects [116, 19, 108]. A Socio-Technical System (STS) comprises two entities [117]: the

social system where members continuously create and share knowledge via various types of

individual interactions, and the technical system where the members utilize the technical

hardware to accomplish certain collective tasks. The theory of STS is often referenced

when studying how the technical system is able to provide efficient and reliable individual

interactions [118], and how the social subsystem becomes contingent in the interactions

and further affects the performance of the technical subsystem [119].

OSS projects have been studied from the network view [116]. González-Barahona et

al. [120] proposed using technical networks, where nodes are the modules in the CVS

repository and edges indicate two modules share common committers, to study the orga-

nization of ASF projects.

Moreover, in socio-technical systems, governance can be applied through long-term or

short-term interventions. Smith et al. [121] proposed two conceptual approaches: ‘Gover-

nance on the outside’ objectifies the socio-technical and is managerial in approach. ‘Gov-

ernance on the inside’ is more reflexive about the role of governance in co-constituting

the socio-technical. From that perspective, the ASFI community is a unique system

that has both outside influence (regulations from ASF committee) and inside governance

(motivated by the project managers).

3.2.4 Contingency Theory

Contingency theory is the notion that there is no one best way to govern an organization.

Instead, each decision in an organization must depend on its internal structure, contingent

upon the external context (e.g., stakeholder [122], risk [123], schedule [124], etc.). Joslin
4A developer abruptly deleting the widely used, 11-line of left-pad code, led to cascading disruption

of other OSS projects in npm ecosystem.

46



et al. [125] find that project success associates with the methodologies (e.g., process,

tools, methods, etc.) adopted by the project. And not a single organizational structure is

equally effective in all cases. As the organizational context changes over time, to maintain

consistency, the project must adapt to its context accordingly. Otherwise, conflicts and

inefficiency occur [126], i.e., one size does not fit all.

To address the conflicts caused by incompatible fitting to the project’s context, pre-

vious work suggests thinking holistically. Lehtonen et al. [127] consider the project envi-

ronment as all measurable spatio-temporal factors when a project is initiated, processed,

adjusted, and finally terminated, suggesting that the same factor can have an opposite

influence on the projects under a different context. In the domain of software engineering,

Joslin et al. [125] considers project governance to be part of the project context, concluding

that project governance can impact the use and effectiveness of project methodologies.

In the context of OSS projects seen as socio-technical systems, contingency theory

implies that observing and tracking multiple facets/features of the projects may lead to

more effective models of system evolution.

3.3 Hypotheses and Research Questions
Our goal is to build effective models for forecasting ASFI project sustainability. Here, we

generate our hypotheses and formulate research questions based on prior work and the

pertinent theories.

3.3.1 Hypotheses

STS theory suggests that publicly observable participation and decentralized contributions

to software projects foster sustainable collaborations. The ASFI ecosystem is in a form

of a typical STS where the technical activities build a shared code artifact and the social

ones mediate knowledge and organizational details to individuals. Since all activities are

logged, various socio-technical metrics can be calculated.

Our main hypothesis is that the STS formalism and the full availability of the projects’

longitudinal digital traces, will make it possible to build an accurate model of sustain-

ability. According to contingency theory, no single organizational structure is equally

47



effective under all circumstances. Thus, across ASFI projects, we expect to see that the

same socio-technical factors may have different contributions to sustainability. Finally,

we posit, per contingency theory, that the roles of some social-technical factors may vary

over time. Moreover, we expect to see that similar ASFI projects can end with divergent

outcomes (graduation or retirement) over time based on actions they have undertaken.

3.3.2 Research Questions

We formalize the above into our RQs, as follows. The first is a validation of contingency

theory hypotheses, that there exist measurable differences between graduated projects

and retired projects, along with multiple features. Namely,

RQ1 Are there significant differences among STS measures, between graduated projects

and retired projects?

Next, STS theory holds that project sustainability is associated with social and tech-

nical network features. Contingency theory implies there will be multiple such features

in play. Thus, we expect that a quantitative temporal model may be fitted well to the

available ASFI data, so long as a sufficient number of features and projects are available.

RQ2 How well can we predict the sustainability based on temporal traces of ASFI

projects? And, can we identify the determinants along with their weights and directions?

To make the model useful in practice it needs more than just accurate predictions of

outcomes, it also needs to generate timely advice on whether the project should stay the

course or implement specific corrective action to improve the graduation trajectory. We

formulate this as:

RQ3 Can we monitor project sustainability status in a continuous manner? When

and how should projects react to the monitoring advice?

3.4 Data and Methods
We collected historical trace data of commits, emails, incubation length, sponsor infor-

mation, and incubation outcome for 263 ASFI projects, which have available archives

of both commits and emails from 03/29/2003 to 10/31/2019 [128]. Among them, 176

projects have already graduated, 46 have retired, and 41 are still in incubation. The

48



latter, projects still in incubation, were not studied in this paper.

We collected the ASFI data from two sources: ASF mailing lists and SVN com-

mits. The mailing list archives are open access and can be accessed through the archive

web page, http://mail-archives.apache.org/mod_mbox/. They contain all emails and

commits from the project’s ASF entry date, and are current. We constructed URLs for

individual project files in the ASF incubator as Project URL. The project URLs use the

pattern: project-name/(YYYYMM).mbox. For example, for project hama, the full URL is

http://mail-archives.apache.org/mod_mbox/hama-dev/201904.mbox. Each such file

contains a month of mailing list messages from the project, for the date specified in the

URL. Here dev stands for ‘emails among developers’.

However, we find that many projects, especially these over ten years old, which used

SVN, used a bot in the dev mailing list to record all commits, thus a message from dev is

not always an email. Similar emails were sent to the ‘commits’ mailing list, which, thus,

contains some emails. Therefore, we collected both dev and commits mailing lists files for

the 222 graduated or retired ASF Incubator projects through the archive web page5.

3.4.1 Data Pre-processing

ASF manages and records the communications among people by globally assigning an

exclusive email name to each developer at the project-level. However, some developers

still prefer to use their personal email/name instead of the assigned one, which in turn

complicates the identification of distinct developers [129]. We performed de-aliasing for

those developers with multiple aliases and/or email addresses, as follows. We first remove

titles (e.g., jr.) and common words in the name (e.g., admin, lists, group) from usernames,

then we match with both the original order and switched first/last name order whenever

names contain exactly one comma to eliminate ambiguous styles. Then we match each

developer with her/his multiple email addresses (if any).

Many projects, especially those over ten years old that used SVN, utilized a bot

for extensive mailings (empirical evidence shows 26% of popular GitHub projects use

bots) [130], thus forming outliers in the dataset. Some broadcast emails are automatically
5Data and scripts are available: https://doi.org/10.5281/zenodo.4564072

49

http://mail-archives.apache.org/mod_mbox/
http://mail-archives.apache.org/mod_mbox/
http://mail-archives.apache.org/mod_mbox/hama-dev/201904.mbox
https://doi.org/10.5281/zenodo.4564072


generated by the issue tracking tool (e.g., JIRA), and no developer would reply to them.

We eliminated the broadcast messages that no one replied to, and we find many of them

are generated by automated tools. We find some developers contributed many commits by

directly changing/uploading massive non-source code files (e.g., data, configuration, and

image files). Since those can form outliers in the dataset, commits to files with extension

data: .json, .xml, .yml, .yaml, .jar; text/configurations: .config, .info, .ini, .txt, .md, and

image: .jpg, .gif, .pdf, .png are eliminated.

As result, we identify 21,328 unique contributors (who either committed code or posted

emails). Among them, 1,469 only committed code, and 18,205 only posted/replied to

discussions without committing code. The remaining 1,654 contributors engaged in both

activities. We identify 2,764,309 commits, modifying a total of 404,455 source code files.

We collect 879,812 emails, from them we identify 19,859 developers who participated in

discussions (by sending or receiving emails). Among them, 19,573 proactively engaged in

discussion activities (i.e., sending emails), the remaining 286 developers collaborated in a

passive way (only received emails).

3.4.2 STS and Socio-technical Networks

We use socio-technical networks to anchor our study of OSS STS. Network science ap-

proaches have been prominent in studying complex dynamics of OSS projects [131, 111],

although the specific definition may vary with domain context [16].

In this paper, we define the projects’ socio-technical structure using social (email-

based) and technical (code-based) networks, induced from their emails to the mailing lists

and commits to source files, as follows. Similar to the approach by Bird et al. [19], we

form a social (email) network for each project, at each month, from the communications

between developers: a directed edge from developer A to B exists if B has replied to

A’s post in a thread or if A has emailed B directly (which is contained in the “in-reply-

to” field). The technical (code) collaboration networks are formed for each project, at

each month, by including an undirected edge between developer A and developer B if

both developer A and B has committed to the same coding source file(s) F that month

(excluding the SVN branch names).

50



3.4.3 Features/Metrics of Interest

The socio-technical and project features/variables that we chose for this study have been

identified based on our discussion and consideration of the underlying theories. All our

data is longitudinal. All metrics are aggregated over monthly intervals, for each project,

from the start to the end of its incubation [132]. We started with 29 variables, given their

statistics as Supplementary Material.

Variable Selection We used Lasso regression [133] (L1 regularization) to identify a

smaller set of 18 linearly independent variables, plus the outcome, described in the fol-

lowing. We used R’s library glmnet [134] for the Lasso regression, with λ = 0.001.

Outcome: Graduation Status. Graduation grad status is a binary variable (0=‘Re-

tired’ or 1=‘Graduated’) indicating the projects graduation status in the incubator, as

discussed above.

Longitudinal Project Metrics: The number of Active Developers num act devs is the

count of contributors who have been active by either making commits or participating in

discussions. Number of commits num commits is the count of source code commits made

by all committers in the project. The process of excluding the commits that do not contain

source code is described in the Data Section. The number of Emails num emails is the

number of emails (including both thread starter emails and reply-to emails). num files is

the total number of unique source code files created during the incubation. To measure the

continuity of activities, we define c interruption and e as the sum of the time intervals

of the top 3 longest interruptions between successive commits and successive emails,

respectively. The commit percentage top c fract and email percentage top e fract are

the percentages of respective activities performed by the top 10% contributors.

Longitudinal Socio-Technical Project Metrics: For each project network, for each

month, we constructed the technical and social networks, and from them calculate the

number of active nodes, c nodes, and edges c edges in the technical network; e nodes

and e edges in the social network. The prefix c in a variable’s name indicates it is of

the technical (code) network, while the prefix e in a variable’s name indicates it is of

the social (email) network. Additionally, we calculated the mean degrees c mean degree

51



0

20

40

60

Graduated Retired

(a) Incubation

Months (p < .001)

0

20000

40000

60000

Graduated Retired

(b) Num. of Com-

mits (p < .004)

0

5000

10000

15000

Graduated Retired

(c) Num. of Emails

(p < .001)

0

25

50

75

100

Graduated Retired

(d) TN Nodes (p <

.001)

0

200

400

600

Graduated Retired

(e) SN Nodes (p <

.001)

Figure 3.2. The descriptive variables between graduated projects (in green, left) and
retired projects (in red, right). The corresponding p-value of the Student’s t-test is in
the brackets, suggesting significant statistical differences exist between them.

and e mean degree (sum of all nodes’ degree divided by the number of nodes) in the

technical network and social network, respectively. We calculate the clustering coeffi-

cients c c coef, e c coef as the number of connected triplets divided by the number

of all triplets in the corresponding monthly network. The long-tail-edness c long tail,

e long tail is calculated as the degree of the 75th percentile of nodes in the network, for

the monthly networks, in the technical and social network, respectively. To get a sense

of the range and variability in these variables, we show them aggregated over all months

and projects in Table 3.1.

3.4.4 Models

We needed a modeling approach able to learn and forecast from longitudinal data, have

excellent performance, and be interpretable.

3.4.4.1 LSTM-Based Learning Model

Long short-term memory [135] is a variant of Recurrent Neural Networks (RNNs), de-

signed to learn and model sequential data and is less sensitive to the problem of gradient

disappearance and gradient explosion when training on long sequences. To obtain se-

quence data for each project, we aggregated historical ASFI records into monthly data,

for each month from the incubation start date to the project graduation/retirement from

the incubator. We interpret the monthly LSTM output probability as the graduation

forecast, i.e., the probability of the project eventually graduating.

We prepared the data as follows. We randomly divided the projects into training

and test sets in an 8-to-2 ratio. Because we have variables that are of very different

52



Table 3.1. Statistics of the 176 graduated and 46 retired projects in the ASFI dataset.
c and e correspond to technical networks and social networks, respectively.

Statistic Mean St. Dev. 5% 95%

grad status 0.79 0.41 0 1

num files 1,821.87 3,346.23 122.45 5436.6

num emails 3,963.12 4,930.54 262.65 12463.6

num commits 12,451.84 27,373.41 453.8 36359.7

num act devs 121.23 119.85 25 415.05

c interruption 0.20 0.20 0.03 0.60

e interruption 0.11 0.14 0.01 0.32

top c fract 0.65 0.19 0.38 0.94

top e fract 0.71 0.11 0.49 0.85

c nodes 15.44 17.09 2 49.9

c edges 120.15 276.19 1 531.5

c c coef 0.78 0.25 0 1

c long tail 10.65 11.93 0 33.85

c mean degree 8.14 7.45 1 23.75

e nodes 113.38 115.07 22 408.15

e edges 399.23 562.38 47.1 1315.9

e c coef 0.43 0.10 0.28 0.58

e long tail 10.33 7.15 3 24.95

e mean degree 6.07 1.91 3.88 9.62

magnitudes, and many of those are not normally distributed, thus we choose to use the

MinMaxScaler function to standardize all prediction variables.

We implemented a 3-layer LSTM model: a 64 neurons LSTM layer, followed by a 0.3

rate drop-out layer, and a dense layer with the softmax function to yield the predicted

outcome of the classification task (graduate/retire). If the probability of graduating is

higher than 0.5 then we predict the project will graduate, otherwise, we predict it will

retire. We validated the cutoff choice by examining the distribution of sustainability

53



forecasts. During training, we used a binary cross-entropy as the loss function and Adam

as the optimizer. Since the length of the temporal data of each project varies, instead

of using zero-padding, which could possibly introduce variance to the model, we chose to

use a slower but more reliable way by only feeding one training sample at a time. We use

the accuracy, precision, recall, and F1-measure to evaluate the performance of the LSTM

model using the classification report function from the sklearn package.

To get the graduation forecast for a project at month m+1, we cap the project history

at month m, i.e., we only use the first m months in the model. We interpret the outcome

yield of the LSTM model as the graduation forecast. Projects are not being calculated

and used in the prediction when the current time exceeds their incubation lengths. We

generated graduation forecasts for each month, and thus obtained the graduation forecast

trajectories. Repeating the above process 10 times, selecting different training/test split

each time, produced our error bounds.

3.4.4.2 LIME-Based Interpretable Model

Black-box deep learning models, like LSTMs, are less ideal for decision making than

interpretable approximations of deep learning models. One such approach is the Local

Interpretable Model-agnostic Explanations (LIME) [136]. Given a pre-trained model and

an input instance, LIME reasons how the black-box model yielded the output, by probing

the model along each of the features. LIME yields a magnitude and a sign (positive

or negative) that characterize the contribution of each feature toward explaining the

outcome.

Assumption LIME assumes that any complex model is linear (i.e., interpretable) at

a local scale. Therefore, given an input instance, LIME first artificially generates large

enough samples that are presumably very close to the given sample (by some distance

measure). Then, by training on the predictions of those newly generated samples given

by the complex model, LIME can locally approximate the complex model using linear

models, thereby presenting the coefficients of variables of the input instance.

Procedure We first constructed a LIME explainer using the RecurrentTabularExplainer

function from the Python LIME package (version 0.2.0 ). That package was designed for

54



explaining RNN-type models with tabular data. For each project, we use explain instance

function, setting the parameter num features to the product of the incubation length and

the number of features. In this way, we can obtain the coefficients of all features over

all time. The parameter num samples is set to 5,000 (by default), which is empirically

sufficient for convergent results. Next, LIME probes the pre-trained LSTM model 5,000

times by feeding it the newly generated samples. LIME uses a similarity/distance function

to measure the importance of each new sample on the locality of the instance to be

explained. Lastly, LIME fits a weighted linear model dataset, and the explanations all

come from the final linear model. Since the LIME framework requires all samples to have

the same shape, we divided our projects into several buckets where the projects have at

least n months of temporal data in the n-th bucket.

Project-specific vs Overall Modeling We used the LIME results in two modeling ways:

project-specific level and overall level. In the former, we used LIME to obtain the monthly

coefficient of each variable and then aggregated them over all months to obtain a project-

specific coefficient. In the latter, we aggregated project-specific coefficients over all ASFI

projects to obtain the coefficients for each variable over all projects.

3.5 Results and Discussions
3.5.1 RQ1 Graduated vs. Retired Projects

To perform exploratory data analysis, we first contrast ASFI graduated and retired

projects along the technical (code-based) and social (email-based) dimensions in our data.

Box-plot comparisons of the incubation months, number of commits, number of emails,

number of nodes in the social networks, and number of nodes in the technical networks are

shown in Figure 3.2. We observe notable differences as follows. The median incubation

months of retired projects is significantly higher than of the graduated projects, suggesting

that retirement is not an easy decision, and that perhaps necessary time is given to projects

to change their trajectories and achieve graduation.

Graduated projects also tend to have more code commits and more email communi-

cations, implying that, in terms of criteria for graduation, the ASF community values

55



both technical contribution (as commits) and social communication (as emails), and both

of them may be of importance in building a sustainable community. Such results also

motivate us to expand our research goals from descriptive data to inferential data with

more complex network features.

Across both the social and technical networks, the network size varies for the graduated

projects, indicating that projects of any size can be sustainable, and it also suggests

that project size can be used as a control in modeling. The notable difference between

graduated and retired projects, and the lack of variance in network sizes in the retired

projects suggests recruitment difficulties in the latter, exposing them to significant risks

as people leave.
Answer to RQ1: We observe significant differences across multiple key measures

between graduated projects and retired projects. Notably, retired projects tend

to stay longer in the incubator than graduated ones, and the productivity and

diversity of graduated projects are higher compared to retired projects.

3.5.2 RQ2 Interpretable Forecasting

Here we present the results of training an LSTM model on our ASFI data, and an LSTM-

derived LIME model on the same data, using the methods as described above. We use

those models for forecasting by each month into the project the eventual graduation

outcome. First, we show the performance curves of the LSTM model, over time, in Fig-

ure 3.3. The overall accuracy, and F1-value, and their standard errors (grey area), for the

full model and the model without the socio-technical variables, suggest an excellent and

stable predictive performance of the trained LSTM model, with significant contribution

from the socio-technical networks. As early as month 8 the accuracy is 93%, and staying

above after that.

The total incubation time varies significantly across ASFI projects. While for most

projects the incubation time is between 8 months and 25 months, some spend more

than 30 months in incubation, while others only 6 months, as shown in the inset plot in

Figure 3.3. Thus, the model’s performance decreases for projects with below 8 and above

25 incubation months, due to insufficient data above and below those values.

56



0.5

0.6

0.7

0.8

0.9

1.0

1 5 9 13 17 21 25
Incubation Month

w/ accuracy
w/ f1
w/o accuracy
w/o f1

0.00

0.01

0.02

0.03

0 30 60 90

Figure 3.3. Performance metrics of the full LSTM model across incubation months (top
2 curves), showing the significant contribution of the socio-technical metrics. Curves
are plotted using loess. Grey area shows the standard errors. The red vertical line
shows 93% accuracy at 8 months of incubation. The inset shows project density over
total incubation time.

Next, we apply LIME to understand and interpret the LSTM model and derive

regression-like coefficients for the features in the socio-technical networks. To illustrate

how to interpret the results at a project-specific level, we show an example of LIME’s

output for a graduated project, ‘Empire-DB’, in Figure 3.4. Note that the coefficients are

aggregated over all incubation months. Looking at the median over all months provides

model coefficient stability and avoids emphasizing very small effects which nevertheless

dominate in some months. The magnitudes of the coefficients tend to be small because

the model predicts probabilities within [0, 1], and there are tens of them.

There, we see that the technical network clustering coefficient c c coef is negatively

associated with successful graduation. A high clustering coefficient in the technical net-

work of people and source files indicates a high overlap of developers’ activities on the

same files. One possible reason for the negative effect introduced by c c coef is that,

work may not be well distributed among the team members. Another reason might be

that the artifact is not well-conceived. Yet a third reason can be that the number of de-

velopers on the project is small and they must all “tend to fires” wherever they might be.

Interestingly, the fraction of commits (top c fract) and emails (top e fract) by the top

10% developers who tend to be the influencers in projects are positively associated with

57



−0.02
−0.01

0.00
0.01
0.02
0.03

c_
c_

co
ef

c_
ed

ge
s

c_
in

te
rr

up
tio

n
c_

lo
ng

_t
ai

l
c_

m
ea

n_
de

gr
ee

c_
no

de
s

e_
c_

co
ef

e_
ed

ge
s

e_
in

te
rr

up
tio

n
e_

lo
ng

_t
ai

l
e_

m
ea

n_
de

gr
ee

e_
no

de
s

nu
m

_a
ct

_d
ev

s
nu

m
_c

om
m

its
nu

m
_e

m
ai

ls
nu

m
_f

ile
s

to
p_

c_
fr

ac
t

to
p_

e_
fr

ac
t

co
ef

fic
ie

nt

Figure 3.4. The coefficients of all variables from a graduated project (‘Empire-DB’),
aggregated over all incubation months, showing that LIME delivers stable estimation
at the project-level.

graduation, implying that the efforts of the top 10% help sustain the project. Figure 3.4

also shows the feature coefficients of a selected project in both size and direction across all

incubation months, which provides further insight, and confidence in the methods utility.

Next, by only counting the signs of the project-level coefficients across all projects,

we can identify whether there is an overall consistent direction in which that feature is

contributing to the prediction. E.g., if a feature is consistently negative to the outcome

across all projects, i.e., that feature’s coefficient is negative in most project models, then

it has the same, overall negative effect.

In Figure 3.5, we show the count of aggregate signs of feature coefficients across all

projects. There, blue indicates a positive effect and red a negative one. Visually, if

most of the bar is a single color, then that variable has a consistent effect direction, i.e.,

same sign coefficient, among all projects. Overall, perhaps surprisingly, we find that for

almost all projects, the number of nodes in the technical networks c nodes has a negative

effect on graduation for minor projects while the number of nodes in the social networks

e nodes is positively associated with graduation. This is consistent with prior research

findings that communication is more determinant of success and onboarding than coding

activities [137]. Other variable appear to have inconsistent effect across projects, e.g.,

num files and c mean degree.

58



0

50

100

150

c_
c_

co
ef

c_
ed

ge
s

c_
in

te
rr

up
tio

n
c_

lo
ng

_t
ai

l
c_

m
ea

n_
de

gr
ee

c_
no

de
s

e_
c_

co
ef

e_
ed

ge
s

e_
in

te
rr

up
tio

n
e_

lo
ng

_t
ai

l
e_

m
ea

n_
de

gr
ee

e_
no

de
s

nu
m

_a
ct

_d
ev

nu
m

_c
om

m
its

nu
m

_e
m

ai
ls

nu
m

_f
ile

s
to

p_
c_

fr
ac

t
to

p_
e_

fr
ac

t

P
ro

je
ct

 C
ou

nt
s

Figure 3.5. The overall-level coefficients of all variables of interest (blue is positive,
while red is negative to graduation). It shows that some variables have same effect on
almost all projects, while others do not.

−0.06

−0.03

0.00

0.03

1 2 3 4
Quarter of Incubation

C
oe

ffi
ci

en
t

c_mean_degree
num_act_dev

Figure 3.6. The overall-level coefficient of two selected variables: mean degree in
technical network (in red) and the number of active developers (in green) in different
incubating quarters.

Since LIME fits model coefficients for all months, we can also examine the dynamics

of feature coefficients. Figure 3.6 shows that when broken down into 4 intervals, the effect

of num act devs becomes less positive, and less important, over time, perhaps due to the

project becoming more stable. Contrariwise, the negative effect of the mean degree in

technical networks (c mean degree), diminishes in latter development, arguably, again,

because of increased project stability over time.

59



month = 8

Downturn Detected!

Figure 3.7. The graduation forecast of the marginal projects. Commonsrdf (ID: 82,
in green) and Etch (ID: 103, in blue) are graduated projects that almost failed while
retired project Ariatosca (ID: 256, in red) almost succeeded.

Answer to RQ2: Effective models of project sustainability can be built from

tens of socio-technical and project features. Stable and interpretable models can

be derived yielding feature coefficients at both project-specific and overall levels.

Notably, overall, projects with fewer but more centralized committers and those

with more but distributed communicators are more likely to become self-sustainable

in the ASF incubator.

3.5.3 Case Study: Change of Fate

To understand in depth why trajectories may change, with the help of our interpretable

model we randomly selected three qualitatively different example projects (2 graduated

and 1 retired), showing up- or down-turn points in their sustainability trajectories, as

illustrated in Figure 3.7.

§1 In project Commonsrdf (ID: 82), the graduation forecast starts high but experiences

a downturn in the first half of incubation, and then it rises again. Our model identifies

the lack of both email and commit activities are associated with the downturn. There is

also an overall decreasing trend in the number of active developers (from 27 to 11, then to

4 eventually). To investigate why their promising trajectory changed, and then changed

again, we looked through their discussions on the mailing list.

In the month with the lowest graduation forecast, the project released a major version

60



of their software, following which the committers showed less activity. We also noticed

that the ASF incubator Project Management Committee (PMC) routinely sent an email

to the project asking for the periodically report 6, but such reports were not requested for

more than 2 months after the release. Lastly, we saw email arguments on the technical

direction for the project’s future development. Unsurprisingly the project was going to

fail if no one observes such situation and takes action to intervene. However, an email

from one of the major contributors, Dev1, appears to have initiated the turning point.

Below we quote it and the ensuing discussion.

Dev1 “Folks, I’ve seen very little traffic for the last few months. . . I am concerned

that there is perhaps no longer a viable community around this podling. . . ”, and seriously

asked “Do people still think this project has/can build the momentum to move forwards

towards graduation?”

Dev2 “. . . we lost one of the main pillars of this projects . . . So our mentors are right.

We’re in a situation where the project has no momentum at all, and honestly I have no

idea what’s best to do. . . ”

Dev3 “. . . there was a small group of 5 core committers to begin with. As of right now,

the number is 22. We’ve actually done pretty well. . . ”

Then, Dev4 responded with an email titled ‘Values and Terms’ and suggested a tech-

nical directions, with detailed reasoning: “. . . if you actually tried to use this (algorithm)

would (i) hurt speed, and (ii) hurt the perception of speed. . . ” and clearly states that “I’d

be inclined to go another step further and add a generic parameter . . . ”

After this discussion, the community became more engaged and increased some activ-

ities, and the community felt more confident about the upcoming routine report. Even-

tually, the project graduated in the end (our forecast went up to 80%).

§2 In project Etch (ID: 103) there was a major depletion of senior developers after a

milestone was reached in the middle of incubation. Then commits stopped for almost one

year. Our graduation forecast reflects that: it dropped from 79% to only 19%.

After a long time being inactive, one developer sent a broadcast email titled ‘Future
6https://cwiki.apache.org/confluence/display/INCUBATOR/Reports

61

https://cwiki.apache.org/confluence/display/INCUBATOR/Reports


of Etch’. Many developers participated in the discussion thread, with seeming agreement

that their project is either to be retired or changes are needed. The project mentor

brought up the lack of diversity as a possible cause for stagnation, since all developers

came from the same company. Some developers concurred, and they feel “...continual

pressure to wrangle new committers...”, and consider that the ASFI values “...extroverted

tendencies of the committers rather than the merits of technology...”.

Eventually, the contributors reached an agreement that the project technology is and

will be valuable in the future. Among them, one developer stated that they “...do not

want to see it retired...” The developers then made a list of future objectives, and worked

to make the community thriving again.

§3 Project Ariatosca almost succeeded, but eventually failed (the graduation forecast

dropped from 96% to 47%). We find that the major reason is that all senior contributors

left the project due to their busy day work. At the very end of the project, there were

new(er) developers who wanted to contribute to the project. However, since newcomers

could only contribute by creating Pull Requests (PRs), and PRs required a senior commit-

ter to accept and merge the code changes, they could not submit their code. Attempts at

setting meetings with the original developers failed due to busy schedules, and the project

was eventually retired.

3.5.4 RQ3 Actionable Recommendation

We start with a caveat. Precise actionable models require interventions and randomized

experiments. Our models are not based on such experiments, and any actionability we

derive from them must, therefore, be less powerful than those. At best, our experiments

can be considered natural experiments, a subclass of quasi-experiments where the class

assignment is not controlled by the experimenter. Thus, any interventions we suggest

here must be validated experimentally in order to avoid large uncertainties in outcomes.

With that caveat in mind, we sought to answer, to the best of our experimental methods,

the following intervention question: “What action should a project take and when?”, in

order to increase its graduation forecast in our model.

Here we propose a pragmatic, laissez-faire-unless-needed prospective strategy: to con-

62



tinuously monitor the graduation forecast for significant downturns, and if detected, sug-

gest interventions that may improve the forecast. We deconstruct the intervention ques-

tion above into two parts: 1) What is a significant downturn? and 2) how to interpret

the variables and coefficients in our fitted model into actions. For the following, recall

that our interpretable sustainability model gives a graduation forecast from the historical

project trace data and the socio-technical project structure, available until that time. It

also yields the coefficient of each significant model feature along with its direction for

every month.

§1 Identifying significant downturns. We want to identify downturns that dominate

any naturally occurring noise or jitter in the forecast. We looked across all projects for

how long it takes for a forecast to bounce-up from any downturn. We found that 149

out of the 222 projects (about 67.1%) experienced an upturn or downturn event of a 0.3

magnitude in their forecast probability curve. Of those projects that have not experienced

downturns, the average incubation time was 16 months, versus 28 months for projects that

have had downturns, implying an association between downturns and length of stay in

the incubator. We note that the upturn events tend to be associated with ASF mentors’

intervention. This is consistent with one of the responsibilities of ASF mentors: to watch

over the projects they are mentoring and keep them on track. However, downturn events

do not correlate similarly with extrinsic events; we think they tend to be more related

to projects’ internal events, e.g., ebbing social interest, core committers leaving, etc.

Figure 3.8 shows that the median bounce-up time is about 2.5, and, respectively, 3.5

months for drops of 0% - 5%, and, respectively, > 5% in the graduation forecast. We also

noted that graduated projects seem to bounce-up faster than retired projects. So, we use

the median of the latter as the baseline, and define a drop in the forecast of greater than

5% over a period of one or two months to indicate a significant downturn event. This ad

hoc approach, while an approximation, is a natural signal processing way to account for

inherent uncertainty in the signal.

§2 Actions that improve the forecast. Our model yields real- numbered coefficients for

each significant feature in each month, which we aggregate for stability over all months,

63



and obtain the medians as in Fig. 4. Increasing the values of features with positive

coefficients and/or decreasing the values of the negative coefficient features results in

an increase of the graduation forecast. Thus, once a month or two with a significant

downturn is detected, the project developers can look at the most positive and most

negative medianed significant features from the fitted model and consider increasing,

respectively decreasing, them. This is an approximation and is valid to the extent that

the median is representative of the values over all months, which is more the case in the

earlier months than the latter ones, see Figure 3.6. The earlier months are the ones we

care more about in practice, as we care about being most helpful to nascent projects.

Some of the socio-technical and project features may be difficult to interpret in prac-

tice. To aid with this step, we suggest a project should compile an action table to sum-

marize possible actions that may positively (or negatively in the reverse way) change the

value of model features. (Multiple actions may affect the same feature.) In Table 3.2 we

provide one such action table: a mapping between all of our model features and a non-

exhaustive set of actions that we identified as likely to move each variable in the positive

direction. (The negative actions are not shown, but are complements of those.) E.g., the

e c coef, which counts the number of triangles in the social network, can be increased by

increasing emails to everyone and not just the prominent developers or thread starters;

conversely, communicating hierarchically in a tree-like fashion would decrease e c coef as

it will eliminate triangles.

§3 Ecosystem and project-specific fine-tuning. Our strategy can be further fine-tuned

in several ways. First, there are common patterns in the graduation forecasts over all

projects. Figure 3.9 shows that for graduated projects (in green) there is an apparent

upward trend in the forecast in the first 6 months, suggesting that the early-stage devel-

opment deserves more attention from project managers. From month 6 to month 12 we

do not observe a significant change, and the decreasing variance also tends to support

such an argument. However, we find increasing variance in months 12 through 18. One

possible reason is that many graduated projects achieve their milestone in that period,

and slow further commits and discussions, thus lowering the graduation forecast. These

64



Table 3.2. Positive Actions for Each Feature.

Positive Action (+)

num act dev Contribute frequently; Advertise, Recruit.

num emails Reach out; Ask questions; Encourage communication.

num commits Commit frequently; commit smaller; use CI.

num files Split files; refactor code; encourage modularity.

c interruption Go on vacation often; contribute in bursts.

e interruption Email seldom; discourage discussion.

top e fract Encourage core emailers to respond more.

top c fract Core contributors commit exclusively.

c nodes Establish technical mentorship; encourage commits.

c edges Commit to same files as others; document code well.

c c coef Encourage collaborations, pair programming.

c mean degree Encourage commits by minor contributors.

c long tail Mentor collaborations with newcomers.

e nodes Mentor low communicators.

e edges Reply to questions; ask questions.

e c coef Encourage non-hierarchical communications.

e mean degree Communicate with minor emailers.

e long tail Foster communication-heavy culture.

considerations can be taken into account during forecast monitoring, with more frequent

monitoring chosen or increased attention paid at times around milestones and releases.

The ASF committees can also ask for more frequent project reports, during the first 6

months and 12 months of incubation, as project reports were seen to be an incentive to

productivity in our case study.

We recognize that some socio-technical elements are more difficult to change compared

to others. This is, project-specific, in that some projects can easier modify some features

than can other projects. E.g., if the interpretable model suggests increasing c edges and

65



0.0

2.5

5.0

7.5

10.0

0%−5% >5%
Drop in Graduation Forecast

R
eb

ou
nd

 T
im

e

status
graduated
retired

Figure 3.8. Bounce-up after downturns in graduation forecasts for graduated (green)
and retired projects (red).

decreasing c interruption this may be easier done in smaller projects than larger ones

due to the difficulty of influencing many people at once. Thus these action tables should

ideally be project-specific, designed and updated as the project evolves.

Mechanistically, here are some possible reasons for why features, e.g., number of com-

mits/files, may have different effects across projects. First, having much more than the

usual amount of code changes and file touches in a given period of time may be indicative

of refactoring or even change of direction for a project. This can be the result of a project

pivoting which may lead to longer stay in the incubator and possible retirement. Second,

increases in the number of files may result in insufficient human resources to handle them

(e.g., bugs, documentation, mentoring, and training), resulting in code quality issues and

technical debt, especially for smaller projects. This can lead to loss of interest in the

small community and eventual disengagement. Third, for overleveraged projects, increase

in commits and/or file touches may mean not having time for proper communication,

which can slow progress and result in community collapse. In effect, the coefficients of

the same factor can vary under different project contexts.

Lastly, a word of caution. In terms of expectations that including more features to

intervene on, may lead to faster bounce-up, we note that empirical evidence shows socio-

technical features have ways of getting correlated pairwise over time in the same system.

Thus, even if not correlated, the effect of increasing multiple features simultaneously may

66



not be additive.
Answer to RQ3: Our strategy can be used as a monitoring tool that feeds sug-

gestions into developers’ decision process. Project-specific features can be selected

from the suggestions for intervention when experiencing downturns. The algo-

rithm can be made bespoke by introducing more frequent monitoring around re-

leases/milestones.

3.5.4.1 Actionable Strategy Example

Here we apply our strategy on a project from Figure 3.7: Commonsrdf, and show specific

recommendations following a detected downturn.

While monitoring project Commonsrdf 7 we would have observed a significant down-

turn at months 4 and 5 (¿ 5% drop), see Figure 3.7. For that project, our interpretable

model yields as the 3 features with the highest positive medians overall: top c fract,

top e fract, and e nodes; the three with the most negative median are: c c coef,

c interruption, and c nodes. Consulting Table 3.2, it calls for the project to increase

the commit and email contributions by core developers and encourage more committers

to communicate. It also calls for the project to decrease collaborations, decrease commit

interruptions, and decrease the number of developers that commit. A continuous inte-

gration may also be recommended to this project, to keep people on track with smaller,

more frequent commits.

What actually happened in the project is that that initial period of downturn was

missed; as we saw in our case study for this project, the project manager sent an email

titled ’Anybody there?’ in month 8, when productivity was already significantly reduced.

Using our strategy, the downturn could have been identified and possibly avoided 3 months

sooner.

3.6 Threats to Validity and Conclusion
Threats. First, our commit and email data is from only hundreds of projects ASF in-

cubator projects. Thus, generalizing the implications beyond ASF, or even beyond the
7http://mail-archives.apache.org/mod_mbox/commonsrdf-dev/

67

http://mail-archives.apache.org/mod_mbox/commonsrdf-dev/


0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Incubation Month

G
ra

du
at

io
n 

F
or

ec
as

t

Figure 3.9. Graduation forecasts for all graduated (green) and retired projects (red)
over the first 24 incubation months.

ASF Incubator projects carries potential risks. Expanding the dataset beyond ASF, e.g.,

with additional projects from other open-sourced incubator projects can lower this risk.

Second, we do not consider communications other than through the ASF mailing lists.

However, ASF’s policies and regulations insist on the use of mailing lists, which lowers

this risk. Lastly, interpreting deep learning models is still an art, and LIME models are

approximations. They may be particularly sensitive to correlated features. We lower such

risk by eliminating correlated variables before training. Taking the actionable suggestions

given in this paper may result in changes of more than one variable, e.g., increase the

active developers may also increase the number of commits.

Conclusion. Understanding why many nascent projects have failed may help others

improve their individual practice, organizational management, and institutional structure.

Here we showed that quantitative network science approaches combined with state-of-the-

art AI methods can effectively model ASF incubator project sustainability, from a novel

longitudinal dataset of socio-technical contributions in ASFI projects, more narrow in

scope than general OSS projects but with extrinsic graduation/sustainability labels. We

also demonstrated the combined power of mixed methods: both quantitative and quali-

tative studies. Through case studies, we identified specific reasons for success and failure

of projects, complementing our models. Finally, we developed a strategy for translational

use of the models in practice. Our methods make it straight forward to track a project’s

68



trajectory as it progresses toward sustainability, and even offer advice for correcting tra-

jectories upwards. Future work is needed to offer validation of this or similar strategies

experimentally.

69



Chapter 4

Open Source Software Sustainability:
Combining Institutional Analysis
and Socio-Technical Networks

4.1 Introduction
Open Source Software (OSS) is a multi-billion dollar industry. A majority of modern

businesses, including all major tech companies, rely on OSS without even knowing it.

OSS contributions are an important manifestation of computer-supported collaborative

work, for the high degree of technical literacy typical of OSS contributors. Even though

this popularity attracts many software developers to open source, more than 80% of OSS

projects are abandoned [82].

The failure of collaborative work in OSS has received attention from two perspectives.

In software engineering, the focus has been on understanding success and sustainabil-

ity from the socio-technical perspective: the OSS developers’ day-to-day activities and

the artifacts they create. In the management domain, on the other hand, emphasis has

been on institutional designs (e.g., policies, rules, and norms) that structure governance

and OSS project administration. In particular, systems that generate public goods ad-

dress these and other endemic social challenges by creating governance institutions for

attracting, maintaining, incentivizing, and coordinating contributions. Ostrom [138] de-

fines institutions as “... prescriptions that humans use to organize all forms of repetitive

70



and structured interactions ...”. Institutions guide interactions between participants in an

OSS project, and can be informal such as established norms of behavior, or more for-

malized as written or codified rules. These norms and formalized rules, along with the

mechanisms for rule creation, maintenance, monitoring, and enforcement, are the means

through which collective action in OSS development occur [82], and they can be tiered or

nested, as in the context of OSS projects embedded within an overarching OSS nonprofit

organization.

Both methods have separately been shown to be utilitarianly describing the state

of a process, however, combining the two perspectives has been barely explored. In this

paper, we undertake a convergent approach, considering from one side OSS projects’ socio-

technical structure and the other aspects of their institutional design. Our goal is to use

these two perspectives synergistically, to identify when they strengthen and complement

each other, and to also refine our understanding of OSS sustainability through the two

methodological approaches. Central to our approaches is the idea that trajectories of

individual OSS projects can be understood in the convergent framework through the

context provided by similar projects that already are being readily sustained or have been

abandoned.

We leverage a previously published dataset [128] of traces representing OSS developer’s

day-to-day activities as part of the Apache Software Foundation Incubator (ASFI) project.

These developers are a part of projects that have decided to undergo the process of

incubation, toward becoming part of the ASF, and benefiting from the services it provides

to member projects. The dataset includes historical traces and a sustainability label

(graduation or retirement) for each project. Graduation is an indication of successful

incubation and the readiness of a nascent project to join ASF proper, otherwise the

project is retired. In other words and importantly, in this paper, we use the ASFI project

outcomes of graduation or retirement as a measure of sustainability of the project. We

assume that graduated projects are sustained longer than retired ones, although that

might not always be the case1. But key hurdles that OSS projects have to demonstrate to
1For example, it could be that some ASFI retired projects simply could not adapt to the policies

and requirements set in the ASFI program but yet continue on, ‘in the wild’ or perhaps aligned with a

71



graduate is that they can (1) produce new releases, and (2) show the ability to attract new

developers. Both of these factors arguably are key to the sustainability of OSS projects.

We utilize this dataset to study the extent to which graduated and retired projects

differ from each other, from the point of view of both the socio-technical structure and

the institutional governance. On the socio-technical side, we construct the monthly lon-

gitudinal social and technical networks for each project, and calculate several measures

describing the features of the networks. On the institutional governance side, we imple-

ment a classifier trained on manual annotations of institutional statements in the publicly

accessible email communications among ASF participants. Then we compare the findings

of our socio-technical and institutional metrics for project-level and individual-level activ-

ities. Next, we perform exploratory data analyses, deep-dive case studies, and eventually,

we look at how socio-technical measures associate with the prevalence of institutional

statements, and evolutionary trajectories during OSS project incubation to sustainability.

In summary, we find that:

• We can effectively extract governance content from email discussions in the form of

institutional statements, and they fall into 12 distinguishable topics.

• Projects with different graduation (i.e., sustainability) outcomes differ in how much

governance discussion occurs within their communities, and also in their socio-

technical structure.

• Self-sustained projects (i.e., graduated) have a more socially active community,

achieving it within their first 3 months of incubation, and they demonstrate more

active contributions to documentation and more active communication of policy

guidance via institutional statements.

• A project’s socio-technical structure is temporally associated with the institutional

communications that occur, depending on the role of the agent (mentor, committer,

contributor) communicating institutional statements.

different OSS foundation.

72



To provide the most relevant context, recently, Yin et. al. [22] showed that socio-

technical networks can be used to effectively predict whether a project will graduate or

retire from the ASF incubator. That work did not include any institutional or governance

analysis. Here, we focus on closing the gap by studying the relationship between the

organizational structure (i.e., the socio-technical system) and institutional governance

in peer-contributed OSS projects. Our study is the first attempt to provide a common

framework for simultaneous, socio-technical structure and institutional, analysis of OSS

projects, in order to describe and understand a process affected by both, that is, project

gaining self-sustaining and self-governing community and eventually graduating from the

ASF incubator. We are hopeful that refining this convergent approach, of structural and

institutional analyses, will open new ways to consider and study emergent properties like

project sustainability.

4.2 Theoretical Framework
Here we introduce the theories behind the two different viewpoints, Institutional Analysis

and Development (IAD) and Social-Technical Systems (STS), as well as Contingency The-

ory serving as the glue between institutional governance and the organizational structure

of OSS projects.

4.2.1 Institutional Theory and Commons Governance

OSS projects are a form of digital commons, or more precisely, Commons-Based Peer Pro-

duction (CBPP) [82]. Legal scholar Yochai Benkler [139] introduced the phrase CBPP

to describe situations where people work collectively over the Internet, and where orga-

nizational structure is less hierarchical. While CBPP situations are found in a variety of

settings (e.g., collaborative writing, open source hardware) Benkler argues that OSS is

the ‘quintessential instance’ of CBPP.

There is a relatively long history of the study of governance in commons settings,

arguably led by Nobel laureate Elinor Ostrom and her groundbreaking book Governing the

Commons [140]. Ostrom’s Institutional Analysis and Development (IAD) framework was

developed to study the governance institutions that communities develop to self-manage

73



natural resources. Much of this research focuses on the governance and sustainability of

natural resource settings, e.g., water [141], marine [142], and forest [24] settings.

A key challenge in natural resource commons settings is that individuals who cannot

easily be excluded from extracting resources from the pool of available natural resources

often have little incentive to contribute toward the production or maintenance of that

resource – what are commonly referred to as ‘free-riders’ [143]. In forest, fishery, and

water settings, the free-rider problem in open access settings can lead to a problem termed

by Hardin as the ‘Tragedy of the Commons’ [144]. Ostrom famously pushed back against

Hardin’s analysis and over a course of a lifetime of work, highlighted that communities

can avoid tragedy through hard work in developing self-governing institutions.

OSS commons are fundamentally different from natural resources in that digital re-

sources can be readily replicated and are not subject to degradation due to over-harvesting.

Therefore, if over-appropriation is not a problem, is there a potential tragedy of the com-

mons in an OSS context? Invariably the answer is yes, and it lies at the heart of the

idea of OSS sustainability. The tragedy occurs when there are free-riders and insufficient

human resources available to continue to further develop and maintain the software and,

as a result, the software project fails to achieve the functionality and use that was perhaps

envisioned when it began, and becomes abandoned [145]. Ostrom and Hess [146] aptly

describe this tragedy as ‘collective inaction.’

Ostrom’s Nobel Prize-winning body of work was studying how humans collectively

act and craft self-governing institutional arrangements to effectively avoid the tragedy in

natural resource settings. Central in this effort was the introduction and evolution of the

Institutional Analysis and Development (IAD) framework [138]. Later, IAD was applied

to the study of digital or knowledge commons [147, 146] and explicitly to the study of

self-governance in OSS, where Schweik and English undertook the first study of technical,

community, and institutional designs of a large number of OSS projects [82].

With that being said, prior work has found that self-governing OSS projects develop

highly organized social and technical structures [148]. Those having foundation support,

like the ASF, may additionally be in the process of organizing the developers’ struc-

74



tured interactions under a second tier of governance prescriptions as required by the ASF

Incubator. We refer to an individual institutional prescription as an Institutional State-

ment (IS), which can include rules and norms, and which we define as a shared linguistic

constraint or opportunity that prescribes, permits, or advises actions or outcomes for

actors (both individual and corporate) [149, 150]. Institutions, understood operationally

as collections of institutional statements, create situations for structured interaction for

collective action. In other words, configurations of ISs affect the way collective action is

organized. In the context of ASF and OSS projects, incubator ISs can affect OSS project

social and technical structure.

With IS and other approaches to institutional analysis, it becomes possible to artic-

ulate the relationships between governance, organizational, and technical variables. For

example, previous studies on OSS often report code modularity as a key technical design

attribute [151, 152]. Hissam et al. [153] write: ‘A well-modularized system ... allows

contributors to carve off chunks on which they can work.’ Open and transparent verbal

discussion between OSS team members and other ASF officials (e.g., mentors) about OSS

project or ASF institutional design, captured in the form of institutional statements, could

then predict effort by project contributors to restructure their project’s technical infras-

tructure to be more modular and inviting to new contributors. Using the approaches of

institutional analysis, we extract institutional content from open access email exchanges

between OSS project contributors to understand the role of communication governance

information in OSS project sustainability.

4.2.2 Socio-Technical System Theory

A Socio-Technical System (STS) comprises two entities [117]: the social system where

members continuously create and share knowledge via various types of individual inter-

actions, and the technical system where the members utilize the technical hardware to

accomplish certain collective tasks. STS theory can be considered to combine the views

from both engineers and social scientists, an intermediary entity of sorts, that transfers

the institutional influence to individuals [154]. The theory of STS is often referenced

when studying how a technical system is able to provide efficient and reliable individual

75



interactions [118], and how the social subsystem becomes contingent in the interactions

and further affects the performance of the technical subsystem [119]. Moreover, the socio-

technical system theory plays an important role in analyzing collective behavior in OSS

projects [19]. OSS projects have also been studied from a network point of view [8, 116].

González-Barahona et al. [120] proposed using technical networks, where nodes are the

modules in the CVS repository and edges indicate two modules share common commit-

ters, to study the organization of ASF projects. In socio-technical systems, organizations

can intervene through long-term or short-term means. Smith et al. [121] propose two

conceptual approaches, ‘outside’ and ‘inside’: ‘outside’ approaches represent the socio-

technical and are managerial in approach. ‘Inside’ approaches are more reflexive about

the role of management in co-constituting the socio-technical.

From that perspective, the Apache Software Foundation (ASF) community is a unique

system that has both outside influence regulations from ASF board and members and in-

side governance managed or self-governed by individual Project Management Committees

(PMC).

4.2.3 Contingency Theory, or There Are No Panaceas in Self-
Governance

Contingency theory is the notion that there is no one best way to govern an organization.

Instead, each decision in an organization must depend on its internal structure, contin-

gent upon the external context (e.g., stakeholder [122], risk [123], schedule [124], etc.).

Joslin et al. [125] find that project success is associated with the methodologies (e.g.,

processes, tools, methods, etc.) adopted by the project. Here, in particular, we treat the

institutional statements as an abstraction of the methodologies in OSS development. As

the organizational context changes over time, to maintain consistency, the project must

adapt to its context accordingly. Otherwise, conflicts and inefficiency occur [126], i.e.,

not a single organizational structure is equally effective in all cases. Similar arguments

have been made in the field of institutional analysis, arguing that there are no panaceas

or standard blueprints for guiding the institutional design of a collective action problem

[155].

76



To address the conflicts caused by incompatibilities with the project’s context, previous

work suggests thinking holistically. Lehtonen et al. [127] consider the project environment

as all measurable spatio-temporal factors when a project is initiated, processed, adjusted,

and finally terminated. They suggest that the same factor can have an opposite influence

on the projects under a different context. Joslin et al. [125] consider project governance

to be part of the project context, concluding that project governance can impact the use

and effectiveness of project methodologies.

As per contingency theory, during ASFI projects’ incubation, developers and mentors

have to make in-time decisions on their organizational structure, contingent on what is

happening in the institutional rules and governance, and vice versa.

4.3 Research Questions
Reflecting on the previous discussion, the primary goal of this paper is to demonstrate

that the evolution of a project from a nascent state to a sustainable state can be stud-

ied effectively by combining the two different methodologies of socio-technical network

analysis and institutional analysis.

We reported in prior sections that a variety of scholars have utilized a socio-technical

systems approach to analyze collective behavior in OSS projects. We also described

how institutional analysis is useful in understanding collective action in OSS settings.

To enable to dual-view on sustainability, we first describe and evaluate our automated

approach to identifying institutional statements in project emails.

RQ1: Are there institutional statements contained in ASF Incubator project email

discussions? Can we effectively identify them?

With the next two research questions, we assess the utility of our convergent approach

to the Institutional Analysis (IAD) and STS frameworks. In the case of the ASF incu-

bation program, there are two eventual outcomes: either a project graduates from the

ASF incubator and becomes a full-fledged ASF-associated project, or it retires without

achieving that goal. In this context, we operationalize a sustainable state as one where

an OSS project graduates from the ASF incubator program, rather than retires. We ask:

77



RQ2: Is OSS project evolution toward sustainability readily observable through the

dual lenses of institutional and socio-technical analysis? And how do such temporal

patterns differ?

Per institutional analysis theory, strategies, norms, and rules can affect the social

and technical organizations of projects. Governance and organization, per social theories,

must work hand-in-hand to make viable socio-technical systems. Ill-designed institutional

arrangements would introduce inefficiencies into the system, and such inefficiencies may

amplify deviant behaviors and irregular structures in the system. Such influential links

from institutional design to the organizational structure can be, in fact, bi-directional. In

effect, in a sustainable system, an ill-formed organizational structure may instigate new

rules to adjust and improve such structure, further improving efficiencies in the systems.

Thus, we hypothesize that the feedback, if any, between project governance and project

organization should be observable, specifically in that intensified governance discussion

should precede and/or follow changes to the project organizational structure. As a re-

minder, we consider institutional statements as indicators of intensified discussions of

OSS project self-governance or new incubator requirements on that self-governance. We

also consider socio-technical network parameters as indicators of organizational structure.

Thus, we ask:

RQ3: Are periods of increased Institutional Statements frequency followed by changes

in the project organizational structure, and vice-versa?

In the following section, we introduce the methodologies approaching the above three

research questions.

4.4 Data and Methods
To study the difference between projects that graduate ASFI (i.e., become sustainable)

and those that do not, in this paper we use a collection of large-scale data sets compris-

ing Institutional Statements and Socio-Technical variables extracted from all graduated

and retired projects from the Apache Software Foundation Incubator, ASFI. In ASFI,

graduation is an indication that a nascent project is sufficiently sustainable to join ASF

78



proper2, otherwise the project is retired. Our combing through the Apache lists, inspect-

ing the data, and speaking to project and community members have shown that almost

all failures to graduate are sustainability failures. On rare occasions, some projects have

retired for reasons other than sustainability, e.g., some are not a good fit for the Apache

model3, despite evidence that projects are generally sufficiently aware of the ASF model

before entering incubation according to their project proposal4.

For the socio-technical networks, we collected historical trace data of commits, emails,

and incubation outcomes for 253 ASFI projects, which have available archives of both

commits and emails from 03/29/2003 to 02/01/20215. Among those, 204 projects have

already graduated, and 49 have retired. ASF incubator projects that are still in incubation

are not studied in this paper.

We collected the ASF incubator project data from the ASF mailing list archives6,

which are open access and can be retrieved through the archive web page lists, http:

//mail-archives.apache.org/mod_mbox/. They contain all emails and commits from

the project’s ASF incubator entry date, and are current. The project URLs follow the

pattern: proj name - list name/(YYYYMM).mbox. For example, the full URL for the dev

mailing list of the Apache Accumulo project, in Dec 2014, is http://mail-archives.

apache.org/mod_mbox/accumulo-dev/201412.mbox. Each such .mbox file contains a

month of mailing list messages from the project, for the date specified in the URL. Here

dev stands for ‘emails among developers’. Notably, there are some sites that are not

following the pattern, e.g., ‘ASF-wide lists’ are not project-owned mailing lists, and the

list ‘incubator.apache.org’ contains data of more than one project.

To extract Institutional Statements, we combined our email data set with a prior

data set on ASF policy documents. In a given organization, institutional statements are

characterized by a finite set of semantic roles (e.g. ASF Board, Mentors, contributors,

etc. in ASF), and their interactions (e.g. management committees requesting reports from
2ASF’s guide to project graduation: https://incubator.apache.org/guides/graduation.html
3ASF’s reason behind projects’ retirement: https://incubator.apache.org/projects/#retired
4ASF incubator projects’ proposal https://cwiki.apache.org/confluence/display/INCUBATOR/

Proposals
5Our code and data is available at Zenodo: https://doi.org/10.5281/zenodo.5908030
6During the submission of this study, ASF had moved their email archives to Pony Mail system.

79

http://mail-archives.apache.org/mod_mbox/
http://mail-archives.apache.org/mod_mbox/
http://mail-archives.apache.org/mod_mbox/accumulo-dev/201412.mbox
http://mail-archives.apache.org/mod_mbox/accumulo-dev/201412.mbox
https://incubator.apache.org/guides/graduation.html
https://incubator.apache.org/projects/#retired
https://cwiki.apache.org/confluence/display/INCUBATOR/Proposals
https://cwiki.apache.org/confluence/display/INCUBATOR/Proposals
https://doi.org/10.5281/zenodo.5908030


projects, developers voting to induct committers in ASF), in specific contexts. To account

for their representation in our training corpus, we included institutional statements from

not only ASF project-level email exchanges among participants, but also ASF policy

documents. The supplementary set of Institutional Statements included 328 policies,

which were compiled from ASF policy documents (e.g., Apache Cookbook, PPMC Guide,

Incubator Policy, etc), in an economic analysis of the ASF Incubator’s policies [156].

4.4.1 Pre-processing

We collected all 1,330,003 emails across the ASF Incubator projects, from 03/29/2003

to 02/01/2021 (under mailing lists of ‘commit’, ‘dev’, ‘user’, etc.). We find that 128,257

(about 9.6%) emails are automatically generated and broadcast by continuous integration

tools (i.e., bots). Because the amount of such emails is substantial, but they carry less

meaningful social or institutional information, and list members rarely reply to them, we

use regular expression rules to identify and eliminate them from the corpus, leaving us

1,201,746 emails.

And, for the technical contribution side, many projects, especially those over ten

years old that used SVN, utilized a bot for extensive mailings, thus forming outliers in

the dataset. Thus, we eliminate commit messages from automated bots (e.g., ‘buildbot’),

253,758 out of 3,654,196 (about 14.4%) commit messages, and email messages from is-

sues/bug tracking bots (e.g., ‘GitBox’). Moreover, we find some developers contributed

commits by directly changing/uploading massive non-source code files (e.g., data, con-

figuration, and image files). Since committing non-coding files can form outliers in the

data set, we choose to apply the GitHub Linguist7 to identify 731 collective programming

language and markup file extensions, and exclude any other non-coding commits (e.g.,

creating/deleting folders, upload images, etc.).

4.4.2 Constructing Socio-technical Networks

Network science approaches have been prominent in studying complex systems, e.g., OSS

projects [131, 111]. Since networks can contain rich information for both the elements (i.e.,
7GitHub Linguist https://github.com/github/linguist

80

https://github.com/github/linguist


nodes) and their interactions (i.e., edges), in this study, we use socio-technical networks to

anchor the abstraction of socio-technical systems. We define the projects’ socio-technical

structure using social (email-based) and technical (code-based) networks, extracted from

their emails to the mailing lists and commits to source files. Similar to the approach by

Bird et al. [19], we form a social network (weighted directed graph) for each project in

each incubation month, from the communications between developers: a directed edge

from developer A to B forms if B has replied to A’s post in a thread or if A has emailed B

directly. The weight of the edge represents the communication frequency between a pair

of developers. The technical bipartite networks (weighted bipartite graph) are formed in

a similar way. For each project in each month, we include an un-directed edge between

a developer A and a source file F if developer A has committed to the source file F that

month (excluding the SVN branch names). The weight of the edge represents the commit-

ting frequency between the developer and the source file. In summary, social networks are

weighted directed graphs. We form edges between two developer nodes, if one developer

replied to or referenced the other’s email. Technical networks are undirected bipartite

graphs, with developers forming one set of nodes, coding files forming the other, and a

link being drawn when a developer contributed to a coding file. We use the networkx

package from Python for the network-related implementation.

4.4.3 Extracting Institutional Statements

We combined the email exchange data set with the ASF policy document data to fine-

tune a BERT-based [157] classifier, for automatic detection of ISs (see Sect. 2.1 for the

definition of IS).

To start, we hand-annotated a small subset of our data for ISs as follows. After

selecting a random subset of 313 email threads from incubator project lists, two hand-

coders labeled the sentences in them as ‘IS’ or ‘Not IS’, on the basis of whether they fit

the definition of Institutional Statements. They resolved disagreements through discussion

and recorded these conclusions, achieving a peak out-of-sample agreement between 0.75

to 0.80. A sentence was coded as an IS only if it was a complete sentence; fragments

such as parenthetical mentions of rules or resources were not annotated as positive. This

81



Table 4.1. Selected Examples of Institutional Statements Found in ASFI Project Email
Discussions.
Project Date Institutional Statements

Airflow 21 Dec 2016 ... running in our Lab there is virtually no restriction what we

could do, however I will hand select people who have access to this

environment. I will also hold ultimate power to remove access from

anyone ...

ODF 07 Dec 2011 Please vote on releasing this package as < Package >. The vote is

open for the next 72 hours and passes if a majority of at least three

+1 ODF Toolkit PMC votes are cast ...

Airflow 24 Feb 2017 ... Next steps: 1) will start the voting process at the IPMC

mailinglist. ... So, we might end up with changes to stable. ...

2) Only after the positive voting on the IPMC and finalisation I

will rebrand the RC to Release.

resulted in 6,805 labeled sentences (i.e., ‘IS’ or ‘Not IS’); 273 were labeled as IS.

We treated all 328 policies from the ASF documents as institutional statements, since

policy documents provide arguably more formal institutional sample text compared to

the norm in the email discussions. Thus, we had 601 Institutional Statements in total

across these two coded datasets.

Institutional statements refer to prescriptions and shared constraints in the form of

norms, rules, and strategies that are meant to mobilize and organize actors towards col-

lective actions. The examples of institutional statements provided in Table 4.1 provide

some instances of developer exchanges that encompass norms and strategies with insti-

tutional implications. The first example from the Airflow project, dated 12/21/2016,

involves a situation where certain developers find the computational infrastructure pro-

vided by ASF insufficient for testing and development requirements, and discuss setting

up alternate arrangements to meet the bottleneck. Faced with resource limitations, one

developer offers an externally hosted cloud environment through his private resources.

The selected excerpt is a quote from the individual establishing the terms for using the

alternate resources he may offer to the project members, including access permission and

usage restrictions. ASF projects conduct voting from time to time to gather community

82



consensus on matters of significance. The following example from ASFI project ODF,

dated 12/07/2011 describes the stepwise process expected to be followed by members

project-wide to conduct a vote that decides on the approval of the release of the current

candidate under development. The final example from Airflow, 02/24/2017 also pertains

to a similar process, where a developer discusses the voting process and the implications,

especially in terms of subsequent steps that need to be fulfilled to ensure product release.

BERT-based Sequential Classifier. In natural speech, such as emails, ISs can appear

as whole sentences, parts of sentences, or span multiple sentences. They are also relatively

sparse, with their institutional quality dependent on their inherent interpretation as well

as context. Framing IS extraction as a sequential sentence classification task in the context

of self-contained email segments, instead of labeling individual sentences helps take into

account contextual cues.

We used the sequential sentence classifier developed by Cohan et al. [157], which lever-

ages Bidirectional Encoder Representations from Transformers (BERT) sequence classi-

fier [158] to classify sentences in documents. BERT can be employed to generate the

representation for a sentence, through joint encoding over its neighboring sentences and

then leveraging the corresponding sentence separator ’¡SEP¿’ token’s tuned embedding for

downstream applications, such as sentence labeling, extractive summarizing, etc. Thus,

our classifier comprises BERT for attention-based joint encoding across sentences followed

by a feedforward classifier to predict sentence labels based on these separator ’¡SEP¿’ vec-

tors.

To test the performance of the classifier on email IS extraction, we held-out 40 email

threads (12.5%, randomly split) out of our 313 hand-annotated email threads. The train-

ing was performed on the combined set of the remaining 273 coded email threads and

the ASF policy documents. The coded training and, respectively, testing email data con-

tained 231 and, respectively, 42 institutional statements. For both training and testing,

email threads were processed to generate classifier inputs as follows. To include neighbor-

ing context while meeting length limits of the BERT-based text classifier, for each email

document, sentences were first chunked into segments using a sliding window of up to 256

83



BERT sub-word (word piece) tokens. This resulted in segments containing 6 contiguous

sentences each, on average, comprising as many full sentences as could be accommodated

in the specified subword limit. The rolling window had a step of 1 full sentence. We gen-

erated 3322 and 384 email segments for training and testing, respectively. For the policy

documents, each policy with its sentences was treated as a segment, leading to 328 addi-

tional segments in the training data. There are several reasons to support the inclusion of

ASF policies to augment positive training examples. (1) In terms of semantic information,

they are about institutional themes and actions. This was expected to help the language

model learn what sets apart Institutional themes from regular development activities and

artifacts. (2) ASF policies are critical in common pool resource management and insti-

tutional operations as they describe roles, responsibilities and regulate actions, and are

often invoked in email discussions8. (3) The institutional statements of the formal policies

are the source texts that in-email references to IS are drawing from when they discuss

ASF’s rules in email. From this perspective, they are a vital source text for detecting

these statements as they occur in email settings. Hence, while apparently sourced from

formal bylaws beyond emails, ASF policies are indeed institutional statements relevant

and recurring in developer conversations and are hence included in the training data.

We fine-tuned our classifier end-to-end against the corresponding labels for sentences

in the segment. The training stage was conducted with a batch size of 16 and a learning

rate of 2 · 10−5, for 6 epochs. All other hyperparameters were left as defaults. To account

for the class imbalance, we randomly oversampled training data segments that had at

least one IS sentence to match the number of segments that had no IS sentences (1:1). In

both the training and predicting phase, we did not incorporate any temporal information,

other than the sequentiality captured by the segments. That is, when extracting the

institutional statements, the model does not require the exact time of the discussion.

During testing or prediction, due to variable length of context preceding or following

each sentence in any particular segment, we treat a sentence in an email as a ‘positive’

classification, if it has been detected as an IS in at least one segment. The performance of
8https://lists.apache.org/thread/zykybdvnk9cwx03pnrfl2br9nkcb7q3f

84

https://lists.apache.org/thread/zykybdvnk9cwx03pnrfl2br9nkcb7q3f


the model has been reported in terms of the F1-score, precision, and recall with respect

to the positive (‘IS’) label detected for sentences in the test email set in Sect. 5.1.

4.4.4 Topics Identification in Institutional Statements

The purpose of text modeling is to describe the text given a specific corpus, and provide

numerically measurable relationships among texts, e.g., topics identification, measuring

similarity, etc. We use a Latent Dirichlet Allocation (LDA) model to get semantically

meaningful topics to better understand the extracted institutional statements. LDA is an

unsupervised clustering approach [159], which when given a set of documents, iteratively

discovers relevant topics present in them, based on the word distributions and relative

prevalence in each document. We used LDA to identify prominent topic clusters occurring

among all institutional statements extracted from our email archives through our trained

classifier (see Sec 4.3). No prior training from our coded email set against pre-identified

topic labels was used to train the LDA model. We use the coherence score provided by the

gensim package [160] to optimize the performance of the LDA model with respect to the

number of topics; a higher coherence score represents a better clustering performance. We

select the LDA model with the highest coherence score from which to draw the clusters.

However, since the LDA model does not automatically generate a label for each cluster, we

need to assign a label intuitively based on our domain knowledge of the ASF incubation

process. Naming each topic cluster certainly carries some risks on interpretation, however,

we believe that providing all top keywords for each cluster reduces such risk.

4.4.5 Variables of Interest

We draw institutional and socio-technical project features and variables on the basis of

each framework’s predictions for our research questions. Our socio-technical variables are

pulled from a recent study on forecasting the sustainability of OSS projects [22], showing

high predictive power of socio-technical variables. All metrics are aggregated over monthly

intervals, for each project, from the start to the end of its incubation.

Longitudinal Socio-Technical Metrics: For each project network, for each month, we

constructed the social and technical networks, and from them calculate various organi-

85



Table 4.2. Summary statistics for the monthly socio-technical variables and the counts
of institutional statements from project mentors, committers, and contributors after
removal of the top 2% of outliers. The numbers in parentheses denote the values after
the removal of inactive months (i.e., absent of emails/commits). Prefix s denotes
features in the social network while t represents the technical network.

Statistic Mean St. Dev. 25% 75%

s num nodes 13.04 (16.96) 14.56 (15.04) 4 (7) 17 (22)

s graph density 0.30 (0.30) 0.27 (0.22) 0.12 (0.14) 0.40 (0.40)

s avg clustering coef 0.22 (0.29) 0.23 (0.21) 0 (0.11) 0.39 (0.43)

s weighted mean degree 11.83 (15.56) 12.03 (12.81) 4 (7.43) 16 (19.71)

t graph density 0.37 (0.68) 0.41 (0.32) 0 (0.36) 1 (1)

t num dev nodes 1.18 (2.21) 1.59 (1.60) 0 (1) 2 (3)

t num file nodes 60.99 (114.83) 153.94 (197.25) 0 (6) 38 (126)

t num file per dev 28.79 (53.57) 80.46 (104.23) 0 (4) 20 (54.5)

num IS mentor 15.46 (15.99) 24.46 (25.01) 0 (1) 20 (20)

num IS committer 9.34 (12.89) 19.36 (22.36) 0 (0) 10 (16)

num IS contributor 13.18 (16.36) 21.72 (24.42) 0 (2) 18 (21)

zational structure measures. In our tables and results, the prefix t in a variable’s name

indicates it is of the technical (code) network, while the prefix s in a variable’s name

indicates it is of the social (email) network. For the monthly social networks, we calculate

the weighted mean degree s weighted mean degree (sum of all nodes’ weighted degree di-

vided by the number of nodes), average clustering coefficient s avg clustering coef (the

average ratio of closed triangles over open triangles), graph density s graph density. In

the technical bipartite networks, for each month, we calculate the number of unique devel-

oper nodes t num dev nodes, the number of unique file nodes t num file nodes, the num-

ber of files per developer t num file per dev, and the graph density t graph density.

Institutional Statements Frequency Metrics: For each project, for each month, we

added up the ISs in all emails of that month sent by each of the following three separate

and identifiable groups of people: ASF mentors (num IS mentor), registered ASF commit-

86



ters (num IS committer), and contributors (num IS contributor). We summarize their

statistics in Table 4.4.5. As noted earlier, there is a final group of emails not accounted

here, sent by bots. Similar to calendar entries, they may be useful, but are not the object

of our study here.

4.4.6 Granger Causality

Time series data allows for the identification of relationships between temporal variables

that go beyond association. One approach, Granger causality, is a statistical test for

identifying quasi-causality between pairs of temporal variables [161]. Given two such

variables, Xt and Yt, the Granger causality test calculates the p-value of Yt being generated

by a statistical model including only Y ’s prior values, Yt−1, Yt−2, etc., versus it being

generated by a model that in addition to Y ’s prior values, also includes X’s prior values

Xt−1, Xt−2. Thus, Granger causality simply compares a base model involving only Y to a

more complex model involving Y and X, and calculates if the latter is a better fit to the

data. In the context of Granger causality, prior values are called lagged values, with Xt−1

having a lag of 1, Xt−2 having a lag of 2, etc. If the Granger causality test returns a small

enough p-value (e.g., < 0.01), it is interpreted as the rejection of the null hypothesis, thus

establishing that X Granger causes Y .

The Granger causality test makes an assumption that the time-series on which it is

applied are stationary, meaning they do not have a trend or seasonal effects. It is necessary

to test for stationarity before running the Granger causality. We use the augmented

Dickey-Fuller test [162], as implemented in adf.test from the R package tseries [163],

to test stationarity. Both institutional and socio-technical variables were found to be

stationary. We note that a distinction is typically made between scientific causality based

on controlled experiments, and Granger causality, with the latter only satisfying one

(precursor property) of multiple different properties of causality. Because of that, when

Granger causality is used, the word ‘causality’ is always preceded by ‘Granger’. We also

note that this test does not identify the sign, if any (i.e., positive or negative) of the

Granger causality. It simply says if one exists. We use the pgrangertest function to

test Granger causality.

87



4.5 Results
In this section, we answer the proposed research questions by adopting a dual view, from

the institutional analysis and socio-technical network perspectives. We first establish the

utility of our IS identification methodology.

4.5.1 RQ1: Are there institutional statements contained in ASF
Incubator project discussions? If any, can we effectively
identify the content of ISs?

Detecting Institutional Statements. First, we focus on the ability of our BERT-based

classifier to identify institutional statements in emails. When tested on the 857 held-out

sentences from the 40 email threads in our test set, see Sect 4.3, our classifier achieved

a precision score of 0.667, recall score of 0.681, and F1 score of 0.674 on classifying

Institutional Statements, demonstrating it is able to extract ISs from developer email

exchanges in spite of there being only 5.1% ISs.

For model validation against overfitting, we sought to perform stratified cross-validation

(CV) on our training data. We note that our data was not ideal for a CV study: we had

(1) limited data size (2) uneven distribution of ISs across the email threads and (3) class

imbalance between IS and non-IS sentences. E.g., due to the limited data size, emails

with high IS density could find their way in the train but not the test split, and dra-

matically increase the variance in cross-validation results. To ameliorate that, for more

uniform stratification we chunked up each of the 273 threads in our training data into

442 sub-emails of 20 contiguous sentences each (the email threads had a mean length of

22 sentences). We fine-tuned our classifier end-to-end against the corresponding labels

for sentences in the sub-emails. The subsequent input segment generation and training

of the pipeline were otherwise kept unchanged. We obtained a mean F1 score on positive

labeling of sentences with ISs of 0.603, with some high IS variability between folds still

persisting.

We consider these performance results satisfactory given that we had a small and

highly imbalanced data set (273 ISs out of 6,805 sentences). There are strong indications

that increasing the positive examples in the training data set will further increase our

88



classifier’s performance.9 Of course, it is challenging to ascertain if classifier performance

varies across projects due to limited data size and expected differences in underlying

distribution of institutional themes and policy mandates across projects.

We ran our classifier on the full corpus of 1,201,746 emails (after bot email removal)

across all ASF incubator projects. It identified 313,140 ISs in the emails, for an average

of 0.261 sentence-level ISs per email. Table 4.4.5 shows descriptive statistics for both the

socio-technical variables and the number of institutional statements from project mentors,

committers, and contributors, calculated in monthly intervals, per project.

We find that the classifier’s errors are also informative. In one set of false positives,

participants described plans for an event occurring outside of Apache and the relevant

incubator project, not the kind of process or behavioral constraint typical of ISs. It was

probably detected as an IS due to its semantic similarity to rules and guidelines which

make up other positive examples. Conversely, the sentence ‘Send it to ¡EMAIL¿ and see

what the reaction is’ was missed as an IS, despite appearing in the context of contributor

agreements. This miss is likely due to the fact that many such recommendations are

made in the emails that would not be considered institutional, because they indicate a

particular individual as an individual, rather than in their institutional role.

Institutional Statements Over Roles and Sustainability Status. We turn to some ex-

ploratory analysis, to demonstrate the utility of our chosen features when reasoning

about differences between graduated and retired projects. Comparing graduated and

retired projects, we find a significant difference in the number of ISs. For example, in

Figure 4.1(a), the number of IS sent by mentors in graduated projects is statistically

higher than retired projects (the Mann-Whitney U test is used for testing the difference

in means). This, along with the fact that graduated projects tend to be more active

socially overall compared to retired projects (i.e., more email exchanges), suggests the

mentors of retired projects are concerned about the projects’ community progressing,

thus, most of the email content is about rules and guidance. On the other hand, it is

also plausible that mentors engage more socially and less institutionally with graduated
9When we fine-tuned the classifier with only the 273 training email threads (i.e., without Institutional

statements from the ASF policy documents), the F1 for positive label was found to be about 20% lower.

89



1

5
10
30

100
300

graduated retired

M
en

to
r 

IS

(a) Num. Mentors IS (p < .001)

1

5
10
30

100
300

graduated retired

C
om

m
itt

er
 IS

(b) Num. Committers IS (p <

.001)

1

5
10
30

100
300

graduated retired

C
on

tr
ib

ut
or

 IS

(c) Num. Contributors IS (p <

.001)

Figure 4.1. Comparing graduated (in blue) vs retired (in red) projects along the
number of Institutional Statements (IS) (color online). The Mann-Whitney U test p-
val is sufficiently small (in brackets), suggesting significant differences in means between
groups.

Table 4.3. Topics Identified in Institutional Statements.

ID Heuristic Topic Top Sample Words

1 Progress Report review, require, meeting, board, submit, report

2 Collective Decision vote, start, proposal, thread, close, day, bind

3 Project Release release, issue, think, fix, branch, policy

4 Community project, email, send, community, behalf, incubation, talk

5 Report Review board, report, time, meeting, prepare, reminder, review

6 Mailing List Issues list, mailing, discussion, question, issue, comment, request

7 Documentation update, wiki, page, website, documentation, link, doc

8 Software Testing release, source, build, test, note, artifact, check

9 licensing Policy license, file, software, version, copyright, compliance

10 Routine Work project, committer, help, work, way, code

11 Mentorship podling, report, form, mentor, know, sign, month, wish

12 Software Distribution work, repository, information, file, distribute, commit

projects, which may benefit those projects more. The numbers of ISs sent by committers

and contributors show similar patterns. We investigate them longitudinally in the next

section.

Topics Identification in Institutional Statements. We use the Latent Dirichlet Alloca-

tion (LDA) model to study the token-level topics in institutional statements. By opti-

mizing the LDA coherence score, we get the optimal number of topics of 12. The result

90



further enables us to study which words are important to each topic. We present the

clusters of top words for each topic in Table 4.3.

As this table reveals, words are well extracted from the institutional statements and

are distinguished from each other. For example, in the first topic (i.e., ‘Progress Report’),

there is a cluster of words – ‘review’, ‘board’ (which relates to ASF board), ‘submit’,

and ‘report’ – all of which are associated with the important incubator rule that requires

projects to report regular progress reports. While in topic 7, words like ‘update’, ‘wiki’,

‘page’, ‘website’, and ‘documentation’ emerge, all related to requirements projects need

to address related to their website or documentation requirements. The results advance

the institutional theory under the software engineering domain, arguably that the IS is

associated with OSS sustainability, suggest diving deeper into the connections between

the social-technical system and institutional analysis.

RQ1 Summary: We demonstrated that institutional analysis methodologies can

capture differences between graduated projects and retired projects. We also showed

that we can effectively identify meaningful institutional statements, and common

topics, from ASF incubator projects’ emails.

4.5.2 RQ2: Is OSS project evolution toward sustainability ob-
servable through the dual lenses of institutional and socio-
technical analysis? And how do such temporal patterns
differ?

In this section, our goal is to contrast graduated and retired projects over time in both

IS space and socio-technical space. Projects exit the ASF incubator at different times. In

effect, there will be a larger variance during the end of the incubation month. Therefore,

we restrict ourselves to the first 24 months for all projects (more than 60% projects stayed

within 24 months in the incubator).

Topic Evolution Over Time. After identifying the words that contribute to various

identified topics, by aggregating over all projects, we get the volume, which is measured

91



 9 Licensing Policy 10 Routine Work 11 Mentorship 12 Software Distribution

 5 Report Review  6 Mailing Lists  7 Documentation  8 Software Testing

 1 Progress Report  2 Collective Decision  3 Project Release  4 Community Develop

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

−10

0

10

−10

0

10

−10

0

10

Month Index w.r.t. Incubation Start

Figure 4.2. Topics Evolution for graduated projects (in blue) compared to retired
projects (in red). The x-axis indicates the i-th month from their incubation start and
the y-axis represents the relative volume of the topics. Mann-Whitney U test found
10 out of 12 topics are significantly different in their means between graduated and
retired projects (p-val ¡ 0.01). Not significant were topic 9 (licensing policy) and topic
12 (software distribution).

by the number of tokens contributing to that topic, of each topic in each month. Moreover,

since there exist trends in the number of IS, we subtract the mean volume for each month,

separately for the graduated and retired projects. We present them in Figure 4.2, where

the x-axis is the number of months after their incubation start, and the y-axis indicates

the relative volume compared to the mean.

The results of Mann-Whitney U test show 10 out of 12 topics are significantly different

in their means between graduated and retired projects (p-val ¡ 0.01). Not significant were

topic 9 (licensing policy) and topic 12 (software distribution). Additionally, the augmented

Dickey-Fuller test suggests that over time, 9 out of 12 topics are not stationary (i.e.,

temporal trends exist, with p-val ¡ .01), except for topic 2 (collective decision), topic 6

(mailing lists), and topic 12 (software distribution). The testing results prompt us to

analyze the difference in project-level dynamics between graduated and retired projects.

We observe an increasing trend of Topic 1 ‘Progress Report’ with a small seasonal

effect, suggesting the projects are learning the ‘Apache Way’ and more actively discussing

their regular project reporting over time. And such seasonal effect is found to be more

92



significant in Topic 5 (‘Report Review’). Project releases, documentation, and software

testing, are all connected to the number of people participating regularly. Retired projects

are on average smaller than the graduated ones, which is the likely explanation for the

differences. E.g., in Figure 4.3(f), we show that graduated projects, on average, have more

source files than retired projects. Moreover, we find that Topic 9, ‘license policy’, has an

increasing trend in the earlier stages of incubation (e.g., months 1-7) which makes sense

in that the shift from one OSS license to the license required by ASF is an important

discussion that projects would want to address earlier on.

On the contrary, the longitudinal pattern of IS language related to software testing is

relatively rare at the beginning of project incubation. It suggests that in earlier stages of

incubation, developers are more likely focused on the transition to the incubator and per-

haps less on new code development and testing. On the other hand, such transitions were

implemented in a fast manner, with testing discussions increasing rapidly in incubation

months 3, 4, and 5.

By comparing graduated and retired projects, we find that, Topic 10, ‘Routine work’,

to be the dominant topic for both types of projects, almost through all projects’ incuba-

tion (i.e., remain high volume compared to other topics). We also find that graduated

projects tend to be more active on Topic 7 ‘Documentation’ and Topic 3 ‘Project Release’.

Interestingly, on the other hand, mentorship-related ISs (Topic 11) are found to be more

active in retired projects rather than in graduated projects. One possible reason is that

retired projects did seek help from their mentors when their projects were experiencing

downturns, and further issuing institution-wise statements.

Metric Evolution. We continue by exploring the evolution of our metrics over time.

Looking at the mentors’ ISs, shown in Figure 4.3(a), we can see that even at the beginning

of their incubation, mentors email a greater number of ISs to projects that eventually

graduate compared to ones that eventually retire.

Next, we see that the number of ISs in mentor emails decline for both graduated

projects and retired projects before month 5, suggesting that ASFI mentor activity may

decrease after incubating projects work through the first steps of the incubation process.

93



5

10

15

20

25

0 5 10 15 20
Month Index w.r.t. Incubation Start

# 
M

en
to

rs
 IS

graduated
retired

(a) Num. IS from Mentors

5

10

0 5 10 15 20
Month Index w.r.t. Incubation Start

# 
C

om
m

itt
er

s 
IS

graduated
retired

(b) Num. IS from Committers

5

10

15

20

0 5 10 15 20
Month Index w.r.t. Incubation Start

# 
C

on
tr

ib
ut

or
s 

IS graduated
retired

(c) Num. IS from Contributors

5

10

15

20

0 5 10 15 20
Month Index w.r.t. Incubation Start

# 
N

od
es

 (
S

oc
ia

l) graduated
retired

(d) Dev Nodes in Social Net-

work

0.5

1.0

1.5

2.0

0 5 10 15 20
Month Index w.r.t. Incubation Start

# 
D

ev
 N

od
e 

(T
ec

h) graduated
retired

(e) Dev Nodes in Tech Network

0

50

100

0 5 10 15 20
Month Index w.r.t. Incubation Start

# 
F

ile
 N

od
e 

(T
ec

h 
N

et
)

graduated
retired

(f) File Nodes in Tech Network

Figure 4.3. The averaged monthly IS and ST variables between graduated projects
and retired projects. On the top are the IS measures; On the bottom are ST measures.
Shades indicate one st. error away from the mean. Month index 0 indicates the
incubation starting month (color online).

Then, we visually identify an increasing trend of IS from mentors around month 6 for

graduated while 5 for retired projects. One possible reason is the fact that mentors start

helping projects when they are experiencing difficulties or downturns. It is consistent with

ASF mentorship that during the early stage of the incubation, developers are required to

make institutional-related decisions, e.g., voting for reports, discussing the ASF required

licensing, and the community-related issues, and it is in these kinds of areas where mentors

come to help.

On the Socio-Technical networks side, shown in Figure 4.3(d), for the first 6 months,

we can see the graduated projects have a clear increasing trend in the number of nodes

in social networks, while it seems to be constant in retired projects. We can see a slight

decrease around month 10 to month 12 for both types of projects, suggesting 10 months

might be a good timing for mentors to intervene/motivate their projects, if they are

experiencing some difficulties.

94



RQ2 Summary: We identify socio-technical and institutional signatures of OSS

project evolution, and evidence that it differs between graduated and retired

projects, and that these patterns can even be distinguished by institutional heuris-

tic topics. On the institutional side, both graduated and retired projects have more

stable institutional topics during their first 3 months. On the Socio-Technical net-

work side, graduated projects keep attracting community over their first 6 months,

while retired projects are unstable during their first 3 months.

4.5.3 Case Study: Association Between Institutional Governance
and Organizational Structure

To communicate concretely how the institutional and socio-technical dimensions interact

within the ASFI ecosystem, we showcase four diverse instances of their mutual interrela-

tionship.

Case A. In July 2011, the HCatalog project announced a vote for its first Release Can-

didate (RC), the first officially distributed version of its code 10. Because a project’s RC’s

reflect on the whole ASF, they require approval from the foundation after project contribu-

tors have given their approval. In preparation for the first vote, developers double-checked

the installation process and reported missing files and features. This drove contributions

to the code and documentation, e.g., release notes were added after being reported miss-

ing. The contributors then cast their votes. With four people’s votes, the product was

approved and a proposal was forwarded to Apache Incubator leadership for approval.

Case B. In December 2010, an independent developer emailed the Jena project com-

munity to share their idea for a new feature, and was asking how to proceed toward

contributing it 11. Their query includes policy questions, such as whether they must ob-

tain an Individual Contributor License Agreement (ICLA). A developer responds that the

policy does not require an ICLA for the type of smaller contribution that the volunteer is

proposing. The developer then guides the volunteer through established project processes

for contributing to the code, including what mailing lists to use and how to submit their
10https://lists.apache.org/thread/p88lpxn3gtprc11xw20jbnrmp3f8fmpw
11https://lists.apache.org/thread/8dgbvjkwosbvxg6oj6ptyssn0m4rdto1

95

https://lists.apache.org/thread/p88lpxn3gtprc11xw20jbnrmp3f8fmpw
https://lists.apache.org/thread/8dgbvjkwosbvxg6oj6ptyssn0m4rdto1


feature as a patch.

Case C. In December 2016, a developer in the Airflow project community raised con-

cerns over the integration testing infrastructure offered by Apache, citing unnecessary

obstacles it imposes on volunteer contributors12. The developer offers their resources as

an alternative, with the caveats that they will administer it and control access. This

triggers a discussion on the technical merits of the developer’s concerns, and a policy dis-

cussion as to whether ASF permits the use of unofficial alternative infrastructure options.

Several developers conclude that a transition is technically advisable and institutionally

sound, and the community transitions to the alternative integration testing framework.

Case D. In September 2015, the Kalumet project received a proposal that it be retired

from ASFI after its code had been languishing for several months. Contributors agreed

upon retirement almost unanimously. One contributor, identifying features of the project

that could be of use to other ASF and ASFI projects, suggests distributing key parts of

its functionality to other active projects. The retirement vote is ultimately followed by

developer effort distributing Kalumet’s assets.

These cases illustrate how institution-side policy discussion and sociotechnical-side

project contributions interact, with developments on the artifact motivating policy dis-

cussions, and policy constraints steering developer effort. With longitudinal data on both

institutional and socio-technical variables, we now transition to a quantitative investiga-

tion of these relationships.

4.5.4 RQ3: Are periods of increased Institutional Statements
frequency followed by changes in the project organiza-
tional structure, and vice-versa?

In the previous RQs, we conducted exploratory and qualitative studies of the IS extraction

technology, and of IS and socio-technical variable changes over time. In this section, we

investigate the temporal relationship between our measures of institutional governance

and organizational structure, as OSS projects progress on their incubation trajectories.

As predicted by contingency theory, our hypothesis is that during project evolution, devel-
12https://lists.apache.org/thread/twsg2h72d2025jc6nc1ltzgbmwoxh7cx

96

https://lists.apache.org/thread/twsg2h72d2025jc6nc1ltzgbmwoxh7cx


opers and mentors must make time for decisions related to their organizational structure,

contingent on ASF-required institutional arrangements and governance. That is, incu-

bating projects change their organizational structure based on the institutional norms

and rules being discussed, as required of them as a potential new member of the ASF

community. And vice versa, organizational changes can incite follow-up discussions about

institutional processes. To test for RQ3, here we use the pair-wise Granger causality test

with lagged order of 2. We run the test for all pairs between the institutional statements

and socio-technical variables, resulting in 36 separate tests for the graduated projects

set and 36 for the retired ones. We adjust our p-values for multiple hypothesis testing

to control false discovery rate, using the Benjamini-Hochberg procedure [164]. We only

consider significant with p-val < 0.001.

The results are summarized in Figure 4.4, where a directed edge from node X to node

Y indicates that X Granger-causes Y , i.e., change in X is the precursor to the change in

Y . Also, as discussed in Section 4.6, the Granger approach we used is not a complete test

of causality, but does yield an effect and its directionality, although without effect size or

sign.

We observe a large number, 31 (out of 72 total), of Granger-causal relationship between

the measures of institutional governance and the organizational structure. Of those 31

Granger-causal relationships, 15 are from the graduated set and 16 from the retired set,

and 8 of the relationships are shared between the sets. We conclude that there is a

significant Granger-causality between changes in institutional governance discussions and

the organizational structure of the projects. We note 8 bidirectional relationships13, the

remaining 15 are unidirectional.

We look at graduated projects first. Interestingly, Figure 4.4, top, shows that the

number of ISs from mentors, committers, and contributors has effects on the technical

network, and vice-versa for the latter two. Namely, IS from all roles (mentors, commit-

ters, and contributors) Granger-cause changes in the technical networks, i.e., on devel-

oper file productivity (t num files per dev), and total number of coding files changed
13Bidirectional causality indicates feedback of some sort. E.g., supply causes demand, and demand in

turn, causes supply.

97



s_graph_
density

s_weighted_
mean_degree

t_num_file_
per_dev

t_num_
file_nodes

Contributor
IS

s_num_
nodes

t_num_
dev_nodes

Committer
IS

Mentor 
IS

(a) Granger Test for Graduated Projects (p < .001)

s_graph_
density

s_weighted_
mean_degree

t_num_file_
per_dev

t_num_
file_nodes

Contributor
IS

s_num_
nodes

t_num_
dev_nodes

Committer
IS

Mentor 
IS

(b) Granger Test for Retired Projects (p < .001)

Figure 4.4. The Granger Causality between Institutional Statements and Socio-
Technical networks. The blue/purple directed links indicate Granger causality from
ST/IS measures, respectively. A green bi-directional link indicates that there is two-
way significant temporal relationship (p-val < .001). Graduated projects seem to have
fewer links from ST variables to IS variables, suggesting a more unidirectional flow
from institutional to sociotechnical changes in successful projects (color online).

(t num file nodes) variables. Mentor IS, additionally, Granger-cause changes to number

of developers (t num dev nodes). This is consistent with ASFI expectations that a men-

tor’s emails provide advice and engage people, and conversely, that a drop in engagement

may elicit mentors’ engagement. Mentors usually do not code, which is presumably why

they Granger-cause but do not appear in feedback relationships with any of the technical

network variables.

Notably absent, however, are links from mentor and contributor ISs into social net-

work variables. Only committer ISs (bidirectionally) Granger-cause changes in the social

network density, which, perhaps, simply indicates that ISs from committers induce sub-

stantial traffics in the social network, which in turn gets committers to discuss policy

and rules issues. We have observed situations where mentors are likely to interrupt the

98



projects when the projects become less active (either socially or technically)14. On the

other hand, it could also be that a mentor is reacting to some particular broader discussion

among developers, e.g., one on a monthly report.

Together, the above tells a story of the importance to the technical networks of changes

in any IS variable. Surprisingly, mentor IS changes are not as consequential to the social

network, seemingly at odds with the ASF community-first goals. Thus, there may be

room to enhance community engagement with mentors and vice-versa.

RQ3 Summary: In both graduated and retired projects, there are no inputs from

the IS into the social network variables, even though there are IS inputs into all

technical network variables. Retired projects exhibit less bidirectionality between

ST and IS variables. Finally, and interestingly, among retired projects, there are

causal inputs into contributor ISs from both the social and technical variables. This

is not the case for the graduated projects.

4.6 Discussion
In this study, we use individual institutional prescriptions, Institutional Statements (IS),

and the Socio-Technical (ST) network features to reason about OSS project sustainability.

OSS projects are a form of digital public goods which, like other public goods (e.g., water,

forest, marine, etc.), can be subject to degradation due to over-harvesting, e.g., in the

form of free-riders who take advantage of OSS but do not contribute to the required

resources for development and maintenance of the software. Ostrom’s work illuminated

the fact that many communities avoid the dreaded ‘Tragedy of the Commons’, and other

collective action problems, through the hard work of designing and implementing self-

governing institutions. In that context, the ASF is a nonprofit foundation that, through

its incubation program, encourages nascent OSS projects to follow some ASF-guided

operational-level rules or policies around their self-governance. The OSS projects that

join the ASF incubator trade some of the freedom of unlimited institutional choice in
14An example of mentor interrupting project warble: https://lists.apache.org/thread/

x6h8pzhmfwtyy354ml1xm9sylq4y5r7l

99

https://lists.apache.org/thread/x6h8pzhmfwtyy354ml1xm9sylq4y5r7l
https://lists.apache.org/thread/x6h8pzhmfwtyy354ml1xm9sylq4y5r7l


exchange for incubator resources that increase their chances of enduring the collective

action problems that characterize OSS development [145], and becoming sustainable in

the long run.

We found that in the ASF Incubator, the amount of institutional statements and levels

of socio-technical variables are associated with projects graduation outcome, suggesting

that the measures of institutional governance and organizational structure can signal

information on sustainability. In particular, in RQ1, the Mann-Whitney U test shows that

the graduated projects have significantly more ISs from all three types of participants:

committers, contributors, and project mentors than retired projects. This, presumably, is

indicative of more active or intentional self-governance. In theoretical and empirical work

on commons governance, it is well documented that getting self-governing institutions

‘right’ is hard work and takes time and effort [138]. This is consistent with a narrative that

participants in graduated projects debate and work harder on their project’s operational-

level institutional design.

Recent work has shown that ASFI graduate and retired projects have sufficiently

different socio-technical structures [22], so that graduation can be predicted early on in

development at 85+% accuracy. The results in RQ2, show that, for the first 3 months

of incubation, developer nodes in the social networks of graduated projects increase at

a higher rate (means increase from 10.1 to 17.1, and from 7.3 to 9.1 for graduated and

retired projects, respectively), suggesting graduated projects were able to keep developers

contributing more actively or recruit more new members. On the other hand, for the

first 3 months, we also found that the amount of Institutional Statements by mentors

increases in graduated projects, and decreases in retired projects (from 19.7 to 22.7 vs

22.6 to 14.6, for graduated and retired projects, respectively), suggesting that the initial

help from project’s mentors is of importance.

To further study the effects of ISs, we performed a deep-dive into IS topics. We

found the topics of institutional-relevance in the graduated projects differ from those

of the retired projects, specifically, we find that the topic of documentation (topic 7)

in graduated projects is more prevalent than in retired projects. On the other hand,

100



we found that the topics of mentorship (topic 11) of retired projects are significantly

higher than retired projects, signaling that the retired projects might be struggling during

the incubation. Combined with the fact that there are more developer nodes in both

the social and technical networks, together the findings suggest that graduated projects

have more capacity and energy to attend to non-coding issues, like documentation, than

retired projects do. However, even among graduated projects there is still diversity in the

institutional statements. Thus, as predicted by contingency theory, as well as Ostrom’s

theory of institutional diversity [155], a one-size-fits-all solution to a successful trajectory

toward sustainability is not likely. Instead, future work should focus on gathering larger

corpora of data, to be able to resolve individual or small-group differences in sustainable

projects.

Our framework allowed us to combine the IS and STS structures and study them

together over time. With it, in RQ3, we found two-way, causal correlations between

socio-technical variables and ISs over time, arguably indicating that OSS project socio-

technical structure and their governance structure evolve together, as a coupled system.

In addition, our methods point to a way to study possible interventions in underperform-

ing projects. Specifically, the finding that in retired projects there are bi-directional links

from committer’s ISs to all three features of technical networks (i.e., t num dev nodes,

t num file per dev, t num file nodes), suggest that increase in committer’s IS are in-

terleaved with changes in features of the socio-technical networks.

As for the design implications, in addition to the current categories of mailing lists

in ASF incubator (e.g., ‘commit’, ‘dev’, ‘user’, etc.), there can be a benefit to creating

a separate mailing list, for institutionally-related discussions to help committers (and

also for mentors and contributors) participate faster in those discussions in a timely

manner. This could be made more useful using technology for self-monitoring, with which

project participants could monitor a project’s digital traces and discussions in order to

more quickly react to episodic events. Some such tools have already been created for

socio-technical networks in ASFI projects [165], and could be extended to include ISs as

well. Such tools can help identify entry points and targets for interventions, whereby

101



underperforming projects could be leaned on, internally or externally, via rules or advice

to adjust their trajectories.

Contributions to Institutional Analysis and Socio-technical System Theory. Making a

full circle, our findings also point to ways in which the theories we started from can be

refined or extended. We find, in Sect. 5.4, evidence that the features of OSS projects’

socio-technical systems co-change together with the amount of Institutional Statements in

them, and that the co-change relationships are sparse. This evidence of co-change implies

that the OSS projects’ structure and their governance form a (loosely) coupled system.

From a controllability point of view, a dynamically coupled system refines Smith et al.’s

mechanistic binary notion of ‘inside’ and ‘outside’ interventions [121].

Our findings also suggest that for OSS projects, adopting additional rules and norms

(e.g., by joining ASFI) can be worth the loss of some freedoms, as the Institutional State-

ments (Sect. 5.2, 5.3, 5.4) seem to serve to organize the project’s actions and discussions,

as predicted by Siddiki et al. [150] and Crawford and Ostrom [149]. Thus, our findings tie

in with, and potentially extend the Institutional Analysis Design (IAD) view, suggesting

that the feedback between the socio-technical system structure and institutional gover-

nance analysis is sufficiently direct and significant, and should be considered unitary in

further studies.

More practically, our institutional statement predictor, although still a work in progress,

can effectively predict atomic elements of self-governance. As such, it can be used as a

tool to provide quantitative data for applying institutional analysis and design (IAD)

more generally, e.g., to OSS projects that are outside of ASF, or self-governed systems

with public documents and discussion forums.

4.7 Threats to Validity
First, our data is from only hundreds of projects ASF incubator projects. Thus, gener-

alizing the implications beyond ASF, or even beyond the ASF Incubator projects carries

potential risks, for example, OSS projects in other incubator programs may not have

mentors. Expanding the dataset beyond the ASF incubator, e.g., with additional projects

102



from other OSS incubator programs could lower this risk. Second, we do not consider

communication channels other than the ASF mailing lists, e.g., in-person meetings, web-

site documentation, private emails, etc. However, ASF mandates the use of the public

mailing lists for most project discussions, a policy that ensures a particularly low risk of

missing institutional or socio-technical information 15. Annotations of the Institutional

Statements (IS) can be biased by individual annotators, while we gave the annotators

sufficient training and reference documentation which lowers the risk. We expect the per-

formance of the classifier as we increase the size of the training set and better incorporate

contextual information, and we plan to distinguish types of ISs for future work. In OSS

projects, developers may use their different emails or aliases, which in turn complicates

the identification of distinct developers, while assigning and insisting on using a unique

apache.org domain email address reduces such risks 16. Finally, as noted in Sect. 4, there

are likely cases where OSS projects that have retired from the ASF Incubator program

still go on to become sustained over time. In these instances, some OSS projects entering

the ASFI may simply not be a good fit for the ASF culture and institutional requirements

or policies and ultimately retire as a result. In this paper, we explicitly use graduation

as a measure of sustainability given that this is an ultimate goal of the ASFI – to create

projects that can indeed be sustainable. But we want to recognize the point that few re-

tired projects still could become sustainable by following a different path than association

with ASF.

4.8 Conclusion
Understanding why OSS projects cannot meet the expectations of nonprofit foundations

may help others improve their individual practice, organizational management, and in-

stitutional structure. More importantly, understanding the relationship between insti-

tutional design and socio-technical aspects in OSS can bring insights into the potential

sustainability of such projects. Here we showed that quantitative network science fea-

tures can capture the organizational structure of how developers collaborate and commu-
15The Apache Way: http://theapacheway.com/on-list/
16ASF committer emails: https://infra.apache.org/committer-email.html

103

http://theapacheway.com/on-list/
https://infra.apache.org/committer-email.html


nicate through the artifacts they create. Combining the two perspectives, socio-technical

measures, and institutional analysis, we leverage the unique affordances of the Apache

Software Foundation’s OSS Incubator project to extend the modeling of OSS project

sustainability, leveraging a novel longitudinal dataset, a vast text and log corpus, and

extrinsic labels for the success and failure of project sustainability.

104



Chapter 5

On the Self-Governance and Episodic
Changes in Apache Incubator
Projects: An Empirical Study

5.1 Introduction
Sustainable Open Source Software (OSS) projects are characterized by volunteering work,

continuous recruitment, and effective governance. However, even OSS projects that are

widely used by many, including large companies and national governments, may not

attract the attention and resources they need, resulting in unsustainable development

and potentially severe consequences downstream [166, 167]. E.g., on December 9th, 2021,

the Apache Log4j project was reported to have a severe security vulnerability, likely due to

being severely under-resourced, affecting countless individuals and organizations. One day

later, US government officials assigned the highest severity score for the Log4j incident 1.

While not all OSS projects that are unsustainable will have such drastic consequences,

many of them that depart from a sustainable trajectory suffer the ‘tragedy of the com-

mons’ or even get abandoned. This is due to a complex set of circumstances making it

challenging to pinpoint and mitigate. On the one hand, software engineering researchers

have favored a socio-technical perspective of OSS projects, using email communication

and code commits to build socio-technical representations [33, 115, 168]. On the other
1Log4j incident post:https://nvd.nist.gov/vuln/detail/CVE-2021-44228

105

https://nvd.nist.gov/vuln/detail/CVE-2021-44228


hand, management science researchers have studied episodic changes in organizations and

sustainability for governing the commons, including forests, marine, and fisheries, through

the lens of institutional written or unwritten norms, rules, and regulations [169, 170]. By

and large, these two perspectives on sustainability have not been fruitfully combined,

and very little is known about how effective governance and software development work

together in practice toward sustaining OSS projects. But we do have an example that

clearly demonstrates how changes in self-governance can change the trajectory of project

sustainability.

Motivating Example In Dec 2018, the Apache Software Foundation incubating project

openwhisk was experiencing a hard time: the number of active developers dropped from

35 to 17 in only a few months. Had such a downturn continued, the project could have

gotten abandoned and finally retired from the ASF incubator. Fortunately, a developer

started an email thread, noting that there had been insufficient engagement in running

the project: ‘I’ve done the release manager role for package release so far, but to me it

seems that our release process is being impeded by a lack of engagement from eligible voters

on the IPMC mailing list.’ This email thread acted to incentivize others to get positively

engaged ‘I will reflect this in the quarterly report ... The IPMC is aware of the issue and

is currently doing something about that.’ In the months that followed, the project was

discussing how to get back on the sustainable trajectory, and finally decided to continue

its development by enforcing regulations. ‘I would like to see us push out a consolidated

next release in the near future (by end of January?). I’d also like to see us attempt to

establish a regular cadence of such consolidated releases (perhaps quarterly?)’. During this

change event, the number of developers grew from 17 to 28; so did the commits and

engagement on the mailing list. Later, the project graduated from the incubator in 2019.

We see in the above that discussions related to norms, rules, and regulations can trigger

changes in the software development process, leading to corrections in the OSS project

trajectories. We also suspect that openwhisk is not the only such example. Prior work

has shown that many ASF incubator projects experienced large changes in their socio-

technical structure, over short periods of time [22]. Projects with effective governance are

106



more likely to come out unscathed from such large changes, while others do not, implying

that governance may be a catalyst to sustainability [28].

Inspired by the above example and prior work, our hypothesis is that concerted insti-

tutional discussions can lead to large changes in the underlying socio-technical structure.

Symmetrically, changes in the projects’ socio-technical structure may require modified

rules or institutional governance to be compatible with the new structure. To validate

our hypothesis, in this work we chose a set of 262 Apache Software Foundation (ASF)

incubator projects. The ASF incubator is a well-known pioneer and champion for open

source. It hosts hundreds of OSS projects, striving to nurture sustainable communities in

each project through ASF-wide mechanisms, including a set of institutional policies and

governance. When a project exits the incubator, each project is evaluated and labeled as

graduated (sustainable) or retired (unsustainable) by ASF committees. Such an extrinsic

labeling is essential to understanding sustainability. Just as importantly, the openness

and completeness of the ASF mailing lists (ASF’s tenet is ‘If it didn’t happen on the

mailing list, it didn’t happen’), makes the ASF incubator a key resource for studying OSS

sustainability from both the socio-technical, software engineering and the institutional

governance perspectives.

Starting from a data set of social, technical, and policy digital traces from 262 sustainability-

labeled ASF incubator projects, and guided by related social and organizational theories,

here we sought to study the more specific hypothesis:

Sustainable projects can process and translate self-governance rules and policies

into socio-technical changes, and vice versa, more effectively than unsustainable

projects.

To that end, we employ a large-scale empirical study to characterize sustainable and

unsustainable projects by matching episodic changes in their socio-technical structure to

evidence of institutional discussions. We operationalize this by matching episodic time-

series events, i.e., Change Intervals (CI) in the socio-technical structure, to sentence-

level institutional discussions, i.e., Institutional Statements (IS), as well as the temporal

relationships between them. We develop a framework for simultaneous, socio-technical

107



and institutional, analysis of OSS projects, with a view to describing and understanding a

process affected by both, namely, projects gaining self-sustainability and self-government

and eventually graduating from the ASF incubator. Our findings are as follows:

• We can effectively identify episodic Change Intervals (CI) in the socio-technical

structure, and they tend to be temporally co-located with Institutional Statements

(IS);

• CIs have effects at both individual-level and project-level, and such effects vary

across both agents and projects with different levels of sustainability;

• During episodic changes, sustainable (i.e., ASF incubator graduated) projects can

convert institutional rules into practice more efficiently than other projects.

To the best of our knowledge, this work is among the first to attempt to study the

structural changes in OSS projects and their self-governance under a unified analytical

framework. We are hopeful that refining this convergent approach, of socio-technical and

institutional analyses, will lead to new ways of thinking about and analyzing emergent

properties in modern software engineering such as OSS sustainability.

5.2 Background and Theoretical Framework
This section introduces the background and social theories pertinent to OSS governance

and sustainability.

5.2.1 Theory of Governing the Commons

A major portion of Ostrom’s Nobel Prize-winning work [140] investigated how individuals

collaborate and create self-governing institutions in natural resource settings [171], e.g.,

water [141], marine [142], and forest [24]. However, in practice, individuals who cannot

be easily excluded from the use of shared natural resources often have little incentive to

contribute to the production or maintenance of these resources [143, 172]. This refers

to the ‘Tragedy of the Commons’ [173], and these individuals are often referred to as

free-riders in natural resource commons settings [143, 172].

108



In the OSS context, OSS code is clearly an inexhaustible resource to users: it can be

copied over and over. However, there are exhaustible (limited) resources in OSS commons,

e.g., developer’s efforts. But there is also maintenance that is regularly needed, e.g., on

defects, technical debt, etc. The combination of limited developer effort available and

the need to keep technical debt low produces situations similar to the tragedy of the

commons, since developers find building new features more rewarding than performing

code maintenance or fixing bugs in OSS projects. In that sense, OSS free-riders, would

be those favoring feature development over fixing bugs.

Over the course of a lifetime, Ostrom demonstrated through hard work in the devel-

opment of self-governing institutions that communities can avert such tragedy [140]. This

was accomplished primarily through the introduction and evolution of the Institutional

Analysis and Development (IAD) framework [138]. We and others before us have real-

ized Ostrom’s formalism is appropriate for analyzing OSS commons [147, 146, 82], where

exogenous factors are: the socio-technical context as community attributes, ASF’s and

project-specific regulations as the rules-in-use, and the biophysical conditions correspond

to software artifacts being developed. The action arena consists of OSS contributors and

action situations. Of course, sometimes the concepts fit very well, and other times, as

in our answer about free-riders above, the concept matching is more distant, and that’s

where our current and future work lies: in extending IAD and Ostrom’s rules to OSS

ecosystems. However, even if over-appropriation may not be a problem for OSS, the

tragedy of the commons can still happen in the OSS context, and OSS sustainability lies

at the core of the solution. Such tragedy arises when there are free-riders who do not

provide sufficient work on development and maintenance while taking the spot, therefore,

the project cannot achieve the functionality and use intended, and thereafter becomes

abandoned [145].

5.2.2 Organizational Change Theory

One can gain a more comprehensive understanding of the nuances of organizational change

through the interaction between different perspectives, because every theoretical perspec-

tive provides a partial account of a complex phenomenon [174]. Here we present three

109



main pillars of organizational change theory.

Episodic Change Organizational changes are viewed as episodic changes when they

occur infrequently, discontinuously, and intentionally [175]. Organizations tend to undergo

episodic change during periods of divergence when they move away from their equilibrium

condition [174]. Developing divergence results from a growing misalignment between an

inertial deep structure and perceived environmental demands.

Agents During organizational change, influencers who are committed to change are

viewed as change agents. With their charisma and fortitude, such agents motivate and

lead their teams by engaging them in the change process. These kinds of leadership

pedigrees can be found in two types [176]: The first type of agent uses power as a means

of rewarding and sanctioning their staff. The second type of agent has the trust of their

staff, and in these cases charismatic agents can successfully influence others to follow their

commands.

Resistance In effect, episodic changes in an organization can cause employees’ resis-

tance in the workplace [177]. Piderit et. al. [178] claim that people tend to stay un-

changed in their workspace, as their primary responsibility might be the welfare of their

families. Therefore any organizational change that is going to impact that reality is going

to encounter some kind of resistance if the employees are not involved in the change pro-

cess. As such, successful organizational adaptation is increasingly reliant on generating

employee support and enthusiasm for proposed changes, rather than merely overcoming

resistance [178].

5.2.3 Socio-Technical System Theory

OSS projects, and the socio-technical side of software engineering in general, have dom-

inated the analysis for a long time through organizational and socio-technical perspec-

tives [148, 8, 179, 180]. Social-technical systems (STS) consist of two main components:

the social part, where users continuously create and share knowledge by engaging in vari-

ous kinds of interactions with one another [181], and the technical part, where they rely on

technical hardware to accomplish collective tasks [117, 182, 17]. STS is typically referred

to when examining how a technical system is able to provide efficient and reliable interac-

110



tion between individuals. In addition, it examines how the social subsystem is affected by

interactions and therefore influences the performance of the technical system [118, 119].

One might also describe STS as an intermediary entity that transfers institutional influ-

ence to individuals, combining the views of engineers and social scientists [154]. Xuan et

al. [183] propose a method to measure the interleaving effects between email communi-

cations and code commits in OSS projects, and they find that bursts in communications

before and after code commits are essential for effective software development. From

the STS perspective, the ASF community is a unique system that has both outside in-

fluence regulations from the ASF board and members and inside structure managed or

self-governed committees.

5.3 Research Questions
In the previous section, we reported that a variety of scholars have utilized a socio-

technical approach to analyze complex collective behaviors in OSS projects. We also

described how institutional analysis is useful in understanding institutional governance

under the context of digital commons (i.e., OSS projects). Moreover, prior work has

shown that episodic changes to the socio-technical network can be indicators of changes

in project sustainability [22]. As a first step to linking such changes to their antecedents

in institutional discussions, we focus on the methodology for identifying large changes in

socio-technical features, over time. We ask:

RQ1: Are there episodic changes in the socio-technical structure of projects during

their incubation? Likewise, can we identify discussions related to policy and governance?

As predicted by organizational change theory, episodic changes are associated with

agents and will be reflected in some form of resistance (e.g., negative developers’ engage-

ment, responsiveness, and sentiment). We ask:

RQ2: Is there significant resistance evident in policy/governance-related discussions

associated with episodic change? How do they differ between sustainable projects and

others?

Per institutional analysis theory, strategies, norms, and rules can affect the socio-

111



technical structure of projects. In addition, institutional governance and organizational

structure must work hand-in-hand to make viable socio-technical systems. Ill-designed in-

stitutional arrangements can introduce inefficiencies into the system, which may amplify

non-standard behavior and structure. In a sustainable system, an ill-formed organiza-

tional structure may induce new rules to adjust and improve such structure, improving

efficiencies in the systems. Therefore, such influential links from institutional design to

the organizational structure can be, in fact, bi-directional. Most such changes will moti-

vate some and demotivate other developers, which will manifest as variable sentiment in

their communication.

Thus, we hypothesize that the feedback loop, if any, between institutional governance

and organizational structure can be quantitatively measured and associated with overall

sentiment. We ask:

RQ3: What are the associations between episodic change direction (i.e., up-turns and

down-turns) in socio-technical structure and the sentiment in IS-related discussions?

In the following section, we introduce the methodologies approaching the above three

research questions.

5.4 Data and Methods
In this work, we leverage a previously published data set [128] consisting of hundreds

of Apache Software Foundation Incubator projects. ASF Incubator (ASFI) aims to help

projects become self-sustaining and eventually join ASF [6]. The incubation outcome is

two-fold: One is graduation indicating that the project has a self-sustainable community

to move it forward, otherwise the project is retired.

On the data end, in addition to the previously published data set, we gather com-

plementary time-stamped trace data of commits and emails using perceval [184]. To

reduce the noise caused by outliers in email data, we removed bots’ automated emails by

applying regular expressions to email titles and content. Similarly, for commit data, we

use GitHub Linguist and identify 731 collective programming language and markup file

extensions to remove non-coding commits (e.g., committed to files with extension .json,

112



.jpg, .png, etc.). Our final data contains 262 projects, among them, 205 are graduated

projects, and 57 projects are retired. In total, we collect 1,548,807 email records from

42,191 unique emails contributors, and 359,297 commit records from 5,931 unique ASF

committers 2.

5.4.1 Constructing Socio-technical Networks

Studies of complex systems, such as OSS projects, have largely relied on network science

approaches [131, 111, 185]. As socio-technical networks can contain both information

about the components (i.e., the nodes) and the interactions between the components (i.e.,

the edges), we use them here as abstraction anchors. In this work, the socio-technical

networks consist of two types of networks [15]: social networks, which are extracted

from their email communications, and technical networks, based on commits to source

files. At each month in incubation, for each project, we form social networks (weighted

directed graphs) from the communications between developers as follows: developer A

has a directed edge to developer B only if B has replied to A’s post on the mailing lists

during that month. The edge weight represents the frequency of communication between

two developers. The technical weighted bipartite graph is formed in a similar way. We

include an undirected edge between developer A and a source file F if developer A has

committed to file F during that month. Each edge is weighted according to the frequency

at which it is committed to the source file. We use the Python networkx package for

the network implementation.

5.4.2 Identifying Institutional Statements (IS)

Through the lens of open-access email discussions among ASF committers, ASF mentors,

and other types of contributors, we can then capture their institutional designs in the

form of ISs.

Definition of Institutional Statement (IS). We refer to a sentence-level institutional

discussion as an Institutional Statements (IS). For example, on 24 Feb 2017, an ASF

incubator project Airflow sent out an email containing institutional statements “Next
2Our code is available at Zenodo: https://doi.org/10.5281/zenodo.6526833

113

https://doi.org/10.5281/zenodo.6526833


steps: 1) will start the voting process at the IPMC mailing list. ... So, we might end up

with changes to stable. ... 2) Only after the positive voting on the IPMC and finalisation

I will rebrand the RC to Release.” In short, norms, rules, and strategies are outlined

as prescriptions and constraints that mobilize and organize actors for collective action

in a form of institutional statements. To extract IS from the email corpus, we leverage

previous work on institutional analysis [28]. As there is no ground truth for institutional

statements to train the IS classifier, they first hand-annotated a small subset of the data

for IS as follows. Using a random subset of 313 email threads from incubator project lists,

two coders classified each sentence in them as either ‘IS’ or ‘Not IS’ according to whether

it came from an institutional statement or not, which results in 6,805 labeled sentences

(i.e., ‘IS’ or ‘Not IS’), and there were 273 of them labeled as IS 3. They combined the email

exchange data set to fine-tune a BERT-based classifier [157], for automatic detection of

ISs. In the end, given the fact that ISs are rare (there are only about 5% emails contain

ISs), and the task naturally is challenging, the classifier achieved a precision score of 0.667,

recall score of 0.681, and F1 score of 0.674 on classifying institutional statements, showing

the classifier is able to extract ISs from developer email exchanges.

5.4.3 Identifying Change Intervals (CI)

Organizational changes are categorized as episodic changes when they occur infrequently,

discontinuously, and intentionally. When studying the dynamics of socio-technical sys-

tems, prominent changes in socio-technical network variables that intuitively mark critical

events are particularly relevant.

Definition of Change Intervals (CI). We refer to the time periods (in months) during

which these episodic changes occur as Change Intervals (CI). We use the Cumulative Sum

(CuSum) algorithm to detect these change intervals with the package detecta. CuSum

algorithm is a widely used method for monitoring abrupt changes in time-series data [186].

A typical form of CuSum algorithm is to calculate the cumulative sums in positive and

negative directions along an axis of the data and mark an alarm point when reaching some

threshold c. detecta can extract the increasing/decreasing change interval containing
3Coding manual: https://doi.org/10.5281/zenodo.7042616

114

https://doi.org/10.5281/zenodo.7042616


Table 5.1. Definition of variables.
Type Variable Definition

Social-technical

s num nodes The number of unique active developers in the social network.

s num component The total number of disconnected components in the social network.

s graph density The number of existing edges divided by all possible edges

s avg clustering coef The ratio of closed triplets divided by all triplets.

s weighted mean degree The mean degree of the social network.

t num dev nodes The number of unique developers in the technical network.

t num file nodes The number of unique source code files in the technical network.

t num dev per file The number of developers per file node.

t num file per dev The number of files per developer node.

t graph density The number of existing edges divided by all possible edges

Institutional:Agents

Mentor Person who mentors projects and helps them grow a sustainable community.

Committer Person who commits and reviews code changes.

Contributor Person who contributes through non-coding activities.

Institutional:Resistance

Responsiveness The average delay time (in days) for agents to reply to IS-related emails.

Engagement The average number of emails that an agent engages in.

Negativity The number of negative emails over all emails for each agent.

an alarm point. It also uses a drift parameter, denoted by d, to penalize a long, flat drift.

Our parameter selection procedure on c and d respects the diverse properties of different

projects. Specifically, for a socio-technical variable, each project gets its unique pair of

c and d, calculated based on the project’s fluctuation level. In the procedure, we first

calculated the pairwise differences (|xi − xj|, where xi is the data point at time t = i)

in the data for each project. Then, within each project, we took the ratio between the

mean µ∗ of the largest 20% of the pairwise differences and the overall mean µ, denoted

by p = µ∗

µ
. This ratio p from all projects formed a distribution P which provides a

comprehensive view of the extent to which large changes in these projects outstrip project

averages. From distribution P , we select a value for the base parameter p0, which is used

to generate unique c and d for each project, with the equations: c = p0µ and d = 0.1c.

To restrict the Type I error rate, we conservatively set p0 = P0.75, where P0.75 is the 75th

percentile of P . We demonstrate an exemplary CI in Figure 5.1.

115



5.4.4 Variables of Interest

§ Socio-technical Recent work shows that the network modeling is exhibiting high pre-

dictive power for OSS success and sustainability [8, 187, 188]. Our socio-technical net-

work variables are pulled from a recent study on forecasting the sustainability of OSS

projects [22], All metrics are aggregated on a monthly basis for each project. In total, we

have ten socio-technical network variables. The first five are in the social network: (1)

number of nodes s num nodes indicates the unique active developers in social networks;

(2) average clustering coefficient s avg clustering coef describes the linkage of a node

to its neighbors, measured by the closed triplets divided by all triplets; (3) number of

components s num component is the total number of disconnected components in the so-

cial networks; (4) weighted mean degree s weighted mean degree represents the mean

degree of the social networks; (5) graph density s graph density measures the density

of the network, calculated as the number of existing edges divided by the number of all

possible edges; And the other five variables in the technical network are: (6) number of

developer nodes t num dev nodes is the number of unique developers in the technical net-

works; (7) number of file nodes: t num file nodes is the number of unique coding files;

(8) number of developers per file node t num dev per file measures the degree of collab-

orative behaviors; (9) number of files per developer node t num file per dev describes

the degree of multitasking behaviors; (10) graph density t graph density represents the

density of the network, calculated as the number of existing edges divided by the number

of all possible edges in the technical networks.

§ Institutional In addition to institutional discussions, we define the variables indicat-

ing agents and resistance during episodic changes. First, the change agents are categorized

into three classes below: (a) Mentors, who give mentorship to projects and help them grow

and build their community toward sustainability. Mentors may intervene in the projects

if the projects are not progressing well. (b) Committers, who are the major component

of the workers for building the artifact. In a project, an individual becomes a commit-

ter until they make their first actual code commit to the code base. (c) Contributors,

who present the largest population in the community. Contributors are the individuals

116



0 5 10 15 20 25 30 35 40
Month Index w.r.t. Incubation Start

0.4

0.5

0.6

0.7

Fe
at

ur
e 

Va
lu

e

Start
Ending

Figure 5.1. An illustration of a change interval (CI).

who are neither mentors nor the committer, i.e., they do not contribute code changes

nor mentor the projects. However, contributors are essential to OSS sustainability. They

can be helpful in the sense of non-code contributions, e.g., writing documentation, test-

ing, and providing feedback. As predicted by the institutional change theory, during

episodic changes, certain resistance may occur in the organization. Resistance measures

are calculated on a monthly basis. (a) Responsiveness. Responsiveness is the first level of

resistance by slowing down their work pace. It is measured by the average delay time (in

days) when agents reply to previous IS-related emails. (b) Engagement. Engagement is

the second level of resistance by not participating in certain discussions. It is calculated

by the average number of emails the agent engaged in. (c) Negativity. Negativity is the

third level of resistance and it carries the opposite information to the discussion. It is

measured by calculating the number of negative emails over all emails. Since the negative

content is much zero-inflated, we only look at the top 20% negative periods in our data,

and use the Mann-Whitney U test to test the shift in means. We summarize the above

variables in Table 5.1

5.4.5 Sentiment Detection

To detect the sentiment in institutional discussions, we use the state-of-the-art NLP model

from package pysentimiento to extract opinions from texts [189], which first came out

in 2021. The base model is BERTweet, a RoBERTa model [190] trained on tweets, which

is designed to handle sentiment and emotion analysis tasks in social discussions [191].

117



2.5 5.0 7.5 10.0 12.5
Length (Graduated)

0

250

500

750

1000

1250
N

um
 o

f I
nt

er
va

ls

2 4 6 8 10
Length (Retired)

0

200

400

600

800

N
um

 o
f I

nt
er

va
ls

0.0 0.2 0.4 0.6 0.8 1.0
Percentage (Graduated)

0

20

40

60

80

100

N
um

 o
f P

ro
je

ct
s

0.0 0.2 0.4 0.6 0.8 1.0
Percentage (Retired)

0

10

20

30

N
um

 o
f P

ro
je

ct
s

Figure 5.2. The distribution of the change interval duration (in months) and percentage
w.r.t. projects’ incubation time averaged across all socio-technical variables.

In our setting, the task is to extract sentiment from the discussions about institutional

statements, we find that such a task is suitable to use BERTweet since the institutional

statements are similar to open discussions in tweets. Previous work, Senti4SD [192], aims

to address sentences like ‘kill this process’ under code-mixed software engineering context.

Despite the fact that Senti4SD is trained within software engineering context. We believe

that the BERT-based pysentimiento model is, arguably, more suitable for our task, as

discussions about institutional are more akin to social discussions rather than technical

discussions with code snippets. To reduce the noise in the sentiment data, we only keep

informative replies that are classified as either positive or negative.

5.5 Results
In this section, we study the change in OSS projects by adopting a unified framework,

from the institutional analysis and socio-technical system perspectives.

5.5.1 RQ1: Are there episodic changes in socio-technical struc-
ture during project incubation? Likewise, can we identify
institutional discussions?

As described in Sect. IV, we used a change interval detection model to help us iden-

tify events in the socio-technical structure of ASF incubator projects. Here, we present

descriptive statistics about the change intervals we detected.

In Figure 2, we show the total number of change intervals across all socio-technical

structures per project. We aggregate the projects by their sustainability status accordingly

(i.e., graduated or retired). We find that graduated projects tend to have a higher value in

the total change intervals, suggesting that the development of graduated projects is more

118



1

5
10
20

50
100
200

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
um

. I
S

graduated
retired

Figure 5.3. The monthly num. of institutional statements by sustainability status.

fluctuating than the retired projects. The total length of the change intervals is averaged

by each socio-technical variable per project. We find that, for most of the change intervals,

they tend to occupy 20% of the project incubation time, while the change intervals in

retired projects have around 20% to 30% for their incubation time.

On the other hand, we are also interested in the stats from our IS classifier. As we can

see in Figure 5.3, the number of monthly IS of graduated projects is more than retired

ones’. Moreover, the number of IS from retired projects has a decreasing trend from month

2 to month 6 while for graduated projects it is more stable from month 1 to 12.

We have shown descriptive statistics about the detected change intervals, in the fol-

lowing sections we will show how to use the CI and IS more practically.

RQ1 Summary: We showed that most change intervals tend to occupy about 20%

of the projects’ incubation time. We demonstrated that graduated (i.e., sustainable)

projects have more institutional statements and shorter change intervals than retired

(i.e., unsustainable) projects.

119



5.5.2 RQ2: Are there significant resistances in IS-related discus-
sions associated with episodic change? How do such tem-
poral patterns differ across graduated and retired projects?

As predicted by institutional change theory, during an episodic change in the project’s

organizational structure, the OSS volunteers may incur an extra workload. In addition,

different agents have varying levels of importance during episodic change, and in reverse,

they are influenced by episodic change differently, i.e. resistance to change. In this section,

to study the association between institutional statements and episodic change intervals,

we dive deeper into three aspects at the project level: responsiveness, engagement, and

negativity with respect to the change interval. Together, they represent three different

levels of observable resistance in projects. Here, we only measure such change regarding

IS-related discussions, that is, only the email exchanges containing IS are included. The

three resistance measures are defined in Sect. 2.4.2.

We show the response delay over three periods, i.e., one month before the episodic

change (pre-CI), during the episodic change (within-CI), and one month after the episodic

change (post-CI) in Figure 5.4. All values are normalized as per month and aggregated

by groups. The result of the Mann-Whitney U test suggests that there exists a significant

increase in the means of response delay (in days) from pre-CI to within-CI, and from

within-CI to post-CI periods, for both contributors and mentors, with p-value ¡.001. We

find that the shift in committers’ responsiveness is much lower and insignificant from pre-

CI to within-CI period than contributors and mentors, suggesting the episodic change has

a more significant effect on contributors and mentors, rather than committers, in terms

of responsiveness. A possible reason for this phenomenon is the fact that committers

are required to maintain a consistent commitment to development even during episodic

changes.

Next, we look at the second level of resistance, engagement. As a reminder, the

engagement is quantified by the number of IS-related emails for each type of agent engaged

per month. The engagement indicates the level of participation in institutional issues (e.g.,

regulation, rules, and norms) within the projects. Unlike the responsiveness index, agents

120



committer contributor mentor

pre_CI within_CI post_CI pre_CI within_CI post_CI pre_CI within_CI post_CI

0.1
0.3
1.0
5.0

30.0

R
es

po
ns

iv
en

es
s 

In
de

x

Figure 5.4. Responsiveness over pre-, within-, post-CI periods.

committer contributor mentor

pre_CI within_CI post_CI pre_CI within_CI post_CI pre_CI within_CI post_CI
0.1

0.3

1.0

5.0

20.0

E
ng

ag
em

en
t I

nd
ex

Figure 5.5. Engagement over pre-, within-, and post-CI periods.

can refuse to engage in certain IS-related issues during an episodic change period, and

such reactions, if significant, should be observable via statistical analysis. As shown in

Figure 5.5, the Mann-Whitney U test suggests that the engagement of all three types of

agents in IS-related discussions is significantly reduced during the episodic change with

p-values ¡.001. Combined with the results of responsiveness in Figure 5.4, we consider one

possible reason for this to be that committers are not slowing down because they are more

focused on specific types of issues, allowing them to remain an almost constant response

rate in those. On the other hand, mentors are the delegates of regulations in projects

but not the stack-holder, therefore, they only need to attend to certain IS-related issues

if projects are progressing well.

For the last attribute, we look at the negativity. The negativity index is calculated for

121



committer contributor mentor

pre_CI within_CI post_CI pre_CI within_CI post_CI pre_CI within_CI post_CI

0.1

0.3

0.5

0.8

N
eg

at
iv

ity
 In

de
x

Figure 5.6. Negativity over pre-, within-, and post-CI periods.

all types of agents by the number of negative emails over all emails on a monthly basis.

We measure how much agents oppose IS-related issues before, during, and after episodic

changes. As shown in Figure 5.6, we measure such changes in the pre-, within-, and post-

change interval periods. We find that three agents exhibit three different patterns in the

negativity measure. Committers have a significant negativity increase between pre-CI and

within-CI period, as suggested by the Mann-Whitney U test with p-value ¡.001. Moreover,

we find that the mentors tend to be, in general, more negative than both committers and

contributors regarding IS-related issues. In addition, contributors have steadily increasing

shifts in negativity and much more outliers, while mentors have a significant increase in

negativity only from within-CI to the post-CI period. There are the following possible

reasons for this phenomenon: (1) Committers are the stakeholders, and they are the ones

that will follow the regulations and norms, imposing episodic changes will shift them to

be more negative on discussing IS-related issues. (2) Contributors are more of a customer

of OSS rather than a producer, they are the less conservative people in the projects, and

they are more likely to complain about regulations and rules they do not want to have,

therefore, forming outliers. (3) Mentors’ criticism is followed by the episodic changes,

while during the episodic changes they tend to be more supportive of the team and help

the community go through the changes.

In addition to time intervals around episodic changes, we also study the influence of

episodic changes vary across projects with different sustainability levels, i.e., graduated

122



committer contributor mentor

Graduated Retired Graduated Retired Graduated Retired

0.1
0.3
1.0
5.0

30.0

R
es

po
ns

iv
en

es
s 

In
de

x

Figure 5.7. Responsiveness over graduated and retired projects.

and retired projects. As shown in Figure 5.7, for responsiveness, we find that there

are significant differences in means between graduated projects and retired projects in

contributors and mentors, but not committers, with p-value ¡.001. The possible reason

for this phenomenon is the fact that ASF committers in both graduated and retired

projects are almost equally responsive to issues. In addition, graduated projects have a

more diverse community that can respond to issues more promptly, while retired projects

may have a limited size of community members who work from the same time zone.

Then, we show that there exists a significant difference in committers’ and contrib-

utors’ engagement between graduated and retired projects (p-value ¡.001), as shown in

Figure 5.8. The committers, as expected, have a higher level of engagement (the means

in graduated and retired projects are 4.47 and 3.58, respectively), suggesting that de-

velopers in graduated projects are more interested in discussions regarding community

building on institutional governance.

As shown in Figure 5.9, we find that both committers and contributors in retired

projects are significantly more negative to IS-related discussions as compared to graduated

projects. It suggests that in the retired projects, there is no capacity for people to move

their projects forward regarding building up regulations and rules, i.e., committers in

retired projects are ‘burn-out’ when they keep up the same response rate in graduated

projects.

123



committer contributor mentor

Graduated Retired Graduated Retired Graduated Retired
0.1

0.3

1.0

5.0

20.0

E
ng

ag
em

en
t I

nd
ex

Figure 5.8. Engagement over graduated and retired projects.

committer contributor mentor

Graduated Retired Graduated Retired Graduated Retired

0.1

0.3

0.5

0.8

N
eg

at
iv

ity
 In

de
x

Figure 5.9. Negativity over graduated and retired projects.

RQ2 Summary: We find that, around change intervals, there exist certain re-

sistances, and they vary across different types of agents. E.g., contributors and

mentors become more negative while committers are less negative after episodic

changes while. In addition, in retired (unsustainable) projects, contributors and

mentors exhibit lower response rates; committers and contributors are much less

engaged and more negative.

5.5.3 Case study: Association between episodic change and in-
stitutional statements

To communicate concretely how the institutional and socio-technical dimensions interact

within ASF ecosystem, we showcase two diverse instances of their mutual interrelation-

124



ship.

§ Case A: From IS to CI. Calcite (former Optiq) is a project migrated to Apache

Incubator from another platform. From the initial months since Calcite was accepted

into Apache Incubator, we detected a series of IS preceding a sharp increasing CI in the

average social network clustering coefficient (s avg clustering coef), which reflects a

growth in the connectivity between people in the project’s social network. After closely

examining the IS, we found that this IS˃CI interrelationship revealed meaningful events.

In June 2014, the second month since their migration, the developers started arranging

online meetings and calling for connections as an effort to adapt to the new community

and its workflow. Below are examples of such IS from two of the developers, Dev1 and

Dev2:

Dev1 “I’d like to hear from people across the community, users as well as developers,

people who have contributed a two-line patch six months ago as well as people who check-in

daily. ... I propose that we have an online meeting to introduce ourselves, using Google

hangouts. I’d especially like to meet people who would like to get involved by writing

documentation, blog posts, and testing.”

Dev1 “We can discuss at the online meeting. I volunteer to write a draft report on

Monday.”

Dev2 “Before we start opening issues there, I would like to discuss here if you want to

import the GitHub issues into JIRA.”

Shortly after, in July 2014, another IS shows that Dev1 proposed for their first and

subsequent releases on Apache:

Dev1 “Optiq has been releasing regularly, but it is important that Optiq soon makes an

initial release under the Apache process.”

Following these IS, from July to October 2014, the project’s social network connec-

tivity skyrocketed. An explanation of this CI is that the project was under its migration

process to the Apache platform. Instead of gradually building up a community, a migrated

project like Calcite transferred its established community to the new platform within a

relatively small amount of time. Moreover, the initiation of regular releasing also triggered

125



interactions and enhanced this surge.

§ Case B: From CI to IS. From March to May 2016, the Quickstep project experienced

sharp growth in its number of developers (t num dev nodes) as indicated by our change

detection results. Immediately after this CI, in June 2016, we detected a cluster of IS. This

CI˃IS interrelationship helped us locate a notable phase of the project when developers

started to raise concerns in response to their rapidly growing community.

A developer first expressed their concern about the lack of on-list discussion in opposi-

tion to the frequent development activities with the following IS: “There seems to be quite

a lot of work happening on project, but I can’t figure out where the design discussions and

decisions are being made. ... Where are design discussions happening? Does the team

have a weekly or daily meeting? I ask because if discussions are happening off-list, and in

particular if decisions are being made off-list, the project is not attractive to outsiders...”.

In a separate discussion thread, the developer also suggested that a clear criterion and

process regarding committer election was needed and favorable to attracting and retaining

committers with the following IS: “You, as a PMC, should decide what are the criteria

& process for making someone a committer... Electing committers is a consequence of a

successful strategy for growing community, and helps further that growth.”

5.5.4 RQ3: What are the associations between episodic change
direction and the sentiment to IS-related discussions?

In previous RQs, we conducted exploratory and qualitative studies of project discussion

and dynamics around episodic changes. In this section, we triangulate those with quanti-

tative studies, to understand the pre-cursor to episodic changes in terms of the sentiment

in IS-related discussions, and vice versa. Such an approach enables us to understand

how episodic changes in organizational structure features can introduce sentiment shifts

in discussions on rules and regulations, and vice versa.

We present the occurrences of a 4-way combination of CI and IS in the table for both

graduated and retired projects, as shown in Table 5.2. Each row represents a feature in

the socio-technical system, while each column stands for a specific case in the association

from Change Interval (CI) to Institutional Statements (IS), and vice versa. For example,

126



Table 5.2. The temporal association between episodic Change Interval (CI) and senti-
ment in the Institution Statement (IS). The value shows the occurrences of respective
cases (ratio in parentheses). The underlined cells indicate the variables that have the
most frequent pattern.

Status Feature CI+ ˃ IS+ CI+ ˃ IS− CI− ˃ IS+ CI− ˃ IS− IS+ ˃ CI+ IS+ ˃ CI− IS− ˃ CI+ IS− ˃ CI−

s avg clustering coef 101 (0.48) 13 (0.06) 78 (0.37) 20 (0.09) 67 (0.39) 85 (0.49) 8 (0.05) 12 (0.07)

s graph density 41 (0.25) 11 (0.07) 91 (0.55) 23 (0.14) 35 (0.32) 57 (0.52) 9 (0.08) 8 (0.07)

s num component 50 (0.49) 5 (0.05) 43 (0.42) 4 (0.04) 50 (0.49) 45 (0.44) 3 (0.03) 5 (0.05)

s num nodes 167 (0.64) 26 (0.1) 57 (0.22) 11 (0.04) 127 (0.6) 63 (0.3) 12 (0.06) 11 (0.05)

s weighted mean degree 94 (0.51) 13 (0.07) 67 (0.36) 12 (0.06) 80 (0.49) 68 (0.42) 7 (0.04) 8 (0.05)

t graph density 83 (0.45) 7 (0.04) 84 (0.46) 9 (0.05) 59 (0.45) 51 (0.39) 11 (0.08) 9 (0.07)

t num dev nodes 138 (0.62) 20 (0.09) 55 (0.25) 8 (0.04) 92 (0.56) 58 (0.35) 9 (0.05) 6 (0.04)

t num dev per file 104 (0.61) 14 (0.08) 47 (0.27) 6 (0.04) 49 (0.46) 43 (0.4) 11 (0.1) 4 (0.04)

t num file nodes 73 (0.51) 10 (0.07) 48 (0.34) 12 (0.08) 60 (0.47) 52 (0.41) 10 (0.08) 5 (0.04)

Graduated

t num file per dev 62 (0.44) 8 (0.06) 62 (0.44) 10 (0.07) 49 (0.4) 54 (0.45) 11 (0.09) 7 (0.06)

s avg clustering coef 38 (0.54) 8 (0.11) 19 (0.27) 5 (0.07) 30 (0.39) 33 (0.43) 4 (0.05) 9 (0.12)

s graph density 17 (0.35) 7 (0.15) 20 (0.42) 4 (0.08) 25 (0.45) 21 (0.38) 8 (0.15) 1 (0.02)

s num component 18 (0.56) 2 (0.06) 10 (0.31) 2 (0.06) 15 (0.39) 16 (0.42) 4 (0.11) 3 (0.08)

s num nodes 35 (0.39) 12 (0.13) 32 (0.36) 10 (0.11) 32 (0.37) 40 (0.46) 4 (0.05) 11 (0.13)

s weighted mean degree 41 (0.39) 8 (0.08) 43 (0.41) 12 (0.12) 28 (0.35) 43 (0.53) 5 (0.06) 5 (0.06)

t graph density 34 (0.42) 2 (0.03) 38 (0.48) 6 (0.07) 25 (0.3) 43 (0.51) 7 (0.08) 9 (0.11)

t num dev nodes 49 (0.44) 7 (0.06) 51 (0.46) 4 (0.04) 26 (0.29) 51 (0.57) 6 (0.07) 7 (0.08)

t num dev per file 35 (0.43) 2 (0.02) 35 (0.43) 9 (0.11) 12 (0.17) 47 (0.65) 4 (0.06) 9 (0.12)

t num file nodes 35 (0.39) 4 (0.04) 46 (0.52) 4 (0.04) 29 (0.34) 47 (0.55) 8 (0.09) 1 (0.01)

Retired

t num file per dev 33 (0.39) 2 (0.02) 41 (0.48) 9 (0.11) 26 (0.33) 45 (0.58) 5 (0.06) 2 (0.03)

the column entitled CI+IS+ indicates that there is an increasing trend in a feature that

serves as a precursor to positive IS discussions in the following month. CI can be either

increasing (+) or decreasing (-), and the sentiment is either positive (+) or negative (-).

For measuring the sentiment of IS discussions in respective months, we aggregate the

sentiment across all IS discussions and get the majority sentiment.

For graduated projects, as shown in Table 5.2, we find that the number of nodes

(s num nodes) in social networks accounts for most types of occurrences of CI and IS (168),

suggesting that graduated projects are experiencing episodic changes with respect to the

total number of active developers in social networks. We continue to use the tables in

practice. The tables can also help us understand what is the precursor to positive/negative

discussion in IS-related discussions, i.e., agreement/disagreement to rules and regulations.

E.g., to find out the episodic change of which socio-technical feature is more likely to

127



be followed by positive discussions, we can focus on the first 4 columns, e.g., CI+IS+,

CI+IS−, CI−IS+, and CI−IS−, and then calculate the ratio of the cases having IS+ as

the outcome, shown as the values in parentheses. In the case of graduated projects, it

shows that a positive sentiment followed by an increasing episodic change in s num nodes

has the highest ratio of 64%, suggesting that we can make people more positive about

regulations and rules by recruiting more new-comers on the mailing list. One reason for

this result is the fact that the newcomers are not the stakeholders, and they are more

open to rules and norms.

As another use case of this table, we can ask the following question: What are

the effects that sentiment has on the change interval of the number of unique commit-

ters (t num dev nodes)? From Table 5.2, for retired projects, we find that the ratios

of having positive sentiment and negative sentiment followed by an increasing trend of

t num dev nodes are 29% to 7%, respectively. It suggests that, in retired projects, odds

of positive sentiment on IS-related discussions to attract new committers are more than

four times than negative sentiment.

To account for the bias in the distribution of episodic change type and sentiment in

IS-related discussions, we normalize all values, feature-wise, by taking the ratio of the

occurrences over all events, e.g., normalized CI+IS+ = CI+IS+ / (CI+IS+ + CI+IS− +

CI−IS+ + CI−IS−). And then we aggregate all features into four 2 × 2 matrices, two for

graduated projects and two for retired projects, as shown in Figure 5.10. To compare

patterns between graduated projects and retired projects, we first look at the first column

of the left two matrices (i.e., CI˃IS). We find that graduated projects are more likely to

have positive discussions after an increasing episodic change than retired projects (49.9%

to 6.9% than 43.2% to 7.2%), suggesting that retired projects do not establish a feedback

cycle for project progress, or maybe even worse, that they do not realize the progress they

made. Then we attend to the second matrix for graduated and the last matrix for retired

projects (i.e., all from IS˃CI), and we find that, for both graduated and retired projects,

positive institutional discussions often serve as the precursor event to episodic changes

(88.0% for graduated projects and 84.8% for retired projects).

128



49.9%
(0.11)

6.9%
(0.02)

36.7%
(0.10)

6.5%
(0.03)

IS-IS+

CI+

CI-

46.3%
(0.08)

41.7%
(0.07)

6.7%
(0.02)

5.3%
(0.01)

CI-CI+

IS+

IS-

43.2%
(0.07)

7.2%
(0.05)

41.4%
(0.08)

8.2%
(0.03)

IS-IS+

CI+

CI-

33.9%
(0.08)

50.9%
(0.08)

7.7%
(0.03)

7.5%
(0.04)

CI-CI+

IS+

IS-

Figure 5.10. The aggregated ratio of two-way transmission effects from CI to IS, and
vice versa. From left to right, they stand for graduated (CI˃IS), graduated (IS˃CI),
retired (CI˃IS), retired (IS˃CI). We show the standard deviation in parentheses.

RQ3 Summary: In graduated projects, the control features for outcome sentiment

to IS lay mostly in social networks, while for retired projects, they are more evenly

distributed in both social and technical networks. For both graduated and retired

projects, positive IS-related discussions are more likely to be followed by a episodic

change. While the graduated projects are more likely to have positive discussions

after an increase in CI than retired projects.

5.6 Takeaways for Practitioners
In this section, we distill our findings into some practical takeaways and suggestions.

Like in other self-governed institutions, norms, rules, and regulations in OSS projects

generate, moderate and direct actions. Concerted governance efforts can result in episodic

changes in the socio-technical structure, achieving feedback between effective self-governance

and sustainability. Generally, we found more and longer episodic change intervals in grad-

uated projects than in retired ASF projects, potentially explained by the observation that

institutional discussions often trigger episodic changes in the project’s socio-technical

structure. However, institutional discussions are mostly lacking during such changes,

so our first takeaway is that just like participation in the technical aspects, developers

should be encouraged and even brought into project institutional discussions. We found

that episodic changes are associated with temporary developer disengagement from the

project, and that the negativity of mentors increases significantly after episodic changes.

New episodic changes can be distracting to a team and may bring more management

efforts to the project. Setting manageable expectations for the team ahead of time can

129



limit feelings of frustration arising out of lengthy discussions. Thus, being more positive

than negative may help keep change intervals shorter. On the other hand, we found that

projects that graduate are much less negative toward changes compared to projects that

retire. Fostering positive discussions may help the project adapt to changes and become

more sustainable. As another takeaway, perhaps projects can benefit from timing episodic

changes, to the extent possible, to occur during periods of low cross-team interactions/-

collaboration. That can potentially ease the cost of upcoming episodic changes.

5.7 Threats and Conclusions
§ Threats Generalizing our findings beyond ASF, or even beyond the ASF Incubator

projects carries potential risks, for example, not every OSS foundation has a mentor

program like ASF’s. The risk could be reduced by expanding the dataset beyond the

ASF incubator, e.g., to include additional projects from other OSS incubators. ASF

mailing lists are the only channel we consider, therefore, developers may communicate

through in-person meetings, webpage documentation, and private emails. ASF mandates

the use of public mailing lists for most project discussions, which causes an especially low

risk of omitting institutional or socio-technical information. Annotations of institutional

statements could be biased by individual annotators. However, given that the annotators

were adequately trained with given reference materials, which lowers the possibility of

bias. ASF developers may use different aliases or emails making it difficult to identify

distinct developers, while ASF’s regulations on using apache.org official email addresses

and our de-aliasing process reduce such risks 4.

§ Conclusions Practitioners may be able to improve their individual practices, orga-

nizational management, and institutional structure by understanding why open-source

projects cannot meet the expectations of nonprofit foundations. Additionally, it is im-

portant to consider how institutional design and socio-technical aspects relate to OSS

to understand its potential sustainability. Through the artifacts they create, we demon-

strated that socio-technical network features can capture the episodic change in the orga-

nizational structure of developers’ collaboration and communication. Through the unified
4ASF committer emails: https://infra.apache.org/committer-email.html

130

https://infra.apache.org/committer-email.html


view of socio-technical network features and institutional analysis, we leverage the unique

attributes of Apache Software Foundation’s Incubator projects to extend the modeling of

OSS project sustainability, by analyzing a longitudinal dataset consisting of vast text and

log corpora, as well as extrinsic labels for sustainable and unsustainable.

131



Chapter 6

Exploring Apache Incubator Project
Trajectories with APEX

6.1 Introduction
In spite of the large amounts of resource put in them, many OSS projects end up on

trajectories that are ultimately not sustainable. In recent work we showed that OSS

project sustainability can be effectively predicted early on in project development from

longitudinal project and process metrics supplemented by socio-technical network met-

rics (developer communications and code contributions), specific to the Apache Software

Foundation (ASF) [22]. ASF, as one of the most popular OSS communities, provides

specific guidelines and establishes regulations to help OSS projects eventually become

self-sustainable. Nascent projects with ASF aspirations are housed in the Apache Soft-

ware Foundation Incubator (ASFI) for a period of time, after which they are graduated

into ASF if they are found to be sustainable, otherwise they get retired.

Promisingly, our work [22] implied that monitoring and reflecting on their sustainabil-

ity forecast can enable projects to act proactively, and potentially correct downturns in

the forecasts. To enable such monitoring in practice, here we present a dashboard tool,

APEX, intended for nascent projects in the Apache Software Foundation Incubator to

monitor their sustainability trajectories over time, thus allowing for timely course correc-

tions and for potentially improving the likelihood of project graduation into ASF. Our

motivation goes beyond ASFI as many nascent OSS projects fall outside the ASF domain,

132



and its well developed community support structure. Self-monitoring and self-correction

may be even more pertinent to those. While intended for ASF projects specifically, APEX

is designed in a generic way and thus can easily accommodate data from repositories other

than ASF.

Related Work ASF provides a monitoring tool, Clutch1, to help OSS developers self-reflect

and take actions when their projects are experiencing issues. The Clutch tool uses colors to

signal the status of project metrics, e.g., missing documentation, lack of new committers,

etc. Although it works well for its intended use, Clutch’s analysis is of limited use as a

real-time monitoring tool since (1) it is not project-specific, i.e., all projects follow the

same standards for all features regardless of their project size or context; (2) it does

not consider historical records; and (3) it does not make actionable suggestions. Our

APEX tool complements the existing Clutch tool by providing additional analytics power

for understanding the longitudinal socio-technical aspects of projects. It also can yield

potential actionable insights.

There are other projects that focus on analytics for OSS sustainability outside of ASF

domain. E.g., the Augur and GrimoireLab within the CHAOSS (Community Health

Analytics Open Source Software) project2, provide a toolbox for project sustainability

self-monitoring. However, unlike APEX, they don’t provide a synthesis of metrics into a

longitudinal sustainability forecasts, or allow deep dives into email and commits.

Next, we first introduce APEX, and then describe use cases that demonstrate its

utility in a) monitoring for ASF project downturn events, b) identifying longer term

engagements between developers, and c) within-ASF project comparisons. The APEX

app is available at https://ossustain.github.io/APEX/. Code and data are available

at https://github.com/ossustain/APEX/.

6.2 Data and Implementation
Data Source The APEX pipeline depends on four types of data: basic project informa-

tion, periodic project reports, email communications, and code commits. We use our
1Clutch Analysis: http://incubator.apache.org/clutch/
2CHAOSS community https://chaoss.community/

133

https://ossustain.github.io/APEX/
https://github.com/ossustain/APEX/
http://incubator.apache.org/clutch/
https://chaoss.community/


Figure 6.1. The APEX pipeline
previously published dataset from ASFI [128] to obtain the emails and commits. The

dataset comprised 211 graduated and 62 retired incubator projects (in total of 273), with

1,201,746 emails, and 3,654,196 commits, with each project spending on average 22.32

months in incubation.

We scraped project information (name, mentors, dates, status) from the project’s ASF

Incubator homepage3, using Python’s BeautifulSoup Package. The Apache mailing list

archive,contains full historical information for all projects including project participants,

mentors who assisted with the projects, project reports, all emails, and all commits. To

obtain developer emails we frequently had to backfill partial email addresses by writing

scripts to search for the partial email throughout the email text. We used the same

approach to identify unique committers that may have used aliases.

Social and Technical Networks From the ASF incubator data we derive two kinds of

longitudinal networks for each project, for each month: a social and a technical. The
3ASF incubator: http://incubator.apache.org/projects/

134

http://incubator.apache.org/projects/


Figure 6.2. Layout of the APEX Dashboard

social networks have directed edges between developer, derived from the email archives,

using the method by Bird et al. [19]. We present the social networks in a bipartite graph

layout, using Sankey diagram [193]. There are two sets of nodes: on the left are all senders

of messages in a given month. On the right are those who either received a direct message,

or, in the case of a broadcast message, those who have responded to that message. The

edges are directed from the sender to the receiver node, except for the broadcast messages

where the edges are directed from a node that has sent an email to a node that has replied

to that email [19].

The technical network is also a bipartite graph with two sets of nodes: on the left are

the developers that have made commits in a given month and on the right are all the file

types committed to in that month (e.g., .java, .html, etc., based on their file extensions).

The edges connect the developers to the file types they committed to in that month. We

aggregate the network edges in a monthly manner, i.e., the longitudinal networks of each

project consist of monthly network snapshots.

Implementation Technology The APEX tool design and pipeline is illustrated in Figure

1. To implement the front-end of APEX we use the D3 JavaScript library (https://

d3js.org/). D3 uses visual layouts and an associated tool-set to improve front-end

135

https://d3js.org/
https://d3js.org/


efficiency. D3 also provides developers with design flexibility through standardized data

manipulation operations. Additionally, one of D3’s foci is transitions and animation.

This allows our dashboard to quickly adapt to changing inputs, e.g., a change of the

current month. To provide interactivity of our tool, we use the SVG rendering technology,

which is based on Document Object Model (DOM) operations and supports precise user

interaction. We also make use of jQuery extensively. jQuery is a JavaScript library

that helps simplify and standardize interactions between JavaScript code and HTML

elements. We use jQuery to design event listeners: processes in JavaScript that wait

for an event to occur. This has allowed us to create a seamless dynamic experience

throughout the dashboard, where a change in one section adjusts all related sections and

visuals accordingly. We have also made use of a lightweight range slider with multi-

touch support called noUIslider, and it has an in-built event listener function allowing

integration with the rest of the elements in the dashboard. Frequent DOM operations are

costly, negatively impacting the user experience by screen flashing and stuttering during

the interactions. We relax this cost by keeping each project and month stored in separate

json files.

Sustainability Forecasting APEX features the AI based sustainability forecasting model

by Yin et al. [22]. They implemented a 3-layer LSTM model: a 64 neurons LSTM layer

with a 0.3 rate drop-out layer, and then followed by a dense layer with the softmax func-

tion to yield the predicted likelihood of project graduation. In the experimental setup,

the graduated projects are encoded as 1; retired projects as 0. During training, the

monthly socio-technical networks variables (e.g., number of nodes/edges, clustering coef-

ficient, and mean degree in the networks) of each project were fed into the model. This

LSTM neural network based model gives a sustainability forecast in each month of the

project development. More experimental details can be found in the paper [22].

6.3 Dashboard Elements
Dashboard Panes. There are four main sections to the dashboard, see Figure 2: (1) top

pane (panes A,B), (2) left pane (panes C,D), (3) middle pane (panes E and G) (4) right

136



pane (panes F and H).

The top pane has two parts to it. The left side (A) allows the user to select a project

of interest in the drop-down menu and a specific month through the month slider. Based

on these inputs, the other panes change dynamically to display the respective information

for the selected project and month. In addition, this section also allows the user to toggle

a checkbox to switch to a range slider to display a range of months, e.g., 1-5 months,

instead of a single month. To the right (B) is the sustainability forecast visual, which

depicts the sustainability forecast for the project, ranging from 0 (not sustainable) to 1

(sustainable), for any given month.

Below those, the left pane consists of two distinct sub-sections: the project info pane

(C) and the project report pane (D). The former shows the project name, a link to the

official website, and the project’s status (i.e., graduated or retired). The ASF sponsor’s

name (if anyone in particular, otherwise ‘incubator’) is displayed below that. At the

bottom is a short introduction to the selected project. Below that, in the project’s report

pane (D), we present the report submitted by the project to the ASFI, for the given

month.

The middle pane consists of the social network visual on top (E) and its related metrics

below it (G). The social bipartite graph is presented as a Sankey diagram [193], the height

of a node illustrating the % (relative to the total) of emails sent (left) or received/replied-

to (right) by that developer in a given month. The sizes of the flows sre proportional

to the number of emails exchanged between the developers. Hovering over a developer’s

name emphasizes all developers that have received a directed email, or responded to a

broadcast, from that developer.

In the right pane, on top is the technical network of developers who have committed

to files (F), and their metrics are below (H). For the visual, we also use a bipartite Sankey

diagram. On the left is a list of developers, while the file type (i.e., extension) of the files

committed to is on the right. The percentage of one’s efforts relative to others’ is shown

on the left, with the sizes of the flows proportional to that. Hovering over a developer’s

name, or, respectively, a file type, emphasizes additional information: all file types a

137



Figure 6.3. Using the sustainability forecast to understand and explore downturns
(red) and upturns (green) of project DataFu.

developer has touched, or all developers that have touched that file type along with their

% contribution, respectively.

Additionally, by hovering over and clicking on a developer’s name in the social, re-

spectively the technical networks, we get a button with their name under the network,

which when clicked opens a window with a list of all their emails, respectively commits,

in that month. They appear in a pop-up window next to the dashboard.

6.4 Use Case Examples
APEX conveniently shows in one place the project info, monthly aggregated code commits,

email communications, and two unique features of ASF, the periodic report info and the

graduation status. Such rich and fine-grained information can enable researchers and

practitioners to study the trajectory of a given project by showing changes over time,

including identifiable patterns and up/down trends, in the socio-technical networks and

the sustainabiity forecasts.

Use Case I: Studying Sustainability Turning Points Patterns and trends in the

longitudinal socio-technical networks can be studied to identify causes for downturns

in the sustainability forecast, allowing APEX users to be proactive with changing project

trajectories. For example, as shown in Figure 6.3, for the selected project DataFu, by

simply eyeballing we can identify that there is a big downturn around month 12. Some

possible reasons for this could be that (1) The project just launched a big release; or (2)

Some core developers left the projects. Going through the email discussions in months

adjacent to the downturns may offer reasons for the changes, which in this case is likely

138



Figure 6.4. Aggregating project Clerezza’s social networks over a range of months
(7-26) shows longer-term engagements

the latter.

Thus, the monthly social-technical networks combined with the real-time sustainability

forecast can allow practitioners and researchers to monitor for downturn events and react

proactively.

Use Case II: Studying Different Length Engagements APEX allows aggregat-

ing the networks over a range of months. This allows the study and comparison of different

length engagements, both social and technical in nature. This can be done by enabling

the range slider, which allows multiple months to be selected at once, yielding a time

range for the nodes and edges in the networks. Once the range is specified, the metrics

and the visuals are adjusted to display multiple consecutive months of interactions.

An example of a social network over a longer range is shown in Figure 6.4. There we

see thicker and thinner edges; the former indicate communications that recur over multiple

months, attesting to a longer term engagement between those developers, i.e., recurring

communication. By comparing the short-term and long-term social-technical networks, we

can identify recurring patterns over longer periods of time during the project incubation.

139



Figure 6.5. Parallel windows can contrast technical networks between project AWF
(retired, top) and project Airflow (graduated, bottom)

Use Case III: Cross-Project Comparison APEX also allows users to compare

and contrast two projects by opening up parallel windows of our dashboard. Thereby,

researchers can explore multiple projects simultaneously to generate hypotheses about re-

lationships between their socio-technical structure and graduation status. E.g., Figure 6.5

shows the technical networks of two projects, one graduated and the other retired. An

immediate pattern that emerges is that more developers are committing code changes in

the graduated project than in the retired one. Researchers can followup on this hypothesis

by looking into the driving factors behind it, using, e.g., productivity studies, or topics of

discussions.

140



6.5 Using APEX Beyond ASF
We have designed APEX to serve ASFI projects that are early in their incubation to

monitor and reflect on their progress in a more agile way than previously possible. But

APEX is in principle not limited to ASFI data. It takes as input JSON files and visualizes

them in different ways. To aid projects outside of ASF that want to benefit from it, we

have made our full code and data publicly available. We provide a README file, https:

//github.com/anirudhsuresh/APEX/blob/main/README.md, that details the JSON for-

mats of the required input data. The README file links to scripts with which comma

separated values (CSV) files, common outcome of repository mining, can be converted to

the required JSON format for all the required APEX components: email networks, email

metrics, technical networks, commit metrics, project info, project reports, and sustain-

ability forecasts. The last one will have to be calculated from the others, using the code

provided in our previous study [22].

6.6 Limitations and Conclusion
Limitations Our dataset is large and diverse (within ASF) but limited to ASFI projects, so

generalizing beyond ASF is risky. However, we provide a README file with instructions

to aid non-ASF projects in using APEX. Selecting a range of months can result in very

dense networks that are hard to read or interpret. This function is most useful when

limited to a few consecutive months.

Conclusion Research into OSS project sustainability can present actionable insights for

project maintenance. In this work, we presented a dashboard tool for exploring a longitu-

dinal data-set of technical contributions and developer communication in ASF incubator

projects, with extrinsic, graduation success labels and forecasts. The tool can be used for

real-time monitoring and study of ASFI projects. It can also help generate hypothesis

about OSS project sustainability. Future work will be aimed at adding additional data

sets.

141

https://github.com/anirudhsuresh/APEX/blob/main/README.md
https://github.com/anirudhsuresh/APEX/blob/main/README.md


Chapter 7

How do OSS projects govern
themselves in the wild? An
Empirical Study on Governance.md
Markdown Files

7.1 Introduction
As we increasingly transition into a digital age, open-source software (OSS) repositories

are emerging as significant shared resources, echoing the dynamics of traditional commons

such as fisheries [25], forests [194], and irrigation systems [195]. However, digital artifacts

and collaborations in OSS bring forth a unique set of challenges in sustainability that

demand innovative perspectives [196]. In this work, we turn to Elinor Ostrom’s governance

theories, originally formulated to manage natural resources [82], as a valuable lens through

which we can decode the dynamics and organizational mechanisms of OSS projects [138].

Thus, from an empirical perspective, it is important to ask: Can we find mappings from

rules in traditional commons to rules in digital commons? And what are the patterns and

anti-patterns of adopting the rules?

Open Source Software (OSS) projects leverage markdown files to relay vital informa-

tion concerning the project in a digestible and readily accessible format. For instance, the

README.md file offers a comprehensive overview of the project. It typically includes the

142



project’s purpose, instructions for setup and usage, and guidelines for making contribu-

tions, fostering a more coherent understanding of the project for both current contributors

and prospective ones [65]. The Code of Conduct.md file often plays an instrumental role

in defining the behavioral norms and expectations within the project. By articulating

these rules of engagement, this file helps to nurture an inclusive and respectful environ-

ment within the OSS community. It further provides a recourse for handling conflicts

and misconduct, fostering a culture of respect and mutual understanding among partic-

ipants [197]. Licenses dictate the legal framework for using, modifying, and distributing

the software, and these are typically defined in the License.md file. The type of license

chosen can significantly influence the project’s attractiveness to contributors and its po-

tential for reuse [198]. In examining the GOVERNANCE.md file within certain GitHub

OSS repositories, we identify its pivotal role as an instrument delineating governance akin

to constitutions. Yet, if we apply the Ostrom’s model, there’s potential for a more nuanced

interpretation. The Constitutional level could specify overarching project frameworks like

the presence of an oversight committee or the selection of an IP license. Moreover, the

collective choice level outlines procedures for role appointments and changes to opera-

tional regulations. Meanwhile, Operational rules focus on routine tasks and procedures,

such as report submissions or dispute resolutions.

Thus, the necessity to bridge the gap between Ostrom’s governance theories and its

application in OSS environments becomes self-evident. The rich timestamped data that

OSS repositories and specifically, GOVERNANCE.md files offer, presents an unparal-

leled opportunity to study the governance structures of these digital commons. Within

these files, we find recorded histories of project rules and regulations, which can aid in

comprehending the project’s governance evolution.

We posit that:

Just as the right dosage is crucial in medicine, striking a balance between under-

governance and over-governance is key in OSS projects. Leveraging insights from

Ostrom’s theory, our research aims to guide software communities in devising more

suitable governance rule configurations depending on the projects’ context.
The value of this work is twofold. For the field of management science, our research pro-

143



vides novel insights into the application of Ostrom’s rule class typology (more details

in [138] in digital contexts. Consider, for instance, the world of cryptocurrencies, an-

other instance of digital commons where governance is both emergent and crucial. Here,

understanding the implementation and effectiveness of governance rules could help in

better designing and managing cryptocurrency networks. From a software engineering

perspective, our work has resulted in an effective tool - a high-performing classifier ca-

pable of identifying the presence of seven classes of Ostrom governance rule types within

the Governance.md files. This tool, the first of its kind, allows for automated, large-scale

analysis of governance mechanisms in OSS projects. By identifying what types of rules are

implemented and how they evolve, we can inform the practices of software development

communities, helping them craft more effective and sustainable governance rules.

To study how OSS contributors use GOVERNANCE.md markdown file to build rules and

govern the community, we gathered project historical data, e.g., code commits, issues,

and comments, including all timestamped diff changes to those governance files, from

703 GitHub repositories which contain such GOVERNANCE.md markdown file in their root

directory.

We have provided an annotated dataset that categorizes statements in GOVERNANCE.md

based on Ostrom’s definition of rules. Notably, a single statement can encompass none,

one, or multiple types of rules as per Ostrom’s classification. Then we used it for classifying

all seven types of governance rules (the position rule and boundary rule are combined due

to their similarity in the context of OSS), some for specifically establishing who can

participate and under what conditions, some for deciding who can vote, and the selection

method for project decision-making. Next, we also modeled the dynamics of these rules,

studying their temporal evolution, the actors involved in their changes, and the association

between the number of adopted rules and project size. These insights can help software

engineers understand how rules and norms evolve in a project and provide them with

guidance on when and how to intervene or adapt rules for the benefit of the project.

In summary, the contributions of this work are:

• The introduction of a unique dataset of approximately 703 GitHub repositories

144



with GOVERNANCE.md files, provides fresh ground for investigating the application of

Ostrom’s governance rules in the OSS environment.

• The creation of the first-ever annotated corpus linking Ostrom’s governance rule

types to software governance text with a high-performing classifier (¿90% overall

F-1 score) that can automatically identify and classify sentences into Ostrom’s gov-

ernance rule types.

• A meticulous tracking and analysis of the chronological introduction and modifi-

cation of governance rules organized by Ostrom’s rule classes, providing the first

empirical insights into rule evolution within OSS repositories.

This paper is a fresh endeavor to harness the power of traditional governance theories

for the sustainability of OSS projects, offering the potential to improve project outcomes.

While our investigations are rooted in Ostrom’s theories of self-governing communities

and GitHub’s context, the implications of our findings may be pertinent to numerous

other software projects seeking sustainability amidst the digital commons.

7.2 Related Work and Theories
Here we introduce the theories behind this work on governance for commons and related

works on governing OSS projects.

7.2.1 Theory of Governing the Commons

The study of commons governance is a well-established field, prominently shaped by

the pioneering work of Nobel laureate Elinor Ostrom and her seminal book, Governing

the Commons [140]. Ostrom’s Institutional Analysis and Development (IAD) frame-

work emerged as a powerful tool to investigate self-managing governance institutions

within communities, particularly those related to natural resources, e.g., water [141], ma-

rine [142], and forest [24].

A significant challenge in natural resource commons settings is addressing the issue of

‘free-riders’ [143] – individuals who benefit from resources without contributing to their

production or upkeep. In the context of open source software, like forests, fisheries, and

145



water, this free-rider problem can lead to over-exploitation, resulting in ‘Tragedy of the

Commons’ [173].

Despite the inherent differences between OSS and natural resources, specifically their

non-degradable and reusable attributes, the Open source software, as a form of digital

commons, is not invulnerable to its own variant of this tragedy. That is, the free riders

can still exist in OSS, and they are the people who only benefit from OSS, but not

contributing code, not providing bug reports, not participating in community discussions,

and not offering financial or other types of support to the project. This can become

problematic, especially for smaller projects that are maintained by volunteers and might

require additional resources to manage increasing complexity, technical debt, or user base.

Moreover, this can hold true for large companies as well. E.g., Elastic’s (an open-sourced

project on distributed search) leadership alleged that Amazon Web Services (AWS) was

free-riding by taking their freely available code, creating derivative works, and offering

these to customers without significant contributions to the original projects1.

Therefore, while free-riding is an expected aspect of open-source projects, an imbal-

ance between free-riders and contributors can pose challenges to a project’s longevity

and quality. The overutilization of human resources due to the prevalence of ‘free-riders’

can stifle the software’s development or even lead to its abandonment [145]. This phe-

nomenon, described as ‘collective inaction’ by Ostrom and Hess [146], mirrors the adverse

effects observed in the natural resource commons. Ostrom’s research provided significant

insights into how communities devise and implement effective self-governing institutions

to circumvent these undesirable outcomes. The IAD framework became a pivotal instru-

ment in achieving this goal [138], and its utility was further highlighted by its application

to the digital or knowledge commons [147, 146]. The study of self-governance in OSS, in

particular, continues to benefit from Ostrom’s impactful contributions [82].

7.2.2 Ostrom’s Design Principles and Rules

Elinor Ostrom’s design principles and governance rules function within distinct strata of

her Institutional Analysis and Development (IAD) framework [23]. The design principles
1Why we had to change Elastic licensing: Link

146

https://www.elastic.co/blog/why-license-change-aws


Rule Name Definition

Position Identify roles to be filled by people; requirements of people eligible to fill the role;

Boundary establish constraints and conditions for entering/exiting positions.

Choice Specify what participants must or must not or may do in their position and in particular circumstances.

Aggregation Aggregation rules decide who votes and the selection method for a proposal.

Scope Scope rules set limits on the actions, outcomes, and events that may occur.

Information Specify how information can/cannot be communicated.

Payoff Determine the rewards or penalties assigned to actions.

Table 7.1. Definitions for Seven Types of Ostrom’s Governance Rule in OSS context.

provide high-level normative criteria that successful self-governed common-pool resource

(CPR) systems often embody, whereas governance rules present a granular taxonomy for

comprehending and classifying the operative mechanisms of these institutions [199].

While both design principles and governance rules are aimed at effective and sustain-

able resource management, they operate at different granularities [196]. Design princi-

ples act as overarching directives for maintaining CPR systems [200]. These principles

encompass attributes such as definitive boundaries, congruity between rules and local cir-

cumstances, collective choice agreements, monitoring, graduated sanctions, conflict reso-

lution mechanisms, and nested enterprises for systems of a larger scale [201]. However,

governance rules offer an intricate description of constitutional, collective-choice, and

operational-level protocols within a collective action milieu, delineating into seven rule

types in the context of OSS [196]: position, boundary, scope, aggregation, information,

and payoff rule. These rules strategically guide and regulate the conduct and actions of

participants within a specific institutional context.

In the interconnected relationship between Ostrom’s rule types and design principles,

the rules furnish the methodologies through which the design principles can be actualized

within an institution or a CPR system. Schweik et al. developed a rule classification

system to understand how OSS communities organize themselves and make decisions [196].

The seven types of rules identified are [202] shown in Table 7.1.

147



7.2.3 Governance in Open Source Software

Governance mechanisms in OSS projects are complex and multifaceted, and several studies

have delved into understanding their evolution and impact, often times researchers study

the project-level governance together with OSS success and sustainability [82].

Project-level governance in OSS refers to the rules, practices, and processes that guide

decision-making within a specific open-source project [203]. Several studies have examined

how the governance model can influence project outcomes. For instance, O’Mahony et

al. [204] conducted a multimethod study on an open-source software community and found

members established shared formal authority but integrated democratic mechanisms, al-

lowing for authority evolution over time. Schweik et al. [205] analyzed factors impacting

open-source project outcomes, focusing on a representative sample. They find that re-

vealing a ’virtuous circle of collaboration, with developer motivations and team assembly

mechanisms contributing to sustainability Jensen et al. [206] study OSS development as

self-organizing socio-technical interaction networks, effectively managing project activ-

ities to produce adaptive software. It further investigates governance practices within

such networks, utilizing case studies from a large OSS project Moreover, project-level

self-governance can be modeled using a socio-technical approach using developer’s email

communications (social side) and code collaborations (technical side) [28, 22, 207]. Lin̊aker

et al. [208] presents a framework for assessing the health of OSS projects, and the authors

identify 107 characteristics across 15 themes, focusing on socio-technical aspects of OSS

communities and their maintenance processes.

Some projects follow a Benevolent Dictator For Life (BDFL) model, where a single in-

dividual has the final say in decisions [209], like Van Rossum for Python community [210].

The BDFL model can be effective for OSS projects, particularly in the early stages when a

clear, unified vision can help drive the project’s growth and development. Other projects

operate under a more democratic model, where decision-making power is distributed

among multiple contributors, such as in the case of the Debian Project [211].

In summary, the governance model in open-source software, whether at the foundation

or project level, plays a significant role in project sustainability, community engagement,

148



and overall success.

7.3 Data and Methods
In this work, we leverage a previously published data set [212] consisting of hundreds of

GitHub projects which contain a markdown file named as GOVERNANCE.md, which serves

as a codified guide for governing the respective OSS project. To avoid duplicated counting

where projects use other projects which contain a GOVERNANCE.md markdown file as a de-

pendency package, the authors only include GitHub projects that have a GOVERNANCE.md

in their root directory.

On the data end, in addition to the previously published data set, we gather com-

plementary time-stamped trace data of projects’ commits, issues, and comments using

PERCEVAL [184]. Our final data contains GitHub 703 projects. In total, we collect

2,617,277 commit records from 56,384 unique GitHub committers, 1,247,397 issue records,

and 11,1238 comments replying to those issues.

7.3.1 The Role of GOVERNANCE.md

This GOVERNANCE.md can be analogized to a constitution for the project, setting forth the

various norms, regulations, and procedures that dictate the functioning and structure of

the project. The inclusion of a GOVERNANCE.md file underscores the existence of a well-

thought-out governance model within the OSS project, signaling an advanced degree of

organizational maturity. The document GOVERNANCE.md can also reflect the collective

intelligence and experiences of the project’s contributors and maintainers, showcasing a

deliberate approach towards the decision-making and problem-solving processes inherent

to the project.

In a GOVERNANCE.md file, several topics are commonly observed, e.g., (1) Defining

Roles and Responsibilities: This can involve explicit definitions for distinct roles within

the project, such as maintainers or contributors, along with the enumeration of the spe-

cific duties and responsibilities that each role entails. (2) Decision-Making Mechanisms:

The document may outline the procedural mechanics behind critical project decisions,

encompassing topics such as feature inclusion, bug prioritization, and implementation of

149



substantial changes. (3) Contribution Guidelines: The file often includes detailed guid-

ance for making project contributions, specifying the protocol for proposing changes,

criteria for code review, and adherence to specific coding standards or conventions. (4)

Conflict Resolution Protocols: An essential element of a GOVERNANCE.md file is the articu-

lation of systematic procedures for conflict resolution, providing a framework to navigate

disagreements or disputes that emerge within the project’s lifecycle.

In sum, the existence of a GOVERNANCE.md file in a GitHub repository serves as an

artifact of project governance, proactively managing the complexity of collaboration and

setting the stage for efficient decision-making. This reflection of governance sophistication

could consequently play a pivotal role in attracting contributors and ensuring the long-

term success of the OSS project.

7.3.2 Classifying Ostrom’s Governance Rule Types

Ostrom’s design principles often span multiple sentences and can encompass a diverse

range of concepts, making it challenging to accurately identify and categorize them. The

sentence-level approach, however, allows us to dissect these complex principles into man-

ageable, semantically cohesive units, leading to more accurate and meaningful predictions.

This tailored approach underscores the flexibility and precision offered by machine learn-

ing in decoding and categorizing the nuances of governance rules within OSS projects.

Therefore, the sentence level of granularity accommodated our needs effectively and pro-

vided a balance between interpretability and precision. In this study, we choose to employ

sentence-level classification for Ostrom’s governance rules types.

Initially, we conducted a random sampling of GOVERNANCE.md files across multiple

OSS projects. Each code diff to a GOVERNANCE.md file was split into individual sentences

using regular expressions [213]. A total of 1000 samples were manually annotated for

the presence of Ostrom’s rule types, specifically the Position, Boundary, Aggregation,

Information, and Scope rules. We observed a significant scarcity of samples pertaining to

the ‘Pay-off’ rule (which specifies rewards and punishment for certain actions, and only

2 samples exist), and therefore we decided to exclude the Pay-off rule type. Moreover, in

the process of refining our annotation scheme, we found the Position and Boundary rules

150



to exhibit significant overlaps, leading us to consolidate them into a single rule category.

We also introduce a new ‘None’ type rule to indicate there is no governance-related rule

in the given sentence. During the annotation phase, three independent annotators were

employed to ensure the accuracy and reliability of the manual annotations. All annota-

tors are required to read and refer to the annotation guideline when annotating, which is

publicly available2. The inter-annotator agreement was quantified using Krippendorff’s

alpha [214], which confirmed a robust level of agreement among the annotators, substan-

tiating the reliability of our annotated data.

Few-shot learning is often used to address the issue of data scarcity and the practical

need for models to adapt rapidly to new tasks or domains. Due to a limited dataset, the

risk of model overfitting is reduced [215]. The sentence-level granularity was chosen for

training a classifier using a high-performing model, named Efficient Few-shot Learning

with Sentence Transformers (SetFit) [216], for multi-label classification. In the case of

Ostrom’s governance rule, one sentence can contain multiple rules. In order to enhance

the model’s training, we performed text data augmentation [217] to increase the dataset

to two times of its original size while maintaining the distribution of rule types. This

data augmentation strategy was deemed necessary to ensure an adequate representation

of each rule type in the data, thus improving the generalizability of the trained model.

Lastly, we employed a grid search approach for fine-tuning the model’s hyperparameters,

a strategy that systematically works through multiple combinations of parameter tunes,

cross-validating as it goes to determine which tune gives the best performance.

The effectiveness of the trained classifier was then assessed using a split of 80-20 for

training and testing respectively. Our model demonstrated promising results, achieving

an F-1 score of approximately overall 0.91 on the testing set, indicating a high level of

accuracy in the classification of Ostrom’s governance rules in the context of OSS projects.

7.4 Preliminary Results
In this section, the preliminary results on patterns of adopting Ostrom’s governance rules

types are presented.
2Annotation guideline link (online version): Link

151

https://docs.google.com/document/d/1uGMFnQh7eTB6XqsaTC86exlHjjS18TOVq6jMtnjU2ZA/edit?usp=sharing


In Fig. 7.1, we present the patterns of rules getting altered in GOVERNANCE.md files

from 2016 to 2022 across 703 GitHub projects containing a Governance.md file in their

root directory (upon which the data is gathered). We show that the most frequently

modified rules were ’position’ and ’boundary’ - the former delineating participant roles,

entitlements, and duties, and the latter outlining the boundaries of the shared resource.

This preponderance of alterations could be attributed to the iterative and incremental

nature of OSS development and expansion. With the increasing complexity and contrib-

utor base of these projects, periodic refinement and restructuring of roles, rights, and

resource boundaries might become an operational imperative, thereby necessitating con-

tinuous modifications to the ’position’ and ’boundary’ rules. The ‘choice’ rules, dictating

the permissible and impermissible participant actions in relation to the resource, also

displayed substantial transformation. This could signify an adaptive mechanism respond-

ing to emergent project requirements or challenges. The modifications within the ‘none’

category (rules not conforming to any of Ostrom’s categories) might indicate the exis-

tence of a heterogeneous or flexible rule architecture, adaptively accommodating unique

or non-traditional circumstances within some OSS repositories. In contrast, the ‘scope’

and ‘information’ rules demonstrated the least frequency of changes. ’Scope’ rules, defin-

ing the affected outcomes of decision-making processes, and ’information’ rules, regulating

the information flow within the community, displayed relative stability. This could sug-

gest that once the project scope and communication pathways are institutionalized, they

are less likely to undergo major alterations. Alternatively, this could reflect the inherent

stability provided by digital platforms such as GitHub, where the informational infras-

tructure is fairly constant, thus necessitating fewer modifications to the respective rules.

Next in Fig. 7.2, we partitioned projects into five groups based on their number of

unique committers, necessitating varying levels of governance. We find that the smallest

projects (Group 1: 0-20% of committers), and the intermediate ones (Group 2: 20%-40%;

Group 3: 40%-60%) exhibit roughly the same median number of rule changes. This trend

suggests a foundational level of governance that slightly escalates as project size grows,

indicative of the fact that the addition of more participants may require modest aug-

152



0

50

100

150

2016 2018 2020 2022
Absolute Time

N
um

. o
f R

ul
es

 C
ha

ng
ed

 P
er

 M
on

th Position_Boundary
None
Choice
Information
Aggregation
Scope

Figure 7.1. The number of changed Ostrom’s rule types distribution (position rule and
boundary are combined) categories on a monthly basis. The adoptions are smoothed
using a 6-month moving average.

●

●

●

●

●

0

2

4

6

0−20 20−40 40−60 60−80 80−100

N
um

. o
f R

ul
es

(a) Logged Number of rule adoptions across differ-

ent sizes of projects.

●

●●

0

2

4

6

0−20 20−40 40−60 60−80 80−100

N
um

. o
f R

ul
es

 P
er

 D
ev

(b) Logged Number of rule adoptions per developer

across different sizes of projects.

Figure 7.2. Rule Adoption Distribution across different sizes of projects. The project
size is measured in deciles by the number of unique committers in projects. All values
are logged.

153



●
●

●

●

●

●

●●

●

0

2

4

6

Position_Boundary Choice Aggregation Information None Scope

Lo
gg

ed
 N

um
. R

ul
e 

C
ha

ng
ed

Newcomer
Tenured

Figure 7.3. The boxplots of newcomer and tenured developers of six rule categories.
The number of rules is logged. Wilcoxon test shows that the difference between new-
comers and tenured committers is significant with p-values < 0.01.

mentations in rules. However, this relationship between project size and number of rule

changes is sub-linear, as evidenced by Group 4 (60%-80%) and Group 5 (80%-100%) - the

largest projects - which showcase a significantly higher median number of rule changes.

The largest projects thus require a disproportionately larger level of governance adap-

tation, likely due to increased complexities and a diverse participant base. Conversely,

when we adjust for the number of rule changes per developer, a significant decrease is

observed from Group 1 to Group 5. This suggests that larger projects diffuse the impact

of governance adaptation across a broader developer base, leading to fewer rule changes

per developer. It might also indicate that larger projects, with their more established and

stable governance structures, may have reduced the necessity for frequent per-developer

rule changes. These findings underscore the nuanced relationship between project size

and governance dynamics within open-source software repositories, emphasizing the im-

portance of adaptable, scalable governance mechanisms in digital commons management.

Upon analyzing developer influence on governance rule changes, we categorized devel-

opers into two groups based on their commit histories: newcomers, with their first commit

made within the last six months, and tenured committers, whose initial commit predates

this six-month period. Given the overdispersion present in our data, we opted for the

non-parametric Wilcoxon test for statistical comparison, as opposed to the t-test.

154



In Fig. 7.3 Our analyses revealed a notable divergence in the quantity of committed rule

changes between the two categories. Across all rule types, including position, boundary,

choice, aggregation, information, scope, and ’none,’ newcomers demonstrated significantly

fewer commits relative to their tenured counterparts, with p-values ¡ 0.01 in the Wilcoxon

test. A variety of factors may account for this trend. Newcomers, due to their relatively

recent integration into the project, may still be in the process of familiarizing themselves

with the project’s complexities and its existing governance rules, thereby contributing

to their lower level of rule change commits. Additionally, their recent inclusion might

limit their command over the codebase and hinder the necessary trust or authority within

the community to facilitate impactful rule changes. Conversely, tenured committers,

benefiting from their extensive familiarity with the project and its nuances, may possess

an enhanced perception of the necessity for rule changes. Their expansive knowledge

facilitates the implementation of these changes, while their established standing within the

community bolsters the acceptance of proposed modifications. These findings accentuate

the role of developer tenure in the interaction with governance mechanisms in open-source

software repositories and further underscore the multifaceted nature of digital commons

management.

7.5 Prospective Endeavors
The preliminary results presented thus far contribute to an enriched understanding of

governance in OSS repositories on GitHub. However, they also open up several promising

avenues for future research. (1) Longitudinal Analysis of Governance Rules. The observed

trend of increased rule changes from 2016 to 2022 suggests an evolution of governance

mechanisms over time. A comprehensive longitudinal study could provide more insights

into how these rules evolve and adapt in response to changing technological landscapes, de-

veloper demographics, and project needs. Moreover, identifying and understanding cycles

or patterns of rule changes might provide invaluable insights into the lifecycle of gov-

ernance mechanisms in OSS projects. (2) Impact of Governance on Project Outcomes.

While our current research has focused on the presence and evolution of governance rules,

155



future work should examine the impact of these rules on project outcomes. Understand-

ing how different rules or rule combinations affect project success, contributor retention,

and software quality could guide the formulation of effective governance strategies. (3)

Comparative Studies across Different Digital Commons. Given that the implications of

our work extend beyond OSS repositories, it would be intriguing to compare governance

mechanisms across different types of digital commons. This could reveal commonalities

and differences in how various digital commons are managed and could aid in developing

universal principles or tools for digital commons governance.

Through these suggested future endeavors, we hope to further illuminate the fascinat-

ing dynamics of governance in open-source software repositories and digital commons at

large. By expanding our understanding of these mechanisms, we can inform the develop-

ment of sustainable management practices in these shared digital commons.

156



Chapter 8

Conclusion

This chapter proffers a succinct reappraisal of each research contribution delineated and

elucidated heretofore, complemented by deliberations pertaining to potential avenues for

further scholarly inquiry emanating from these explorations.

In summarizing our work through the complexities of sustainability and governance

in Open Source Software (OSS), it becomes clear that this dynamic ecosystem is an in-

tricate weave of interactions, relationships, and governance structures that significantly

impact the long-term viability of OSS projects. Our examination, detailed in the preced-

ing chapters, elucidated the influential role of socio-technical networks and institutional

governance in shaping OSS project trajectories and their ultimate sustainability.

8.1 Studying OSS Team Dynamics in Adopting De-
vOps Tools

The initial chapter delves into the vital aspect of team dynamics. This work dissects the

complex social interactions among developers at a team level, and how these interactions

shape project trajectories and the team’s reactions to tool adoptions. The insights from

this chapter lay a strong foundation for understanding the human elements in OSS. First,

tool adoption impacts every team member and often depends on many of their opinions.

Factors such as a member’s past experiences with the tool, involvement, tenure, and sen-

timent play crucial roles in discussions about adoption. Therefore, tool adoption can be

a multi-phase team negotiation. Moreover, the timing of tool adoption is important as

157



there is a noticeable difference in when tools within the same use category are adopted,

complicating decisions for late-adopting projects. We also discovered that teams possess

specific attitudes toward certain tools, and these attitudes can shift after adoption. This

suggests that tools can be either overvalued or undervalued. Successful tool adoption is

likelier when multiple team members have prior experience with the tool. Prolonged dis-

cussions, while exhaustive, don’t necessarily correlate with successful adoptions. However,

having a strong influencer championing a tool can be beneficial.

8.2 Forecasting OSS Sustainability Using Socio-technical
Networks

OSS sustainability is a critical aspect given the voluntary and often transient nature of

contributions in the OSS landscape. We explore strategies for maintaining and enhancing

the long-term sustainability of OSS projects. We leverage empirical data of commits

and emails from Apache Software Foundation (ASF) incubator projects. The ASF, a

nonprofit foundation, guides OSS projects in governance through its incubation program.

By participating in the ASF incubator, projects accept some governance constraints in

exchange for resources to improve sustainability. We present the first high-performing

deep learning model trained on the socio-technical measures of projects with extrinsically

labeled sustainability status. The forecasting result shows that socio-technical network

measures have an early indication of project sustainability. By interpreting the model,

we find that often times high code changes might indicate a significant shift in a project’s

direction, potentially prolonging its time in incubation or leading to its discontinuation.

Next, we find an increased number of files in the technical network might overwhelm

OSS developers affecting code quality and leading to decreased interest and engagement,

further lowering the project’s sustainability. To address any identified downturns in a

project’s trajectory, OSS developers can analyze these features from the model to adjust

them accordingly, e.g., the metric clustering coefficient representing the count of triangles

in the social network, can be amplified by sending emails to all participants, not just the

key developers or those initiating threads. On the other hand, adopting a hierarchical,

158



tree-like communication pattern would reduce the clustering coefficient, as this approach

removes triangles. Through case studies, we show how practitioners can use the actionable

insights from the forecasting model to ensure the sustainable development of OSS projects

amid evolving challenges in time. However, this approach is most valid in the earlier

months of a project. These early stages are crucial, as interventions can be most effective

for new projects.

8.3 Investigating Temporal Patterns of Socio-technical
Structure and Institutional Governance

We made the first attempt to study the inter-leaving effects of socio-technical networks and

institutional discussions in a holistic way. OSS projects can be at risk due to free-riders

who benefit without contributing. Echoing Ostrom’s work, ASF incubator avoids such

dilemmas through robust self-governance. We build the first sentence-level classifier for

institutional statements, which provides a foundation for quantifying institutional analysis

and design. Using the classifier, we find projects with more institutional statements

are more matured in terms of self-governance, and are more likely to graduate from

the ASF Incubator, emphasizing the importance of active self-governance. Next, we

find projects that graduated had more diverse contributors, signaling a more involved

community. Their focus on documentation further indicated a higher capacity to manage

non-coding challenges. Moreover, self-governance isn’t one-size-fits-all: individual projects

have varied institutional approaches. Therefore, a tailored approach, based on extensive

data, is crucial. We suggest that OSS projects could benefit from a separate mailing

list dedicated to institutional discussions, assisting faster decision-making. Moreover,

utilizing self-monitoring tools can further aid in quick responses to project challenges.

Lastly, the findings offer insights into refining existing theories, emphasizing that OSS

projects’ structure and governance are interdependent: Adopting additional rules can help

in organizing a project’s actions, echoing established views on institutional governance.

159



8.4 Quantifying Episodic Changes and Their Effects
in OSS projects

Motivated by theories of governing the commons and organizational change, we show

that effective governance can induce episodic changes (the changes that are intentional,

periodic, and intermittent) in the socio-technical structure, bridging the gap between

efficient self-governance and sustainability. We find that graduated projects often have

more extended episodic change intervals compared to their retired counterparts in the

ASF incubator projects, and these changes are frequently triggered by governance-related

discussions. However, such vital conversations are frequently missing during these trans-

formative phases, indicating the need for developers to be actively involved not just in

socio-technical aspects but also in governance-related discussions. These episodic changes

can sometimes lead to temporary developer disengagement and a rise in negativity among

project mentors and contributors. Next, we find that setting clear expectations can coun-

terbalance potential frustrations arising from prolonged discussions, and maintaining a

positive discourse can propel the project toward sustainability. Furthermore, timing

these episodic changes during periods of reduced inter-team collaboration could reduce

their impact. By understanding the reasons some OSS initiatives fall short of ASF in-

cubator’s expectations and examining the relationship between institutional design and

socio-technical facets, practitioners can better grasp OSS sustainability. This holistic per-

spective, studying the temporal inter-leaving effects between socio-technical features with

institutional discussions, offers a more profound insight into the sustainability of OSS

projects.

8.5 Discovering Apache Incubator Project Trajecto-
ries with APEX

We introduce our online, interactive, dashboard-like tool, APEX. In previous chapters,

we have shown that OSS project sustainability, particularly within the Apache Software

Foundation (ASF), can be predicted from project metrics and developer interactions. The

ASF, a major OSS community, offers guidelines to support the sustainability of projects.

160



Projects aspiring for ASF affiliation start in the Apache Software Foundation Incubator

(ASFI), from where they either graduate into the ASF if deemed sustainable or are retired.

A new tool, APEX, has been implemented to assist these nascent projects in tracking their

sustainability over time, allowing for potential improvements in their trajectory. While

developed for ASF, APEX can support projects beyond ASF due to its generic design.

Although ASF has an existing monitoring tool, Clutch, APEX offers advanced analyti-

cal capabilities, emphasizing the longitudinal socio-technical dimensions of projects and

suggesting actionable insights. Other analytics tools like Augur and GrimoireLab, part

of the CHAOSS initiative, have similar goals but lack APEX’s comprehensive approach

to sustainability metrics. The APEX tool, available online to everyone, facilitates real-

time monitoring and evaluation of ASFI projects and can help generate sustainability

hypotheses.

8.6 Fostering Self-governance in GitHub Projects
We present a preliminary study on how OSS projects in-the-wild develop project-level

governance by specifying governance rules and regulations in Governance.md file. This

study leverages Elinor Ostrom’s governance theories, which were designed for natural re-

sources, to understand the organizational dynamics of OSS projects. We attempted to

answer the following research questions: Can these traditional classes of rules be extracted

from digital commons? OSS projects on GitHub are not with strict governance regula-

tions from large organizations like ASF and Linux, projects choose to use markdown files

like GOVERNANCE.md as the project’s ’constitution’ for defining rules and decision-

making processes. OSS projects on GitHub are not subjected to more strict governance

policies as their counterparts affiliated with nonprofit foundations like the Apache Soft-

ware Foundation or the Linux Foundation. However, many of these GitHub projects that

operate on their own and “in the wild” utilize markdown files like GOVERNANCE.md as

the project’s means for documenting their governance arrangements and decision-making

processes. This research bridges Ostrom’s governance theory with OSS settings, using

GOVERNANCE.md files to study digital commons’ governance structures. The work provides

161



insights on applying Ostrom’s principles in digital settings and introducing a classifier

tool for large-scale analysis of governance in OSS projects. Moreover, this work meticu-

lously examined large-scale GitHub repositories with GOVERNANCE.md files, focusing

on the chronological introduction and modifications of governance rules. Specifically, this

analysis integrated Ostrom’s seven classes of rules, highlighting the untapped potential of

utilizing cutting-edge machine learning tools to decode governance structures in collective-

action scenarios, particularly where governance is articulated or archived in documents

like the GOVERNANCE.md file. This endeavor not only offers deeper insights into the

interplay of governance with the sustainability of OSS projects but also underscores its

wider implications beyond just OSS research, marking a transformative direction for un-

derstanding digital commons governance in the future.

162



References

[1] H. Hata, T. Todo, S. Onoue, and K. Matsumoto, “Characteristics of sustainable oss
projects: A theoretical and empirical study,” in 2015 IEEE/ACM 8th International
Workshop on Cooperative and Human Aspects of Software Engineering. IEEE,
2015, pp. 15–21.

[2] J. Gamalielsson and B. Lundell, “Sustainability of open source software communities
beyond a fork: How and why has the libreoffice project evolved?” Journal of systems
and Software, vol. 89, pp. 128–145, 2014.

[3] A. Martens, H. Koziolek, S. Becker, and R. Reussner, “Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolutionary
algorithms,” in Proceedings of the first joint WOSP/SIPEW international confer-
ence on Performance engineering, 2010, pp. 105–116.

[4] C. Cowan, “Software security for open-source systems,” IEEE Security & Privacy,
vol. 1, no. 1, pp. 38–45, 2003.

[5] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code quality analysis in
open source software development,” Information systems journal, vol. 12, no. 1, pp.
43–60, 2002.

[6] S. Stănciulescu, L. Yin, and V. Filkov, “Code, quality, and process metrics in grad-
uated and retired asfi projects,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 495–506.

[7] S. Wagner and M. Ruhe, “A systematic review of productivity factors in software
development,” arXiv preprint arXiv:1801.06475, 2018.

[8] M. Joblin and S. Apel, “How do successful and failed projects differ? a socio-
technical analysis,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, no. 4, pp. 1–24, 2022.

[9] S. Y. Ho and A. Rai, “Continued voluntary participation intention in firm-
participating open source software projects,” Information Systems Research, vol. 28,
no. 3, pp. 603–625, 2017.

[10] M. Gharehyazie, D. Posnett, B. Vasilescu, and V. Filkov, “Developer initiation and
social interactions in oss: A case study of the apache software foundation,” Empirical
Software Engineering, vol. 20, pp. 1318–1353, 2015.

[11] H. S. Qiu, A. Nolte, A. Brown, A. Serebrenik, and B. Vasilescu, “Going farther
together: The impact of social capital on sustained participation in open source,” in
2019 ieee/acm 41st international conference on software engineering (icse). IEEE,
2019, pp. 688–699.

163



[12] P. V. Singh, Y. Tan, and V. Mookerjee, “Network effects: The influence of structural
capital on open source project success,” Mis Quarterly, pp. 813–829, 2011.

[13] M. Guizani, A. Chatterjee, B. Trinkenreich, M. E. May, G. J. Noa-Guevara, L. J.
Russell, G. G. Cuevas Zambrano, D. Izquierdo-Cortazar, I. Steinmacher, M. A.
Gerosa et al., “The long road ahead: Ongoing challenges in contributing to large
oss organizations and what to do,” Proceedings of the ACM on Human-Computer
Interaction, vol. 5, no. CSCW2, pp. 1–30, 2021.

[14] L. Hannola, F. Lacueva-Pérez, P. Pretto, A. Richter, M. Schafler, and M. Steinhüser,
“Assessing the impact of socio-technical interventions on shop floor work practices,”
International Journal of Computer Integrated Manufacturing, vol. 33, no. 6, pp.
550–571, 2020.

[15] I. Kwan, A. Schroter, and D. Damian, “Does socio-technical congruence have an
effect on software build success? a study of coordination in a software project,”
IEEE Transactions on Software Engineering, vol. 37, no. 3, pp. 307–324, 2011.

[16] A. Meneely and L. Williams, “Socio-technical developer networks: Should we trust
our measurements?” in Proceedings of the 33rd International Conference on Soft-
ware Engineering, 2011, pp. 281–290.

[17] F. Sarker, B. Vasilescu, K. Blincoe, and V. Filkov, “Socio-technical work-rate
increase associates with changes in work patterns in online projects,” in 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
2019, pp. 936–947.

[18] D. Arya, W. Wang, J. L. Guo, and J. Cheng, “Analysis and detection of information
types of open source software issue discussions,” in 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2019, pp. 454–464.

[19] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining email
social networks,” in Proceedings of the 2006 international workshop on Mining soft-
ware repositories, 2006, pp. 137–143.

[20] F. Barcellini, F. Détienne, J.-M. Burkhardt, and W. Sack, “A socio-cognitive anal-
ysis of online design discussions in an open source software community,” Interacting
with computers, vol. 20, no. 1, pp. 141–165, 2008.

[21] R. Kaur and K. K. Chahal, “Exploring factors affecting developer abandonment of
open source software projects,” Journal of Software: Evolution and Process, vol. 34,
no. 9, p. e2484, 2022.

[22] L. Yin, Z. Chen, Q. Xuan, and V. Filkov, “Sustainability forecasting for apache
incubator projects,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. New York, NY, USA: Association for Computing Machinery, 2021,
p. 1056–1067.

164



[23] E. Ostrom, “Background on the institutional analysis and development framework,”
Policy studies journal, vol. 39, no. 1, pp. 7–27, 2011.

[24] F. Fleischman, B. Loken, G. Garcia-Lopez, and S. Villamayor-Tomas, “Evaluating
the utility of common-pool resource theory for understanding forest governance
and outcomes in indonesia between 1965 and 2012,” International Journal of the
Commons, vol. 8, no. 2, 2014.

[25] X. Basurto, S. Gelcich, and E. Ostrom, “The social–ecological system framework as
a knowledge classificatory system for benthic small-scale fisheries,” Global environ-
mental change, vol. 23, no. 6, pp. 1366–1380, 2013.

[26] I. Anguelovski and J. Carmin, “Something borrowed, everything new: innovation
and institutionalization in urban climate governance,” Current opinion in environ-
mental sustainability, vol. 3, no. 3, pp. 169–175, 2011.

[27] V. Kostakis, K. Latoufis, M. Liarokapis, and M. Bauwens, “The convergence of
digital commons with local manufacturing from a degrowth perspective: Two illus-
trative cases,” Journal of Cleaner Production, vol. 197, pp. 1684–1693, 2018.

[28] L. Yin, M. Chakraborti, Y. Yan, C. Schweik, S. Frey, and V. Filkov, “Open
source software sustainability: Combining institutional analysis and socio-technical
networks,” Proc. ACM Hum.-Comput. Interact., vol. 6, no. CSCW2, nov 2022.
[Online]. Available: https://doi.org/10.1145/3555129

[29] S. Habchi, X. Blanc, and R. Rouvoy, “On adopting linters to deal with performance
concerns in android apps,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018.

[30] G. Von Krogh, S. Spaeth, and K. R. Lakhani, “Community, joining, and special-
ization in open source software innovation: a case study,” Research policy, vol. 32,
no. 7, pp. 1217–1241, 2003.

[31] T. B. Jordan, B. Johnson, J. Witschey, and E. Murphy-Hill, “Designing interven-
tions to persuade software developers to adopt security tools,” in Proceedings of the
2014 ACM Workshop on Security Information Workers, ser. SIW ’14. New York,
NY, USA: ACM, 2014, pp. 35–38.

[32] D. Kavaler, A. Trockman, B. Vasilescu, and V. Filkov, “Tool choice matters:
Javascript quality assurance tools and usage outcomes in github projects,” in Pro-
ceedings of the 41st International Conference on Software Engineering. IEEE Press,
2019, pp. 476–487.

[33] C. Subramaniam, R. Sen, and M. L. Nelson, “Determinants of open source software
project success: A longitudinal study,” Decision Support Systems, vol. 46, no. 2, pp.
576–585, 2009.

165

https://doi.org/10.1145/3555129


[34] P. M. Leonardi, “Social media, knowledge sharing, and innovation: Toward a theory
of communication visibility,” Information systems research, vol. 25, no. 4, pp. 796–
816, 2014.

[35] B. Johnson, R. Pandita, J. Smith, D. Ford, S. Elder, E. Murphy-Hill, S. Heck-
man, and C. Sadowski, “A cross-tool communication study on program analysis
tool notifications,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2016, pp. 73–84.

[36] J. Zhu, M. Zhou, and A. Mockus, “Effectiveness of code contribution: From patch-
based to pull-request-based tools,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016, pp. 871–
882.

[37] S. Xiao, J. Witschey, and E. Murphy-Hill, “Social influences on secure development
tool adoption: why security tools spread,” in Proceedings of the 17th ACM confer-
ence on Computer supported cooperative work & social computing. ACM, 2014, pp.
1095–1106.

[38] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. Mayhorn, and T. Zimmer-
mann, “Quantifying developers’ adoption of security tools,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering. ACM, 2015, pp.
260–271.

[39] D. Cornell, “Remediation statistics: what does fixing application vulnerabilities
cost,” Proceedings of the RSAConference, San Fransisco, CA, USA, 2012.

[40] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “A model for technology transfer
in practice,” IEEE software, vol. 23, no. 6, pp. 88–95, 2006.

[41] S. L. Pfleeger, “Understanding and improving technology transfer in software engi-
neering,” Journal of Systems and Software, vol. 47, no. 2-3, pp. 111–124, 1999.

[42] C. K. Riemenschneider, B. C. Hardgrave, and F. D. Davis, “Explaining software
developer acceptance of methodologies: a comparison of five theoretical models,”
IEEE transactions on Software Engineering, vol. 28, no. 12, pp. 1135–1145, 2002.

[43] J. Marlow and L. Dabbish, “Activity traces and signals in software developer re-
cruitment and hiring,” in Proceedings of the 2013 conference on Computer supported
cooperative work. ACM, 2013, pp. 145–156.

[44] F. Fagerholm, A. S. Guinea, J. Borenstein, and J. Münch, “Onboarding in open
source projects,” IEEE Software, vol. 31, no. 6, pp. 54–61, 2014.

[45] M. S. Ackerman, J. Dachtera, V. Pipek, and V. Wulf, “Sharing knowledge and exper-
tise: The cscw view of knowledge management,” Computer Supported Cooperative
Work (CSCW), vol. 22, no. 4-6, pp. 531–573, 2013.

166



[46] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github: Associations
between software development and crowdsourced knowledge,” in 2013 International
Conference on Social Computing. IEEE, 2013, pp. 188–195.

[47] J. T. Hancock, K. Gee, K. Ciaccio, and J. M.-H. Lin, “I’m sad you’re sad: emo-
tional contagion in cmc,” in Proceedings of the 2008 ACM conference on Computer
supported cooperative work. ACM, 2008, pp. 295–298.

[48] B. C. Hardgrave, F. D. Davis, and C. K. Riemenschneider, “Investigating determi-
nants of software developers’ intentions to follow methodologies,” Journal of Man-
agement Information Systems, vol. 20, no. 1, pp. 123–151, 2003.

[49] M. V. Zelkowitz, “Assessing software engineering technology transfer within nasa,”
NASA technical report NASA-RPT-003095. National Aeronautics and Space Ad-
ministration, Washington, DC, 1995.

[50] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software devel-
opers use static analysis tools to find bugs?” in 2013 35th International Conference
on Software Engineering (ICSE). IEEE, 2013, pp. 672–681.

[51] M.-A. Storey, A. Zagalsky, F. Figueira Filho, L. Singer, and D. M. German, “How
social and communication channels shape and challenge a participatory culture in
software development,” IEEE Transactions on Software Engineering, vol. 43, no. 2,
pp. 185–204, 2016.

[52] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and K. Kinder-Kurlanda, “Can security
become a routine?: a study of organizational change in an agile software develop-
ment group,” in Proceedings of the 2017 ACM Conference on Computer Supported
Cooperative Work and Social Computing. ACM, 2017, pp. 2489–2503.

[53] E. M. Rogers, “Diffusion of preventive innovations,” Addictive behaviors, vol. 27,
no. 6, pp. 989–993, 2002.

[54] L.-G. Singer, Improving the adoption of software engineering practices through per-
suasive interventions. Lulu. com, 2013.

[55] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication, collabora-
tion, and bugs: the social nature of issue tracking in small, collocated teams,” in
Proceedings of the 2010 ACM conference on Computer supported cooperative work,
2010, pp. 291–300.

[56] J. Tantisuwankul, Y. S. Nugroho, R. G. Kula, H. Hata, A. Rungsawang, P. Lee-
laprute, and K. Matsumoto, “A topological analysis of communication channels
for knowledge sharing in contemporary github projects,” Journal of Systems and
Software, vol. 158, p. 110416, 2019.

[57] B. Brehmer, “Social judgment theory and the analysis of interpersonal conflict.”
Psychological bulletin, vol. 83, no. 6, p. 985, 1976.

167



[58] L. Thompson and T. DeHarpport, “Social judgment, feedback, and interpersonal
learning in negotiation,” Organizational Behavior and Human Decision Processes,
vol. 58, no. 3, pp. 327–345, 1994.

[59] S. Graham and S. Golan, “Motivational influences on cognition: Task involvement,
ego involvement, and depth of information processing.” Journal of Educational psy-
chology, vol. 83, no. 2, p. 187, 1991.

[60] W. R. Ferrell, “Combining individual judgments,” in Behavioral decision making.
Springer, 1985, pp. 111–145.

[61] J. Rohrbaugh, “Improving the quality of group judgment: Social judgment analy-
sis and the delphi technique,” Organizational Behavior and Human Performance,
vol. 24, no. 1, pp. 73–92, 1979.

[62] T. L. Kelley, “The applicability of the spearman-brown formula for the measurement
of reliability.” Journal of Educational Psychology, vol. 16, no. 5, p. 300, 1925.

[63] S. Soroka, P. Fournier, and L. Nir, “Cross-national evidence of a negativity bias
in psychophysiological reactions to news,” Proceedings of the National Academy of
Sciences, vol. 116, no. 38, pp. 18 888–18 892, 2019.

[64] A. Trockman, S. Zhou, C. Kästner, and B. Vasilescu, “Adding sparkle to social cod-
ing: an empirical study of repository badges in the npm ecosystem,” in Proceedings
of the 40th International Conference on Software Engineering. ACM, 2018, pp.
511–522.

[65] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo, “Categorizing the
content of github readme files,” Empirical Software Engineering, vol. 24, pp. 1296–
1327, 2019.

[66] L. Christophe, R. Stevens, C. De Roover, and W. De Meuter, “Prevalence and
maintenance of automated functional tests for web applications,” in 2014 IEEE
International Conference on Software Maintenance and Evolution. IEEE, 2014,
pp. 141–150.

[67] M. Hilton, J. Bell, and D. Marinov, “A large-scale study of test coverage evolution.”
in ASE, 2018, pp. 53–63.

[68] P. Skolka, C.-A. Staicu, and M. Pradel, “Anything to hide? studying minified and
obfuscated code in the web,” in The World Wide Web Conference. ACM, 2019,
pp. 1735–1746.

[69] F. R. de Souza, A. C. Domingues, P. O. Vaz de Melo, and A. A. Loureiro, “Mocha:
A tool for mobility characterization,” in Proceedings of the 21st ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems.
ACM, 2018, pp. 281–288.

168



[70] K. F. Tómasdóttir, M. Aniche, and A. v. Deursen, “Why and how javascript devel-
opers use linters,” in Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering. IEEE Press, 2017, pp. 578–589.

[71] J. Ruohonen and V. Leppänen, “Toward validation of textual information retrieval
techniques for software weaknesses,” in International Conference on Database and
Expert Systems Applications. Springer, 2018, pp. 265–277.

[72] S. Mirhosseini and C. Parnin, “Can automated pull requests encourage software
developers to upgrade out-of-date dependencies?” in 2017 32nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE, 2017, pp.
84–94.

[73] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Findings from github: methods,
datasets and limitations,” in 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR). IEEE, 2016, pp. 137–141.

[74] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating commit messages
from diffs using neural machine translation,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2017, pp. 135–146.

[75] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of
machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[76] J. Kottmann, G. Ingersoll, J. Kosin, and B. Galitsky, “The apache opennlp library.”

[77] C. Li, Y. Lu, J. Wu, Y. Zhang, Z. Xia, T. Wang, D. Yu, X. Chen, P. Liu, and
J. Guo, “Lda meets word2vec: a novel model for academic abstract clustering,” in
Companion Proceedings of the The Web Conference 2018, 2018, pp. 1699–1706.

[78] F. Jurado and P. Rodriguez, “Sentiment analysis in monitoring software develop-
ment processes: An exploratory case study on github’s project issues,” Journal of
Systems and Software, vol. 104, pp. 82–89, 2015.

[79] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “[journal first] sentiment po-
larity detection for software development,” in 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 2018, pp. 128–128.

[80] M. R. Islam and M. F. Zibran, “A comparison of software engineering domain
specific sentiment analysis tools,” in 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2018, pp. 487–
491.

[81] S. Nakagawa and H. Schielzeth, “A general and simple method for obtaining r2 from
generalized linear mixed-effects models,” Methods in ecology and evolution, vol. 4,
no. 2, pp. 133–142, 2013.

169



[82] C. M. Schweik and R. C. English, Internet success: a study of open-source software
commons. MIT Press, 2012.

[83] U. Raja and M. J. Tretter, “Defining and evaluating a measure of open source
project survivability,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 163–174, 2012.

[84] J. C. Dueñas, F. Cuadrado, M. Santillán, J. L. Ruiz et al., “Apache and eclipse:
Comparing open source project incubators,” IEEE software, vol. 24, no. 6, pp. 90–
98, 2007.

[85] T. Chaikalis and A. Chatzigeorgiou, “Forecasting java software evolution trends
employing network models,” IEEE Transactions on Software Engineering, vol. 41,
no. 6, pp. 582–602, 2014.

[86] E. S. Andersen, A. Dysvik, and A. L. Vaagaasar, “Organizational rationality and
project management,” International Journal of Managing Projects in Business,
2009.

[87] H.-F. Lin and G.-G. Lee, “Effects of socio-technical factors on organizational inten-
tion to encourage knowledge sharing,” Management decision, 2006.

[88] M. Palyart, G. C. Murphy, and V. Masrani, “A study of social interactions in open
source component use,” IEEE Transactions on Software Engineering, vol. 44, no. 12,
pp. 1132–1145, 2017.

[89] C. Amrit and J. Van Hillegersberg, “Exploring the impact of socio-technical core-
periphery structures in open source software development,” journal of information
technology, vol. 25, no. 2, pp. 216–229, 2010.

[90] W. Sack, F. Détienne, N. Ducheneaut, J.-M. Burkhardt, D. Mahendran, and F. Bar-
cellini, “A methodological framework for socio-cognitive analyses of collaborative
design of open source software,” Computer Supported Cooperative Work (CSCW),
vol. 15, no. 2-3, pp. 229–250, 2006.

[91] B. K. Kasi, “Minimizing software conflicts through proactive detection of conflicts
and task scheduling,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2014, pp. 807–810.

[92] A. E. Hassan and P. C. Rigby, “What can oss mailing lists tell us? a preliminary
psychometric text analysis of the apache developer mailing list,” in Fourth Inter-
national Workshop on Mining Software Repositories (MSR’07: ICSE Workshops
2007), 2007, pp. 23–23.

[93] S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin, M. Pierce, C. Mattmann,
R. Singh, T. Gunarathne, E. Chinthaka, R. Gardler et al., “Apache airavata: a

170



framework for distributed applications and computational workflows,” in Proceed-
ings of the 2011 ACM workshop on Gateway computing environments, 2011, pp.
21–28.

[94] A. Potdar and E. Shihab, “An exploratory study on self-admitted technical debt,”
in 2014 IEEE International Conference on Software Maintenance and Evolution.
IEEE, 2014, pp. 91–100.

[95] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social barriers faced
by newcomers placing their first contribution in open source software projects,” in
Proceedings of the 18th ACM conference on Computer supported cooperative work
& social computing, 2015, pp. 1379–1392.

[96] I. Steinmacher, M. A. G. Silva, M. A. Gerosa, and D. F. Redmiles, “A system-
atic literature review on the barriers faced by newcomers to open source software
projects,” Information and Software Technology, vol. 59, pp. 67–85, 2015.

[97] K. Crowston and I. Shamshurin, “Core-periphery communication and the success
of free/libre open source software projects,” Journal of Internet Services and Appli-
cations, vol. 8, no. 1, p. 10, 2017.

[98] L. Duboc, S. Betz, B. Penzenstadler, S. A. Kocak, R. Chitchyan, O. Leifler, J. Por-
ras, N. Seyff, and C. C. Venters, “Do we really know what we are building? raising
awareness of potential sustainability effects of software systems in requirements en-
gineering,” in 2019 IEEE 27th International Requirements Engineering Conference
(RE). IEEE, 2019, pp. 6–16.

[99] V. Midha and P. Palvia, “Factors affecting the success of open source software,”
Journal of Systems and Software, vol. 85, no. 4, pp. 895–905, 2012.

[100] J. Piggott, “Open source software attributes as success indicators,” Univ. of Twente,
2013.

[101] B. Gezici, N. Özdemir, N. Yılmaz, E. Coşkun, A. Tarhan, and O. Chouseinoglou,
“Quality and success in open source software: A systematic mapping,” in 2019 45th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA).
IEEE, 2019, pp. 363–370.

[102] A. H. Ghapanchi, A. Aurum, and G. Low, “A taxonomy for measuring the success
of open source software projects,” First Monday, vol. 16, no. 8, 2011.

[103] C. Rahmani and D. Khazanchi, “A study on defect density of open source software,”
in 2010 IEEE/ACIS 9th International Conference on Computer and Information
Science. IEEE, 2010, pp. 679–683.

[104] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open source
software development: Apache and mozilla,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 11, no. 3, pp. 309–346, 2002.

171



[105] J. W. Kuan, “Open source software as consumer integration into production,” Avail-
able at SSRN 259648, 2001.

[106] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, “The rise and fall
of a central contributor: Dynamics of social organization and performance in the
gentoo community,” in 2013 6th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE). IEEE, 2013, pp. 49–56.

[107] N. McDonald and S. Goggins, “Performance and participation in open source soft-
ware on github,” in CHI’13 Extended Abstracts on Human Factors in Computing
Systems, 2013, pp. 139–144.

[108] J. Wu, K.-Y. Goh, and Q. Tang, “Investigating success of open source software
projects: A social network perspective,” ICIS 2007 Proceedings, p. 105, 2007.

[109] K. Crowston, J. Howison, and H. Annabi, “Information systems success in free
and open source software development: Theory and measures,” Software Process:
Improvement and Practice, vol. 11, no. 2, pp. 123–148, 2006.

[110] N. Cerpa, M. Bardeen, B. Kitchenham, and J. Verner, “Evaluating logistic re-
gression models to estimate software project outcomes,” Information and Software
Technology, vol. 52, no. 9, pp. 934–944, 2010.

[111] D. Surian, Y. Tian, D. Lo, H. Cheng, and E.-P. Lim, “Predicting project outcome
leveraging socio-technical network patterns,” in 2013 17th European Conference on
Software Maintenance and Reengineering. IEEE, 2013, pp. 47–56.

[112] J. Coelho and M. T. Valente, “Why modern open source projects fail,” in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, 2017, pp.
186–196.

[113] M. Valiev, B. Vasilescu, and J. Herbsleb, “Ecosystem-level determinants of sustained
activity in open-source projects: A case study of the pypi ecosystem,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp. 644–655.

[114] M. S. Zanetti, “The co-evolution of socio-technical structures in sustainable software
development: Lessons from the open source software communities,” in 2012 34th
International Conference on Software Engineering (ICSE). IEEE, 2012, pp. 1587–
1590.

[115] A. H. Ghapanchi, “Predicting software future sustainability: A longitudinal per-
spective,” Information Systems, vol. 49, pp. 40–51, 2015.

[116] N. Ducheneaut, “Socialization in an open source software community: A socio-
technical analysis,” Computer Supported Cooperative Work (CSCW), vol. 14, no. 4,
pp. 323–368, 2005.

172



[117] E. Trist, The evolution of socio-technical systems: A conceptual framework and an
action research program. Ontario Ministry of Labour, 1981.

[118] T. Herrmann, M. Hoffmann, G. Kunau, and K.-U. Loser, “A modelling method for
the development of groupware applications as socio-technical systems,” Behaviour
& Information Technology, vol. 23, no. 2, pp. 119–135, 2004.

[119] G. Fischer and T. Herrmann, “Socio-technical systems: a meta-design perspective,”
International Journal of Sociotechnology and Knowledge Development (IJSKD),
vol. 3, no. 1, pp. 1–33, 2011.

[120] J. M. González-Barahona, L. Lopez, and G. Robles, “Community structure of mod-
ules in the apache project,” in Proceedings of the 4h International Workshop on
Open Source Software Engineering. IET, 2004, pp. 44–48.

[121] A. Smith and A. Stirling, “Moving outside or inside? objectification and reflexivity
in the governance of socio-technical systems,” Journal of Environmental Policy &
Planning, vol. 9, no. 3-4, pp. 351–373, 2007.

[122] J. R. Turner and R. Müller, “Communication and co-operation on projects between
the project owner as principal and the project manager as agent,” European man-
agement journal, vol. 22, no. 3, pp. 327–336, 2004.

[123] T. Cooke-Davies, “The “real” success factors on projects,” International journal of
project management, vol. 20, no. 3, pp. 185–190, 2002.

[124] S. Wearne and A. Stanbury, “A study of the reality of project management: Wg
morris and gh hough, john wiley, uk (1987) 29.95, isbn 0471 915513 pp 295,” Inter-
national Journal of Project Management, vol. 7, no. 1, p. 58, 1989.

[125] R. Joslin and R. Müller, “The impact of project methodologies on project success
in different project environments,” International Journal of Managing Projects in
Business, 2016.

[126] D. W. Barclay, “Interdepartmental conflict in organizational buying: The impact
of the organizational context,” Journal of Marketing Research, vol. 28, no. 2, pp.
145–159, 1991.

[127] P. Lehtonen and M. Martinsuo, “Three ways to fail in project management and the
role of project management methodology,” Project Perspectives, vol. 28, no. 1, pp.
6–11, 2006.

[128] L. Yin, Z. Zhang, Q. Xuan, and V. Filkov, “Apache software foundation incubator
project sustainability dataset,” in 2021 IEEE/ACM 18th International Conference
on Mining Software Repositories (MSR). IEEE, 2021, pp. 595–599.

[129] J. Zhu and J. Wei, “An empirical study of multiple names and email addresses in
oss version control repositories,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). IEEE, 2019, pp. 409–420.

173



[130] M. Wessel, B. M. De Souza, I. Steinmacher, I. S. Wiese, I. Polato, A. P. Chaves,
and M. A. Gerosa, “The power of bots: Characterizing and understanding bots in
oss projects,” Proceedings of the ACM on Human-Computer Interaction, vol. 2, no.
CSCW, pp. 1–19, 2018.

[131] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, “Putting it all together:
Using socio-technical networks to predict failures,” in 2009 20th International Sym-
posium on Software Reliability Engineering. IEEE, 2009, pp. 109–119.

[132] F. Zhang, A. E. Hassan, S. McIntosh, and Y. Zou, “The use of summation to
aggregate software metrics hinders the performance of defect prediction models,”
IEEE Transactions on Software Engineering, vol. 43, no. 5, pp. 476–491, 2016.

[133] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288,
1996.

[134] J. Friedman, T. Hastie, and R. Tibshirani, “glmnet: Lasso and elastic-net regular-
ized generalized linear models,” R package version, vol. 1, no. 4, 2009.

[135] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[136] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?” explaining the
predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016, pp. 1135–1144.

[137] C. Casalnuovo, B. Vasilescu, P. Devanbu, and V. Filkov, “Developer onboarding in
github: the role of prior social links and language experience,” in Proceedings of the
2015 10th joint meeting on foundations of software engineering, 2015, pp. 817–828.

[138] E. Ostrom, Understanding Institutional Diversity. Princeton University Press,
2009.

[139] Y. Benkler, The wealth of networks. Yale University Press, 2008.

[140] E. Ostrom, Governing the commons: The evolution of institutions for collective
action. Cambridge university press, 1990.

[141] W. Blomquist et al., Dividing the waters: governing groundwater in Southern Cal-
ifornia. ICS Press Institute for Contemporary Studies, 1992.

[142] R. L. Gruby and X. Basurto, “Multi-level governance for large marine commons:
politics and polycentricity in palau’s protected area network,” Environmental sci-
ence & policy, vol. 33, pp. 260–272, 2013.

[143] M. Olson, “The logic of collective action [1965],” Contemporary Sociological Theory,
vol. 124, 2012.

174



[144] G. Hardin, “The tragedy of the commons: the population problem has no technical
solution; it requires a fundamental extension in morality.” science, vol. 162, no. 3859,
pp. 1243–1248, 1968.

[145] C. M. Schweik and R. English, “Tragedy of the foss commons? investigating the
institutional designs of free/libre and open source software projects,” First Monday,
2007.

[146] C. Hess and E. Ostrom, Understanding knowledge as a commons: From theory to
practice. JSTOR, 2007.

[147] B. Frischmann, M. Madison, and K. Strandburg, Governing Knowledge Commons.
Oxford University Press, 2014.

[148] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent social struc-
ture in open source projects,” in Proceedings of the 16th ACM SIGSOFT Interna-
tional Symposium on Foundations of software engineering, 2008, pp. 24–35.

[149] S. Crawford and E. Ostrom, “A grammar of institutions,” American Political Sci-
ence Review, vol. 89, no. 3, pp. 582–600, 1995.

[150] S. Siddiki, T. Heikkila, C. M. Weible, R. Pacheco-Vega, D. Carter, C. Curley, A. Des-
latte, and A. Bennett, “Institutional analysis with the institutional grammar,” Pol-
icy Studies Journal, 2019.

[151] T. O’Reilly, “Lessons from open-source software development,” Communications of
the ACM, vol. 42, no. 4, pp. 32–37, 1999.

[152] A. Narduzzo and A. Rossi, “The role of modularity in free/open source software
development,” in Free/Open source software development. Igi Global, 2005, pp.
84–102.

[153] S. Hissam, C. B. Weinstock, D. Plakosh, and J. Asundi, “Perspectives on open
source software,” Carnegie Mellon Univ Pittsburgh PA - Software Engineering Inst,
Tech. Rep., 2001.

[154] G. Ropohl, “Philosophy of socio-technical systems,” Techné: Research in Philosophy
and Technology, vol. 4, no. 3, pp. 186–194, 1999.

[155] E. Ostrom, M. Janssen, and J. Anderies, “Going beyond panaceas,” Proceedings of
the National Academy of Sciences, vol. 104, no. 39, pp. 15 176–15 178, 207.

[156] A. Sen, C. Atkisson, and C. M. Schweik, “Cui bono: Do open source software
incubator policies and procedures benefit the projects or the incubator?” Available
at SSRN, 2021. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?
abstract id=3966496

175

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3966496
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3966496


[157] A. Cohan, I. Beltagy, D. King, B. Dalvi, and D. S. Weld, “Pretrained language
models for sequential sentence classification,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing. Hong Kong, China: Association
for Computing Machinery, 2019, p. 3693–3699.

[158] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[159] H. Yu and J. Yang, “A direct lda algorithm for high-dimensional data—with ap-
plication to face recognition,” Pattern recognition, vol. 34, no. 10, pp. 2067–2070,
2001.

[160] R. Řehŭřek, P. Sojka et al., “Gensim—statistical semantics in python,” Retrieved
from genism. org, 2011.

[161] E.-I. Dumitrescu and C. Hurlin, “Testing for granger non-causality in heterogeneous
panels,” Economic modelling, vol. 29, no. 4, pp. 1450–1460, 2012.

[162] Y.-W. Cheung and K. S. Lai, “Lag order and critical values of the augmented
dickey–fuller test,” Journal of Business & Economic Statistics, vol. 13, no. 3, pp.
277–280, 1995.

[163] J. H. Lopez, “The power of the adf test,” Economics Letters, vol. 57, no. 1, pp.
5–10, 1997.

[164] J. Ferreira and A. Zwinderman, “On the benjamini–hochberg method,” The Annals
of Statistics, vol. 34, no. 4, pp. 1827–1849, 2006.

[165] A. Ramchandran, L. Yin, and V. Filkov, “Exploring apache incubator project tra-
jectories with apex,” in 2022 IEEE/ACM 19th International Conference on Mining
Software Repositories (MSR). IEEE, 2022, p. Accepted.

[166] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler, N. Seyff,
and C. C. Venters, “Sustainability design and software: The karlskrona manifesto,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
vol. 2. IEEE, 2015, pp. 467–476.

[167] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/libre open-source software
development: What we know and what we do not know,” ACM Comput. Surv.,
vol. 44, no. 2, mar 2008.

[168] K. A. Dawood, K. Y. Sharif, A. Zaidan, A. A. Abd Ghani, H. B. Zulzalil, and
B. Zaidan, “Mapping and analysis of open source software (oss) usability for sus-
tainable oss product,” IEEE Access, vol. 7, pp. 65 913–65 933, 2019.

176



[169] S. Sunder, “Minding our manners: Accounting as social norms,” The British ac-
counting review, vol. 37, no. 4, pp. 367–387, 2005.

[170] A. D. Berkowitz, “An overview of the social norms approach,” Changing the culture
of college drinking: A socially situated health communication campaign, vol. 1, pp.
193–214, 2005.

[171] J. A. Tainter, “Social complexity and sustainability,” ecological complexity, vol. 3,
no. 2, pp. 91–103, 2006.

[172] T. Sandler, Global collective action. Cambridge University Press, 2004.

[173] E. Ostrom, “Tragedy of the commons,” The new palgrave dictionary of economics,
vol. 2, pp. 1–4, 2008.

[174] A. H. Van de Ven and M. S. Poole, “Explaining development and change in organi-
zations,” Academy of management review, vol. 20, no. 3, pp. 510–540, 1995.

[175] P. Dawson, “Reflections: On time, temporality and change in organizations,” Jour-
nal of Change Management, vol. 14, no. 3, pp. 285–308, 2014.

[176] P. R. Krysinski and D. B. Reed, “Organizational change and change leadership,”
Journal of Leadership Studies, vol. 1, no. 2, pp. 65–72, 1994.

[177] R. Thomas and C. Hardy, “Reframing resistance to organizational change,”
Scandinavian Journal of Management, vol. 27, no. 3, pp. 322–331, 2011. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0956522111000558

[178] S. K. Piderit, “Rethinking resistance and recognizing ambivalence: A multidimen-
sional view of attitudes toward an organizational change,” Academy of management
review, vol. 25, no. 4, pp. 783–794, 2000.

[179] A. Sharma, G. A. A. Prana, A. Sawhney, N. Nagappan, and D. Lo, “Analyzing
offline social engagements: An empirical study of meetup events related to soft-
ware development,” in 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2022, pp. 1122–1133.

[180] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical congruence: a
framework for assessing the impact of technical and work dependencies on software
development productivity,” in Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement, 2008, pp. 2–11.

[181] K. Crowston and J. Howison, “The social structure of free and open source software
development,” First Monday, vol. 10, no. 2, 2005.

[182] T. Bock, C. Hunsen, M. Joblin, and S. Apel, “Synchronous development in open-
source projects: A higher-level perspective,” Automated Software Engineering,
vol. 29, no. 1, pp. 1–53, 2022.

177

https://www.sciencedirect.com/science/article/pii/S0956522111000558


[183] Q. Xuan, M. Gharehyazie, P. T. Devanbu, and V. Filkov, “Measuring the effect of
social communications on individual working rhythms: A case study of open source
software,” in 2012 International Conference on Social Informatics. IEEE, 2012,
pp. 78–85.

[184] S. Dueñas, V. Cosentino, G. Robles, and J. M. Gonzalez-Barahona, “Perceval: soft-
ware project data at your will,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings. ACM, 2018, pp. 1–4.

[185] J. Howison, A. Wiggins, and K. Crowston, “Validity issues in the use of social
network analysis with digital trace data,” Journal of the Association for Information
Systems, vol. 12, no. 12, p. 2, 2011.

[186] P. Ellaway, “Cumulative sum technique and its application to the analysis of peri-
stimulus time histograms,” Electroencephalography and clinical neurophysiology,
vol. 45, no. 2, pp. 302–304, 1978.

[187] L. Bao, X. Xia, D. Lo, and G. C. Murphy, “A large scale study of long-time contrib-
utor prediction for github projects,” IEEE Transactions on Software Engineering,
vol. 47, no. 6, pp. 1277–1298, 2019.

[188] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from a large devel-
oper network,” in 2010 17th Working Conference on Reverse Engineering. IEEE,
2010, pp. 269–273.

[189] J. M. Pérez, J. C. Giudici, and F. Luque, “pysentimiento: A python toolkit for
sentiment analysis and socialnlp tasks,” 2021.

[190] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining ap-
proach,” arXiv preprint arXiv:1907.11692, 2019.

[191] D. Q. Nguyen, T. Vu, and A. T. Nguyen, “Bertweet: A pre-trained language model
for english tweets,” arXiv preprint arXiv:2005.10200, 2020.

[192] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment polarity detec-
tion for software development,” Empirical Software Engineering, vol. 23, no. 3, pp.
1352–1382, 2018.

[193] P. Riehmann, M. Hanfler, and B. Froehlich, “Interactive sankey diagrams,” in IEEE
Symposium on Information Visualization, 2005. INFOVIS 2005. IEEE, 2005, pp.
233–240.

[194] E. Ostrom and H. Nagendra, “Insights on linking forests, trees, and people from the
air, on the ground, and in the laboratory,” Proceedings of the national Academy of
sciences, vol. 103, no. 51, pp. 19 224–19 231, 2006.

178



[195] E. Ostrom and R. Gardner, “Coping with asymmetries in the commons: self-
governing irrigation systems can work,” Journal of economic perspectives, vol. 7,
no. 4, pp. 93–112, 1993.

[196] C. M. Schweik and M. Kitsing, “Applying elinor ostrom’s rule classification frame-
work to the analysis of open source software commons,” Transnational Corporations
Review, vol. 2, no. 1, pp. 13–26, 2010.

[197] R. Li, P. Pandurangan, H. Frluckaj, and L. Dabbish, “Code of conduct conversations
in open source software projects on github,” Proceedings of the ACM on Human-
computer Interaction, vol. 5, no. CSCW1, pp. 1–31, 2021.

[198] X. Cui, J. Wu, Y. Wu, X. Wang, T. Luo, S. Qu, X. Ling, and M. Yang, “An empirical
study of license conflict in free and open source software,” in 2023 IEEE/ACM
45th International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 2023, pp. 495–505.

[199] D. S. Wilson, E. Ostrom, and M. E. Cox, “Generalizing the core design principles
for the efficacy of groups,” Journal of economic behavior & organization, vol. 90,
pp. S21–S32, 2013.

[200] L. Evans, N. Ban, M. Schoon, and M. Nenadovic, “Keeping the ‘great’in the great
barrier reef: large-scale governance of the great barrier reef marine park,” Interna-
tional Journal of the Commons, vol. 8, no. 2, 2014.

[201] E. Ostrom, “Institutional analysis, design principles and threats to sustainable com-
munity governance and management of commons,” in ICLARM Conf. Proc., vol. 45,
1994, pp. 34–50.

[202] E. Ostrom and M. Cox, “Moving beyond panaceas: a multi-tiered diagnostic ap-
proach for social-ecological analysis,” Environmental conservation, vol. 37, no. 4,
pp. 451–463, 2010.

[203] D. Margan and S. Čandrlić, “The success of open source software: A review,” in
2015 38th International Convention on Information and Communication Technol-
ogy, Electronics and Microelectronics (MIPRO). IEEE, 2015, pp. 1463–1468.

[204] S. O’mahony and F. Ferraro, “The emergence of governance in an open source
community,” Academy of Management Journal, vol. 50, no. 5, pp. 1079–1106, 2007.

[205] C. M. Schweik, “Sustainability in open source software commons: Lessons learned
from an empirical study of sourceforge projects,” Technology Innovation Manage-
ment Review, vol. 3, no. 1, 2013.

[206] C. Jensen and W. Scacchi, “Governance in open source software development
projects: A comparative multi-level analysis,” in IFIP International Conference
on Open Source Systems. Springer, 2010, pp. 130–142.

179



[207] J. S. Baek, “Socio-technical design for resilience: A case study of designing col-
laborative services for community resilience,” in DS 80-8 Proceedings of the 20th
International Conference on Engineering Design (ICED 15) Vol 8: Innovation and
Creativity, Milan, Italy, 27-30.07. 15, 2015, pp. 071–080.

[208] J. Lin̊aker, E. Papatheocharous, and T. Olsson, “How to characterize the health of
an open source software project? a snowball literature review of an emerging prac-
tice,” in Proceedings of the 18th International Symposium on Open Collaboration,
2022, pp. 1–12.

[209] N. Schneider, “Admins, mods, and benevolent dictators for life: The implicit feu-
dalism of online communities,” New Media & Society, vol. 24, no. 9, pp. 1965–1985,
2022.

[210] P. N. Sharma, B. T. R. Savarimuthu, and N. Stanger, “Boundary spanners in open
source software development: A study of python email archives,” in 2017 24th Asia-
Pacific Software Engineering Conference (APSEC). IEEE, 2017, pp. 308–317.

[211] M. Rogiński, “Governance in peer production communities: the case of debian
project leader elections,” Polish Sociological Review, vol. 222, no. 1, 2023.

[212] Y. Yan, S. Frey, A. Zhang, V. Filkov, and L. Yin, “Github oss governance file
dataset,” arXiv preprint arXiv:2304.00460, 2023.

[213] J. A. Brzozowski, “Derivatives of regular expressions,” Journal of the ACM (JACM),
vol. 11, no. 4, pp. 481–494, 1964.

[214] A. F. Hayes and K. Krippendorff, “Answering the call for a standard reliability
measure for coding data,” Communication methods and measures, vol. 1, no. 1, pp.
77–89, 2007.

[215] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples:
A survey on few-shot learning,” ACM computing surveys (csur), vol. 53, no. 3, pp.
1–34, 2020.

[216] L. Tunstall, N. Reimers, U. E. S. Jo, L. Bates, D. Korat, M. Wasserblat,
and O. Pereg, “Efficient few-shot learning without prompts,” arXiv preprint
arXiv:2209.11055, 2022.

[217] V. Kumar, A. Choudhary, and E. Cho, “Data augmentation using pre-trained trans-
former models,” arXiv preprint arXiv:2003.02245, 2020.

180


	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	From Socio-technical to Institutional
	Summary of Contributions
	Chapter 2: Team Discussions and Dynamics During DevOps Tool Adoptions in OSS Projects
	Chapter 3: Sustainability Forecasting for Apache Incubator Projects
	Chapter 4: Open Source Software Sustainability: Combining Institutional Analysis and Socio-technical Networks
	Chapter 5: On the Self-Governance and Episodic Changes in Apache Incubator Projects: An Empirical Study
	Chapter 6: Exploring Apache Incubator Project Trajectories with APEX
	Chapter 7: How do OSS projects govern themselves in the wild? An Empirical Study on Governance.md Markdown Files


	Team Discussions and Dynamics During DevOps Tool Adoptions in OSS Projects
	Introduction
	Background and Theories
	Tools, Teams and Adoptions
	Diffusion of Innovations Theory
	Social Judgment Theory

	Hypotheses and Research Questions
	Data
	Data Collection and Cleaning
	Variables Used

	Methods
	Topics Identification
	Sentiment Analysis
	Linear Mixed-effect Regression

	Results and Discussion
	RQ1: Tool Adoption and Team Dynamics
	RQ2: Discussion Topics and Sentiment
	RQ3: Influencers and Adoptions
	RQ4: Adoption & Discussion Determinants

	Takeaways for Practitioners
	Threats to Validity and Conclusion

	Sustainability Forecasting for Apache Incubator Projects
	Introduction
	Background and Theories
	Apache Software Foundation Incubator
	OSS Projects Success and Sustainability
	Socio-technical Systems Theory
	Contingency Theory

	Hypotheses and Research Questions
	Hypotheses
	Research Questions

	Data and Methods
	Data Pre-processing
	STS and Socio-technical Networks
	Features/Metrics of Interest
	Models

	Results and Discussions
	: Graduated vs. Retired Projects
	: Interpretable Forecasting
	Case Study: Change of Fate
	: Actionable Recommendation

	Threats to Validity and Conclusion

	Open Source Software Sustainability: Combining Institutional Analysis and Socio-Technical Networks
	Introduction
	Theoretical Framework
	Institutional Theory and Commons Governance
	Socio-Technical System Theory
	Contingency Theory, or There Are No Panaceas in Self-Governance

	Research Questions
	Data and Methods
	Pre-processing
	Constructing Socio-technical Networks
	Extracting Institutional Statements
	Topics Identification in Institutional Statements
	Variables of Interest
	Granger Causality

	Results
	RQ1: Are there institutional statements contained in ASF Incubator project discussions? If any, can we effectively identify the content of ISs?
	RQ2: Is OSS project evolution toward sustainability observable through the dual lenses of institutional and socio-technical analysis? And how do such temporal patterns differ?
	Case Study: Association Between Institutional Governance and Organizational Structure
	RQ3: Are periods of increased Institutional Statements frequency followed by changes in the project organizational structure, and vice-versa?

	Discussion
	Threats to Validity
	Conclusion

	On the Self-Governance and Episodic Changes in Apache Incubator Projects: An Empirical Study
	Introduction
	Background and Theoretical Framework
	Theory of Governing the Commons
	Organizational Change Theory
	Socio-Technical System Theory

	Research Questions
	Data and Methods
	Constructing Socio-technical Networks
	Identifying Institutional Statements (IS)
	Identifying Change Intervals (CI)
	Variables of Interest
	Sentiment Detection

	Results
	RQ1: Are there episodic changes in socio-technical structure during project incubation? Likewise, can we identify institutional discussions?
	RQ2: Are there significant resistances in IS-related discussions associated with episodic change? How do such temporal patterns differ across graduated and retired projects?
	Case study: Association between episodic change and institutional statements
	RQ3: What are the associations between episodic change direction and the sentiment to IS-related discussions?

	Takeaways for Practitioners
	Threats and Conclusions

	Exploring Apache Incubator Project Trajectories with APEX
	Introduction
	Data and Implementation
	Dashboard Elements
	Use Case Examples
	Using APEX Beyond ASF
	Limitations and Conclusion

	How do OSS projects govern themselves in the wild? An Empirical Study on Governance.md Markdown Files
	Introduction
	Related Work and Theories
	Theory of Governing the Commons
	Ostrom's Design Principles and Rules
	Governance in Open Source Software

	Data and Methods
	The Role of GOVERNANCE.md
	Classifying Ostrom's Governance Rule Types

	Preliminary Results
	Prospective Endeavors

	Conclusion
	Studying OSS Team Dynamics in Adopting DevOps Tools
	Forecasting OSS Sustainability Using Socio-technical Networks
	Investigating Temporal Patterns of Socio-technical Structure and Institutional Governance
	Quantifying Episodic Changes and Their Effects in OSS projects
	Discovering Apache Incubator Project Trajectories with APEX
	Fostering Self-governance in GitHub Projects




