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Review

The International Agency for Research on 
Cancer (IARC) classified arsenic, a toxic 
metalloid, as a group 1 carcinogen > 20 years 
ago (IARC 1987). It is widely accepted that 
exposure to arsenic is associated with lung, 
bladder, kidney, liver, and nonmelanoma 
skin cancers (IARC 2004; Pershagen 1981; 
Smith et  al. 1992; Smith and Steinmaus 
2009). High levels of arsenic have also been 
associated with the development of several 
other diseases and deleterious health effects in 
humans, such as skin lesions (dyspigmenta-
tion, keratosis), peripheral vascular diseases, 
reproductive toxicity, and neurological effects 
(Abernathy et al. 1999).

Exposure to arsenic typically results from 
either oral arsenic consumption through 
contaminated drinking water, soil, and food, 
or arsenic inhalation in an industrial work  
setting. Arsenic-contaminated drinking water 
has been associated with increased mortality 
of bladder and lung cancer in Chile (Marshall 
et al. 2007) and with increased mortality of 
both noncancerous causes and cancers in 
Bangladesh (Sohel et al. 2009). In the human 
arsenic metabolic pathway, inorganic penta
valent arsenic (AsV) is converted to trivalent 
arsenic (AsIII), with subsequent methylation 
to monomethylated and dimethylated arseni-
cals (MMA, DMA, respectively) (Drobna 
et al. 2009). The general scheme is as follows:

	 AsVO4
3− + 2e → AsIIIO3

3− + Me+  
	 → MMAVO3

2− + 2e  
	 → MMAIIIO2

2− + Me+  
	 → DMAVO2

− + 2e → DMAIIIO−.

Methylated arsenicals, especially MMAIII, 
are considered more toxic than inorganic AsIII 
both in vivo (in animals) (Petrick et al. 2001) 
and in vitro (human cell lines) (Styblo et al. 
2002). Several mechanisms by which arsenical 
compounds induce tumorigenesis have been 
proposed, including oxidative stress (Kitchin 
and Wallace 2008), genotoxic damage and 
chromosomal abnormalities (Moore et  al. 
1997a; Zhang et al. 2007a), and cocarcino
genesis with other environmental toxicants 
(Rossman et al. 2004); epigenetic mechanisms, 
in particular, have been reported to alter DNA 
methylation (Zhao et al. 1997). 

It is generally believed that arsenic does 
not induce point mutations, based on nega-
tive findings in both bacterial and mamma-
lian mutagenicity assays (Jacobson-Kram and 
Montalbano 1985; Jongen et al. 1985). Arsenic 
does induce deletion mutations, but arseni-
cal compounds vary in their potency (Moore 
et al. 1997b). With respect to arsenic’s ability 
to induce chromosomal alterations in humans, 
studies in the early 1990s showed that the cell 
micronucleus assay could be used as a biologi-
cal marker of the genotoxic effects of arsenic 

exposure (Smith et al. 1993). Later studies 
validated this assay and demonstrated higher 
frequencies of micronuclei in individuals 
who were chronically exposed to arsenicals 
(Moore et al. 1997a). Analysis of chromosomal 
alterations in DNA from bladder tumors of 
123 patients who had been exposed to arsenic 
in drinking water showed that tumors from 
patients with higher estimated levels of arsenic 
exposure had higher levels of chromosomal 
instability than did tumors from patients with 
lower estimated levels of exposure, suggest-
ing that bladder tumors from arsenic-exposed 
patients may behave more aggressively than 
do tumors from unexposed patients (Moore 
et al. 2002). Based on these overall findings, 
a plausible and generally accepted mechanism 
for arsenic carcinogenicity is the induction of 
structural and numerical chromosomal abnor-
malities through indirect effects on DNA. 
However, as has been demonstrated for several 
tumors, including urothelial and hematological 
malignancies (Fournier et al. 2007; Muto et al. 
2000), it is likely that interrelated genetic and 
epigenetic mechanisms together contribute to 
the toxicity and carcinogenicity of arsenic (Hei 
and Filipic 2004; Zhao et al. 1997).

Epigenetic Modifications 
Induced by Arsenic
Epigenetic alteration, which is not a genotoxic 
effect, leads to heritable phenomena that regu-
late gene expression without involving changes 
in the DNA sequence (Feinberg and Tycko 
2004) and thus could be considered a form 
of potentially reversible DNA modification. 
Recent mechanistic studies of arsenic carcino
genesis have directly or indirectly shown the 
potential involvement of altered epigenetic 
regulation in gene expression changes induced 
by arsenic exposure. We recently showed that 
urinary defensin, beta 1 (DEFB1) protein lev-
els were significantly decreased among men 
highly exposed to arsenic in studies conducted 
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Background: Exposure to arsenic, an established human carcinogen, through consumption of highly 
contaminated drinking water is a worldwide public health concern. Several mechanisms by which 
arsenical compounds induce tumorigenesis have been proposed, including oxidative stress, genotoxic 
damage, and chromosomal abnormalities. Recent studies have suggested that epigenetic mechanisms 
may also mediate toxicity and carcinogenicity resulting from arsenic exposure. 

Objective: We examined the evidence supporting the roles of the three major epigenetic mecha-
nisms—DNA methylation, histone modification, and microRNA (miRNA) expression—in arsenic 
toxicity and, in particular, carcinogenicity. We also investigated future research directions necessary 
to clarify epigenetic and other mechanisms in humans.

Data sources and synthesis: We conducted a PubMed search of arsenic exposure and epigenetic 
modification through April 2010 and summarized the in vitro and in vivo research findings, from 
both our group and others, on arsenic-associated epigenetic alteration and its potential role in toxicity  
and carcinogenicity. 

Conclusions: Arsenic exposure has been shown to alter methylation levels of both global DNA and 
gene promoters; histone acetylation, methylation, and phosphorylation; and miRNA expression, in 
studies analyzing mainly a limited number of epigenetic end points. Systematic epigenomic studies 
in human populations exposed to arsenic or in patients with arsenic-associated cancer have not yet 
been performed. Such studies would help to elucidate the relationship between arsenic exposure, epi
genetic dysregulation, and carcinogenesis and are becoming feasible because of recent technological 
advancements.

Key words: arsenic carcinogenesis, arsenical compounds, DNA methylation, epigenetics,  
histone modification, microRNA. Environ Health Perspect 119:11–19 (2011).  doi:10.1289/
ehp.1002114 [Online 2 August 2010]
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in Nevada (USA) and in Chile (Hegedus et al. 
2008). DNA methylation is thought to play 
a role in regulating DEFB1 expression (Sun 
et al. 2006). Follow-up studies are under way 
in our laboratory to determine if reduced 
levels of DEFB1 in exposed populations are 
due to arsenic-induced targeted gene silencing. 
Several studies have observed extensive changes 
in global gene expression in individuals after 
arsenic exposure (Andrew et al. 2008; Bailey 
et al. 2009; Bourdonnay et al. 2009; Xie et al. 
2007). Further, maternal exposure to arsenic 
has been shown to alter expression of transcripts 
in the mouse fetus (Liu et al. 2008) and human 
newborn (Fry et al. 2007). Because epigenetic 
processes are major regulators of gene expres-
sion, these findings suggest that dysregulation 
of epigenetic processes could contribute mecha-
nistically to arsenic-induced changes in gene 
expression and cancer, affecting both people 
exposed to arsenic directly and those of future 
generations in a heritable manner, without 
directly altering the genome. Dysregulation of 
epigenetic processes could also contribute to 
vascular disease (Yan et al. 2010) and neurologi-
cal disorders (Urdinguio et al. 2009).

Many groups have directly examined the 
association of arsenic exposure on epigenetic 
phenomena; because the technologies used 
to study the various epigenetic modifica-
tions are developing rapidly, we believe that 
a review of current findings from the litera-
ture is warranted. We conducted a PubMed 
search (National Center for Biotechnology 
Information, U.S. National Library of 
Medicine, Bethesda, MD) through April 2010 
and identified studies using variable keywords, 
such as “arsenic AND DNA methylation,” 
“arsenic AND microRNA,” “arsenic AND 
histone modification,” and “arsenic AND epi-
gentics AND epigenomics.” Our goal was to 
include all the studies we could find, and thus 
the reference lists of the identified studies were 
also reviewed to identify other relevant studies. 
Although epigenetic alterations may contrib-
ute to effects of arsenic on both cancer and 
noncancer outcomes, in this article we sum-
marize the recent in vitro and in vivo research 
findings on the potential role of arsenic- 
mediated epigenetic alterations in arsenic-
induced toxicity and carcinogenicity. We 
discuss three major epigenetic mechanisms 

proposed to play roles in arsenic-induced 
carcinogenesis: altered DNA methylation, his-
tone modification, and microRNA (miRNA) 
expression. We also propose future directions 
that can further inform our understanding of 
the epigenetic and overall mechanisms under-
lying the effects of arsenic. 

Arsenic Exposure and DNA 
Methylation
DNA methylation is tightly regulated in 
mammalian development and is essential 
for maintaining the normal functioning of 
the adult organism (Schaefer et  al. 2007). 
Altered DNA methylation has been associ-
ated with several human diseases (Robertson 
2005). Global genomic DNA hypomethyla
tion is a hallmark of many types of cancers 
(Esteller et  al. 2001), resulting in illegiti
mate recombination events and causing tran-
scriptional deregulation of affected genes 
(Robertson 2005). In mammalian systems, 
DNA methylation occurs predominantly in 
cytosine-rich gene regions, known as CpG 
islands, and serves to regulate gene expression 
and maintain genome stability (Yoder et al. 

Figure 1. Simplified scheme of SAM synthesis and its involvement in arsenic and DNA methylation. The human arsenic metabolic pathway involves a series of 
methylation reactions; both arsenic metabolism and DNA methylation require SAM as the methyl donor. Here we show the intermediate steps of SAM synthesis 
and its involvement in the methylation of DNA and arsenic. Abbreviations: AS3MT, arsenic (+3 oxidation state) methyltransferase; ATP, Adenosine-5’-triphosphate; 
MAT1A, methionine adenosyltransferase I; MTR, 5-methyltetrahydrofolate-homocysteine methyltransferase; PPP, tripolyphosphate.
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1997). DNA methyltransferases (DNMTs) 
are responsible for transferring a methyl 
group from the S‑adenosyl methionine (SAM) 
cofactor to the cytosine nucleotide, produc-
ing 5´-methylcytosine and S‑adenosyl homo
cysteine (Figure 1) (Razin and Riggs 1980). 
Three different families of DNMT genes have 
been identified so far: DNMT1, DNMT2, 
and DNMT3 (Robertson and Wolffe 2000).

Mechanisms of arsenic-induced changes 
in DNA methylation. An association between 
arsenic-induced carcinogenesis and DNA 
methylation was proposed because arsenic 
methylation and DNA methylation both use 
the same methyl donor, SAM (Figure 1). SAM 
is a coenzyme involved in > 40 metabolic 
reactions that require methyl group transfers 
(Chiang et al. 1996; Loenen 2006; Reichard 
et  al. 2007). Because SAM is the unique 
methyl group donor in each conversion step 
of biomethylation of arsenic, long-term expo-
sure to arsenic may lead to SAM insufficiency 
and global DNA hypomethylation (Coppin 
et al. 2008; Goering et al. 1999; Zhao et al. 
1997). Further, because SAM synthesis 
requires methionine, an essential amino acid 
in humans, dietary methyl insufficiency could 
exacerbate effects of arsenic on DNA methyla-
tion (Figure 1) (McCabe and Caudill 2005). 
Indeed, human exposure to arsenic often 
occurs in relatively resource-poor populations 
in developing countries that also may have 
low dietary intakes of methionine (Anetor 
et al. 2007). In addition to its effect on SAM 
availability, arsenic can directly interact with 
DNMTs and inhibit their activities. Several 
studies have shown that arsenic exposure leads 
to a dose-dependent reduction of mRNA  
levels and activity of DNMTs both in vitro 

and in vivo, including DNMT1, DNMT3A, 
and DNMT3B (Ahlborn et al. 2008; Cui et al. 
2006b; Fu et al. 2007; Reichard et al. 2007).

Arsenic and global DNA hypomethylation. 
Global DNA hypomethylation is expected 
to result from arsenic exposure through both 
SAM insufficiency and reduction of DNMT 
gene expression (Reichard et al. 2007). Arsenic 
exposure has been reported to induce DNA 
hypomethylation in vitro and in animal studies 
(Table 1). For example, rats (Uthus and Davis 
2005) and mice (Chen et al. 2004; Okoji et al. 
2002; Xie et al. 2004) exposed to AsIII for 
several weeks displayed global hepatic DNA 
hypomethylation. Similarly, exposure of fish 
to AsIII for 1, 4, or 7 days resulted in sustained 
DNA hypomethylation compared with non
exposed fish (Bagnyukova et al. 2007). Studies 
in cell lines in vitro yielded similar results, with 
a reduction in global genomic DNA methyla-
tion resulting from AsIII exposure (Table 1) 
(Benbrahim-Tallaa et al. 2005; Coppin et al. 
2008; Reichard et al. 2007; Sciandrello et al. 
2004; Zhao et al. 1997). In contrast to the 
animal and in vitro findings, there are lim-
ited human population studies available. A 
cross-sectional study of 64 people reported by 
Majumdar et al. (2010) indicated that exposure 
to arsenic-contaminated water (250–500 µg/L) 
was associated with global DNA hypermethy-
lation. However, the participants in the highest 
estimated exposure group (> 500 µg/L) had 
methylation levels that were comparable with 
those in the two lowest groups. The one pos-
sible reason for this inconsistency may be that 
the actual intake of arsenic into the body is dif-
ferent in the participants whose exposures were 
estimated based on the concentrations in their 
drinking water. In another well-designed nested 

case–control study, Pilsner et al. (2007) assessed 
the relationship between arsenic and DNA 
methylation in 294 participants and observed a 
positive association between urinary arsenic and 
DNA hypermethylation. Plasma folate level 
apparently has a significant effect on the level 
of DNA methylation because a dose–​response 
relation was evident only among participants 
with adequate folate levels (≥ 9 nmol/L) when 
estimates were stratified according to plasma 
folate level after controling for other factors. 
In a separate but closely related nested case–
control study, Pilsner et al. (2009) found that 
individuals with hypomethylation of peripheral 
blood leukocyte (PBL) DNA were 1.8 (95% 
confidence interval, 1.2–2.8) times more likely 
to have skin lesions 2 years later after adjust-
ing for age, urinary arsenic, and other factors. 
Pilsner et al. (2009) speculated that 

Adequate folate may be permissive for an adaptive 
increase in genomic methylation of PBL DNA 
associated with [arsenic] exposure, and that indi-
viduals who are similarly exposed but in whom the 
increase in genomic DNA methylation does not 
occur (or cannot be sustained) are at elevated risk 
for skin lesions.

Further studies are required to determine if 
exposure to AsIII has differential effects on 
the status of DNA methylation across tissues, 
cells, and species.

Arsenic and gene promoter methylation. 
Although the effects of arsenic exposure on 
global genomic DNA methylation remain 
unclear, DNA hypomethylation or hyper
methylation of promoters of some genes has 
been reported in human skin cancer (Chanda 
et al. 2006) and bladder cancer (Chen et al. 
2007; Marsit et al. 2006c) associated with 
arsenic exposure. It has also been observed 

Table 1. Arsenic exposure and global DNA methylation.

Model Arsenical Dose
Time 

(weeks)
Global DNA 
methylation References

Human cells
Prostate epithelial cell line RWPE-1 AsIII 5 µM 16 Hypo Coppin et al. 2008
Prostate epithelial cell line RWPE-1 AsIII 5 µM 29 Hypo Benbrahim-Tallaa et al. 2005
HaCaT keratinocytes AsIII 0.2 µM 4 Hypo Reichard et al. 2007

Animal cells
TRL 1215 rat liver epithelial cell line AsIII 125–500 nM 18 Hypo Zhao et al. 1997
V79-Cl3 Chinese hamster cells AsIII 10 µM 8 Hypo Sciandrello et al. 2004

Animal studies
Goldfish AsIII 200 µM 1 Hypo Bagnyukova et al. 2007
Fisher 344 rat AsIII 50 µg/g body weight 12 Hypo Uthus and Davis 2005
129/SvJ mice AsIII 45 ppm 49 Hypo Chen et al. 2004
C3H mice AsIII 85 ppm 1.5 Hypo Waalkes et al. 2004
C57BL/6J mice AsIII 2.6–14.6 µg/g body weight 18.5 Hypo Okoji et al. 2002
Homozygous Tg.AC mice AsIII 150 ppm 17 Hypo Xie et al. 2004

AsV 200 ppm
MMAV 1,500 ppm
DMAV 1,200 ppm

Human subjects
AsIII 2–250 µg/L NA Hyper Pilsner et al. 2007; Majumdar  

et al. 2010 
AsIII 2–250 µg/L NA Hypo (in skin 

lesion patients)
Pilsner et al. 2009

Abbreviations: Hyper, hypermethylated; Hypo, hypomethylated; NA, not available. See text for additional information on human subjects. 
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in human cell lines (Chai et al. 2007; Fu and 
Shen 2005; Jensen et  al. 2008; Mass and 
Wang 1997), animal cell lines (Chen et al. 
2001, Takahashi et al. 2002), animals (Cui 
et al. 2006a; Okoji et al. 2002; Waalkes et al. 
2004), and humans (Chanda et  al. 2006; 
Chen et al. 2007; Marsit et al. 2006b; Zhang 
et al. 2007b) exposed to arsenic (Table 2). 
Although this gene-specific effect observed 
in these studies could be due to study bias, 
because researchers examined only a small 
group of genes, the similar methylation pat-
tern repeatedly reported in the same genes 
after arsenic exposure might also suggest that 
arsenic could selectively target specific genes. 
However, little is known about how DNA 
methylation is targeted to specific regions 
(Jones and Baylin 2002). Hypo- and hyper
methylation of genes could mediate carcino
genesis through up‑regulation of oncogene 
expression or down-regulation of tumor sup-
pressor genes, respectively. Both observations 
have been reported. Hypomethylation of the 
promoter region of oncogenic Hras1 and 
an elevated Hras1 mRNA level was demon
strated in mice treated with sodium arsenite 
(Okoji et al. 2002). Similar results on mRNA 
expression and promoter hypomethylation of 
Hras1 and c-myc were also observed in vitro 
(Chen et al. 2001; Takahashi et al. 2002). 
The evidence has linked overexpression of 
Esr1 (estrogen receptor 1) gene with estrogen-
induced hepatocellular carcinoma in mice 
(Couse et al. 1997). Arsenic exposure leads to 
overexpression of the Esr1 gene resulting from 
hypomethylation of its promoter region, indi-
cating an association between overexpression 
of Esr1 and arsenic hepatocarcinogenesis 
(Chen et al. 2004; Waalkes et al. 2004).

Dose-dependent hypermethylation at the 
promoter region of several tumor suppressor 
genes [e.g., p15, p16, p53, and death-associated 
protein kinase (DAPK)] was induced by arsenic 
exposure in vitro and in vivo (Boonchai et al. 
2000; Chanda et al. 2006; Fu and Shen 2005; 
Mass and Wang 1997; Zhang et al. 2007b). 
In a population-based study of human blad-
der cancer in 351 patients, RASSF1A and 
PRSS3 promoter hypermethylation was posi-
tively associated with toenail arsenic concen-
trations, and promoter hypermethylation in 
both genes also was associated with invasive 
(vs. noninvasive low grade) cancer (Marsit 
et al. 2006b). This outcome was recapitulated 
in arsenic-induced lung cancer in A/J mice, in 
which the arsenic exposure reduced the expres-
sion of RASSF1A resulting from hypermethyla
tion of its promoter region and was associated 
with arsenic-induced lung carcinogenesis (Cui 
et al. 2006a). DAPK is a positive mediator of 
γ‑interferon–induced programmed cell death 
and a tumor suppressor candidate. In a study 
of 38 patients with urothelial carcinoma, Chen 
et al. (2007) reported hypermethylation of 
DAPK in 13 of 17 tumors in patients living 
in arsenic-contaminated areas compared with 
8 of 21 tumors from patients living in areas not 
contaminated with arsenic. This hypermethyla
tion of DAPK was also observed in an in vitro 
study when immortalized human uroepithelial 
cells were exposed to arsenic (Chai et al. 2007). 
The increase of DNA hypermethylation of 
promoter in p16 was observed in arseniasis 
patients compared with people with no history 
of arsenic exposure (Zhang et al 2007b). In 
another study Chanda et al. (2006) examined 
the methylation status of promoters in p53 
and p16 in DNA extracted from peripheral 

lymphocytes and observed an increase of 
methylation in both p53 and p16 associated 
with an estimated arsenic exposure in a dose-
dependent manner. However, this same study 
also showed that the subjects from the high-
est arsenic exposure group exhibited hypo
methylation of both p53 and p16. Chronic 
exposure to arsenic in vitro has been shown 
to induce malignant transformation in sev-
eral human cell types (Benbrahim-Tallaa et al. 
2005; Zhao et al. 1997) in which the alteration 
of DNA methylation level has been shown to 
be involved (Jensen et al. 2008, 2009a; Zhao 
et al. 1997).

Summary. Arsenic does not fall into the 
classic model of carcinogenesis because it is not 
efficient at inducing point mutations or initiat-
ing and promoting the development of tumors 
in experimental animals. One likely mecha-
nism by which arsenicals operate is through 
the disruption of normal epigenetic control at 
specific loci, which may result in aberrant gene 
expression and cancer (Andrew et al. 2008; 
Xie et al. 2007). Although there is increasing 
evidence that arsenic exposure alters methyla
tion levels in both global DNA and promoters 
of some genes, the current available studies are 
essentially descriptive and difficult to interpret 
because of the complexity of the study popula-
tions and limited information provided in the 
reports. Studies are needed that systematically 
investigate DNA methylation on a genome
wide level in arsenic-exposed cell lines and 
in target tissues, such as exfoliated bladder 
cells, from well-characterized arsenic-exposed 
human populations, or in tumor tissue from 
arsenic-associated cancers. Such studies would 
help to clarify potential effects of arsenic expo-
sure on DNA methylation and carcinogenesis.

Table 2. Arsenic exposure and gene-specific (promoter) methylation status.

Genes
Mode Arsenical Dose Time (weeks) Hyper Hypo Reference
Human cells

UROtsa urothelial cells AsIII 

MMAIII
1 µM 
50 nM

9 DBC1, FAM83A, 
ZSCAN12, C1QTNF6

  Jensen et al. 2008

Uroepithelial SV-HUC-1 cells AsIII 2, 4, 10 µM 24 or 52 DAPK   Chai et al. 2007
Myeloma cell line U266 AsIII 1, 2 µM 0.4 P16   Fu and Shen 2005
Lung adenocarcinoma A549 cells AsIII 0.08–2 µM 0.3 P53   Mass and Wang 1997

AsV 30–300 µM 0.3
Animal cells

Syrian hamster embryo cells AsIII 3–10 µM 0.3 c-myc, c-Ha-ras Takahashi et al. 2002
AsV 50–150 µM 0.3

TRL 1215 rat liver epithelial cells AsIII 125–500 nM 8 or 18   c-myc Chen et al. 2001
Animal studies

C57BL/6J mice AsIII 2.6–14.6 µg/g body weight 18.5   c-Ha-ras Okoji et al. 2002
A/J mice AsV 100 ppm 74 p16, RASSF1   Cui et al. 2006a
C3H mice AsIII 85 ppm 1.4 ERα Waalkes et al. 2004

Human subjects
AsIII NA NA DAPK   Chen et al. 2007
AsIII Variablea NA p53, P16   Chanda et al. 2006
AsIII NA NA p16   Zhang et al. 2007b
AsIII Variableb NA RASSF1A, PRSS3   Marsit et al. 2006b

Abbreviations: ERα, estrogen receptor α; Hyper, hypermethylated; Hypo, hypomethylated; NA, not available. 
aStudy subjects were grouped based on historical arsenic concentration in drinking water, and the range of arsenic concentration in drinking water was < 50 µg/L to > 300 µg/L. bThe 
estimated toenail arsenic concentration of study subjects was < 0.01 µg/L to > 50 µg/L. 
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Arsenic Exposure and Histone 
Modification
Chromatin is structured within the cell nucleus 
in units called nucleosomes, in which DNA 
is packaged within the cell. The nucleosome 
core particle consists of stretches of DNA 
(~ 146 bp) wrapped in left-handed super
helical turns around a histone octamer con-
sisting of two copies each of the core histones 
H2A, H2B, H3, and H4 (Luger et al. 1997). 
Although H1 does not make up the nucleo
some “bead,” H1 plays a role in keeping in 
place the DNA that has wrapped around the 
nucleosome (Figure 2). From a structural and 
functional perspective, histones have differ-
ent characteristics depending on the number 
of amino acids and the number and type of 
covalent modifications in these residues. These 
covalent modifications, found in the tails of 
the histone chains, influence many fundamen-
tal biological processes including acetylation, 
methylation, phosphorylation, citrullination, 
ubiquitination, sumoylation, ADP ribosyla-
tion, deimination, and proline isomerization 
(Kouzarides 2007) (Figure 2). To date, pub-
lished studies on histone modifications and 
arsenic toxicity have focused on acetylation, 
methylation, and phosphorylation.

Histone acetylation. Histone acetylation 
is a dynamic and reversible event (Glozak and 
Seto 2007), in which the acetylation status of 
lysine residues in the histone tail is regulated 
by two antagonistic enzyme classes, histone 
acetyltransferases (HATs) (Sterner and Berger 
2000) and histone deacetylases (HDACs) 
(Cress and Seto 2000). Using acetyl coen-
zyme A as an acetyl group donor, HATs enzy-
matically transfer a single acetyl group to the 
ε‑amino group of specific lysine side chains 
within the histone’s basic N‑terminal tail 
region, whereas HDACs remove the acetyl 
group from the lysine residues.

Evidence for an association between 
altered histone acetylation and arsenic-induced 
toxicity continues to be strengthened. In the 
early 1980s, arsenic exposure was shown to 
significantly reduce histone acetylation in 
Drosophila (Arrigo 1983). More recently, 
changes in histone H3 acetylation have 
been observed in association with AsIII‑ and 
MMAIII-induced malignant transformation of 
human urothelial cells in vitro; these modifi-
cations apparently are arsenic specific because 
the co‑occurring changes in both AsIII‑ and 
MMAIII-induced malignant transformation 
are significantly more frequent than those 
occurring by random chance (Jensen et al. 
2008). Further, Jensen et al. (2008) reported 
DNA hypermethylation in a number of the 
hypoacetylated promoters identified in the 
study, suggesting that arsenic coordinately tar-
gets genes through dysregulation of different 
epigenetic mechanisms contributing to malig-
nant transformation. Recently, we showed 

that the global level of H4K16 acetylation in 
human bladder epithelial cells was reduced in 
a dose- and time-dependent manner by both 
AsIII and MMAIII treatment (Jo et al. 2009). 
Moreover, knockdown of MYST1, the gene 
responsible for H4K16 acetylation, resulted in 
increased cytotoxicity from arsenical exposure 
in human bladder epithelial cells, suggesting 
that H4K16 acetylation may be important for 
resistance to arsenic-induced toxicity. 

Interestingly, AsIII exposure has also been 
shown to induce elevated histone acetyla-
tion, which was reportedly responsible for the 
up‑regulation of genes involved in apoptosis 
or the response to cell stress after exposure 
to arsenic (Li et al. 2002, 2003). This result 
probably is mediated by HDACs. AsIII has 
been shown to inhibit HDAC genes that cor-
relate with increased global histone acetylation 
(Ramirez et al. 2008). The level of inhibition 
is comparable with that of the well-known 
HDAC inhibitor trichostatin A (Drummond 
et al. 2005). Together, these studies clearly 
provide evidence that histone acetylation is 
dysregulated by arsenic exposure, but further 
work is needed to understand the underlying 
mechanisms and to clarify the net effect of 
altered histone acetylation on arsenic-induced 
toxicity and carcinogenesis.

Histone methylation. Like acetylation, his-
tone methylation is also a reversible process. 
However, unlike acetylation, which occurs 
only on lysine residues at the histone tail, his-
tone methylation occurs on both lysine and 
arginine residues (Martin and Zhang 2005; 
Wysocka et al. 2006). In mammals, histone 
methylation is usually found on histone H3 
and H4, although it also occurs on H2A or 

H2B. Arginine methylation is catalyzed by the 
enzyme arginine N‑methyltransferase (Wysocka 
et al. 2006), whereas lysine methylation is cata-
lyzed by two different classes of proteins, the 
SET‑domain–containing protein family and 
the non-SET-domain proteins DOT1/DOT1L 
(Martin and Zhang 2005). Histone methyla-
tion can occur in the monomethyl, symmetri-
cal dimethyl, and asymmetrical dimethyl states 
and in the trimethyl group states, in contrast to 
the single acetyl group added during acetyla
tion (Klose and Zhang 2007). Histone meth-
ylation was considered a static modification 
until recent years, when enzymes were found 
to be capable of antagonizing histone argin-
ine methylation or directly removing a methyl 
group from a lysine residue of histone (Klose 
and Zhang 2007). These enzymes include 
peptidylarginine deiminase enzymes and amine 
oxidase– and JmjC domain–containing histone 
demethylase enzymes. 

Accumulating evidence implicates the 
aberrant loss or gain of histone methylation in 
tumorigenesis (Schneider et al. 2002). Arrigo 
(1983) first reported that exposure to arsenic 
in Drosophila cells led to a complete abolish-
ment of methylation of histones H3 and H4, 
and the effect on H3 was later confirmed by 
other investigators (Desrosiers and Tanguay 
1986, 1988). The response to arsenic exposure 
in the mammalian cell is more complex, and 
AsIII treatment can lead to differential effects 
on the methylation of H3 lysine residues, 
including increased H3 lysine 9 dimethylation 
(H3K9me2) and H3 lysine 4 trimethylation 
(H3K4me3) and decreased H3 lysine 27 tri
methylation (H3K27me3) (Zhou et al. 2008). 
Zhou et al. (2009) showed that 1 µM arsenite 

Figure 2. Histone modifications affected by AsIII and MMAIII exposure. Major posttranscriptional histone 
modifications of the nucleosome are listed on the left. Modifications of specific histone proteins reported 
in the literature as altered by arsenic exposure are shown on the right. 
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significantly increased H3K4me3 after 24‑hr 
or 7‑day exposures in human lung carcinoma 
A549 cells. Importantly, H3K4me3 remained 
elevated, apparently inherited through cell 
division, 7 days after the removal of arsenite. 
Elevated H3K9me2, mediated by increased 
levels of histone methyltransferase G9a protein 
(Zhou et al. 2008), correlates with transcrip-
tional repression (Peterson and Laniel 2004) 
and has been shown to be involved in the 
silencing of tumor suppressers in the cancer 
cell lines (Esteve et al. 2007; McGarvey et al. 
2006). However, data on the patterns of his-
tone methylation induced by arsenic exposure 
are limited, and further studies are required to 
decipher the relationship between altered his-
tone methylation and gene expression, as well 
as its effect on arsenic-induced carcinogenesis.

Histone phosphorylation. All four core 
histone proteins, H2A, H2B, H3, and H4, 
and the linker histone H1 can be post
translationally modified by phosphorylation. 
Cyclin-dependent kinases are believed to be 
responsible for H1 phosphorylation (Swank 
et al. 1997). Several kinases are able to phos-
phorylate H2A and H2B, such as ataxia 
telangiectasia mutated for H2AX (Burma et al. 
2001). Phosphorylation of H3 has been spe-
cifically implicated in cell cycle progression 
and regulation of gene expression (Houben 
et al. 2007). Similarly, phosphorylation of his-
tone H4 (serine 1) increases during the cell 
cycle and is believed to be regulated by casein 
kinase 2 (Barber et al. 2004).

Histone phosphorylation may also contrib-
ute to arsenic-induced carcinogenesis. Although 
all four core histones (H2A, H2B, H3, and 
H4) are targets of protein kinases (Peterson and 
Laniel 2004), the best-studied histone phospho-
rylation event is that of H2AX, a form of H2A 
that represents up to 25% of the total H2A 
pool in mammals. Zykova et al. (2006) demon
strated that arsenic trioxide induces apoptosis 
by up‑regulation of phosphorylated H2AX 
and may be one of the mechanisms by which 
arsenic trioxide acts as an antineoplastic agent 
(Figure 2). Little is known about histone phos-
phorylation and arsenic carcinogenesis. Studies 
have suggested that H3 phosphorylation 
induced by arsenic exposure might be respon-
sible for the up‑regulation of the oncogenes 
c‑fos and c‑jun (Li et al. 2003) and induction 
of a protoapoptotic factor, caspase 10 (Li et al. 
2002). Nickel, another important metal with 
epigenetic effects, has been shown to induce 
phosphorylation of histone  3, specifically 
H3S10 (serine 10) via the activation of the 
JNK/SAPK (c-jun N‑terminal kinase/stress-
activated protein kinase) pathway (Ke et al. 
2008). Because arsenite exposure is known to 
activate JNK and p38/Mpk2 kinase by inhibi-
tion of the corresponding protein phosphatases 
(Cavigelli et al. 1996), phosphorylation of his-
tone H3 via the JNK/SAPK pathway might 

be a common mechanism of metal-induced 
histone modification.

Different types of histone modifications 
have been shown to affect gene regulation and 
expression in a coordinated manner. For exam-
ple, WNT5A gene expression is up‑regulated in 
AsIII- and MMAIII-induced malignant transfor-
mation in uroepithelial cells in association with 
the enrichment of permissive histone modifi-
cations and reduction of repressive modifica
tions in the WNT5A promoter region (Jensen 
et al. 2009b). Two modifications of histone 
H3, dimethylation of H3K4 and acetylation of 
H3K9 and H3K14, are associated with tran-
scriptional competency, whereas the other two 
modifications of histone H3, trimethylation of 
H3K27 and dimethylation of H3K9, are corre-
lated with transcriptional repression (Peterson 
and Laniel 2004). 

Summary. Although we are still in the early 
stages of elucidating the association between 
histone modifications induced by arsenic and 
their effects on arsenic carcinogenicity, newly 
available techniques such as mass spectrometry 
(MS)-based histone modification analysis and 
genomewide sequencing offer the potential to 
systematically characterize the altered histone 
modifications induced by arsenicals and the 
subsequent changes in gene expression.

Arsenic Exposure and 
miRNA Expression
In the past few years, several laboratories have 
discovered a small class of non-protein-coding 
RNAs, called microRNAs (miRNAs), that par-
ticipate in diverse biological regulatory events 
and are transcribed mainly from non-protein-
coding regions of the genome (Bartel 2004; He 
and Hannon 2004). More than 700 human 
miRNAs have been identified to date, as docu-
mented in the miRBase database (Release 14; 
miRBase 2009), and it is predicted that many 
more exist. Each miRNA is thought to target 
several hundred genes, and as many as 30% 
of mammalian genes are regulated by miRNA 
(Lewis et al. 2005). miRNAs deactivate gene 
expression by binding to the 3´‑untranslated 
region of mRNA with incomplete base pairing 
(Wightman et al. 1993). The exact mecha-
nisms by which expression is repressed are still 
under investigation but may include the inhi-
bition of protein synthesis, the degradation of 
target mRNAs, and the translocation of target 
mRNAs into cytoplasmic processing bodies 
(Jackson and Standart 2007). Because of the 
suppressive effect of miRNA on gene expres-
sion, a reduction or elimination of miRNAs 
that target oncogenes could result in the inap-
propriate expression of those oncoproteins; for 
example, Johnson et al. (2005) have shown 
that RAS oncogene is regulated by the let‑7 
miRNA family. Conversely, the amplifica-
tion or overexpression of miRNAs that have 
a role in regulating the expression of tumor 

suppressor genes could reduce the expression 
of such genes. A prime example of this is the 
observation of the miR‑34 family on the p53 
tumor suppressor pathway (He et al. 2007).

Altered miRNA expression and arsenic 
exposure. Despite the significant progress made 
toward understanding the biogenesis and 
mechanisms of action of miRNA, much less is 
known about the effect of environmental expo-
sures, especially carcinogens such as arsenic, 
on miRNA expression. Several studies have 
shown that exposure to exogenous chemicals 
can alter miRNA expression (Kasashima et al. 
2004; Pogribny et al. 2007; Shah et al. 2007). 
In vitro exposure of cells to iron sulfate or alu-
minum sulfate, which generate reactive oxygen 
species (ROS), led to the up‑regulation of a 
specific set of miRNAs, including miR-9, miR-
125b, and miR-128 (Lukiw and Pogue 2007). 
ROS generation resulting from arsenic expo-
sure is thought to play a large role in arsenic- 
induced carcinogenesis and toxicity (Flora 
et al. 2007; Hei and Filipic 2004) and could 
potentially alter these miRNAs in a similar 
manner. Marsit et al. (2006a) examined the 
roles that arsenic and folate deficiency play in 
miRNA expression; these authors found that 
human lymphoblast TK6 cells that had been 
treated with sodium arsenite and cells that had 
been grown in folate-deficient media over a 
6‑day period showed similarly altered expres-
sion of five miRNAs compared with untreated 
controls, suggesting a common mechanism of 
dysregulation. One such potential mechanism 
is aberrant DNA methylation occurring as a 
result of SAM depletion (Caudill et al. 2001; 
Loenen 2006), which arises under conditions 
of arsenic exposure and folate deficiency. 
However, Caudill et al. (2001) found no sig-
nificant decrease in global methylation in the 
treated compared with the control groups, 
suggesting more subtle or targeted effects. 
The induced changes in miRNA expression 
were not stable and returned to baseline levels 
upon removal of the stress conditions, suggest-
ing that chronic exposure may be necessary 
to permanently alter expression of miRNAs 
(Marsit et al. 2006a). Arsenic trioxide, a treat-
ment option for acute promyelocytic leu
kemia (APL) (Zhou et al. 2005), induces the 
relocalization and degradation of the nuclear 
body protein promyelocytic leukemia (PML) 
protein, as well as the degradation of PML–
retinoic acid receptor‑α (PML‑RARα) in APL 
cells (Shao et al. 1998). APL patients treated 
with all-trans retinoic acid release a group of 
miRNAs transcriptionally repressed by the 
APL-associated PML‑RAR oncogene (Saumet 
et al. 2009), suggesting that arsenicals may 
produce similar effects on miRNA expression 
in APL patients.

Summary. Overall, these studies show 
that environmental carcinogen exposures can 
lead to altered miRNA expression profiles, 
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which may be associated with the process of 
carcinogenesis. Further studies are necessary 
to clarify whether chronic exposure to arsenic  
is capable of altering miRNA expression 
and what biological effects are related to the 
altered miRNA expression.

Epigenomic Approach 
Proposed for Future Studies
Emerging evidence suggests that arsenic acts 
through several epigenetic mechanisms. The 
characterization of genomewide patterns of 
DNA methylation, posttranslational histone 
modification, and miRNA expression after 
arsenic exposure in vitro and in vivo repre-
sents a new frontier toward our understand-
ing of the mechanisms of arsenic toxicity 
and carcinogenesis. Emerging epigenomic 
technologies such as chromatin immuno
precipitation (ChIP)-on-chip and ChIP 
sequencing (ChIP-seq), global methylation, 
and miRNA microarrays, as well as whole 
genome DNA sequencing platforms, will 
facilitate these efforts (Schones and Zhao 
2008). ChIP-on-chip and ChIP-seq, used pri-
marily to determine how proteins interact 
with DNA, have the potential to clarify how 
epigenetic changes, particularly histone modi-
fications, induced by arsenic exposure regulate 
gene expression (Park 2009). MS offers an 
unbiased approach to mapping the combina-
tions of histone modifications and requires 
highly sensitive and precise mass measure-
ments; for example, the difference in mass 
between trimethylation and acetylation is only 
36 mDa. Using liquid chromatography–MS, 
we identified acetylation of H4K16 as a his-
tone modification that is significantly reduced 
after arsenic treatment, especially with long-
term exposure (Jo et al. 2009).

With the rapid development of array and 
sequencing-based DNA-methylation profiling 
technologies, global DNA methylation profil-
ing has clearly come of age. Because epigenetic 
modifications alter gene expression but not 
gene sequence, transcriptomics may eventually 
allow the characterization of the expression pro-
files of epigenetically labile genes. Identification 
of the genes dysregulated through epigenetic 
mechanisms by arsenic exposure will further 
elucidate the associated biological processes 
and disease states. Proteomics using both con-
ventional “bottom-up” and newer cutting-edge 
“top-down” MS approaches to detect labile 
posttranslational modifications that are often 
lost in conventional MS/MS experiments 
will allow further clarification of the resulting 
phenotype. The difference between these two 
approaches is that the materials introduced 
into the mass spectrometer are either peptides 
generated by enzymatic cleavage of one or 
many proteins in the “bottom-up” approach, 
or intact protein ions or large protein fragments 
in the “top-down” approach. Integration of 

epigenetic, transcriptomic, and proteomic data 
sets generated by these techniques will facilitate 
a more thorough understanding of the inter-
play of these processes under normal condi-
tions and during arsenic exposure. Indeed, the 
importance of a comprehensive understanding 
of the epigenome has been recognized by the 
scientific community and is reflected in the 
National Institutes of Health (NIH) Roadmap 
Initiative (NIH 2007) with the goal of devel-
oping comprehensive reference epigenome 
maps and new technologies for comprehensive 
epigenomic analyses. 

Conclusion and Future 
Directions
Although experiments in suitable model sys-
tems could complement the human studies, 
as discussed above, there may be differences 
between epigenetic effects in animals and 
humans and between various tissues and 
cell types. Thus, studies in human popula-
tions exposed to high levels of arsenic will 
be necessary to understand how individual 
differences in arsenic methylation and genetic 
background, as well as environmental fac-
tors such as diet and age, influence the epi
genetic response to chronic arsenic exposure. 
Studies will also be required across various 
tissue and cell types to identify and validate 
the levels and patterns of epigenetic markers 
in these cells. Accessible tissues such as blood 
may not represent a good surrogate of tar-
get tissues such as bladder, kidney, and lung. 
High-resolution methylation data have shown 
that tissues have distinct epigenetic profiles 
(Christensen et al. 2009; Illingworth et al. 
2008), and aging and environmental expo-
sures may alter methylation in a tissue-specific 
manner (Christensen et al. 2009). Thus, epi
genetic profiles from disease-relevant tissues 
such as exfoliated bladder cells from exposed 
and unexposed disease-free individuals could 
allow early effects to be identified. Such cells 
could also be analyzed from individuals with 
arsenic- and non–arsenic-associated cancers 
to identify arsenic-associated tumorigenic 
profiles. Rosser et al. (2009) showed that it 
may be possible to detect bladder cancer using 
gene expression signatures in exfoliated blad-
der urothelia. Similarly, the effects of inhaled 
arsenic on epigenetic profiles in bronchial 
airway epithelial cells could be examined in 
exposed and unexposed disease-free individu-
als and those with lung cancer, as was recently 
done using miRNA profiling for cigarette 
smoke exposure (Schembri et al. 2009).

In conclusion, a comprehensive epi
genomic approach may elucidate the mecha-
nisms of arsenic-induced carcinogenesis. Such 
an approach would also facilitate the discovery 
of biomarkers of arsenic exposure and early 
effects, associated diseases and disease progres-
sion, and factors that confer susceptibility.
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