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How the Mind Creates Structure: Hierarchical Learning of Action Sequences
Maria K. Eckstein (maria.eckstein@berkeley.edu) & Anne G.E. Collins (annecollins@berkeley.edu)

Department of Psychology, 2121 Berkeley Way West
Berkeley, California 94720, USA

Abstract

Humans have the astonishing capacity to quickly adapt to vary-
ing environmental demands and reach complex goals in the
absence of extrinsic rewards. Part of what underlies this ca-
pacity is the ability to flexibly reuse and recombine previous
experiences, and to plan future courses of action in a psycho-
logical space that is shaped by these experiences. Decades of
research have suggested that humans use hierarchical represen-
tations for efficient planning and flexibility, but the origin of
these representations has remained elusive. This study investi-
gates how 73 participants learned hierarchical representations
through experience, in a task in which they had to perform
complex action sequences to obtain rewards. Complex action
sequences were composed of simpler action sequences, which
were not rewarded, but whose execution led to changes in the
environment. After participants learned action sequences, they
completed a transfer phase. Unbeknownst to them, we ma-
nipulated either complex or simple sequences by exchanging
individual elements, requiring them to relearn. Relearning pro-
gressed slower when simple (rather than complex) sequences
were changed, in accordance with a hierarchical representa-
tions in which lower levels are quickly consolidated, poten-
tially stabilizing exploration, while higher levels remain mal-
leable, with benefits for flexible recombination.
Keywords: Hierarchical cognition, reinforcement learning,
action sequence learning, hierarchical reinforcement learning

Introduction
Solving complex problems requires abstraction. Even
the most common every-day problems (e.g., crossing the
road) are so high-dimensional that planning into the future
rapidly results in a combinatorial explosion of possibilities
(e.g. sequences of possible muscle movements; number
of possible future states of the road). One way to allevi-
ate this issue is to represent problems at a more abstract
level in order to reduce the dimensionality of the problem
(e.g., percepts clustered into objects such as green/red lights;
muscle movements joined into meaningful actions such as
crossing/waiting). Hierarchical representations of perception
and/or action can provide such an abstraction. In real-world
problems, agents also need to flexibly adjust their behavior to
changing environmental circumstances, in a world that does
not provide clear feedback as to which individual actions
(e.g., typing a specific word) were adaptive, and often only
rewards complex chains of actions upon completion (e.g., a
completed essay). This problem of sparse rewards can also
be alleviated by abstraction and hierarchical representations:
Instead of relying solely on rewards at the end of extended ac-
tion sequences, agents can set smart sub-goals along the way,
and continuously adjust their behavior based on their perfor-
mance on each one.

Previous research on abstraction. Indeed, previous re-
search across disciplines has shown that hierarchy plays a

central role for complex problem solving: Artificial Intelli-
gence (AI) research has developed algorithms that abstract
over time (Sutton et al., 1999), states (Finn et al., 2017; Vezh-
nevets et al., 2017), and learning itself (Wang et al., 2016) to
solve increasingly difficult problems. In Psychology, decades
of research have suggested that mental representations are hi-
erarchical, most notably in the domains of cognitive control,
expertise, and sequential action (Cohen, 2000; Newell, 1994).
Recent research in psychology has increasingly tried to for-
malize this notion, using hierarchical Bayesian (e.g., Grif-
fiths et al., 2019; Kemp and Tenenbaum, 2008; Solway et al.,
2014) and hierarchical Reinforcement Learning (RL) models
(e.g., Botvinick and Weinstein, 2014; Eckstein and Collins,
2020; Frank and Badre, 2012) to understand abstract cogni-
tive processes. Lastly, neuroscience research has shown that
the brain itself is organized hierarchically (Miller and Cohen,
2001), exhibiting “processing hierarchies” and “representa-
tional hierarchies” (Badre, 2008). In the former, superordi-
nate levels (e.g. FPC, dlPFC) operate over longer timescales
(e.g. general domain multi-step information) and asymmetri-
cally modulate subordinate processing (e.g. striatal areas). In
the latter, information gets increasingly abstract when mov-
ing from lower to higher level of hierarchy, such that higher
levels favor generality over detail, and lower levels asymmet-
rically inherit information from higher ones.

The difficulty of learning abstraction. Even though it is
broadly accepted that appropriate hierarchical representations
are necessary to solve complex problems, it is still largely un-
known how to create these representations; in AI, this issue
is called the “option discovery problem” (“options” are tar-
geted multi-step policies; Sutton et al., 1999). For example,
humans have been shown to discover the Bayes-optimal task
decomposition of a complex problem (Solway et al., 2014),
but it is unclear how, given that they lack access to the full
state space and have limited computational resources. AI re-
search has investigated some promising avenues, for example
equipping agents with intrinsic motivation so they can break
down complex problems into simpler sub-problems, and re-
ceive teaching signals along the way. Intrinsic motivation is
usually formulated as adding an artificial “intrinsic” reward
signal to the “extrinsic” rewards provided by the environment
(e.g., food; points in video games; Deci and Ryan, 1985).
Intrinsic rewards then guide learning in the same way as ex-
trinsic rewards. Intrinsic rewards often mimic novelty seek-
ing and curiosity (Gershman and Niv, 2015; Lieshout et al.,
2018; Pathak et al., 2017), in line with psychological theory
that defines intrinsic motivation as doing actions for their own
sake, rather than to achieve external goals (Deci and Ryan,
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1985). One aspect that many approaches share when creat-
ing hierarchical representations is the identification of appro-
priate sub-goals, or other indices of existing structure in the
environment (for review, see Konidaris, 2019).

Scrutinizing human abstraction. This study investigates
how humans create hierarchical representations by character-
izing how they slowly discover the hierarchical structure of a
task. We hypothesized that participants would create hierar-
chical representations piece-by-piece by continuously learn-
ing how to perform new, ever more complex multi-step ac-
tions. Specifically, we hypothesized that participants would
start by exploring their environment, randomly executing ba-
sic actions (e.g., individual key presses). Because some com-
binations of basic actions would provoke unexpected (non-
rewarding) events in the environment (e.g., appearance of a
novel item), this process would trigger participants’ curios-
ity, and intrinsically motivate them to explore the event fur-
ther. Participants’ curiosity should only be satisfied once they
know how to evoke the event reliably (i.e., executing the cor-
rect sequence of basic actions to create the item). At this
point, the entire action sequence should have been consoli-
dated as a new skill, laying the foundation for hierarchical
structure. From then on, we hypothesized, participants would
be able to employ these learned skills instead of basic actions
to explore their environment in a more targeted way, speeding
up the acquisition of even more abstract skills, more targeted
exploration, and so on. This hypothesized creation of hierar-
chical structure allows participants to overcome reward spar-
sity because they can use environmental signals other than
rewards to motivate learning. It also allows them to over-
come combinatorial explosion because relying on a specific
set of fixed multi-step actions is less planning-intensive than
assessing all possible combinations of one-step actions.

Methods
Experimental task. To test these predictions, we created
a task in which participants learned to execute complex ac-
tion sequences, which were composed of simpler action se-
quences (which were composed of basic actions; Fig. 1). Par-
ticipants were extrinsically motivated by points, which could
be obtained by creating stars using a star-making machine.
The machine accepted 4 key presses per trial, and created a
star when a correct 4-key sequence was typed in. Participants
were rewarded with 1 point only when the star matched the
trial’s goal star. Crucially, each star’s 4-key sequence was
composed of two 2-key sequences, each of which led the ma-
chine to create a specific item. Items were not rewarded with
points, but signaled (unbeknownst to the participants) that a
2-key sequence was “valid” (part of a star-making 4-key se-
quence; see Fig. 1B). As such, they were a potential source
of intrinsic motivation. Participants encountered 4 different
stars, which required four different 4-key sequences; the goal
star changed in each block. This task has a hierarchical struc-
ture: basic actions (individual keys) are at the lowest, valid
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Figure 1: Design of the star-making task. (A) At the be-
ginning of each block, the new goal star is introduced, and
remains visible on top of the screen throughout the block.
On each trial, participants sequentially enter four key presses.
Every time participants press a key, a colored circle appears
at the corresponding position on the response board. If par-
ticipant press a valid 2-key sequence (see rules in part C),
a unique item appears. In the top row, keys 0 (subtrial 3;
orange) and 1 (subtrial 4; teal) led to item a (gear). In the
second row, the combination of 2-key sequences a (keys 0, 1)
and b (keys 2, 3) led to the appearance of star S0. (B) Rules
for valid sequences. Table “Learning phase rules” shows key
sequences for the learning phase. The column “Low rules”
shows valid 2-key sequences, with “Actions” referring to the
identity and order of actions that need to be executed, and
“Item” referring to the resulting item. Keyboard keys were
randomly assigned to actions, and images were randomly as-
signed to items. The column “High rules” shows how valid 4-
key sequences were composed of 2-key sequences (“Items”)
and to which star they lead. Table “Transfer phase rules”: In
the transfer phase, either low-level rules or high-level rules
were manipulated. For low-level (high-level) manipulation,
the low-level (high-level) rules in the Learning table were re-
placed by the low-level (high-level) rules in this table. Dif-
ferences between learning and transfer rules are highlighted
in red. (C) Overview of stars presented during learning and
transfer phases. All four stars were learned, but only two
were selected for the transfer phase. (D) Learning curves for
learning (left) and transfer phase (right). Each dot represents
the average accuracy over all participants on each trial. Trials
were counted as accurate when the goal star (shown on the
x-axis) was achieved.619



2-key sequences at the intermediate, and star-making 4-key
sequences at the most abstract level. We designed the task
in this way to elicit learning of hierarchical structure that
was motivated intrinsically, i.e., by observing non-rewarding
events in the environment for the building blocks of complex
sequences.

After learning, participants encountered an unsignaled
transfer phase, in which some rules changed (Fig. 1B, 1C).
The transfer phase investigated whether participants repre-
sented the task hierarchically. In the low-level transfer ma-
nipulation, we modified some 2-key sequences by replacing
individual keys, such that previous valid 2-key sequences no
longer created items, and were no longer part of 4-key star-
making sequences. In the high-level manipulation, some 4-
key sequences were modified by exchanging entire 2-key se-
quences with each other (Fig. 1B, right), such that all initial
2-key sequences stayed valid, but had to be combined differ-
ently to make stars. We controlled for the numbers of individ-
ual keys that were affected by each manipulation (Fig. 1C),
and predicted that performance would differ between low-
and high-level transfer if participants used a hierarchical rep-
resentation: We argued that valid 2-key sequences were more
consolidated than 4-key star-making sequences and should be
more difficult to re-learn. 4-key sequences, on the other hand,
should be more flexible and malleable and less affected by
transfer.

Experimental details. All participants provided online in-
formed consent in accordance with the Institutional Review
Board of the University of California, Berkeley, and com-
pleted a demographics form. Participants then performed the
task, which consisted of a tutorial, a learning and transfer
phase with one machine using one hand, and another learning
and transfer phase with a different machine using the other
hand. After the task, participants completed a questionnaire
about their task strategies.

On each trial, participants pressed four keys with the goal
of finding the current trial’s goal star, shown at the top of the
screen, to receive a point (Fig. 1A). A point counter showed
cumulative points. Each key press within a trial is called a
“subtrial”. Four keys were available on each trial, depending
on the machine: Q, W, E, and R (left hand); or U, I, O, and
P (right hand). Participants were allowed a maximum of 2.5
seconds for each trial; when the four key presses took longer,
participants were told to respond faster next time and the trial
was counted as missed. Each trial was followed by a 0.5-
second inter-trial interval, after which the next trial started.
Each key press was immediately visualized as a colored cir-
cle in a response box underneath the star machine, with a one-
to-one match between key and color. When participants exe-
cuted a valid 2-key sequence within the first (last) two slots,
an item immediately appeared on the left (right) side of the
machine’s window. Each of the four valid 2-key sequences
was represented by a unique item. When participants exe-
cuted a valid 4-key sequence, a star immediately appeared.

When the star coincided with the goal star, the point counter
incremented by 1 point. When a trial did not form a valid
4-key sequence, no star appeared. Incorrect trials were not
signaled otherwise.

Valid 2-key and 4-key sequences were constructed to max-
imize similarity between high-level and low-level transfer for
experimental control. The same abstract rules were used for
all participants (Fig. 1B-C). Systematic biases were avoided
by randomizing the assignment of actions to keys, 2-key se-
quences to items, and 4-key sequences to stars.

For each machine, participants completed 12 blocks of 25
trials (with 4 key presses each) during the training phase, and
8 blocks of 25 trials during the transfer phase. Each block
showed one goal star. Two of the four learning-phase stars
were selected for the transfer phase (Fig. 1C, 1D). The tran-
sition between learning and transfer phase was not signaled.

After completing the first machine (learning and transfer),
participants took a 1-minute break. After the break, they were
presented with a new machine, and were instructed to use the
opposite hand on a different set of keys to minimize carry-
over between the machines. Hand order and machine order
(low vs high transfer) were jointly randomized between par-
ticipants. The new machine followed the same abstract rules
as the old machine, but keys were randomly re-assigned to the
new set of keys. A novel set of items indicated valid 2-key se-
quences, and a novel set of stars indicated star-making 4-key
sequences. The task was written in jsPsych, a JavaScript li-
brary that facilitates online data collection.

Participants. Seventy-three undergraduate students com-
pleted the task online for course credit (58 females, 13 males,
2 declined to answer). Four were excluded because they did
not meet demographic criteria (e.g., present or past psycho-
logical illness). Six were excluded because they missed more
than 50 trials (mean missed trials after exclusion: 11.6, sd:
9.2, min: 1, max: 35). Two were excluded because they took
more than 60 minutes for the task (mean duration after exclu-
sion: 36 minutes, min: 26, max: 46, sd: 5.3). Eleven were
excluded because they used pen and paper or other external
devices to help with the task, which potentially obscured the
cognitive processes we aimed to investigate. (Because the
study was conducted online due to the Covid pandemic, we
could not monitor the use of pen and paper directly, and asked
participants in the post-experiment questionnaire.) In total,
17 participants were excluded, leading to a final sample of
56 participants (45 females, 10 males, 1 declined to answer;
mean age: 20.6, min: 18.1, max: 31.8, sd: 1.96).

Data analysis. We used Python for data analysis and vi-
sualization. Regression models were conducted using the
statsmodels package, which uses a Normal distribution to ap-
proximate p-values (and therefore does not implement the
Satterthwaite correction; Seabold and Perktold, 2010). Un-
less otherwise specified, we used mixed-effects models and
defined each participant as a group.
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Results
Creating Hierarchy by Learning Action Sequences
We first investigated how participants learned new action se-
quences, focusing on just the learning phase.

Slowing after unexpected event. We had hypothesized
that unexpected items would trigger participants’ curiosity
and motivate them to repeat the 2-key sequence which led to
the item, thus facilitating learning. To assess this, we tested
whether participants slowed down after discovering a new
item for the first time. Slowing commonly arises after er-
rors (Danielmeier and Ullsperger, 2011), rewards (Raio et al.,
2020), or surprising events (Parmentier et al., 2019), and is
usually interpreted as an orienting response, potentially re-
lated to learning and processing of prediction errors. We as-
sessed response times for the third key press in a trial (subtrial
3) when an item was discovered for the first time in a block
on subtrial 2, comparing trials in which an item was discov-
ered to the trials preceding and subsequent to the discovery
(Fig. 2A, red line). Repeated-measures t-tests, Bonferroni-
corrected for multiple comparisons, revealed that participants
were significantly slower on the trial of item discovery com-
pared to both preceding (t(54) = 4.1, p = 0.0003) and sub-
sequent trials (t(54) = 6.9, p < 0.001). This slowing was
a specific post-item effect rather than general slowing, as it
uniquely occurred on subtrial 3 when an item appeared on
subtrial 2, but not on subtrial 4 (Fig. 2A, blue line).

Repetition of valid sequences. If the appearance of non-
rewarding items indeed motivated participants to execute
valid 2-key sequences, their frequency should increase over
time. To tests this, we compared the frequency of all four
valid 2-key sequences, aligned to their first discovery in a
block, to four randomly selected invalid, but structurally-
similar 2-key sequences (Fig. 2B). We then calculated the
difference between the proportion of valid versus invalid se-
quences for each participant and each trial (Fig. 2B, in-
set), and used mixed-effects regression to predict this dif-
ference from the trial since sequence discovery. This anal-
ysis revealed a significant difference from zero (Intercept
β = 0.13, z = 14.7, p < 0.001) with a negative effect of trial
(β = −0.01, z = −6.6, p < 0.001), confirming that partici-
pants repeated valid 2-key sequences more often than invalid
ones, with a negative effect of time since first sequence ex-
ecution. This analysis was restricted to trials in which par-
ticipants did not reach the goal star (incorrect trials) because
correct trials naturally have a higher proportion of valid com-
pared to invalid 2-key sequences (because all valid 4-key se-
quences are composed of valid 2-key sequences), and would
therefore bias the result. In sum, participants repeated valid
2-key sequences more than invalid ones, suggesting that the
appearance of items triggered intrinsic motivation.

Increased use of valid 2-key sequences. We next assessed
whether the overall proportion of valid compared to invalid

1           2          3           4      1           2          3           4
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slowing
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D ***
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e 
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Figure 2: (A) Post-item slowing. Response times were el-
evated on subtrial 3 when a 2-key sequence was discovered
before (on subtrials 1 and 2; red), but not after (subtrials 3
and 4; blue), revealing specific post-item slowing. Dots rep-
resent means; error bars between-participant 95% confidence
intervals. (B) Repetition of valid and invalid sequences after
first discovery. Trial 0 shows the first execution of a 2-key se-
quence in a block. Subsequent trials show the proportion of
trials on which the same sequence was executed, separately
for valid (blue) and invalid (red) 2-key sequences. The inset
shows within-participant difference between valid and invalid
sequences. (C) Number of 2-key sequences executed per trial
(block 1 only). The blue line shows the average of the four
valid 2-key sequences (signaled by item appearance), and the
red line shows the average of four matched invalid 2-key se-
quences (not signaled by items). The maximum number of
2-key sequences per trial is two because each trial allows for
four key presses. The red and blue lines do not add up to two
because only matched invalid sequences were included in the
analysis. (D) Response time for each key press within a trial.
Colors indicate block number (dark to light). Stars show re-
sults of repeated-measures t-tests described in the main text
(* p < 0.05; ** p < 0.01; *** p < 0.001).
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sequences increased over the course of the first learning
block, in accordance with participants’ hypothesized expan-
sion of the action repertoire (Fig. 2C). We used mixed-
effects regression to predict the number (0, 1, or 2) of valid
and invalid 2-key sequences on each trial from sequence va-
lidity (valid vs invalid) and trial number (1-25), as well as
their interactions. The significant interaction between se-
quence validity and trial (β = 0.036, z = 7.1, p < 0.001)
confirmed that the trajectories of valid and invalid sequences
differed. Follow-up models revealed a positive slope for
valid sequences (β = 0.011, p = 0.04), indicating increase in
use, and a negative slope for invalid sequences (β =−0.025,
p < 0.001), indicating decreased in use. For the same rea-
son as above, the analysis was limited to incorrect trials only.
These results suggest that participants expanded their action
repertoire by adding temporally-extended actions to the initial
set of individual keys (basic actions). Rather than continuing
to explore their environment using just basic actions, partici-
pants seemed to shift their exploration strategy toward using
2-key sequences.

Patterned response times. We next assessed the tempo-
ral structure of participants’ key presses, hypothesizing that
if participants treated valid 2-key sequences like stand-alone
actions, the two keys of the sequence would be executed in
quick succession, compared to slower execution at sequence
boundaries. Indeed, participants typed faster at sequence
completion than initiation, with faster response times on sub-
trial 2 compared to 1, and subtrial 4 compared to 3, for both
correct and incorrect trials, as revealed by repeated-measures
t-tests using 8-way Bonferroni correction (all t(55)s > 2.9,
all ps < 0.04; Fig. 2D). Interestingly, participants also re-
sponded faster on subtrial 3 compared to 1, and 4 compared
to 2, suggesting that participants might have frontloaded pro-
cessing, such that the second 2-key sequence was already pre-
pared before or during the first sequence. This pronounced
slow-fast-slow-fast response pattern suggests that participants
executed two distinct 2-key actions rather than four individual
actions, supporting our hypothesis that participants chunked
pairs of key presses into a single unit, consolidating 2-key
sequences into distinctive, temporally-extended actions.

Using Hierarchy for Exploration and Planning
We next investigated whether and how participants used their
learned hierarchical action space for exploration and plan-
ning, analyzing the transfer phase.

Using 2-key sequences for exploration. We first tested
whether participants actively moved 2-key sequences be-
tween “slots” (first slot: subtrials 1 and 2; second slot: subtri-
als 3 and 4). This would indicate that they did not just learn
2-key sequences as distinct, stand-alone actions, but also ac-
tively explored how to reach stars using them. Specifically,
we assessed the number of trials that passed between the first
discovery of a new 2-key sequence and its first use in the
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Figure 3: (A) Number of trials to use a 2-key sequence that
was first discovered in one position in the opposite position of
a trial. (B) Performance in the transfer phase. Accuracy (left)
and response times (right) over trials, averaged over blocks,
for both high (red) and low (blue) transfer phases.

opposite slot, and compared it between valid and invalid se-
quences in each block (Fig. 3A). On average, participants
took 5.6 trials after discovery to transfer valid sequences but
6.2 for invalid ones. Mixed-effects regression on the differ-
ence revealed a significant intercept (β = −0.87, se = 0.33,
z =−2.63, p = 0.008), with no effect of block (β =−0.004,
p = 0.94), confirming that participants transferred valid 2-
key sequences faster than expected based on baseline (invalid
sequences). In sum, participants quickly transferred valid ac-
tion sequences from the position in which they were origi-
nally discovered to the opposite position, suggesting flexible
reuse and exploration.

Differences between high and low transfer. Finally, we
assessed the transfer phase of the experiment, comparing the
impact of modifying 2-key sequences (low-level manipula-
tion) versus 4-key sequences (high-level manipulation; Fig
1C). We predicted that the low-level manipulation would im-
pair performance more because 2-key sequences were more
consolidated and less accessible to change once they became
part of participants’ abstract action space. We hypothesized
that the high-level manipulation would affect performance
less because the combination of 2-key sequences was less
consolidated than the 2-key sequences themselves, such that
new associations can be re-learned more easily. We tested
this prediction by probing differences between accuracy dur-
ing high-level and low-level manipulation (Fig. 3B), using
mixed-effects regression to predict accuracy from transfer
type (high versus low), trial number (1-25), and their in-
teraction. The model showed main effects of transfer type
(β = 0.10, z = 6.4, p < 0.001) and trial (β = 0.1, z = 15.7,
p = 0.10) and no interaction (β = 0.002, z = 1.6, p = 0.11),
revealing that performance was indeed more impaired dur-
ing lower-level manipulation, and that this effect did not di-
minish over time. In sum, performance suffered more when
the lower level was manipulated compared to the higher one,
supporting the role of 2-key sequences as building blocks for
planning and complex action.
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Discussion
This study provides an analysis of how humans create hier-
archical action spaces, shedding light both on how hierar-
chy is created, and how it is subsequently used: Our results
suggest that participants create hierarchical action spaces by
continuously learning new action sequences, as evidenced by
the slowing after events that were unexpectedly triggered by
their own actions (Gershman and Niv, 2015; Parmentier et
al., 2019), the subsequent repetition of these actions to repro-
duce the event, and the increased use of the learned sequences
for future exploration. The use of the learned sequences was
characterized by its active, hypothesis-driven nature: Partici-
pants moved sequences between trial slots, and showed more
difficulty re-learning lower-level than higher-level sequences,
suggesting increased consolidation of lower levels (Goodman
et al., 2011).

Limitations of the current task design. One limitation of
the study is the inherent difficulty to directly compare low-
level and high-level manipulations. By definition, action se-
quences are affected differently, and we experienced that con-
trolling one aspect of experimental design (e.g., positions of
manipulated keys) often led to disturbances in others (e.g.,
number of manipulated keys). We aimed to address this issue
by choosing imbalances that worked against our hypothesis
(e.g., minimizing change in low-level manipulation), thereby
ascertaining that an existing effect (e.g., better performance
in high-level manipulation) was due to hierarchical structure,
rather than design imbalances.

Ambiguities around intrinsic motivation. The definition
of “intrinsic motivation” differs between fields (education,
psychology, AI), as well as between specific studies within
each field. The common denominator is that intrinsic motiva-
tion cannot rely on extrinsic rewards, but what information it
can employ is largely undefined. We reasoned that, despite
being intrinsic to agents, intrinsic motivation is likely still
tied to external events (e.g., inherent enjoyment of watch-
ing a movie, reading a book, listening to music, going on
a hike), even though exceptions might exist (e.g., pure joy
about a novel thought that occurred unrelated to current sur-
roundings). Our experiment aimed to operationalize this in-
tuition through action-triggered, but non-rewarding events.
However, some might argue that these events are too closely
related to the reward structure of the task to count as purely
“intrinsic” motivators. Future research might help settle this
question. For example, one could conduct a task variant in
which the appearance of items is not tied to the reward struc-
ture (e.g., 2-key sequences that create items are never part
of star-producing 4-key sequences, and vice versa). If par-
ticipants still show signs of intrinsic motivation to perform
item-producing 2-key sequences in this variant (e.g., slow-
ing down, increase in frequency, shuffling between slots), this
would prove that the appearance of items provides motivation
that is independent of rewards, and therefore intrinsic.

Differences between intrinsic and extrinsic motivation.
An interesting question for future research is whether intrin-
sic and extrinsic motivators affect learning differently. In AI,
intrinsic and extrinsic rewards are often combined additively,
i.e., treated as the same entity. However, it is also possible
that each affects learning in a different way. To test this,
we are planning to use a task version that replaces all items
with explicit rewards (e.g., points). One possible outcome of
this study is that participants are less motivated to learn how
to create stars if they can also obtain rewards by perform-
ing much simpler 2-key sequences, depending on the relative
worth of 2-key sequences compared to stars. If this is the
case, it might be a fundamental role of intrinsic motivation to
continuously adjust the “rewardingness” of intermediate ac-
tions in order to continuously enable learning of increasingly
complex actions. Indeed, intrinsic motivation intuitively de-
creases with increased familiarity and skill, whereas extrinsic
rewards stay at the same levels infinitely (at least in theory;
Singh et al., 2009), making the former a more promising can-
didate for “life-long” learning.

Another important control will be to remove the interme-
diary items altogether, to shed light on the importance of in-
termediary feedback for learning complex actions. A likely
outcome of this study is that participants will have increased
difficulties to learn 4-key sequences without the scaffolding
provided by intermediary feedback for 2-key sequences. This
would support our hypothesis that non-rewarding environ-
mental information can be crucial for the acquisition of com-
plex action sequences, even when it is not itself rewarding.

Computational modeling. We have previously presented
an algorithm that formalizes our hypotheses about the cre-
ation of hierarchical action spaces and makes predictions
about task variants with more (or fewer) levels and more (or
fewer) basic actions (Eckstein and Collins, 2017). Our next
step will be to apply this algorithm to humans. The curiosity-
driven hierarchical reinforcement learning (“CHaRLy”) algo-
rithm is based on the options framework (Sutton et al., 1999):
Whenever CHaRLy experiences an unexpected event (e.g.,
new item appears), the creation of a new “option” is triggered
(in this case, re-creating the unexpected event). Initiated uni-
formly, options are learned through RL value updating based
on experienced outcomes (Sutton and Barto, 2017). In this
way, each option eventually is a reliable policy to trigger one
particular event (item). Options make up the lower level of
hierarchy in CHaRLy. The high level is needed to choose
between all options and basic actions. This choice is guided
by another set of RL values, which operate at the high level.
The values of basic actions are updated based on whether an
extrinsic reward was obtained (e.g., goal star appears). The
values of options are updated based on both the achieved ex-
trinsic and an additional intrinsic reward that reflects surprise.
CHaRLy uses the successor representation (Dayan, 1993) to
accurately represent the temporal structure of the task and
learn values that are appropriate for sequential actions.
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The CHaRLy model contains the main features of hierar-
chy present in previous models of human hierarchical thought
(e.g., Collins and Koechlin, 2012; Eckstein and Collins,
2020; Xia and Collins, 2021), including the two-level struc-
ture and existence of distinct low-level policies. However,
it is unique in that it also combines more complex features,
including complex, temporally extended actions (Xia and
Collins, 2021) and curiosity (Singh et al., 2005), making it
a more comprehensive hierarchical RL model of human be-
havior. It is a good candidate to capture human behavior in
this task because it makes the right qualitative predictions,
and quantitatively describes our hypotheses.

Conclusion. Humans’ astonishing ability to learn from
sparse rewards in highly-flexible and ever-changing environ-
ments might therefore rely on an ability to create increas-
ingly complex building blocks of behavior, based on curiosity
about non-rewarding environmental events. These building
blocks—shaped by the environment—can eventually facili-
tate the efficient discovery of reward.
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