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Abstract

The existence of diffuse Galactic neutrino production is expected from cosmic-ray interactions with Galactic gas
and radiation fields. Thus, neutrinos are a unique messenger offering the opportunity to test the products of
Galactic cosmic-ray interactions up to energies of hundreds of TeV. Here we present a search for this production
using ten years of Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) track
and shower data, as well as seven years of IceCube track data. The data are combined into a joint likelihood test for
neutrino emission according to the KRAg model assuming a 5 PeV per nucleon Galactic cosmic-ray cutoff. No
significant excess is found. As a consequence, the limits presented in this Letter start constraining the model
parameter space for Galactic cosmic-ray production and transport.

Key words: cosmic rays – diffusion – Galaxy: disk – gamma rays: diffuse background – neutrinos

1. Introduction

A diffuse Galactic neutrino emission is expected from
cosmic-ray (CR) interactions with interstellar gas and radiation
fields. These interactions are also the dominant production
mechanism of the diffuse high-energy γ-rays in the Galactic
plane, which have been measured by the Fermi-Large Area
Telescope (Fermi-LAT; Ackermann et al. 2012).

In the GALPROP-based (Vladimirov et al. 2011) conven-
tional model of Galactic diffuse γ-ray production, CRs are
accelerated in a distribution of sources such as supernova
remnants. They propagate diffusively in the interstellar medium
producing γ-rays and neutrinos via interactions with the
interstellar radiation field and interstellar gas. The interstellar
radiation field is weakly constrained by Fermi-LAT γ-ray data
and interstellar gas is constrained by both Fermi-LAT γ-ray data
and radio measurements of CO and H I line intensities. The CR
population model itself is normalized to local measurements
taken at Earth. The GALPROP model parameters are tuned to

achieve optimal agreement between Fermi-LAT(Ackermann
et al. 2012) data and the direction-dependent prediction given by
integrating expected γ-ray yields along the line of sight from
Earth. The neutral pion decay component estimated by the
conventional model should be accompanied by a neutrino flux
from charged pion decay.
The conventional model, however, underpredicts the γ-ray

flux above 10GeV in the inner Galaxy(Ackermann et al. 2012).
The KRAg models(Gaggero et al. 2015a, 2015b, 2017) address
this issue using a radially dependent model for the CR diffusion
coefficient and the advective wind. The primary CR spectrum
assumed within the KRAg models has an exponential cutoff at a
certain energy. In order to bracket measurements by KASCADE
(Antoni et al. 2005) and KASCADE-Grande(Apel et al. 2013)
in the [100 TeV, 100 PeV] and [10 PeV, 2000 PeV] energy
ranges, respectively, while maintaining agreement with proton
and helium measurements by CREAM(Ahn et al. 2010), cutoffs
at 5 and 50 PeV per nucleon are considered. The resulting
models are referred to as KRA5

g and KRA50
g , respectively. The

direction dependence of the energy-integrated KRA5
g neutrino

100 Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-
0032, Japan.
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flux prediction is shown in Figure 1. Compared to the
conventional model of the Galactic diffuse emission, the KRAg
models predict modified spectra and enhanced overall
γ-ray and neutrino fluxes in the southern sky, especially in the
central ridge where a hardening of the CR spectra is reproduced.
Hence, neutrinos offer a unique opportunity to independently
test the model assumptions of Galactic CR production and
transport, accessing energies far beyond the reach of current
γ-ray experiments.

The KRAg predictions have already been tested separately
with Astronomy with a Neutrino Telescope and Abyss
environmental RESearch (ANTARES; Albert et al. 2017) and
IceCube(Aartsen et al. 2017a) data. ANTARES and IceCube
achieved sensitivities of 1.05 KRA

50´ F
g

and 0.79 KRA
50´ F
g
,

respectively; both analyses obtained 90% confidence level
(CL) upper limits of 1.2 KRA

50´ F
g
. ANTARES additionally

examined the 5 PeV cutoff model, obtaining a sensitivity
of 1.4 KRA

5´ F
g
and an upper limit of 1.1 KRA

5´ F
g
due

to an underfluctuation of the fitted signal flux in the track
channel.

This Letter presents a combination of these two maximum-
likelihood analyses exploiting the advantageous field of view
of ANTARES as well as the high statistics of IceCube.

2. Detectors and Data Samples

The IceCube Neutrino Observatory(Aartsen et al. 2017b) is
located at the South Pole between 1.45 and 2.45 km below the
surface of the ice. It consists of 5160 photomultiplier tubes
(PMTs) instrumenting one cubic kilometer of ice. The
ANTARES neutrino telescope(Ageron et al. 2011) consists
of 885 PMTs deployed in the Mediterranean sea, 40 km off the
coast of Toulon, France. It is installed at depths between
2.01 km and 2.47 km below sea level, instrumenting a volume
of ∼0.01 km3.

Neutrinos interacting with matter produce charged particles
that generate Cerenkov light in the detectors. From the
collected Cerenkov light, the energy and direction of the
incoming neutrinos are reconstructed. A muon neutrino101

undergoing a charged current interaction produces a muon that
can travel large distances through the medium, leading to a
track event topology in the detector. Most other interactions
produce a nearly spherical shower event topology. In this

analysis, ANTARES events of both topologies are used, while
only track events are taken from IceCube data.
The ANTARES event sample used in this Letter includes

the one used in Albert et al. (2017) extended by the data
collected in 2016. These data use the most recent offline-
reconstructed data set, incorporating dedicated calibrations of
positioning, timing, and efficiency(Adrián-Martínez et al.
2012). The sample is taken from a total of 2780 days of
detector livetime, over a total of 10 calendar years. Part of the
sample was collected with partially completed detector
configurations. Here, 218 shower(-like) events are selected,
while 2.6 signal events are expected from the KRA5

g model.
For these signal events we have a median angular resolution
of 2 .4 . The track selection includes 7,850 events, with 10.2
signal events expected to have an angular resolution of 0 .5 .
The energy ranges including 90% of signal events are
[2.1 TeV, 150 TeV] for showers and [360 GeV, 130 TeV]
for tracks.
The IceCube seven-year track selection used in this analysis

is detailed by Aartsen et al. (2017c). It results in a total of
730,130 events with 191 events expected from the KRA5

g
model. The data set was collected over a total of 2431 days of
detector livetime, some of which took place during the
construction phase of the detector. The IceCube signal events
are expected to have median angular resolution of 0.8. The
energy range containing 90% of the expected signal events is
[390 GeV, 110 TeV].
The energy range in which the combined analysis is valid is

[90 GeV, 300 TeV]. This range is defined as containing 90% of
the sensitivity. It is calculated by finding the low- and high-
energy thresholds where removing simulated signal events
outside of these values worsens the sensitivity by 5% each.

3. Search Method

The present analysis uses an unbinned likelihood ratio test.
The likelihood functions for each sample—ANTARES tracks,

Figure 1. Neutrino flux per unit of solid angle of the KRA5
g model(Gaggero

et al. 2015a), shown as a function of direction in equatorial coordinates
(Hammer projection).

Figure 2. Combination of the log-likelihood ratio curves and fitting of the flux
on the combined test statistic. These curves correspond to the unblinded data
using the likelihood for the KRA5

g model.

101 In the following, particles also refer to the corresponding anti-particles.
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ANTARES showers, and IceCube tracks—are defined as
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where N is the total number of events, nsig is the number of
signal events, and  is the signal probability density function
(PDF) for an event i at the equatorial coordinates ,i ia d( ) with
energy Ei. It is obtained from Monte Carlo simulations of the
detectors with the model flux as input, and is proportional to
the expected signal rate at a given reconstructed energy and
direction.  is the PDF of the background.

Minor differences in the original, separate ANTARES and
IceCube PDF constructions are preserved in this Letter. For
IceCube tracks, the background term  comes from the data
with a correction for the signal contamination expected for nsig
signal events(Aartsen et al. 2017a). For the ANTARES
samples, this is approximated by ignoring the signal correction
term(Albert et al. 2017). In addition, the IceCube signal PDF
accounts for the estimated point-spread function of each event,
while average point-spread functions are used for track and
shower ANTARES events.

In order to account for the different acceptances of
each sample as well as any bias in the fitted signal

normalization, we forward-fold the signal flux sigF into the
individual likelihoods using a response function obtained from
simulated pseudo-experiments.

Table 1
Sensitivities and Results of the Analysis on the KRAg Models with the 5 and 50 PeV Cutoffs

Energy Cutoff Sensitivity KRAF g[ ] Fitted Flux p-value Upper Limit (UL) at 90% CL
Combined ANTARES IceCube KRAF g[ ] [%] KRAF g[ ]

5 PeV 0.81 1.21 1.14 0.47 29 1.19
50 PeV 0.57 0.94 0.82 0.37 26 0.90

Figure 3. Stacked histograms (i.e., every bin shows the fractional contribution of every sample summed on top of each other) of the signal expected from the KRA5
g

model as function of the declination (a) and energy (b) Monte Carlo truth. The colored area of each histogram represents the relative contribution to the sensitivity of
this event sample. The relative contribution to the sensitivity is defined as the difference in the sensitivity flux resulting from the addition of a certain event sample
divided by the combined sensitivity flux.

Figure 4. Combined ULs at 90% confidence level (blue lines) on the three-flavor
neutrino flux of the KRAg model with the 5 and 50 PeV cutoffs (black lines). The
boxes represent the diffuse astrophysical neutrino fluxes measured by IceCube using
an isotropic flux template with starting events (yellow) and upgoing tracks (green).
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Then the combined likelihood is simply the product over the
per-sample likelihoods. The combined test statistic is the log-
likelihood ratio evaluated for that sigF , which maximizes the
combined likelihood

TS max ln , 2comb
sample

sig bkg sig

bkgsig
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where TScomb is the combined test statistic, and
0bkg sig bkg sig = F =+ ( ) is the likelihood to have only

background and the sum runs over the event samples. This is
illustrated in Figure 2 with the combined log-likelihood ratio
and TScomb fit for the KRA5

g model.
The combined and independent sensitivities are summarized

in Table 1. They are defined as the median upper limit.102 The
combination is not only a way to exploit more data with
different systematics, but also an opportunity to benefit from
the complementarity of the two detectors. While IceCube has
much higher statistics than ANTARES, we show in Figure 3(a)
that ANTARES offers enhanced sensitivity in the southern sky
where a larger flux is expected. This favorable view is coupled
with relatively better angular resolution for ANTARES than
IceCube. In Figure 3(b) we show that while IceCube can in
principle detect higher energy events compared to ANTARES,
the direction-dependent model spectra studied here result in
similar energy ranges being tested by both detectors. Overall,
the relative contribution of IceCube to the sensitivity is 61%;
for ANTARES tracks and showers the relative contributions
are 25% and 14%, respectively.

4. Results and Discussion

This analysis combines seven years of IceCube tracks and
ten years of ANTARES tracks and showers using a likelihood
ratio test. The results are summarized in Table 1. Systematic
uncertainties on the ANTARES detection efficiency (due to the
uncertainty on the acceptance of the ANTARES PMTs) are
included in the analysis as in the paper by Albert et al. (2017).
As described by Aartsen et al. (2017c), systematic uncertainties
in the modeling of the Antarctic ice and the optical module
efficiency lead to an uncertainty on the IceCube detection
efficiency of at most 11%, which is not included here.

The maximum-likelihood estimate yields a non-zero diffuse
Galactic neutrino flux for both models with a p-value of 29%
for KRA5

g and 26% for KRA50
g . As neither of these results is

statistically significant, we place upper limits on both model
normalizations. The KRA50

g model is constrained at the 90%

CL (with an upper limit of 0.9 KRA
50´ F
g
), while the KRA5

g
model is not yet constrained by our analysis. This was expected
as the 50 PeV cutoff represents an extreme tuning of the
acceleration parameters for the Galactic CRs, while the 5 PeV
cutoff in light CR can be considered a more reliable case for the
Galactic accelerators.

Figure 4 represents the combined upper limits in comparison
to the all-flavor full-sky energy spectrum of the KRAg models
as well as the previous IceCube and ANTARES upper limits.
The present upper limit on the 5 PeV model is higher than the
previously published upper limit for ANTARES alone,
although the sensitivity is much better. This is due to the

overfluctuation observed in the IceCube data sample as well as
the difference in the definition of the test statistic. In the
ANTARES stand-alone analysis it was the sum of the shower
and track test statistics, computed independently, instead of
computing one test statistic from the combined log-likelihood
ratio curve (Equation (2)).
The results presented here provide for the first time a

combined constraint on diffuse Galactic neutrino emission by
IceCube and ANTARES. The limit on the KRAg model with
50 PeV cutoff extends the energy range of the constraint on the
model from 10 GeV with Fermi-LAT up to hundreds of TeV.
Based on the limit on the KRA5

g-model, this analysis limits the
total flux contribution of diffuse Galactic neutrino emission to
the total astrophysical signal reported by Aartsen et al. (2015)
to 8.5%. In the future, the sensitivity of this analysis can be
further improved by including IceCube showers (Aartsen et al.
2017d). This will allow for a powerful test of the KRA5

g model,
thereby constraining the diffusion mechanisms, the maximal
energy injected by supernova remnants and the Galactic gas
distributions considered in the model.
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