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Most brain activity occurs in an ongoing manner not directly
locked to external events or stimuli. Regional ongoing activity
fluctuates in unison with some brain regions but not others, and
the degree of long-range coupling is called functional connectivity,
often measured with correlation. Strength and spatial distributions
of functional connectivity dynamically change in an ongoing manner
over seconds to minutes, even when the external environment is
held constant. Direct evidence for any behavioral relevance of these
continuous large-scale dynamics has been limited. Here, we in-
vestigated whether ongoing changes in baseline functional connec-
tivity correlate with perception. In a continuous auditory detection
task, participants perceived the target sound in roughly one-half of
the trials. Very long (22–40 s) interstimulus intervals permitted in-
vestigation of baseline connectivity unaffected by preceding evoked
responses. Using multivariate classification, we observed that func-
tional connectivity before the target predicted whether it was heard
or missed. Using graph theoretical measures, we characterized the
difference in functional connectivity between states that lead to hits
vs. misses. Before misses compared with hits and task-free rest, con-
nectivity showed reduced modularity, a measure of integrity of mod-
ular network structure. This effect was strongest in the default mode
and visual networks and caused by both reduced within-network
connectivity and enhanced across-network connections before misses.
The relation of behavior to prestimulus connectivity was disso-
ciable from that of prestimulus activity amplitudes. In conclusion,
moment to moment dynamic changes in baseline functional connec-
tivity may shape subsequent behavioral performance. A highly mod-
ular network structure seems beneficial to perceptual efficiency.

functional connectivity | brain networks | dynamics | graph theory |
classification

The brain is highly active in a continuous manner, and much of
neural activity is not directly locked to external events or

stimuli. This continuous brain activity is spatiotemporally orga-
nized into a functional connectivity architecture that comprises
several large-scale networks. Large-scale networks span different
cerebral lobes and include subcortical structures (1). The regions
comprised in such networks commonly coactivate together in
response to task demands (2), but they also show correlated and
spontaneous activity fluctuations when no changes occur in the ex-
ternal environment. The functional connectivity architecture ensuing
from these activity cofluctuations largely persists across all mental
states, including various tasks, resting wakefulness, and sleep, albeit
showing some degree of modulation across these states (3, 4).
Strength and spatial distributions of functional connectivity

within this architecture are not, however, stationary across time.
At the spatial level of large-scale networks, functional connec-
tivity shows prominent changes over the range of seconds to
minutes (5). These so-called infraslow timescales and the spatial
distribution of large-scale networks can be particularly well-
investigated using functional MRI (fMRI). We refer to the non-
stationarity of functional connectivity as ongoing dynamics. The
notion of ongoing refers to dynamics that are not brought about
by particular external events, such as stimuli or cues. Such large-
scale ongoing network dynamics are thought to be crucial for the

brain to explore a large space of dynamic functional capabilities
(6). This potential functional importance has recently sparked in-
terest in ongoing connectivity dynamics (5). The most common
approach to studying ongoing dynamics in connectivity with fMRI
has been to measure connectivity in time windows sliding through
a prolonged task-free resting state (reviewed in ref. 5). These
investigations have established the nonstationarity of large-scale
functional connectivity that previously had been largely neglected.
Some studies have shown characteristic changes of dynamic con-
nectivity in different patient populations (7). However, none of
these resting-state studies have directly investigated the functional
consequences of ongoing dynamics during performance (in other
words, how moment to moment changes in baseline functional
connectivity relate to cognition and behavior). Furthermore, the
ongoing dynamics of functional connectivity may be modulated by
cognitive task context, further motivating investigation of the be-
havioral importance during task beyond the resting state.
Several lines of research call for a dedicated investigation of

this question. Slow ongoing fluctuations in regional prestimulus
baseline activity amplitudes (in fMRI or electrophysiological
recordings) in task-relevant sensory or motor regions (8–12) as
well as entire large-scale brain networks (12–14) correlate with
evoked neural response strength and subsequent behavior. It is
not clear whether, beyond fluctuations in regional ongoing ac-
tivity amplitude, the correlation of such amplitude fluctuations
across large-scale network regions (i.e., connectivity) relates to
behavioral variability. Some prior work seems to suggest that
ongoing connectivity dynamics between two task-relevant regions
may turn behaviorally relevant (15). Also, in addition to these
effects in infraslow timescales, some electrophysiological recordings
indicate a behavioral relevance for phase synchrony between in-
dividual regions of interest and the rest of the brain at faster
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timescales (16). Building on this so-far rather sparse evidence, we
here sought to investigate behavioral effects from ongoing dynamics
in large-scale functional connectivity, calling on tools of multivariate
classification for trial by trial prediction of behavior and graph theory
for a more detailed and spatially comprehensive characterization.
We analyzed behavioral outcome on a trial by trial basis as a

function of dynamic connectivity states before stimulus presentation.
We tested whether large-scale functional connectivity states predict
perception of a sparse and irregularly appearing stimulus. To
investigate ongoing nontask-locked changes in baseline connec-
tivity, we minimized contributions from stimulus-evoked activity.
This study, therefore, extends beyond important previous in-
vestigations of connectivity dynamics that occur after changes in
the external environment (such as stimulation, cues, instructions,
or feedback) at infraslow (17–20) and fast electrophysiological
timescales (21, 22). Specifically, we asked (i) whether ongoing
dynamics of large-scale functional connectivity relate to percep-
tual performance and (ii) which properties of baseline functional
connectivity distinguish brain states that support perceptual ac-
curacy from those that do not.
Eleven blindfolded participants performed a detection task on

an auditory broadband stimulus (500 ms). They pressed a button
whenever they heard the sound during two to three 20-min-long
fMRI runs. The stimulus was presented at the individually de-
termined detection threshold and repeated very sparsely at
highly variable interstimulus intervals ranging from 20 to 40 s
(Fig. 1A). This dataset has previously been used to investigate
behavioral correlates of baseline activity amplitudes and enables
this investigation to directly compare effects from prestimulus
activity amplitudes with those from prestimulus connectivity (12).
The unusually long interstimulus interval design allowed us to focus
all analyses on the prestimulus time after excluding the hemody-
namic response evoked by the previous stimulus. To answer our
first question of whether prestimulus baseline connectivity predicts
behavior, we applied trial by trial classification of subsequent
perceptual outcome based on patterns of functional connectivity
before stimulus presentation. To address our second question and
determine what characterizes the difference across these brain
states, we modeled connectivity before hits and before misses as
separate graphs using tools of complex network theory and com-
pared graph metrics between these states.

Results
Overall, the threshold stimulus was detected in slightly more
than one-half of the trials (62.2% ± 17% hits; defined as a button
press within 1.5 s of stimulus onset). Perceptual outcome (hit vs.
miss) was approximately stochastically distributed and independent
of preceding interstimulus interval length (12).
Fig. 1 illustrates the selection of time segments of fMRI signal

that were expected to be unaffected by any evoked activity. This
procedure resulted in 26.5 ± 12.4 baseline segments (on average,
13.3 ± 2.25 volumes per segment) before hits and 15.6 ± 8.7
baseline segments (13.6 ± 2.56 volumes per segment) before
misses per participant. For these time segments, we extracted
fMRI signal from 24 regions of interest. These regions were de-
fined on a participant by participant basis using seed-based rest-
ing-state functional connectivity on a task-free session (20 min)
recorded on an earlier day and a passive functional auditory
localizer. They were chosen in accord with our previous work on
prestimulus activity, thereby making the investigations directly
comparable (SI Text, section 1).

Prestimulus Baseline Connectivity Pattern. To explore the difference
in connectivity before hits (pre-hits) and before misses (pre-
misses), prestimulus baseline segments (last four volumes) were
concatenated across all hits and across all misses for each partic-
ipant. The difference in within-network connectivity was in-
vestigated in the networks where we previously found behaviorally
relevant differences in prestimulus activity amplitudes (12): audi-
tory (AUD), cinguloopercular (CO), frontoparietal (FP), default
mode (DM), and dorsal attention (DAT) networks. To this end,
the correlations were averaged from all region pairs within each
network and entered into a two-way ANOVA of network (AUD,
CO, FP, DAT, and DM) and condition (pre-hits and pre-misses).
These within-network average correlations showed a significant
interaction (F2.9,29.1 = 3.33, P = 0.034), and a two-sided posthoc
t test was significant only in the DM network (stronger within-
network connectivity for pre-hits t10 = 3.72, P = 0.004).
We further investigated whether coupling of the task-relevant

AUD network with the other networks differed before hits and
misses. Correlations were averaged across all of the respective
region pairs. We found an interaction of condition (pre-hits and
pre-misses) and network (CO, FP, DAT, and DM): F2.6,26.2 =
4.31, P = 0.017. Two-sided posthoc t tests were significant for
AUD–CO connectivity (t10 = 3.01, P = 0.013) and AUD–DM
connectivity (t10 = −3.02, P = 0.013). Before hits, auditory cortex
showed stronger coupling with the CO network but decreased
coupling with the DM network. These effects persisted after
equating the number of image volumes across pre-hits and pre-
misses (SI Text, section 2 and Fig. S1). For a fine-grained visu-
alization, the group-level contrast between the full 24 × 24 cor-
relation matrices for pre-hits and pre-misses is shown in Fig. 2B.
For comparison, we generated the equivalent figure after con-
catenating baseline segments according to the previous rather
than the upcoming percept. This procedure resulted in a very
distinct pattern (SI Text, section 3 and Fig. S2), indicating that
the difference structure observed in Fig. 2B was not substantially
driven by preceding evoked activity fluctuations.

Classification of Upcoming Percept. To address whether dynamic
changes in ongoing functional connectivity influence perceptual
decisions, we attempted to predict the upcoming percept from
trial by trial prestimulus connectivity. The univariate contrast in
prestimulus connectivity described above was used for feature
selection in subsequent classification analyses (compare with Fig.
2B). A naïve Bayesian classifier predicted the upcoming percept
significantly above permutation chance level (z = 2.30, P = 0.011;
62.5% correct) (Fig. 3A). Note that chance level was 58.6%
rather than 50%, because Bayesian classifiers take advantage of
the prior probability of hits being more common than misses.
Using a linear classifier resulted in a 50.5% chance level and
again, produced significant above-chance classification perfor-
mance (56.0% correct; z = 2.36, P = 0.009). Training the naïve

Fig. 1. (A) Experimental design of a threshold-level auditory stimulus pre-
sented on top of background scanner noise at very long, unpredictable in-
terstimulus intervals (ISI, 20–40 s). Participants listened for the faint target
sound continuously throughout 20-min runs and pressed a response button
whenever they perceived the target. (B) Illustration of baseline time segments
unaffected by evoked responses that were defined as appropriate for analysis
of ongoing functional connectivity (marked in gray). The illustrated blood-
oxygen-level-dependent (BOLD) hemodynamic response peaks at 6 s, reaches
maximum poststimulus undershoot at 12 s, and returns to baseline before 16 s
relative to stimulus onset according to finite impulse response estimation of
the brain response to this stimulus in the same data in 10 bilateral brain areas
(12). Baseline segments started after 16 s poststimulus and ended 1 s after the
next stimulus onset. Baseline segments shorter than 6 s in length (interstimulus
interval <22 s) were excluded. For classification analyses requiring trial by trial
data, data were further restricted to baseline segments that were at least 15 s
long (10 image volumes and interstimulus intervals ≥31 s). In this exemplary
2-min period of the task, four stimuli (marked as solid vertical lines) occur at
interstimulus intervals of 40 (maximum in this design), 20 (minimum), and 32 s.
Note that, for simplification, this illustration does not depict the spontaneous
signal fluctuations during the baseline period and the ensuing variability in
stimulus-evoked hemodynamic responses that are at the heart of this study.
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Bayesian classifier on upcoming percepts as described above
but testing it on the previous rather than the next percept
performed at chance level (P = 0.68), indicating that classi-
fication was not substantially driven by residual activity from
the preceding trial.
Next, we investigated whether prestimulus functional con-

nectivity contains predictive information over and above that
reflected in prestimulus regional activity amplitudes. In line with
our previous observation of behavioral relevance of prestimulus
activity amplitudes (12), Naïve Bayesian classification on base-
line activity amplitudes successfully predicted the upcoming
percept (z = 2.33, P = 0.010; 60.8% vs. chance 56.1%) (Fig. 3B).
We next asked whether adding prestimulus connectivity features
to this classifier would further improve classification perfor-
mance. The performance of a classifier will not increase sub-
stantially if additional features are included that do not add new,
nonredundant information, even if the added features on their
own have discrimination power (SI Text, section 4 and Fig. S3).
When trained on the combination of prestimulus activity am-
plitudes and connectivity features, the classifier predicted the
upcoming perceptual decision with substantially higher precision
of z = 3.87 (P = 0.00005; 63.6% vs. chance 55.4%) (Fig. 3C) than
using prestimulus activity amplitudes alone. A power analysis of
classification success (SI Text, section 5) found powers of 0.67 for
prestimulus connectivity, 0.73 for prestimulus activity ampli-
tudes, and 0.98 for combined activity amplitudes and connec-
tivity. This improvement indicates that baseline connectivity is of
relevance for perception over and above the effect of activity
levels per se.

Graph Theoretical Characterization of a Brain State Supporting
Perceptual Accuracy. After showing that functional connectivity
differs before hits vs. misses, we next sought to identify charac-
teristics of this difference. To quantify these characteristics at the
whole-brain level, we applied complex network or graph theory.
This approach models the brain as a graph, with regions repre-
sented as nodes and functional connections represented as edges
between them. Functional brain networks emerge as modules of
highly interconnected nodes, with relatively few long-distance
edges integrating across modules. This topologically modular
organization is characteristic of the brain and other complex
systems and enables flexible behavior based on specialized pro-
cesses in locally segregated modules as well as more globally
integrated functions through fast communication across modules
(23). The strength of modular organization can be quantified
using the modularity metric. In a brain state with high modu-
larity, many modules (networks) have a high number of within-
module compared with between-module connections.
For this complex network analysis, we used a more compre-

hensive and fine-grained set of 238 atlas regions (Fig. 4A) (1),
because the modularity metric is likely to be better estimated
with a larger number of nodes. For each participant and condi-
tion (resting state, pre-hits, and pre-misses), a single 238 × 238
correlation matrix was generated from time courses concate-
nated across all respective baseline segments (last four volumes
per segment). For the resting-state session, baseline segments
were defined from pseudotrials generated according to the same
timing parameters as the task session. Next, an adjacency matrix
was derived by thresholding the correlation matrices, resulting in
unweighted, undirected graphs.
In Fig. 2B, we had observed that, across pre-hits and pre-

misses, connectivity changes more consistently within networks
(modules) and across pairs of networks than across random pairs
of regions, suggesting that dynamical shifts in the modular
structure may relate to behavioral outcome. We chose Newman’s
modularity (SI Text, section 8) to quantify such changes of
modular integrity at the whole-brain level, because this metric
provides a summary measure of within-module connectivity
strength in relation to connectivity strength to other modules. In
previous studies, modularity during the task-free resting state has
been reported as a whole brain-level predictor for (offline) be-
havioral efficiency (24) and shown to describe modular network
integrity in brain lesion patients (25). These observations of a role
of modularity in interindividual variability further motivate in-
vestigation of this measure in intraindividual variability. In the first
analysis, we assigned each node to one module according to the
modular partition structure from ref. 1 as color-coded in Fig. 4A.
We then tested for differences in modularity across conditions.
Graph modularity was decreased before misses compared with hits
(mean across costs: t = 2.84, P = 0.027 against permutation chance;
Bonferroni-adjusted for three comparisons across condition pairs).
This effect was also consistently observed for all individual costs
(P < 0.05). Modularity before misses was likewise reduced
compared with the task-free resting state (t = 2.41, P = 0.033,
Bonferroni-adjusted). Conversely, pre-hits baseline showed no
change in modularity compared with resting state (t= 0.35) (Fig. 4D).
We replicated these effects after equating the number of imaging
volumes across conditions (SI Text, section 2). Furthermore, we

Fig. 2. (A) Intrinsic functional connectivity networks derived from seed-
based correlations in an independent resting-state session (12). (B) Differ-
ence in cross-correlation for pre-hits > pre-misses. Each data point corre-
sponds to a paired t test (uncorrected) between the two respective regions.
Connections passing P < 0.02 (uncorrected) are marked in black in the lower
triangle of the matrix to exemplify the features used for subsequent classi-
fication analyses (from similar difference matrices leaving one trial out)
(Methods). Of note, all 12 connections corresponded to connectivity with
DM or AUD networks. dACC, dorsal anterior cingulate cortex; dlPFC, dor-
solateral prefrontal cortex; FEF, frontal eye fields; IPL, inferior parietal cor-
tex; IPS, intraparietal sulcus; L, left; LP, posterior lateral parietal cortex;
mPFC: medial prefrontal cortex; MT+: middle temporal area; Paracingl,
paracingulate cortex; PCC, posterior cingulate/precuneus; R, right; rlPFC,
rostrolateral prefrontal cortex; Thal, thalamus.

Fig. 3. Naïve Bayesian classifier performance (verti-
cal line) and permutation distribution when trained
on (A) prestimulus baseline connectivity, (B) presti-
mulus baseline activity amplitudes, and (C) the com-
bination of prestimulus baseline activity amplitude
and connectivity features. When trained on the com-
bination of prestimulus activity and connectivity fea-
tures, the classifier predicted the upcoming percepts
with substantially higher precision than using presti-
mulus activity alone.
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confirmed the modularity difference using a graph partition derived
from the participants’ own resting-state data (SI Text, section 6 and
Fig. S4). Finally, we investigated the most optimal modular par-
tition structure as defined by maximizing modularity for each
condition and participant separately. The spectral algorithm by
Newman and Girvan (26) generated a modular partition for
each graph as well as a modularity value for each graph (i.e.,
each participant and condition). This analysis confirmed a loss in
modularity before misses compared with pre-hits (t = 3.01,

P = 0.027) and the resting state (t = 3.93, P = 0.005). Pre-hits and
resting state did not differ (t = 2.06; all Bonferroni-corrected
for three comparisons). The number of modules showed no dif-
ference (pre-hits: 4.7 ± 0.8, pre-misses: 4.9 ± 0.7, and resting state:
4.7 ± 1).
Next, we investigated the contribution of each module to

overall graph modularity, which is the sum of contributions
from all individual modules. In a two-way ANOVA of modu-
larity with factors condition (pre-hits and pre-misses) and
module (12), a significant interaction (F = 9.84, P = 0.008) in-
dicated that the modularity difference across perceptual out-
comes differed across modules. Posthoc t tests were significant
only in DM and visual (VIS) networks (t = 3.23, P = 0.008 and
t = 2.77, P = 0.010), showing that the strongest contribution to
the modularity difference across pre-hits vs. pre-misses origi-
nated from these networks (Fig. 4F). The observation in the DM
network is in line with the significantly higher within-network
connectivity during pre-hits baseline in this network (Fig. 2B).
We investigated nodal graph metrics to answer whether the

decrease in modularity before misses was driven by a decrease in
within-module connectivity, an increase of connectivity to other
modules, or both. Within-module degree measures how strongly
each node is interconnected within its own module, and partic-
ipation coefficient quantifies each node’s across-module con-
nectivity (SI Text, section 8). We focused on DM and VIS
networks, where the strongest modularity effect had been ob-
served (Fig. 5 A and B). Within-module degree was significantly
decreased before misses in both DM and VIS networks (average
across the respective nodes and across five costs). This within-
module degree decrease occurred across many but not all nodes
of the graph (Fig. 5C), and the whole-brain average showed no
significant difference (DM network: t = 2.88, P = 0.03; VIS
network: t = 3.01, P = 0.015; whole brain: t = 1.96, not signifi-
cant; P values Bonferroni-adjusted for three comparisons). Con-
currently, participation coefficient was increased before misses
in DM and VIS networks. Participation coefficient showed
a universal pattern of decrease for pre-misses compared with
pre-hits across the brain (Fig. 5D), and whole-brain average
participation coefficient showed a significant effect (DM: t =
3.43, P = 0.014; VIS network: t = 2.55, P = 0.045; whole brain:
t = 3.67, P = 0.005; Bonferroni-corrected for three compari-
sons). We replicated all within-module degree and participa-
tion coefficient results using the alternative graph partition
that was derived from the participants’ own resting-state data
(SI Text, section 6).

Discussion
Our findings provide evidence that ongoing dynamic changes in the
brain’s large-scale connectivity structure correlate with behavior. In
a threshold detection task, where perception of an identical stim-
ulus varied from trial to trial, we observed that prestimulus baseline
connectivity differed between hits and misses. Most notably, before
misses, functional connectivity was lower between task-relevant au-
ditory cortices and the CO network involved in the maintenance of
tonic alertness (27, 28). Conversely, connectivity before misses was
higher between auditory cortices and the DM network often ob-
served to activate when the brain disengages from external cognitive
demands (29) or engages in internal mentation (30). Furthermore,
the DM network showed decreased within-network connectivity
before misses compared with hits. Using graph theory metrics, a
combination of reduced within-network connectivity and stronger
connectivity to other networks was observed foremost in the DM as
well as VIS networks before misses. Both of these networks could
be considered noncritical for the auditory detection task. These
observations may, therefore, indicate a behavioral advantage from
encapsulation of networks not critical for the task at hand.
On a trial by trial basis, prestimulus baseline connectivity was

predictive of perceptual outcome on subsequent stimulation.
We observed that functional connectivity across large-scale net-
works estimated in single-trial, short (15–25 s) baseline time win-
dows was informative enough to allow some classification of the

Fig. 4. Graph construction and graph modularity. (A) Nodes from a functional
atlas defined on the combined basis of resting-state functional connectivity and
a meta-analysis of cognitive tasks (1). (B) Resting-state correlation pattern
across the nodes. This pattern with strong connectivity within the atlas modules
shows that the predefined modular partition structure of the atlas reflects the
data structure well. (C) Difference in functional connectivity of pre-hits baseline >
pre-misses baseline (compare with Fig. 2B). Difference between task and
resting state is in SI Text, section 7 and Fig. S5. (D) Graph modularity was re-
duced before misses compared with hits and task-free resting state. P values
are Bonferroni-corrected. (E) A visual representation of the modularity differ-
ence before hits vs. misses for a representative individual participant (cost 0.05).
This representation is generated by a force-field algorithm that treats nodes as
magnets repulsing each other, whereas edges act as springs attracting the nodes
that they connect (37). The configuration onto which these forces converge is
visibly more modular before hits compared with misses. Networks (modules) are
colored as in A. Most notably, DM (red) and VIS (dark blue) modules are less
segregated from the rest of the graph before misses. (F ) Contribution of in-
dividual modules to overall graph modularity. The strongest contribution to
modularity difference was from DM and VIS networks. All error bars show
SEMs. n.s., not significant.
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upcoming percept. Importantly, we made a particular effort to
minimize the impact from evoked brain responses to the in-
vestigation of connectivity dynamics. Thus, our findings critically
expand important previous fMRI investigations that used cue-
evoked preparatory changes in connectivity for trial by trial
prediction of behavior (17). Our results show that spontaneous,
ongoing dynamics of brain connectivity are behaviorally relevant.
Note that, in each classification cycle, all trials of all participants
except for one trial entered the training set, and the classifier was
tested on the left-out baseline segment. This procedure was
chosen instead of the commonly used within-subject classifica-
tion or leave one subject out procedures because of heteroge-
neity across participants and too few trials per participant
(resulting from long interstimulus intervals). Because in gen-
eral, the connectivity differences between individuals are much
higher than between brain states within an individual, classifying
across participants is difficult. However, our classifier’s above-
chance prediction performance indicates that there are connec-
tivity dynamics consistent enough across the participants of this
study to yield an informative common pattern. Fig. 2B confirms
such a common pattern.
Modeling whole-brain connectivity states using graph theory,

we found that, in the context of a simple perceptual task, higher
modularity characterized a more efficient brain state for stimulus
detection. When the modular segregation weakened and wide-
spread communication across modules increased, the target sound
was more likely to go undetected. This effect was expressed in both
decreased within-module degree (each node’s connectivity within
its own module) in a variety of regions and widespread increase in
across-module participation coefficient (each node’s connectivity
to other modules) before misses. These whole-brain results expand
previous observations in prestimulus functional connectivity con-
fined to task-relevant regions (15) or networks (19).
Finally, our data suggest that the behavioral relevance of

connectivity dynamics goes beyond the sum of distributed
amplitude fluctuations of regional brain activity. Trial by trial pre-
diction of subsequent percepts improved when the classifier addi-
tionally used baseline connectivity patterns compared with baseline
activity amplitudes alone. This observation indicates that base-
line connectivity provides additional information. Furthermore,
investigation of baseline connectivity revealed a pattern di-
verging from and informing beyond that of baseline activity
amplitudes. For example, baseline activity amplitudes and con-
nectivity did not always change in the same direction; whereas
higher baseline activity amplitude in the VIS network was bi-
asing toward missing the subsequent stimulus (12), higher
baseline connectivity in this network was predictive of suc-
cessful stimulus detection. Conversely, in the DM network,
both prestimulus baseline activity (12) and baseline connec-
tivity were higher before hits compared with misses. In sum-
mary, not only activity amplitude fluctuations but also, their
interplay across regions are relevant for behavior.
Our findings raise the fundamental question of why the brain’s

processing architecture constantly undergoes such spatially ex-
tended modulations. In this auditory detection task, the behav-
iorally advantageous state showed only a limited and very specific
increase of cross-module integration (e.g., between AUD and CO
regions), whereas overall widespread integration was reduced.
However, it is conceivable that, in more complex decision-
making or working memory engagement, behavior would benefit
from less modularity and hence, more widespread communica-
tion between task-relevant modules (e.g., see ref. 31 at much
faster timescales). In other words, the brain may benefit from
switching between states promoting locally integrated processing,
e.g., for sensory perception, and states that integrate across
modules to enable more complex cognition, albeit at the cost of
modular tasks [see theoretical support for dynamic explora-
tion of diverse intrinsic brain states (6) and the behavioral im-
plications (32)]. In this context, it is important to note that
ongoing dynamics in functional connectivity during cognitive task
engagement may differ in strength and temporal and spatial

characteristics from the dynamics during resting state, although
both share the important property of occurring without direct
dependence on changes in the external environment. Charac-
terization of such differences is an important question that re-
quires in-depth investigation in dedicated studies. Although this
complex question is beyond the scope of this study, an initial
comparison in this dataset is provided in SI Text, section 7 and
Figs. S5 and S6.
We conclude that spontaneous ongoing changes in baseline

functional connectivity in and across large-scale brain networks
correlate with perception and behavior. We found the dynamics
in the strength of modular structure to be particularly important
for behavior. Our analysis of large-scale connectivity captured
functional connectivity dynamics occurring at infraslow time-
scales. Interestingly, behavioral performance when repeating the
same task over and over again shows fluctuations with a quali-
tatively similar temporal profile as ongoing brain activity (i.e.,
high power at low frequencies; 1/frequency scale-free time history)
(33). Although this temporal profile supports a strong relation
between infraslow brain dynamics and behavioral variability, it
likewise shows that behavior fluctuates as well at faster frequen-
cies. The latter requires investigation of brain dynamics (in likely
smaller networks) with methods allowing higher temporal reso-
lution. Furthermore, our analyses could only capture dynamics
that were consistent across trials of the same perceptual outcome
(hits and misses) and across participants. However, functional
connectivity dynamics are much more variable than observable in
such dichotomous categorizations, with a wide-ranging reper-
toire of possible itinerant connectivity states. Importantly, how-
ever, in probing ongoing dynamic connectivity according to
perceptual outcome, we were able to extract common charac-
teristics of connectivity states that account for behavioral vari-
ability. Ongoing brain activity constitutes the vast majority of
brain activity, and evoked responses add only a relatively small
proportion (34). The findings obtained here, therefore, illustrate
that any attempt to link behavior to brain function must con-
ceptually integrate the role of ongoing brain activity and its
connectivity dynamics.

Fig. 5. Nodal graph measures. In both the DM and VIS networks, the pre-
viously observed loss of modularity before misses was driven by both (A) a
decrease in within-network connectivity as measured by within-module
degree and (B) an increase in across-network connectivity as measured by
participation coefficient. Across the whole brain, decreases in modularity
before misses coincided with (C) decreased within-module degree in many
but not all nodes and (D) a more global tendency toward increased partic-
ipation coefficient. Error bars show SEMs. *Significant at P < 0.05 after
Bonferroni correction.
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Methods
For paradigm, behavior, and fMRI data acquisition (3 Tesla, repetition
time = 1.5 s) see ref. 12. Regions of interest (ROI) definitions are in SI Text,
section 1.

Preprocessing and Head Motion. Standard preprocessing included realign-
ment, coregistration, normalization and 5-mm FWHM spatial smoothing in
SPM5. From each ROI’s linearly detrended signal time course, we regressed
out the estimated evoked response up to 24 s poststimulus for hits, misses,
and false alarms using stick functions from the previously reported finite
impulse response deconvolution (12). We regressed out as nuisance re-
gressors global gray matter, white matter, cerebrospinal fluid, out-of-brain
signals, and six linear head motion parameters.

To investigate the potential nonlinear impact of head motion, we cal-
culated the number of motion outlier volumes using the derivative root
mean square method (35) implemented in FSL (FMRIB). After trial by trial
segmentation of the time courses (see below), the numbers of motion
outliers per experimental run before hits (1.18 ± 1.53) vs. misses (0.85 ±
1.65) did not differ from each other (P = 0.63). Furthermore, the difference
of graph metrics across pre-hits and pre-misses did not correlate with the
difference in the number of head motion outliers across pre-hits and pre-
misses over the participant group (modularity: r2 = 0.09, P = 0.37; within-
module degree: r2 = 0.1, P = 0.34; participation coefficient: r2 = 0.002,
P = 0.9).

Baseline Time Segments. For classification analyses of activity amplitudes
and connectivity requiring single-trial data, full baseline segments of 15 s or
longer were used (292 hits and 172misses across all participants) (Fig. 1). For
all other analyses, only the last four volumes (6 s) before the next event
were used from each segment of 6 s or longer, because the full baseline
segment was not necessary for these analyses, and ongoing activity from
the closest time points will have the strongest impact on the upcoming
trial (cf. 12). These four-volume segments were concatenated across all hit
trials (197 ± 71 volumes), all miss trials (129 ± 56.5), and all resting-state

pseudotrials (160 volumes), yielding one correlation matrix per condition
per participant.

Classification. For each single prestimulus baseline segment, Pearson cross-
correlations (baseline connectivity classification) or mean signal amplitudes
(baseline activity classification) entered classification. In each classification
cycle, all data of all participants (464 trials), except for a single baseline
segment, entered feature selection and the training set. The classifier was
then tested on the left-out baseline segment. For baseline connectivity
feature selection, the strongest 12 connections were selected from a 24 × 24
matrix expressing the difference of pre-hits vs. pre-misses connectivity as t
values similar to those in Fig. 2B but generated leaving out the trial to be
tested. For baseline activity, all 24 ROIs were used. Mean value across both
categories (pre-hits and pre-misses) was removed for each feature and partici-
pant; 2,000 × 464 permutations of the training data labels gave the
chance distribution.
Graph construction. Adjacency matrices were created for each participant from
the Fisher-transformed Pearson cross-correlation matrices for pre-hits, pre-
misses, and resting state thresholded at five cost values (fraction of strongest
edges) to ensure that effects were not driven by particular connection
density: 0.05, 0.1, 0.15, 0.2, and 0.25.
Graph metrics. Equations for modularity (26), within-module degree, and
participation coefficient (36) are in SI Text, section 8.
Statistical hypothesis testing on graph metrics. Modularity, within-module de-
gree, and participation coefficient cannot be assumed to be normally dis-
tributed. We, therefore, generated chance distributions for t and F values
from 2,000 permutation cycles, where data from the different conditions
(pre-hits and pre-misses) were randomized within each participant.
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