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Abstract

We present Low Distortion Local Eigenmaps (LDLE), a manifold learning technique which

constructs a set of low distortion local views of a data set in lower dimension and registers them

to obtain a global embedding. The local views are constructed using the global eigenvectors of

the graph Laplacian and are registered using Procrustes analysis. The choice of these eigenvectors

may vary across the regions. In contrast to existing techniques, LDLE can embed closed and

non-orientable manifolds into their intrinsic dimension by tearing them apart. It also provides

gluing instruction on the boundary of the torn embedding to help identify the topology of the

original manifold. Our experimental results will show that LDLE largely preserved distances up

to a constant scale while other techniques produced higher distortion. We also demonstrate that

LDLE produces high quality embeddings even when the data is noisy or sparse.

Keywords

manifold learning; graph laplacian; local parameterization; procrustes analysis; closed manifold;
non-orientable manifold

1. Introduction

Manifold learning techniques such as Local Linear Embedding (Roweis and Saul, 2000),

Diffusion maps (Coifman and Lafon, 2006), Laplacian eigenmaps (Belkin and Niyogi,

2003), t-SNE (Maaten and Hinton, 2008) and UMAP (McInnes et al., 2018), aim at

preserving local information as they map a manifold embedded in higher dimension into

lower (possibly intrinsic) dimension. In particular, UMAP and t-SNE follow a top-down

approach as they start with an initial low-dimensional global embedding and then refine it

by minimizing a local distortion measure on it. In contrast, similar to LTSA (Zhang and

Zha, 2003) and (Singer and Wu, 2011), a bottom-up approach for manifold learning can

be conceptualized to consist of two steps, first obtaining low distortion local views of the

manifold in lower dimension and then registering them to obtain a global embedding of
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the manifold. In this paper, we take this bottom-up perspective to embed a manifold in low

dimension, where the local views are obtained by constructing coordinate charts for the

manifold which incur low distortion.

1.1 Local Distortion

Let ℳ, g  be a d-dimensional Riemannian manifold with finite volume. By definition, for

every xk in ℳ, there exists a coordinate chart Uk, Φk  such that xk ∈ Uk, Uk ⊂ M and Φk

maps Uk into ℝd. One can envision Uk to be a local view of ℳ in the ambient space. Using

rigid transformations, these local views can be registered to recover ℳ. Similarly, Φk Uk

can be viewed to be a local view of ℳ in the d-dimensional embedding space ℝd. Again,

using rigid transformations, these local views can be registered to obtain the d-dimensional

embedding of ℳ.

As there may exist multiple mappings which map Uk into ℝd, a natural strategy would be

to choose a mapping with low distortion. Multiple measures of distortion exist in literature

(Vankadara and Luxburg, 2018). The measure of distortion used in this work is as follows.

Let dg(x,y) denote the shortest geodesic distance between x, y ∈ ℳ. The distortion of Φk on

Uk as defined in (Jones et al., 2007) is given by

Distortion Φk, Uk = Φk Lip Φk
−1

Lip (1)

where Φk Lip is the Lipschitz norm of Φk given by

Φk Lip = sup
x, y ∈ Uk

x ≠ y

Φk x − Φk y 2
dg x, y ,

(2)

and similarly,

Φk
−1

Lip = sup
x, y ∈ Uk

x ≠ y

dg x, y
Φk x − Φk y 2

.
(3)

Note that Distortion Φk, Uk  is always greater than or equal to 1. If Distortion Φk, Uk = 1,

then Φk is said to have no distortion on Uk. This is achieved when the mapping Φk preserves

distances between points in Uk up to a constant scale, that is, when Φk is a similarity on Uk.

It is not always possible to obtain a mapping with no distortion. For example, there does not

exist a similarity which maps a locally curved region on a surface into a Euclidean plane.

This follows from the fact that the sign of the Gaussian curvature is preserved under simil

arity transformation which in turn follows from the Gauss’s Theorema Egregium.

1.2 Our Contributions

This paper takes motivation from the work in (Jones et al., 2007) where the authors provide

guarantees on the distortion of the coordinate charts of the manifold constructed using
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carefully chosen eigenfunctions of the Laplacian. However, this only applies to the charts

for small neighborhoods on the manifold and does not provide a global embedding. In

this paper, we present an approach to realize their work in the discrete setting and obtain

low-dimensional low distortion local views of the given data set using the eigenvectors

of the graph Laplacian. Moreover, we piece together these local views to obtain a global

embedding of the manifold. The main contributions of our work are as follows:

1. We present an algorithmic realization of the construction procedure in (Jones

et al., 2007) that applies to the discrete setting and yields low-dimensional low

distortion views of small metric balls on the given discretized manifold (See

Section 2 for a summary of their procedure).

2. We present an algorithm to obtain a global embedding of the manifold by

registering its local views. The algorithm is designed so as to embed closed as

well as non-orientable manifolds into their intrinsic dimension by tearing them

apart. It also provides gluing instructions for the boundary of the embedding

by coloring it such that the points on the boundary which are adjacent on the

manifold have the same color (see Figure 2).

LDLE consists of three main steps. In the first step, we estimate the inner product of

the Laplacian eigenfunctions’ gradients using the local correlation between them. These

estimates are used to choose eigenfunctions which are in turn used to construct low-

dimensional low distortion parameterizations Φk of the small balls Uk on the manifold. The

choice of the eigenfunctions depend on the underlying ball. A natural next step is to align

these local views Φk(Uk) in the embedding space, to obtain a global embedding. One way

to align them is to use Generalized Procrustes Analysis (GPA) (Crosilla and Beinat, 2002;

Gower, 1975; Ten Berge, 1977). However, we empirically observed that GPA is less efficient

and prone to errors due to large number of local views with small overlaps between them.

Therefore, motivated from our experimental observations and computational necessity, in the

second step, we develop a clustering algorithm to obtain a small number of intermediate

views Φm Um  with low distortion, from the large number of smaller local views Φk(Uk).

This makes the subsequent GPA based registration procedure faster and less prone to errors.

Finally, in the third step, we register intermediate views Φm Um  using an adaptation of GPA

which enables tearing of closed and non-orientable manifolds so as to embed them into their

intrinsic dimension. The results on a 2D rectangular strip and a 3D sphere are presented in

Figures 1 and 2, to motivate our approach.

The paper organization is as follows. Section 2 provides relevant background and

motivation. In Section 3 we present the construction of low-dimensional low distortion local

parameterizations. Section 4 presents our clustering algorithm to obtain intermediate views.

Section 5 registers the intermediate views to a global embedding. In Section 6 we compare

the embeddings produced by our algorithm with existing techniques on multiple data sets.

Section 7 concludes our work and discusses future directions.
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1.3 Related Work

Laplacian eigenfunctions are ubiquitous in manifold learning. A large proportion of the

existing manifold learning techniques rely on a fixed set of Laplacian eigenfunctions,

specifically, on the first few non-trivial low frequency eigenfunctions, to construct a low-

dimensional embedding of a manifold in high dimensional ambient space. These low

frequency eigenfunctions not only carry information about the global structure of the

manifold but they also exhibit robustness to the noise in the data (Coifman and Lafon,

2006). Laplacian eigenmaps (Belkin and Niyogi, 2003), Diffusion maps (Coifman and

Lafon, 2006) and UMAP (McInnes et al., 2018) are examples of such top-down manifold

learning techniques. While there are limited bottom-up manifold learning techniques in the

literature, to the best of our knowledge, none of them makes use of Laplacian eigenfunctions

to construct local views of the manifold in lower dimension.

LTSA is an example of a bottom-up approach for manifold learning whose local mappings

project local neighborhoods onto the respective tangent spaces. A local mapping in LTSA

is a linear transformation whose columns are the principal directions obtained by applying

PCA on the underlying neighborhood. These directions form an estimate of the basis for
the tangent space. Having constructed low-dimensional local views for each neighborhood,

LTSA then aligns all the local views to obtain a global embedding. As discussed in their

work and as we will show in our experimental results, LTSA lacks robustness to the noise

in the data. This further motivates our approach of using robust low-frequency Laplacian

eigenfunctions for the construction of local views. Moreover, due to the specific constraints

used in their alignment, LTSA embeddings fail to capture the aspect ratio of the underlying

manifold (see Appendix F for details).

Laplacian eigenmaps uses the eigenvectors corresponding to the d smallest eigenvalues

(excluding zero) of the normalized graph Laplacian to embed the manifold in ℝd. It can

also be perceived as a top-down approach which directly obtains a global embedding that

minimizes Dirichlet energy under some constraints. For manifolds with high aspect ratio,

in the context of Section 1.1, the distortion of the local parameterizations based on the

restriction of these eigenvectors on local neighborhoods, could become extremely high. For

example, as shown in Figure 1, the Laplacian eigenmaps embedding of a rectangle with an

aspect ratio of 16 looks like a parabola. This issue is explained in detail in (Saito, 2018;

Chen and Meila, 2019; Dsilva et al., 2018; Blau and Michaeli, 2017).

UMAP, to a large extent, resolves this issue by first computing an embedding based on

the d non-trivial low-frequency eigenvectors of a symmetric normalized Laplacian and then

“sprinkling” white noise in it. It then refines the noisy embedding by minimizing a local

distortion measure based on fuzzy set cross entropy. Although UMAP embeddings seem to

be topologically correct, they occasionally tend to have twists and sharp turns which may be

unwanted (see Figure 1).

t-SNE takes a different approach of randomly initializing the global embedding, defining

a local t-distribution in the embedding space and local Gaussian distribution in the high

dimensional ambient space, and finally refining the embedding by minimizing the Kullback–

Leibler divergence between the two sets of distributions. As shown in Figure 1, t-SNE tends
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to output a dissected embedding even when the manifold is connected. Note that the recent

work by Kobak and Linderman (2021) showed that t-SNE with spectral initialization results

in a similar embedding as that of UMAP. Therefore, in this work, we display the output of

the classic t-SNE construction, with random initialization only.

A missing feature in existing manifold learning techniques is their ability to embed closed

manifolds into their intrinsic dimensions. For example, a sphere in ℝ3 is a 2-dimensional

manifold which can be represented by a connected domain in ℝ2 with boundary gluing

instructions provided in the form of colors. We solve this issue in this paper (see Figure 2).

2. Background and Motivation

Due to their global nature and robustness to noise, in our bottom-up approach for manifold

learning, we propose to construct low distortion (see Eq. (1)) local mappings using

low frequency Laplacian eigenfunctions. A natural way to achieve this is to restrict the

eigenfunctions on local neighborhoods. Unfortunately, the common trend of using first d
non-trivial low frequency eigenfunctions to construct these local mappings fails to produce

low distortion on all neighborhoods. This directly follows from the Laplacian Eigenmaps

embedding of a high aspect-ratio rectangle shown in Figure 1. The following example

explains that even in case of unit aspect-ratio, a local mapping based on the same set of

eigenfunctions would not incur low distortion on each neighborhood, while mappings based

on different sets of eigenfunctions may achieve that.

Consider a unit square [0,1]×[0,1] such that for every point xk in the square, Uk is the disc

of radius 0.01 centered at xk. Consider a mapping Φ1
∗ based on the first two non-trivial

eigenfunctions cos(πx) and cos(πy) of the Laplace-Beltrami operator on the square with

Neumann boundary conditions, that is,

Φ1
∗ x, y = cos πx , cos πy . (4)

As shown in Figure 3, Φ1
∗ maps the discs along the diagonals to other discs. The discs along

the horizontal and vertical lines through the center are mapped to ellipses. The skewness

of these ellipses increases as we move closer to the middle of the edges of the unit square.

Thus, the distortion of Φ1
∗ is low on the discs along the diagonals and high on the discs close

to the middle of the edges of the square.

Now, consider a different mapping based on another set of eigenfunctions,

Φ2
∗ x, y = cos 5πx , cos 5πy . (5)

Compared to Φ1
∗, Φ2

∗ produces almost no distortion on the discs of radius 0.01 centered at

(0.1, 0.5) and (0.9, 0.5) (see Figure 3). Therefore, in order to achieve low distortion, it seem

to make sense to construct local mappings for different regions based on different sets of

eigenfunctions.

Kohli et al. Page 5

J Mach Learn Res. Author manuscript; available in PMC 2022 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The following result from (Jones et al., 2007) manifests the above claim as it shows that,

for a given small neighborhood on a Riemannian manifold, there always exist a subset

of Laplacian eigenfunctions such that a local parameterization based on this subset is

bilipschitz and has bounded distortion. A more precise statement follows.

Theorem 1 ((Jones et al., 2007), Theorem 2.2.1). Let ℳ, g  be a d-dimensional Riemannian
manifold. Let ∆g be the Laplace-Beltrami operator on it with Dirichlet or Neumann
boundary conditions and let ϕi be an eigenfunction of ∆g with eigenvalue λi. Assume that
ℳ = 1 where ℳ  is the volume of ℳ and the uniform ellipticity conditions for ∆g are
satisfied. Let xk ∈ ℳ and rk be less than the injectivity radius at xk (the maximum radius

where the the exponential map is a diffeomorphism). Then, there exists a constant κ > 1

which depends on d and the metric tensor g such that the following hold. Let ρ ≤ rk and
Bk ≡ Bκ−1ρ xk  where

Bϵ x = y ∈ ℳ dg x, y < ϵ . (6)

Then there exist i1,i2,...,id such that, if we let

γki =
∫Bk

ϕi
2 y dy

Bk

−1/2

(7)

then the map

Φk:Bk ℝd

x γki1ϕi1 x , …, γkidϕid x
(8)

is bilipschitz such that for any y1,y2 ∈ Bk it satisfies

κ−1

ρ dg y1, y2 ≤ Φk y1 − Φk y2 ≤ κ
ρ dg y1, y2 , (9)

where the associated eigenvalues satisfy

κ−1ρ−2 ≤ λi1, …, λid ≤ κρ−2, (10)

and the distortion is bounded from above by κ2 i.e.

sup
y1, y2 ∈ Bk

y1 ≠ y2

Φk y1 − Φk y2
dg y1, y2

sup
y1, y2 ∈ Bk

y1 ≠ y2

dg y1, y2
Φk y1 − Φk y2

≤ κ
ρ

ρ
κ−1 = κ2 .

(11)

Motivated by the above result, we adopt the form of local paramterizations Φk in Eq. (8) as

local mappings in our work. The main challenge then is to identify the set of eigenfunctions

for a given neighborhood such that the resulting parameterization produces low distortion on
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it. The existence proof of the above theorem by Jones et al. (2007) suggests a procedure to

identify this set in the continuous setting. Below, we provide a sketch of their procedure and

in Section 3 we describe our discrete realization of it.

2.1 Eigenfunction Selection in the Continuous Setting

Before describing the procedure used in (Jones et al., 2007) to choose the eigenfunctions,

we first provide some intuition about the desired properties for the chosen eigenfunctions

ϕi1, …, ϕid so that the resulting parameterization Φk has low distortion on Bk.

Consider the simple case of Bk representing a small open ball of radius κ−1ρ around xk in ℝd

equipped with the standard Euclidean metric. Then the first-order Taylor approximation of

Φk(x), x ∈ Bk, about xk is given by

Φk x ≈ Φk xk + J x − xk where J = γki1∇ϕi1 xk …γkid∇ϕid xk
T . (12)

Note that γkis are positive scalars constant with respect to x. Now, Distortion(Φk,Bk) = 1 if

and only if Φk preserves distances between points in Bk up to a constant scale (see Eq. (1)).

That is,

Φk x − Φk y 2 = c x − y 2 ∀x, y ∈ Bk and for some constant c > 0. (13)

Using the first-order approximation of Φk we get,

J x − y 2 ≈ c x − y 2 ∀x, y ∈ Bk and for some constant c > 0. (14)

Therefore, for low distortion Φk, J must approximately behave like a similarity

transformation and therefore, J needs to be approximately orthogonal up to a constant scale.

In other words, the chosen eigenfunctions should be such that γki1∇ϕi1 xk , …, γkid∇ϕid xk

are close to being orthogonal and have similar lengths. The same intuition holds in the

manifold setting too. The construction procedure described in (Jones et al., 2007) aims to

choose eigenfunctions such that

a. they are close to being locally orthogonal, that is, ∇ϕi1 xk , …, ∇ϕid xk  are

approximately orthogonal, and

b. that their local scaling factors γkis ∇ϕis xk 2 are close to each other.

Note. Throughout this paper, we use the convention ∇ϕi xk = ∇ ϕi ∘ expxk 0  where

expxk is the exponential map at xk. Therefore, ∇ϕi(xk) can be represented by a d-dimensional

vector in a given d-dimensional orthonormal basis of Txkℳ. Even though the representation

of these vectors depend on the choice of the orthonormal basis, the value of the canonical

inner product between these vectors, and therefore the 2-norm of the vectors, are the same

across different basis. This follows from the fact that an orthogonal transformation preserves

the inner product.
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Remark 1. Based on the above first order approximation, one may take our local mappings
Φk to also be projections onto the tangent spaces. However, unlike LTSA (Zhang and Zha,
2003) where the basis of the tangent space is estimated by the local principal directions,
in our case it is estimated by the locally orthogonal gradients of the global eigenfunctions
of the Laplacian. Therefore, LTSA relies only on the local structure to estimate the tangent
space while, in a sense, our method makes use of both local and global structure of the
manifold.

A high level overview of the procedure presented in (Jones et al., 2007) to choose

eigenfunctions which satisfy the properties in (a) and (b) follows.

1. A set Sk of the indices of candidate eigenfunctions is chosen such that i ∈ Sk if

the length of γki∇ϕi(xk) is bounded from above by a constant, say C.

2. A direction p1 ∈ Txkℳ is selected at random.

3. Subsequently i1 ∈ Sk is selected so that γki1 ∇ϕi1 xk
T p1  is sufficiently large.

This motivates γki1∇ϕi1 xk  to be approximately in the same direction as p1 and

the length of it to be close to the upper bound C.

4. Then, a recursive strategy follows. To find the s-th eigenfunction for s
∈ {2,...,d}, a direction ps ∈ Txkℳ is chosen such that it is orthogonal to

∇ϕi1 xk , …, ∇ϕis − 1 xk .

5. Subsequently, is ∈ Sk is chosen so that γkis ∇ϕis xk
T ps  is sufficiently large.

Again, this motivates γkis∇ϕis xk  to be approximately in the same direction as ps

and the length of it to be close to the upper bound C.

Since ps is orthogonal to ∇ϕi1 xk , …, ∇ϕis − 1 xk  and the direction of γkis∇ϕis is

approximately the same as ps, therefore (a) is satisfied. Since for all s ∈ 1, …, d ,

γkis∇ϕis xk  has a length close to the upper bound C, therefore (b) is also satisfied. The

core of their work lies in proving that these ϕi1, …, ϕid always exist under the assumptions

of the theorem such that the resulting parameterization Φk has bounded distortion (see Eq.

(11)). This bound depends on the intrinsic dimension d and the natural geometric properties

of the manifold. The main challenge in practically realizing the above procedure lies in the

estimation of ∇ϕis xk
T ps. In Section 3, we overcome this challenge.

3. Low-Dimensional Low Distortion Local Parameterization

In the procedure to choose ϕi1, …, ϕid to construct Φk as described above, the selection

of the first eigenfunction ϕi1 relies on the derivative of the eigenfunctions at xk along an

arbitrary direction p1 ∈ Txkℳ, that is, on ∇ϕi xk
T p1. In our algorithmic realization of the

construction procedure, we take p1 to be the gradient of an eigenfunction at xk itself (say

∇ϕj(xk)). We relax the unit norm constraint on p1; note that this will neither affect the
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math nor the output of our algorithm. Then the selection of ϕi1 would depend on the inner

products ∇ϕi xk
T ∇ϕj xk . The value of this inner product does not depend on the choice

of the orthonormal basis for Txkℳ. We discuss several ways to obtain a numerical estimate

of this inner product by making use of the local correlation between the eigenfunctions

(Steinerberger, 2017; Cloninger and Steinerberger, 2018). These estimates are used to select

the subsequent eigenfunctions too.

In Section 3.1, we first review the local correlation between the eigenfunctions of the

Laplacian. In Theorem 2 we show that the limiting value of the scaled local correlation

between two eigenfunctions equals the inner product of their gradients. We provide two

proofs of the theorem where each proof leads to a numerical procedure described in Section

3.2, followed by examples to empirically compare the estimates. Finally, in Section 3.3,

we use these estimates to obtain low distortion local parameterizations of the underlying

manifold.

3.1 Inner Product of Eigenfunction Gradients using Local Correlation

Let ℳ, g  be a d-dimensional Riemannian manifold with or without boundary, rescaled so

that ℳ ≤ 1. Denote the volume element at y by ωg(y). Let ϕi and ϕj be the eigenfunctions

of the Laplacian operator ∆g (see statement of Theorem 1) with eigenvalues λi and λj. Let

xk ∈ ℳ and define

Ψkij y = ϕi y − ϕi xk ϕj y − ϕj xk . (15)

Then the local correlation between the two eigenfunctions ϕi and ϕj at the point xk at scale

tk−1/2 as defined in (Steinerberger, 2017; Cloninger and Steinerberger, 2018) is given by

Akij = ∫
ℳ

p tk, xk, y Ψkij y ωg y , (16)

where p(t,x,y) is the fundamental solution of the heat equation on ℳ, g . As noted in

(Steinerberger, 2017), for tk, xk ∈ ℝ ≥ 0 × ℳ fixed, we have

p tk, xk, y
tk−d/2

0
dg xk, y ≤ tk−1/2

otherwise
and ∫

M
p tk, xk, y ωg y = 1 . (17)

Therefore, p(tk,xk,·) acts as a local probability measure centered at xk with scale tk−1/2 (see

Eq. (67) in Appendix A for a precise form of p). We define the scaled local correlation to be

the ratio of the local correlation Akij and a factor of 2tk.

Theorem 2. Denote the limiting value of the scaled local correlation by Akij,

Akij = lim
tk 0

Akij
2tk (18)
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Then Akij equals the inner product of the gradients of the eigenfunctions ϕi and ϕj at xk, that

is,

Akij = ∇ϕi xk
T ∇ϕj xk . (19)

Two proofs are provided in Appendix A and B. A brief summary is provided below.

Proof 1. In the first proof we choose a sufficiently small ϵk and show that

lim
tk 0

Akij = lim
tk 0∫Bϵk xk

G tk, xk, y Ψkij y ωg y (20)

where Bϵ(x) is defined in Eq. (6) and

G t, x, y = e−dg x, y 2/4t

4πt d/2 . (21)

Then, by using the properties of the exponential map at xk and applying basic techniques in

calculus, we show that limtk 0Akij/2tk evaluates to ∇ϕi(xk)T ∇ϕj(xk).

Proof 2. In the second proof, as in (Steinerberger, 2014, 2017), we used the Feynman-Kac

formula,

Akij = e−tkΔg ϕi − ϕi xk ϕj − ϕj xk xk (22)

and note that

lim
tk 0

Akij
2tk

= 1
2

∂Akij
∂tk tk = 0

= −1
2 Δg ϕi − ϕi xk ϕj − ϕj xk xk . (23)

Then, by applying the formula of the Laplacian of the product of two functions, we show

that the above equation equals ∇ϕi(xk)T ∇ϕj(xk).

3.2 Estimate of Akij in the Discrete Setting

To apply Theorems 1 and 2 in practice on data, we need an estimate of Akij in the discrete

setting. There are several ways to obtain this estimate. A generic way is by using the

algorithms (Cheng and Wu, 2013; Aswani et al., 2011) based on Local Linear Regression

(LLR) to estimate the gradient vector ∇ϕi(xk) itself from the values of ϕi in a neighbor of xk.

An alternative approach is to use a finite sum approximation of Eq. (20) combined with Eq.

(18). A third approach is based on the Feynman-Kac formula where we make use of Eq. (23)

in the discrete setting. In the following we explain the latter two approaches.

3.2.1 FINITE SUM APPROXIMATION—Let xk k = 1
n  be uniformly distributed points on ℳ, g .

Let de xk, xk′  be the distance between xk and xk′. The accuracy with which Akij can be

estimated mainly depends on the accuracy of de(· , ·) to the local geodesic distances. For
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simplicity, we use de xk, xk′  to be the Euclidean distance xk − xk′ 2. A more accurate

estimate of the local geodesic distances can be computed using the method described in (Li

and Dunson, 2019).

We construct a sparse unnormalized graph Laplacian L using Algo. 1, where the weight

matrix K of the graph edges is defined using the Gaussian kernel. The bandwidth of the

Gaussian kernel is set using the local scale of the neighborhoods around each point as in

self-tuning spectral clustering (Zelnik-Manor and Perona, 2005). Let ϕi be the ith non-trivial

eigenvector of L and denote ϕi(xj) by ϕij.

Algorithm1:  Sparse Unnormalized Graph Laplacian based on (Zelnik‐Manor and
Perona, 2005)

Input:de xk, xk′ k, k′ = 1
n , knn, ktune where ktune ≤ knn

Output:L
1 Nk set of indices of knn nearest neighbours of xk based on de xk, ⋅ ;
2 σk de xk, xk∗ where xk∗ is the ktuneth nearest neighbor of xk;

3 Kkk 0, Kkk′ e−de xk, xk′
2/σkσk′, k′ ∈ Nk;

4 Dkk ∑k′Kkk′, Dkk′ 0, k ≠ k′;

5 L D − K;

We estimate Akij by evaluating the scaled local correlation Akij/2tk at a small value of

tk. The limiting value of Akij is estimated by substituting a small tk in the finite sum

approximation of the integral in Eq. (20). The sum is taken on a discrete ball of a small

radius ϵk around xk and is divided by 2tk to obtain an estimate of Akij.

We start by choosing ϵk to be the distance of klvth nearest neighbor of xk where klv is a

hyperparameter with a small integral value (subscript lv stands for local view). Thus,

ϵk = distance to the klvth nearest neighbor of xk . (24)

Then the limiting value of tk is given by

chi2inv p, d 2tk = ϵk tk = 1
2

ϵk
2

chi2inv p, d , (25)

where chi2inv is the inverse cdf of the chi-squared distribution with d degrees of freedom

evaluated at p. We take p to be 0.99 in our experiments. The rationale behind the above

choice of tk is described in Appendix C.

Now define the discrete ball around xk as

Uk = xk′ de xk, xk′ ≤ ϵk . (26)

Let Uk denote the kth local view of the data in the high dimensional ambient space. For

convenience, denote the estimate of G tk, xk, xk′  by Gkk′ where G is as in Eq. (21). Then
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Gkk′ =

exp −de xk, xk′
2/4tk

∑x ∈ Ukexp −de xk, x 2/4tk
, xk′ ∈ Uk − xk

0 , otherwise .

(27)

Finally, the estimate of Akij is given by

Akij = 1
2tk

Gk
T ϕi − ϕik ⊙ ϕj − ϕjk (28)

where Gk is a column vector containing the kth row of the matrix G and ⊙ represents the

Hadamard product.

3.2.2 ESTIMATION BASED ON FEYNMAN-KAC FORMULA—This approach to estimate Akij is

simply the discrete analog of Eq. (23),

Akij = −1
2 Lk

T ϕi − ϕik ⊙ ϕj − ϕjk (29)

where Lk is a column vector containing the kth row of L. A variant of this approach which

results in better estimates in the noisy case uses a low rank approximation of L using its first

few eigenvectors (see Appendix H).

Remark 2. It is not a coincidence that Eq. (28) and Eq. (29) look quite similar. In fact, if

we take T to be a diagonal matrix with tk k = 1
n  as the diagonal, then the matrix T−1(I −G)

approximates ∆g in the limit of tk k = 1
n  tending to zero. Replacing L with T−1(I − G) and

therefore Lk with (ek − Gk)/tk reduces Eq. (29) to Eq. (28). Here ek is a column vector with
kth entry as 1 and rest zeros. Therefore the two approaches are the same in the limit.

Remark 3. The above two approaches can also be generalized to compute the ∇fi(xk)T

∇fj(xk) for arbitrary C2 mappings fi and fj from ℳ to ℝ ( ∇fi xk = ∇ fi ∘ expxk 0  as per

our convention). To achieve this, simply replace ϕi and ϕj with fi and fj in Eq. (28) and Eq.
(29).

Example. This example will follow us throughout the paper. Consider a square grid [0, 1]

× [0, 1] with a spacing of 0.01 in both x and y direction. With knn = 49, ktune = 7 and

de xk, xk′ = xk − xk′ 2 as input to the Algo. 1, we construct the graph Laplacian L. Using

klv = 25, d = 2 and p = 0.99, we obtain the discrete balls Uk and tk. The 3rd and 8th

eigenvectors of L and the corresponding analytical eigenfunctions are then obtained. The

analytical value of Ak38 is displayed in Figure 4, followed by its estimate using LLR (Cheng

and Wu, 2013), finite sum approximation and Feynman-Kac formula based approaches. The

analytical and the estimated values are normalized by maxkAkij to bring them to the same

scale. The absolute error due to these approaches are shown below the estimates.
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Even though, in this example, the Feynman-Kac formulation seem to have a larger error, in

our experiments, no single approach seem to be a clear winner across all the examples. This

becomes clear in Appendix H where we provided a comparison of these approaches on a

noiseless and a noisy Swiss Roll. The results shown in this paper are based on finite sum

approximation to estimate Akij.

3.3 Low Distortion Local Parameterization from Laplacian Eigenvectors

We use ∇ϕi ≡ ∇ϕi(xk) for brevity. Using the estimates of Akij, we now present an algorithmic

construction of low distortion local parameterization Φk which maps Uk into ℝd. The

pseudocode is provided below followed by a full explanation of the steps and a note on the

hyperparameters. Before moving forward, it would be helpful for the reader to review the

construction procedure in the continuous setting in Section 2.1.

An estimate of γki is obtained by the discrete analog of Eq. (7) and is given by

γki = Root‐Mean‐Square ϕij xj ∈ Uk
−1 . (30)

Step 1. Compute a set Sk of candidate eigenvectors for Φk.—Based on the

construction procedure following Theorem 1, we start by computing a set Sk of candidate

eigenvectors to construct Φk of Uk. There is no easy way to retrieve the set Sk in the discrete

setting as in the procedure. Therefore, we make the natural choice of using the first N

nontrivial eigenvectors ϕi i = 1
N  of L corresponding to the N smallest eigenvalues λi i = 1

N ,

with sufficiently large gradient at xk, as the set Sk. The large gradient constraint is required

for the numerical stability of our algorithm. Therefore, we set Sk to be,

Sk = i ∈ 1, … . N ∇ϕi
2 ≥ θ1 = i ∈ 1, …, N Akii ≥ θ1 , (31)

where θ1 is τ1-percentile of the set Akii i = 1
N  and the second equality follows from Eq. (19).

Here N and τ1 ∈ 0, 100  are hyperparameters.
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Step 2. Choose a direction p1 ∈ Txkℳ.—The unit norm constraint on p1 is relaxed.

This will neither affect the math nor the output of our algorithm. Since p1 can be arbitrary

we take p1 to be the gradient of an eigenvector r1, that is ∇ϕr1. The choice of r1 will

determine ϕi1. To obtain a low frequency eigenvector, r1 is chosen so that the eigenvalue λr1
is minimal, therefore

r1 = argmin
j ∈ Sk

λj .
(32)

Step 3. Find i1 ∈ Sk such that γki1 ∇ϕi1
T p1  is sufficiently large.—Since p1 = ∇ϕr1,

using Eq. (19), the formula for ∇ϕi
T p1 becomes

∇ϕi
T p1 = ∇ϕi

T ∇ϕr1 = Akir1 . (33)

Then we obtain the eigenvector ϕi1 so that γki1 ∇ϕi1
T p1  is larger than a certain threshold. We

do not know what the value of this threshold would be in the discrete setting. Therefore, we

first define the maximum possible value of γki1 ∇ϕi
T p1  using Eq. (33) as

α1 = max
i ∈ Sk

γki ∇ϕi
T p1 = max

i ∈ Sk
γki Akir1 . (34)

Then we take the threshold to be δ1α1 where δ1 ∈ (0,1] is a hyperparameter. Finally, to

obtain a low frequency eigenvector ϕi1, we choose i1 such that

i1 = argmin
i ∈ Sk

λi:γki ∇ϕi
T p1 ≥ δ1α1 = argmin

i ∈ Sk
λi:γki Akir1 ≥ δ1α1 . (35)

After obtaining ϕi1, we use a recursive procedure to obtain the s-th eigenvector ϕis where s ∈

{2,...,d} in order.

Step 4. Choose a direction ps ∈ Txkℳ orthogonal to ∇ϕi1, …, ∇ϕis.—Again

the unit norm constraint will be relaxed with no change in the output. We are going to take

ps to be the component of ∇ϕrs orthogonal to ∇ϕi1, …, ∇ϕis for a carefully chosen rs. For

convenience, denote by Vs the matrix with ∇ϕi1, …, ∇ϕis − 1 as columns and let ℛ V s  be the

range of Vs. Let ϕrs be an eigenvector such that ∇ϕrs ∉ ℛ V s . To find such an rs, we define

Hkij
s = ∇ϕi

T I − V s V s
TV s

−1V s
T ∇ϕj (36)
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= Akij − Akii1…Akiis − 1
Aki1i1 Aki1i2 … Aki1is − 1

Aki2i1 Aki2i2 … Aki2is − 1

⋮ ⋮ ⋱ ⋮
Akis − 1i1 Akis − 1i2 … Akis − 1is − 1

−1 Aki1j

Aki2j

⋮
Akis − 1j

(37)

Note that Hkii
s  is the squared norm of the projection of ∇ϕi onto the vector space orthogonal

to ℛ V s . Clearly ∇ϕi ∉ ℛ V s  if and only if Hkii
s > 0. To obtain a low frequency eigenvector

ϕrs such that Hkrsrs
s > 0 we choose

rs = argmin
i ∈ Sk

λi:Hkii
s ≥ θs (38)

where θs is the τs-percentile of the set Hkii
s : i ∈ Sk  and τs ∈ 0, 100  is a hyperparameter.

Then we take ps to be the component of ∇ϕrs which is orthogonal to ℛ V s ,

ps = I − V s V s
TV s

−1V s
T ∇ϕrs . (39)

Step 5. Find is ∈ Sk such that γkis ∇ϕis
T ps  is sufficiently large.—Using Eq. (36,

39), we note that

∇ϕi
T ps = Hkirs

s . (40)

To obtain ϕis such that γkis ∇ϕis
T ps  is greater than a certain threshold, as in step 3, we first

define the maximum possible value of γkis ∇ϕi
T ps  using Eq. (40) as,

αs = max
i ∈ Sk

γki ∇ϕi
T ps = max

i ∈ Sk
γki Hkirs

s . (41)

Then we take the threshold to be δsαs where δs ∈ [0,1] is a hyperparameter. Finally, to

obtain a low frequency eigenvector ϕis we choose is such that

is = argmin
i ∈ Sk

λi:γki ∇ϕi
T ps ≥ δsαs = argmin

i ∈ Sk
λi:γki Hkirs

s ≥ δsαs . (42)

In the end we obtain a d-dimensional parameterization Φk of Uk given by
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Φk ≡ γki1ϕi1, …, γkidϕid where

Φk xk′ = γki1ϕi1k′, …, γkidϕidk′ and
Φk Uk = Φk xk′ xk′ ∈ Uk .

(43)

We call Φk(Uk) the kth local view of the data in the d-dimensonal embedding space. It is a

matrix with |Uk| rows and d columns. Denote the distortion of Φk′ on Uk by ζkk′. Using Eq.

(1) we obtain

ζkk′ = Distortion Φk′, Uk (44)

= sup
xl, xl′ ∈ Uk

xl ≠ xl′

Φk′ xl − Φk′ xl′
de xl, xl′

sup
xl, xl′ ∈ Uk

xl ≠ xl′

de xl, xl′
Φk′ xl − Φk′ xl′

.
(45)

Postprocessing.—The obtained local parameterizations are post-processed so as to

remove the anomalous parameterizations having unusually high distortion. We replace

the local parameterization Φk of Uk by that of a neighbor, Φk′ where xk′ ∈ Uk, if the

distortion ζkk′ produced by Φk′ on Uk is smaller than the distortion ζkk produced by Φk

on Uk. If ζkk′ < ζkk for multiple k′ then we choose the parameterization which produces

the least distortion on Uk. This procedure is repeated until no replacement is possible. The

pseudocode is provided below.

A note on hyperparameters N, τs, δs s = 1
d

.—Generally, N should be small so that the

low frequency eigenvectors form the set of candidate eigenvectors. In almost all of our

experiments we take N to be 100. The set of τs, δs s = 1
d  is reduced to two hyperparameters,

one for all τs‘s and one for all δs’s. As explained above, τs enforces certain vectors to be

non-zero and δs enforces certain directional derivatives to be large enough. Therefore, a

small value of τs in (0, 100) and a large value of δs in (0, 1] is suitable. In most of our

experiments, we used a value of 50 for all τs and a value of 0.9 for all δs. Our algorithm is

not too sensitive to the values of these hyperparameters. Other values of N, τs and δs would

also result in the embeddings with high visual quality.
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Example. We now build upon the example of the square grid at the end of Section 3.2.

The values of the additional inputs are N = 100, τs = 50 and δs = 0.9 for all s ∈ {1,...,d}.

Using Algo. 2 and 3 we obtain 104 local views Uk and Φk(Uk) where |Uk| = 25 for all k.

In the left image of Figure 5, we colored each point xk with the distortion ζkk of the local

parameterization Φk on Uk. The mapped discrete balls Φk(Uk) for some values of k are also

shown in Figure 30 in the Appendix H.

Remark 4. Note that the parameterizations of the discrete balls close to the boundary have
higher distortion. This is because the injectivity radius at the points close to the boundary is
low and precisely zero at the points on the boundary. As a result, the size of the balls around
these points exceeds the limit beyond which Theorem 1 is applicable.

At this point we note the following remark in (Jones et al., 2007).

Remark 5. As was noted by L. Guibas, when M has a boundary, in the case of Neumann
boundary values, one may consider the “doubled” manifold, and may apply the result in
Theorem 1 for a possibly larger rk.

Due to the above remark, assuming that the points on the boundary are known, we computed

the distance matrix for the doubled manifold using the method described in (Lafon, 2004).

Then we recomputed the local parameterizations Φk keeping all other hyperparameters the

same as before. In the right image of Figure 5, we colored each point xk with the distortion

of the updated parameterization Φk on Uk. Note the reduction in the distortion of the

paramaterizations for the neighborhoods close to the boundary. The distortion is still high

near the corners.

3.4 Time Complexity

The combined worst case time complexity of Algo. 1, 2 and 3 is

O n N2 klv + d + klv
3 Npostd  where Npost is the number of iterations it takes to converge

in Algo. 3 which was observed to be less than 50 for all the examples in this paper. It took

about a minute1 to construct the local views in the above example as well as in all the

examples in Section 6.
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4. Clustering for Intermediate Views

Recall that the discrete balls Uk are the local views of the data in the high dimensional

ambient space. In the previous section, we obtained the mappings Φk to construct the local

views Φk(Uk) of the data in the d-dimensional embedding space. As discussed in Section

1.2, one can use the GPA (Crosilla and Beinat, 2002; Gower, 1975; Ten Berge, 1977)

to register these local views to recover a global embedding. In practice, too many small

local views (high n and small |Uk|) result in extremely high computational complexity.

Moreover, small overlaps between the local views makes their registration susceptible to

errors. Therefore, we perform clustering to obtain M ≪ n intermediate views, Um and

Φm Um , of the data in the ambient space and the embedding space, respectively. This

reduces the time complexity and increases the overlaps between the views, leading to their

quick and robust registration.

4.1 Notation

Our clustering algorithm is designed so as to ensure low distortion of the parameterizations

Φm on Um. We first describe the notation used and then present the pseudocode followed by

a full explanation of the steps. Let ck be the index of the cluster xk belongs to. Then the set

of points which belong to cluster m is given by

Cm = xk ck = m . (46)

Denote by cUk the set of indices of the neighboring clusters of xk. The neighboring points of

xk lie in these clusters, that is,

cUk = ck′ xk′ ∈ Uk . (47)

1.Machine specification: MacOS version 11.4, Apple M1 Chip, 16GB RAM.
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We say that a point xk lies in the vicinity of a cluster m if m ∈ cUk. Let Um denote the mth

intermediate view of the data in the ambient space. This constitutes the union of the local

views associated with all the points belonging to cluster m, that is,

Um = ∪
k: xk ∈ Cm

Uk . (48)

Clearly, a larger cluster means a larger intermediate view. In particular, addition of xk to Cm
grows the intermediate view Um to Um ∪ Uk,

Cm Cm ∪ xk Um Um ∪ Uk (49)

Let Φm be the d-dimensional parameterization associated with the mth cluster. This

parameterization maps Um to Φm Um , the mth intermediate view of the data in the

embedding space. Note that a point xk generates the local view Uk (see Eq. (26)) which

acts as the domain of the parameterization Φk. Similarly, a cluster Cm obtained through our

procedure, generates an intermediate view Um (see Eq. (48)) which acts as the domain of

the parameterizationΦm. Overall, our clustering procedure replaces the notion of a local view

per an individual point by an intermediate view per a cluster of points.

4.2 Low Distortion Clustering

Initially, we start with n singleton clusters where the point xk belongs to the kth cluster

and the parameterization associated with the kth cluster is Φk. Thus, ck = k, Cm = xm
and Φm = Φm for all k,m ∈ {1,...,n}. This automatically implies that initially Um = Um. The

parameterizations associated with the clusters remain the same throughout the procedure.

During the procedure, each cluster Cm is perceived as an entity which wants to grow the

domain Um of the associated parameterization Φm by growing itself (see Eq. 49), while

simultaneously keeping the distortion of Φm on Um low (see Eq. 45). To achieve that, each

cluster Cm places a careful bid bm xk for each point xk. The global maximum bid is

identified and the underlying point xk is relabelled to the bidding cluster, hence updating

ck. With this relabelling, the bidding cluster grows and the source cluster shrinks. This

procedure of shrinking and growing clusters is repeated until all non-empty clusters are large

enough, i.e. have a size at least ηmin, a hyperparameter. In our experiments, we choose ηmin

from {5,10,15,20,25}. We iterate over η which varies from 2 to ηmin.

In the η-th iteration, we say that the mth cluster is small if it is non-empty and has a size less

than η, that is, when Cm ∈ 0, η . During the iteration, the clusters either shrink or grow until

no small clusters remain. Therefore, at the end of the η-th iteration the non-empty clusters

are of size at least η. After the last (ηminth) iteration, each non-empty cluster will have at

least ηmin points and the empty clusters are pruned away.

Bid by cluster m for xk.—In the η-th iteration, we start by computing the bid bm xk
by each cluster m for each point xk. The bid function is designed so as to satisfy the
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following conditions. The first two conditions are there to halt the procedure while the last

two conditions follow naturally. These conditions are also depicted in Figure 6.

1. No cluster bids for the points in large clusters. Since xk belongs to cluster ck

therefore, if Cck > η then the bm xk is zero for all m.

2. No cluster bids for a point in another cluster whose size is bigger than its own

size. Therefore, if Cm < Cck  then again bm xk is zero.

3. A cluster bids for the points in its own vicinity. Therefore, if m ∉ cUk (see Eq. 47)

then bm xk is zero.

4. Recall that a cluster m aims to grow while keeping the distortion of associated

parameterization Φm low on its domain Um. If the mth cluster acquires the point

xk, Um grows due to the addition of Uk to it (see Eq. (48)), and so does the

distortion of Φm on it. Therefore, to ensure low distortion, the natural bid by Cm

for the point xk, bm xk, is Distortion Φm, Uk ∪ Um
−1 (see Eq. 45).

Combining the above conditions, we can write the bid by cluster m for the point xk as,

bm xk =
Distortion Φm, Uk ∪ Um

−1

0
if Cck ∈ 0, η ∧ m ∈ cUk ∧ Cm ≥ Cck

otherwise.

(50)

In the practical implementation of above equation, cUk and Um are computed on the fly using

Eq. (47, 48).

Greedy procedure to grow and shrink clusters.—Given the bids by all the clusters

for all the points, we grow and shrink the clusters so that at the end of the current iteration

η, each non-empty cluster has a size at least η. We start by picking the global maximum

bid, say bm xk. Let xk be in the cluster s (note that ck, the cluster of xk, is s before xk is

relabelled). We relabel ck to m, and update the set of points in clusters s and m, Cs and Cm,

using Eq. (46). This implicitly shrinks Us and grows Um (see Eq. 48) and affects the bids by

clusters m and s or the bids for the points in these clusters. Denote the set of pairs of the

indices of all such clusters and the points by

S = m′, k′ ∈ 1, …, n 2 m′ ∈ m, s or xk′ ∈ Cs ∪Cm . (51)

Then the bids bm′ xk′ are recomputed for all m′, k′ ∈ S. It is easy to verify that for all

other pairs, neither the conditions nor the distortion in Eq. (50) are affected. After this

computation, we again pick the global maximum bid and repeat the procedure until the

maximum bid becomes zero indicating that no non-empty small cluster remains. This marks

the end of the η-th iteration.
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Final intermediate views in the ambient and the embedding space.—At the end

of the last iteration, all non-empty clusters have at least ηmin points. Let M be the number

of non-empty clusters. Using the pigeonhole principle one can show that M would be less

than or equal to n/ηmin. We prune away the empty clusters and relabel the non-empty ones

from 1 to M while updating ck accordingly. With this, we obtain the clusters Cm m = 1
M

with associated parameterizations Φm m = 1
M . Finally, using Eq. (48), we obtain the M

intermediate views Um m = 1
M  of the data in the ambient space. Then, the intermediate views

of the data in the embedding space are given by Φm Um m = 1
M . Note that Φm Um  is a matrix

with Um  rows and d columns (see Eq. (43)).

Example. We continue with our example of the square grid which originally contained

about 104 points. Therefore, before clustering we had about 104 small local views Uk and

Φk(Uk), each containing 25 points. After clustering with ηmin = 10, we obtained 635 clusters

and therefore that many intermediate views Um and Φm Um  with an average size of 79.

When the points on the boundary are known then we obtained 562 intermediate views with

an average size of 90. Note that there is a trade-off between the size of the intermediate

views and the distortion of the parameterizations used to obtain them. For convenience,

define ζmm to be the distortion of Φm on Um using Eq. (45). Then, as the size of the views

are increased (by increasing ηmin), the value of ζmm would also increase. In Figure 7 we

colored the points in cluster m, Cm, with ζmm. In other words, xk is colored by ζckck. Note

the increased distortion in comparison to Figure 5.

4.3 Time Complexity

Our practical implementation of Algo. 4 uses memoization for speed up. It took about a

minute to construct intermediate views using in the above example with n = 104, klv = 25, d
= 2 and ηmin = 10, and it took less than 2 minutes for all the examples in Section 6. It was

empirically observed that the time for clustering is linear in n, ηmin and d while it is cubic in

klv.

5. Global Embedding using Procrustes Analysis

In this section, we present an algorithm based on Procrustes analysis to align the

intermediate views Φm Um  and obtain a global embedding. The M views Φm Um  are

transformed by an orthogonal matrix Tm of size d × d, a d-dimensional translation vector

vm and a positive scalar bm as a scaling component. The transformed views are given by

Φm
g Um  such that

Φm
g xk = bmΦm xk Tm + vm for all xk ∈ Um . (52)

First we state a general approach to estimate these parameters, and its limitations in Section

5.1. Then we present an algorithm in Section 5.2 which computes these parameters and

a global embedding of the data while addressing the limitations of the general procedure.
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In Section 5.3 we describe a simple modification to our algorithm to tear apart closed

manifolds. In Appendix F, we contrast our global alignment procedure with that of LTSA.

5.1 General Approach for Alignment

In general, the parameters Tm, vm, bm m = 1
M  are estimated so that for all m and m′, the two

transformed views of the overlap between Um and Um′, obtained using the parameterizations

Φm
g  and Φm′

g
, align with each other. To be more precise, define the overlap between the mth

and the m′th intermediate views in the ambient space as the set of points which lie in both

the views,

Umm′ = Um ∩ Um′ . (53)

In the ambient space, the mth and the m′th views are neighbors if Umm′ is non-empty. As

shown in Figure 8 (left), these neighboring views trivially align on the overlap between

them. It is natural to ask for a low distortion global embedding of the data. Therefore, we

must ensure that the embeddings of Umm′ due to the mth and the m′th view in the embedding

space, also align with each other. Thus, the parameters Tm, vm, bm m = 1
M  are estimated so that

Φm
g Umm′  aligns with Φm′

g Umm′  for all m and m′. However, due to the distortion of the

parameterizations it is usually not possible to perfectly align the two embeddings (see Figure

8). We can represent both embeddings of the overlap as matrices with Umm′  rows and d

columns. Then we choose the measure of the alignment error to be the squared Frobenius

norm of the difference of the two matrices. The error is trivially zero if Umm′ is empty.

Overall, the parameters are estimated so as to minimize the following alignment error

ℒ Tm, vm, bm m = 1
M = 1

2M ∑m = 1
m′ = 1

M
Φm

g Umm′ − Φm′
g Umm′ F

2
.

(54)

In theory, one can start with a trivial initialization of Tm, vm and bm as Id, 0 and 1, and

directly use GPA (Crosilla and Beinat, 2002; Gower, 1975; Ten Berge, 1977) to obtain a

local minimum of the above alignment error. This approach has two issues.

1. Like most optimization algorithms, the rate of convergence to a local minimum

and the quality of it depends on the initialization of the parameters. We

empirically observed that with a trivial initialization of the parameters, GPA may

take a great amount of time to converge and may also converge to an inferior

local minimum.

2. Using GPA to align a view with all of its adjacent views would prevent us from

tearing apart closed manifolds; as an example see Figure 11.

These issues are addressed in subsequent Sections 5.2 and 5.3, respectively.
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5.2 GPA Adaptation for Global Alignment

First we look for a better than trivial initialization of the parameters so that the views

are approximately aligned. The idea is to build a rooted tree where nodes represent the

intermediate views. This tree is then traversed in a breadth first order starting from the root.

As we traverse the tree, the intermediate view associated with a node is aligned with the

intermediate view associated with its parent node (and with a few more views), thus giving

a better initialization of the parameters. Subsequently, we refine these parameters using a

similar procedure involving random order traversal over the intermediate views.

Initialization (Iter = 1, to tear = False).—In the first outer loop of Algo. 5, we start with

Tm = Id, vm as the zero vector and compute bm so as to bring the intermediate views Φm Um
to the same scale as their counterpart Um in the ambient space. In turn this brings all the

views to similar scale (see Figure 9 (c)). We compute the scaling component bm to be the

ratio of the median distance between unique points in Um and in Φm Um , that is,

bm = median de xk, xk′ xk, xk′ ∈ Um, xk ≠ xk′
median Φm xk − Φm xk′ 2 xk, xk′ ∈ Um, xk ≠ xk′

. (55)

Then we transform the the views in a sequence sm m = 1
M . This sequence corresponds to the

breadth first ordering of a tree starting from its root node (which represents s1th view). Let

the psm th view be the parent of the smth view. Here psm lies in {s1,...,sm−1} and it is a

neighboring view of the smth view in the ambient space, i.e. Usmpsm is non-empty. Details

about the computation of these sequences is provided in Appendix D. Note that ps1 is not

defined and consequently, the first view in the sequence (s1th view) is not transformed,

therefore Ts1 and vs1 are not updated. We also define A, initialized with s1, to keep track of

visited nodes which also represent the already transformed views. Then we iterate over m
which varies from 2 to M. For convenience, denote the current (mth) node sm by s and its

parent psm by p. The following procedure updates Ts and vs (refer to Figure 9 and 10 for an

illustration of this procedure).
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Step R1. We compute a temporary value of Ts and vs by aligning the views Φs
g Usp

and Φp
g Usp  of the overlap Usp, using Procrustes analysis (Gower et al., 2004) without

modifying bs.

Step R2. Then we identify more views to align the sth view with. We compute a subset Zs
of the set of already visited nodes A such that m′ ∈ Zs if the sth view and the m′th view are

neighbors in the ambient space. Note that, at this stage, A is the same as the set {s1,...,sm−1},

the indices of the first m − 1 views. Therefore,

Zs = m′ Usm′ ≠ 0 ∩A . (56)

Step R3. We then compute the centroid µs of the views Φm′
g Usm′ m′ ∈ Zs. Here µs is a

matrix with d columns and the number of rows given by the size of the set ∪m′ ∈ Zs Usm′.

A point in this set can have multiple embeddings due to multiple parameterizations

Φm′
g

m′ ∈ Zs depending on the overlaps Usm′ m′ ∈ Zs it lies in. The mean of these

embeddings forms a row in µs.

Step R4. Finally, we update Ts and vs by aligning the view Φs
g Usm′  with Φm′

g Usm′  for

all m′ ∈ Zs. This alignment is based on the approach in (Crosilla and Beinat, 2002; Gower,

1975) where, using the Procrustes analysis (Gower et al., 2004; MATLAB, 2018), the view

Φs
g ∪m′ ∈ Zs Usm′  is aligned with the centroid µs, without modifying bs.
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Step R5. After the sth view is transformed, we add it to the set of transformed views A.

Parameter Refinement (Iter ≥ 2, to tear = False).—At the end of the first iteration of

the outer loop in Algo. 5, we have an initialization of Tm, bm, vm m = 1
M  such that transformed

intermediate views are approximately aligned. To further refine these parameters, we iterate

over sm m = 2
M  in random order and perform the same five step procedure as above, Nr times.

Besides the random-order traversal, the other difference in a refinement iteration is that the

set of already visited nodes A, contains all the nodes instead of just the first m − 1 nodes.

This affects the computation of Zs (see Eq. (56)) in step R2 so that the sth intermediate view

is now aligned with all those views which are its neighbors in the ambient space. Note that

the step R5 is redundant during refinement.

In the end, we compute the global embedding yk of xk by mapping xk using the transformed

parameterization associated with the cluster ck it belongs to,

yk = Φck
g xk . (57)

An illustration of the global embedding at various stages of Algo. 5 is provided in Figure 11.

5.3 Tearing Closed Manifolds

When the manifold has no boundary, then the step R2 in above section may result in a set Zs
containing the indices of the views which are neighbors of the sth view in the ambient space

but are far apart from the transformed sth view in the embedding space, obtained right after

step R1. For example, as shown in Figure 10 (f.2), s1 ∈ Zs9 because the s9th view and the

s1th view are neighbors in the ambient space (see Figure 9 (a.1, a.2)) but in the embedding

space, they are far apart. Due to such indices in Zs9, the step R3 results in a centroid, which

when used in step R4, results in a fallacious estimation of the parameters Ts and vs, giving

rise to a high distortion embedding. By trying to align with all its neighbors in the ambient

space, the s9th view is misaligned with respect to all of them (see Figure 10 (g.2)).

Resolution (to_tear = True).—We modify the step R2 so as to introduce a discontinuity

by including the indices of only those views in the set Zs which are neighbors of the

sth view in both the ambient space as well as in the embedding space. We denote the

overlap between the mth and m′th view in the embedding space by Umm′
g . There may be

multiple heuristics for computing Umm′
g  which could work. In the Appendix E, we describe

a simple approach based on the already developed machinery in this paper, which uses the

hyperparameter ν provided as input to Algo. 5. Having obtained Umm′
g , we say that the mth

and the m′th intermediate views in the embedding space are neighbors if Umm′
g  is non-empty.

Step R2. Finally, we compute Zs as,
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Zs = m′ Usm′ ≠ 0, Usm′
g ≠ 0 ∩A . (58)

Note that if it is known apriori that the manifold can be embedded in lower dimension

without tearing it apart then we do not require the above modification. In all of our

experiments except the one in Section 6.5, we do not assume that this information is

available.

With this modification, the set Zs9 in Figure 10 (f.2) will not include s1 and therefore

the resulting centroid in the step R3 would be the same as the one in Figure 10 (f.1).

Subsequently, the transformed s9th view would be the one in Figure 10 (g.1) rather than

Figure 10 (g.2).

Gluing instruction for the boundary of the embedding.—Having knowingly torn

the manifold apart, we provide at the output, information on the points belonging to the tear

and their neighboring points in the ambient space. To encode the “gluing” instructions along

the tear in the form of colors at the output of our algorithm, we recompute Umm′
g . If Umm′ is

non-empty but Umm′
g  is empty, then this means that the mth and m′th views are neighbors in

the ambient space but are torn apart in the embedding space. Therefore, we color the global

embedding of the points on the overlap Umm′ which belong to clusters Cm and Cm′ with the

same color to indicate that although these points are separated in the embedding space, they

are adjacent in the ambient space (see Figures 19, 20 and 31).

An illustration of the global embedding at various stages of Algo. 5 with modified step R2,

is provided in Figure 12.

Example. The obtained global embeddings of our square grid with to_tear = True and ν = 3,

are shown in Figure 13. Note that the boundary of the obtained embedding is more distorted

when the points on the boundary are unknown than when they are known apriori. This is

because the intermediate views near the boundary have higher distortion in the former case

than in the latter case (see Figure 7).

5.4 Time Complexity

The worst case time complexity of Algo. 5 is O Nrnklv
2 d2/ηmin  when to tear is false. It costs

an additional time of O Nrn2max d, klvlogn, n/ηmin
2  when to tear is true. In practice, one

refinement step took about 15 seconds in the above example and between 15–20 seconds for

all the examples in Section 6.

6. Experimental Results

We present experiments to compare LDLE2 with LTSA (Zhang and Zha, 2003), UMAP

(McInnes et al., 2018), t-SNE (Maaten and Hinton, 2008) and Laplacian eigenmaps (Belkin

2.The python code is available at https://github.com/chiggum/pyLDLE

Kohli et al. Page 26

J Mach Learn Res. Author manuscript; available in PMC 2022 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/chiggum/pyLDLE


and Niyogi, 2003) on several data sets. First, we compare the embeddings of discretized

2d manifolds embedded in ℝ2, ℝ3 or ℝ4, containing about 104 points. These manifolds are

grouped based on the presence of the boundary and their orientability as in Sections 6.2,

6.3 and 6.4. The inputs are shown in the figures themselves except for the flat torus and

the Klein bottle, as their 4D parameterizations cannot be plotted. Therefore, we describe

their construction below. A quantitative comparison of the algorithms is provided in Section

6.2.1. In Section 6.2.2 we assess the robustness of these algorithms to the noise in the data.

In Section 6.2.3 we assess the performance of these algorithms on sparse data. Finally, in

Section 6.5 we compare the embeddings of some high dimensional data sets.

Flat Torus. A flat torus is a parallelogram whose opposite sides are identified. In our case,

we construct a discrete flat torus using a rectangle with sides 2 and 0.5 and embed it in four

dimensions as follows,

X θi, ϕj = 1
4π 4cos θi , 4sin θi , cos ϕj , sin ϕj (59)

where θi = 0.01iπ, ϕj = 0.04jπ, i ∈ {0,...,199} and j ∈ {0,...,49}.

Klein bottle. A Klein bottle is a non-orientable two dimensional manifold without boundary.

We construct a discrete Klein bottle using its 4D Möbius tube representation as follows,

X θi, ϕj = R ϕj cosθi, R ϕj sinθi, rsinϕjcosθi
2 , rsinϕjsinθi

2 (60)

R ϕj = R + rcosϕj (61)

where θi = iπ/100, ϕj = jπ/25, i ∈ {0,...,199} and j ∈ {0,...,49}.

6.1 Hyperparameters

To embed using LDLE, we use the Euclidean metric and the default values of the

hyperparameters and their description are provided in Table 1. Only the value of ηmin is

tuned across all the examples in Sections 6.2, 6.3 and 6.4 (except for Section 6.2.3), and

is provided in Appendix G. For high dimensional data sets in Section 6.5, values of the

hyperaparameters which differ from the default values are again provided in Appendix G.

For UMAP, LTSA, t-SNE and Laplacian eigenmaps, we use the Euclidean metric and select

the hyperparameters by grid search, choosing the values which result in best visualization

quality. For LTSA, we search for optimal n neighbors in {5,10,25,50,75,100}. For UMAP,

we use 500 epochs and search for optimal n neighbors in {25,50,100,200} and min dist in

{0.01,0.1,0.25,0.5}. For t-SNE, we use 1000 iterations and search for optimal perplexity in

{30,40,50,60} and early exaggeration in {2,4,6}. For Laplacian eigenmaps, we search for

knn in {16,25,36,49} and ktune in {3,7,11}. The chosen values of the hyperparameters are

provided in Appendix G. We note that the Laplacian eigenmaps fails to correctly embed

most of the examples regardless of the choice of the hyperparameters.
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6.2 Manifolds with Boundary

In Figure 14, we show the 2d embeddings of 2d manifolds with boundary, in ℝ2 or ℝ3,

three of which have holes. To a large extent, LDLE preserved the shape of the holes. LTSA

perfectly preserved the shape of the holes in the square but deforms it in the Swiss Roll. This

is because LTSA embedding does not capture the aspect ratio of the underlying manifold

as discussed in Section F. UMAP and Laplacian eigenmaps distorted the shape of the holes

and the region around them, while t-SNE produced dissected embeddings. For the sphere

with a hole which is a curved 2d manifold with boundary, LTSA, UMAP and Laplacian

eigenmaps squeezed it into ℝ2 while LDLE and t-SNE tore it apart. The correctness of the

LDLE embedding is proved in Figure 31. In the case of noisy swiss roll, LDLE and UMAP

produced visually better embeddings in comparison to the other methods.

We note that the boundaries of the LDLE embeddings in Figure 14 are usually distorted.

The cause of this is explained in Remark 4. When the points in the input which lie on the

boundary are known apriori then the distortion near the boundary can be reduced using the

double manifold as discussed in Remark 5 and shown in Figure 4. The obtained LDLE

embeddings when the points on the boundary are known, are shown in Figure 15.

6.2.1 QUANTITATIVE COMPARISON—To compare LDLE with other techniques in a

quantitative manner, we compute the distortion Dk of the embeddings of the geodesics

originating from xk and then plot the distribution of Dk (see Figure 16). The procedure to

compute Dk follows. In the discrete setting, we first define the geodesic between two given

points as the shortest path between them which in turn is computed by running Dijkstra

algorithm on the graph of 5 nearest neighbors. Here, the distances are measured using the

Euclidean metric de. Denote the number of nodes on the geodesic between xk and xk′

by nkk′ and the sequence of nodes by xs s = 1
nkk′  where x1 = xk and xnkk′ = xk′. Denote the

embedding of xk by yk. Then the length of the geodesic in the latent space between xk and

xk′, and the length of the embedding of the geodesic between yk and yk′ are given by

Lkk′ = ∑
s = 2

nkk′
de xs, xs − 1 . (62)

Lkk′
g = ∑

s = 2

nkk′
de ys, ys − 1 . (63)

Finally, the distortion Dk of the embeddings of the geodesics originating from xk is given by

the ratio of maximum expansion and minimum contraction, that is,

Dk = sup
k′

Lkk′
g

Lkk′
/inf

k′

Lkk′
g

Lkk′
= sup

k′

Lkk′
g

Lkk′
sup
k′

Lkk′
Lkk′

g . (64)
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A value of 1 for Dk means the geodesics originating from xk have the same length in the

input and in the embedding space. If Dk = 1 for all k then the embedding is geometrically,

and therefore topologically as well, the same as the input up to scale. Figure 16 shows the

distribution of Dk due to LDLE and other algorithms for various examples. Except for the

noisy Swiss Roll, LTSA produced the least maximum distortion. Specifically, for the square

with two holes, LTSA produced a distortion of 1 suggesting its strength on manifolds with

unit aspect ratio. In all other examples, LDLE produced the least distortion except for a few

outliers. When the boundary is unknown, the points which result in high Dk are the ones

which lie on and near the boundary. When the boundary is known, these are the points which

lie on or near the corners (see Figures 4 and 5). We aim to fix this issue in future work.

6.2.2 ROBUSTNESS TO NOISE—To further analyze the robustness of LDLE under noise we

compare the embeddings of the Swiss Roll with Gaussian noise of increasing variance. The

resulting embeddings are shown in Figure 17. Note that certain points on LDLE embeddings

have a different colormap than the one used for the input. As explained in Section 5.3, the

points which have the same color under this colormap are adjacent on the manifold but

away in the embedding. To be precise, these points lie close to the middle of the gap in the

Swiss Roll, creating a bridge between those points which would otherwise be far away on a

noiseless Swiss Roll. In a sense, these points cause maximum corruption to the geometry of

the underlying noiseless manifold. One can say that these points are have adversarial noise,

and LDLE embedding can automatically recognize such points. We will further explore this

in future work. LTSA, t-SNE and Laplacian Eigenmaps fail to produce correct embeddings

while UMAP embeddings also exhibit high quality.

6.2.3 SPARSITY—A comparison of the embeddings of the Swiss Roll with decreasing

resolution and increasing sparsity is provided in Figure 18. Unlike LTSA and Laplacian

Eigenmaps, the embeddings produced by LDLE, UMAP and t-SNE are of high quality. Note

that when the resolution is 10, LDLE embedding of some points have a different colormap.

Due to sparsity, certain points on the opposite sides of the gap between the Swiss Roll are

neighbors in the ambient space as shown in Figure 32 in Appendix H. LDLE automatically

tore apart these erroneous connections and marked them at the output using a different

colormap. A discussion on sample size requirement for LDLE follows.

The distortion of LDLE embeddings directly depend on the distortion of the constructed

local parameterizations, which in turn depends on reliable estimates of the graph Laplacian

and its eigenvectors. The work in (Belkin and Niyogi, 2008; Hein et al., 2007; Trillos et al.,

2020; Cheng and Wu, 2021) provided conditions on the sample size and the hyperparameters

such as the kernel bandwidth, under which the graph Laplacian and its eigenvectors would

converge to their continuous counterparts. A similar analysis in the setting of self-tuned

kernels used in our approach (see Algo. 1) is also provided in (Cheng and Wu, 2020).

These imply that, for a faithful estimation of graph Laplacian and its eigenvectors, the

hyperparameter ktune (see Table 1) should be small enough so that the local scaling factors

σk (see Algo. 1) are also small, while the size of the data n should be large enough so

that nσk
d + 2/log n  is sufficiently large for all k ∈ {1,...,n}. This suggests that n needs to be
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exponential in d and inversely related to σk. However, in practice, the data is usually given

and therefore n is fixed. So the above mainly states that to obtain accurate estimates, the

hyperparameter ktune must be decreased. This indeed holds as we had to decrease ktune from

7 to 2 (see Appendix G) to produce LDLE embeddings of high quality for increasingly

sparse Swiss Roll in Figure 18.

6.3 Closed Manifolds

In Figure 19, we show the 2d embeddings of 2d manifolds without a boundary, a curved

torus in ℝ3 and a flat torus in ℝ4. LDLE produced similar representation for both the inputs.

None of the other methods do that. The main difference in the LDLE embedding of the

two inputs is based on the boundary of the embedding. It is composed of many small line

segments for the flat torus, and many small curved segments for the curved torus. This

is clearly because of the difference in the curvature of the two inputs, zero everywhere

for the flat torus and non-zero almost everywhere on the curved torus. The mathematical

correctness of the LDLE embeddings using the cut and paste argument is shown in Figure

31. LTSA, UMAP and Laplacian eignemaps squeezed both the manifolds into ℝ2 while the

t-SNE embedding is non-interpretable.

6.4 Non-Orientable Manifolds

In Figure 20, we show the 2d embeddings of non-orientatble 2d manifolds, a Möbius strip

in ℝ3 and a Klein bottle in ℝ4. Laplacian eigenmaps produced incorrect embeddings, t-SNE

produced dissected and non-interpretable embeddings and LTSA and UMAP squeezed the

inputs into ℝ2. LDLE produced mathematically correct embeddings by tearing apart both

inputs to embed them into ℝ2 (see Figure 31).

6.5 High Dimensional Data

6.5.1 SYNTHETIC SENSOR DATA—In Figure 21, motivated from (Peterfreund et al., 2020),

we embed a 42 dimensional synthetic data set representing the signal strength of 42

transmitters at about n = 6000 receiving locations on a toy floor plan. The transmitters

and the receivers are distributed uniformly across the floor. Let trk k = 1
42  be the transmitter

locations and ri be the ith receiver location. Then the ith data point xi is given by

e− ri − trk 2
2

k = 1

42
. The resulting data set is embedded using and other algorithms into ℝ2.

The hyperparameters resulting in the most visually appealing embeddings were identified

for each algorithm and are provided in Table 2. The obtained embeddings are shown in

Figure 21. The shapes of the holes are best preserved by LTSA, then LDLE followed by the

other algorithms. The corners of the LDLE embedding are more distorted. The reason for

distorted corners is given in Remark 4.

6.5.2 FACE IMAGE DATA—In Figure 22, we show the embedding obtained by applying

LDLE on the face image data (Tenenbaum et al., 2000) which consists of a sequence of 698

64-by-64 pixel images of a face rendered under various pose and lighting conditions. These

images are converted to 4096 dimensional vectors, then projected to 100 dimensions through
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PCA while retaining about 98% of the variance. These are then embedded using LDLE

and other algorithms into ℝ2. The hyperparameters resulting in the most visually appealing

embeddings were identified for each algorithm and are provided in Table 5. The resulting

embeddings are shown in Figure 23 colored by the pose and lighting of the face. Note that

values of the pose and lighting variables for all the images are provided in the data set itself.

We have displayed face images corresponding to few points of the LDLE embeddings as

well. Embeddings due to all the techniques except LTSA reasonably capture both the pose

and lighting conditions.

6.5.3 ROTATING YODA-BULLDOG DATA SET—In Figure 23, we show the 2d embeddings of

the rotating figures data set presented in (Lederman and Talmon, 2018). It consists of 8100

snapshots taken by a camera of a platform with two objects, Yoda and a bull dog, rotating

at different frequencies. Therefore, the underlying 2d parameterization of the data should

render a torus. The original images have a dimension of 320 × 240 × 3. In our experiment,

we first resize the images to half the original size and then project them to 100 dimensions

through PCA (Jolliffe and Cadima, 2016) while retaining about 98% variance. These are

then embedded using LDLE and other algorithms into ℝ2. The hyperparameters resulting in

the most visually appealing embeddings were identified for each algorithm and are provided

in Table 5. The resulting embeddings are shown in Figure 23 colored by the first dimension

of the embedding itself. LTSA and UMAP resulted in a squeezed torus. LDLE tore apart

the underlying torus and automatically colored the boundary of the embedding to suggest

the gluing instructions. By tracing the color on the boundary we have manually drawn the

arrows. Putting these arrows on a piece of paper and using cut and past argument one can

establish that the embedding represents a torus (see Figure 31). The images corresponding to

a few points on the boundary are shown. Pairs of images with the same labels represent the

two sides of the curve along which LDLE tore apart the torus, and as is evident these pairs

are similar.

7. Conclusion and Future Work

We have presented a new bottom-up approach (LDLE) for manifold learning which

constructs low-dimensional low distortion local views of the data using the low frequency

global eigenvectors of the graph Laplacian, and registers them to obtain a global embedding.

Through various examples we demonstrated that LDLE competes with the other methods in

terms of visualization quality. In particular, the embeddings produced by LDLE preserved

distances upto a constant scale better than those produced by UMAP, t-SNE, Laplacian

Eigenmaps and for the most part LTSA too. We also demonstrated that LDLE is robust

to the noise in the data and produces fine embeddings even when the data is sparse. We

also showed that LDLE can embed closed as well as non-orientable manifolds into their

intrinsic dimension, a feature that is missing from the existing techniques. Some of the

future directions of our work are as follows.

It is only natural to expect real world data sets to have boundary and to have many corners.

As observed in the experimental results, when the boundary of the manifold is unknown,

then the LDLE embedding tends to have distorted boundary. Even when the boundary is
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known, the embedding has distorted corners. This is caused by high distortion views near

the boundary (see Figures 4 and 5). We aim to fix this issue in our future work. One

possible resolution could be based on (Berry and Sauer, 2017) which presented a method to

approximately calculate the distance of the points from the boundary.

When the data represents a mixture of manifolds, for example, a pair of possibly intersecting

spheres or even manifolds of different intrinsic dimensions, it is also natural to expect a

manifold learning technique to recover a separate parameterization for each manifold and

provide gluing instructions at the output. One way is to perform manifold factorization

(Zhang et al., 2021) or multi-manifold clustering (Trillos et al., 2021) on the data to recover

sets of points representing individual manifolds and then use manifold learning on these

separately. We aim to adapt LDLE to achieve this.

The spectrum of the Laplacian has been used in prior work for anomaly detection (Cloninger

and Czaja, 2015; Mishne and Cohen, 2013; Cheng et al., 2018; Cheng and Mishne, 2020;

Mishne et al., 2019). Similar to our approach of using a subset of Laplacian eigenvectors

to construct low distortion local views in lower dimension, in (Mishne et al., 2018; Cheng

and Mishne, 2020), subsets of Laplacian eigenvectors were identified so as to separate

small clusters from a large background component. As shown in Figures 4 and 5, LDLE

produced high distortion local views near the boundary and the corners, though these are not

outliers. However, if we consider a sphere with outliers (say, a sphere with noise only at the

north pole as in Figure 24), then the distortion of the local views containing the outliers is

higher than the rest of the views. Therefore, the distortion of the local views can help find

anomalies in the data. We aim to further investigate this direction to develop an anomaly

detection technique.

Similar to the approach of denoising a signal by retaining low frequency components,

our approach uses low frequency Laplacian eigenvectors to estimate local views. These

eigenvectors implicitly capture the global structure of the manifold. Therefore, to construct

local views, unlike LTSA which directly relies on the local configuration of data which

may be noisy, LDLE relies on the local elements of low frequency global eigenvectors of

the Laplacian which are supposed to be robust to the noise. Practical implication of this

is shown in Figure 17 to some extent while we aim to further investigate the theoretical

implications.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by funding from the NIH grant no. R01 EB026936 to DK and GM. AC was supported by
funding from NSF DMS 1819222, 2012266, Russell Sage Foundation grant 2196, and Intel Research.

Kohli et al. Page 32

J Mach Learn Res. Author manuscript; available in PMC 2022 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A.: First Proof of Theorem 2

Choose ϵ > 0 so that the exponential map expx:Txℳ ℳ is a well defined diffeomorphism

on ℬ2ϵ ⊂ Txℳ where Txℳ is the tangent space to ℳ at x, expx(0) = x and

ℬϵ = v ∈ Txℳ v 2 < ϵ . (65)

Then using (Canzani, 2013, lem. 48, prop. 50, th. 51), for all y ∈ Bϵ x  such that

Bϵ x = y ∈ ℳ dg x, y < ϵ (66)

we have,

p t, x, y = G t, x, y u0 x, y + tu1 x, y + O t2 , (67)

where

G t, x, y = e−dg x, y 2/4t

4πt d/2 , (68)

u0 x, y = 1 + O v 2 , y = expx v , v ∈ Txℳ, (69)

and for f ∈ C ℳ , the following hold

f x = lim
t 0∫M

p t, x, y f y ωg y (70)

= lim
t 0∫Bϵ x

p t, x, y f y ωg y , (71)

f x = lim
t 0∫Bϵ x

G t, x, y f y ωg y , (72)

u1 x, x f x = lim
t 0∫Bϵ x

G t, x, y u1 x, y f y ωg y . (73)

Using the above equations and the definition of Ψkij(y) in Eq. (15) and Akij in Eq. (16) we

compute the limiting value of the scaled local correlation (see Eq. (19)),

Akij = lim
t 0

Akij
2t (74)
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= lim
t 0

1
2t∫M

p t, xk, y Ψkij y ωg y . (75)

which will turn out to be the inner product between the gradients of the eigenfunctions ϕi

and ϕj at xk. We start by choosing an ϵk > 0 so that expxk is a well defined diffeomorphism

on ℬ2ϵk ⊂ Txkℳ. Using Eq. (71) we change the region of integration from ℳ to Bϵk xk ,

Akij = lim
tk 0

1
2tk∫Bϵk xk

p tk, xk, y Ψkij y ωg y . (76)

Substitute p(tk,xk,y) from Eq. (67) and simplify using Eq. (72, 73) and the fact that Ψkij(xk)

= 0 to get

Akij = lim
tk 0

1
2tk∫Bϵk xk

G tk, xk, y u0 xk, y + tku1 xk, y + O tk2 Ψkij y ωg y .

= lim
tk 0

1
2tk∫Bϵk xk

G tk, xk, y u0 xk, y Ψkij y ωg y +

tku1 xk, xk Ψkij xk + O tk2 Ψkij xk
2tk

= lim
tk 0

1
2tk∫Bϵk xk

G tk, xk, y u0 xk, y Ψkij y ωg y .

(77)

Replace y ∈ Bϵk xk  by expxk v  where v ∈ℬϵk ⊂ Txkℳ and v = dg xk, y . Denote the

Jacobian for the change of variable by J(v) i.e.J v = d
dvexpxk v . Note that expxk 0 = xk

and J(0) = I. Using the Taylor expansion of ϕi and ϕj about 0 we obtain

ϕs y = ϕs expxk v = ϕs expxk 0 + ∇ϕs expxk 0 TJ 0 v + O v 2

= ϕs xk + ∇ϕs xk
Tv + O v 2 , s = i, j .

(78)

Substituting the above equation in the definition of Ψkij(y) (see Eq. (15)) we get

Ψkij y = Ψkij expxk v

= vT ∇ϕi∇ϕj
Tv + ∇ϕi

Tv + ∇ϕj
Tv O v 2 + O v 4 ,

(79)

where ∇ϕs ≡ ∇ϕs(xk),s = i,j. Now we substitute Eq. (79, 68, 69) in Eq. (77) while replacing

variable y with expxk v  where J(v) is the Jacobian for the change of variable as before, to get
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Akij = lim
tk 0

1
2tk∫ℬϵk

e− v 2/4tk

4πtk d/2 1 + O v 2 Ψkij expxk v J v dv

= L1 + L2,
(80)

where L1 and L2 are the terms obtained by expanding 1 + O(‖v‖2) in the integrand. We will

show that L2 = 0 and Akij = L1 = ∇ϕi
T ∇ϕj.

L2 = lim
tk 0

1
2tk∫ℬϵk

e− v 2/4tk

4πtk d/2 O v 2 tr ∇ϕi∇ϕj
TvvT +

∇ϕi
Tv + ∇ϕj

Tv O v 2 + O v 4 J v dv

= lim
tk 0

1
2tk

O tk2 + 0 + 0 + O tk4

= 0.

(81)

Therefore,

Akij = L1

= lim
tk 0

1
2tk∫ℬϵk

e− v 2/4tk

4πtk d/2 Ψkij expxk v J v dv (82)

= lim
tk 0

1
2tk∫ℬϵk

e− v 2/4tk

4πtk d/2 vT ∇ϕi∇ϕj
Tv +

∇ϕi
Tv + ∇ϕj

Tv O v 2 + O v 4 J v dv

= lim
tk 0

1
2tk∫ℬϵk

e− v 2/4tk

4πtk d/2 vT ∇ϕi∇ϕj
TvJ v dv +

0 + 0 + O tk2
2tk

= lim
tk 0

1
2tk∫ℬϵk

e− v 2/4tk

4πtk d/2 vT ∇ϕi∇ϕj
TvJ v dv .

(83)

Substitution of tk = 0 leads to the indeterminate form 0
0 . Therefore, we apply L’Hospital’s

rule and then Leibniz integral rule to get,
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Akij = lim
tk 0

1
2∫ℬϵk

v 2

4tk2
− d

2tk
e− v 2/4tk

4πtk d/2 vT ∇ϕi∇ϕj
TvJ v dv

= tr 1
2 ∇ϕi∇ϕj

T lim
tk 0∫ℬϵk

v 2

4tk2
− d

2tk
e− v 2/4tk

4πtk d/2 vvTJ v dv

= tr 1
2 ∇ϕi∇ϕj

T lim
tk 0

12 + 4 d − 1 tk2

4tk2
− 2tkd

2tk
I + O tk I

= ∇ϕi
T ∇ϕj .

(84)

Finally, note that the Eq. (82) is same as the following equation with y replaced by expxk v ,

Akij = lim
tk 0

1
2tk∫Bϵk xk

G tk, xk, y Ψkij y ωg y . (85)

We used the above equation to estimate Akij in Section 3.1.□

B.: Second Proof of Theorem 2

Yet another proof is based on the Feynman-Kac formula (Steinerberger, 2014, 2017),

Akij = e−tkΔg ϕi − ϕi xk ϕj − ϕj xk xk . (86)

where

e−tΔgf x =∑
i

e−λit ϕi, f ϕi x (87)

and therefore,

Akij = lim
tk 0

Akij
2tk

= 1
2

∂Akij
∂tk tk = 0 (88)

= −1
2 Δg ϕi − ϕi xk ϕj − ϕj xk xk (89)

= −1
2 0 + 0 − 2∇ϕi xk

T ∇ϕj xk (90)

= ∇ϕi xk
T ∇ϕj xk (91)
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where we used the fact Δg fifj = fjΔgfi + fiΔgfj − 2 ∇gfi x , ∇gfj x g. Note

that as per our convention ∇ϕi xk = ∇ ϕi ∘ expxk 0  and therefore

∇gϕi x , ∇gϕj x g = ∇ϕi xk
T ∇ϕj xk .

C.: Rationale Behind the Choice of tk in Eq. (25)

Since ℳ ≤ 1, we note that

ϵk ≤ Γ d/2 + 1 1/d/ π (92)

where the maximum can be achieved when ℳ is a d-dimensional ball of unit volume.

Then we take the limiting value of tk as in Eq. (25) where chi2inv is the inverse cdf of

the chi-squared distribution with d degrees of freedom evaluated at p. Since the covariance

matrix of G tk, x, y  is 2tkI (see Eq. (21)), the above value of tk ensures p probability mass

to lie in Bϵk xk . We take p to be 0.99 in our experiments. Also, using Eq. (92) and Eq. (25)

we have

tk ≤ 1
2π

Γ d/2 + 1 2/d

chi2inv p, d < < 1, when p = 0.99. (93)

Using the above inequality with p = 0.99, for d = 2,10,100 and 1000, the upper bound on tk
= 0.0172,0.018,0.0228 and 0.0268 respectively. Thus, tk is indeed a small value close to 0.

D.: Computation of sm, psm m = 1
M  in Algo. 5

Algo. 5 aligns the intermediate views in a sequence. The computation of the sequences

sm, psm m = 1
M  is motivated by the necessary and sufficient conditions for a unique solution to

the standard orthogonal Procrustes problem (Schönemann, 1966). We start by a brief review

of a variant of the orthogonal Procrustes problem and then explain how these sequences are

computed.

D.1 A Variant of Orthogonal Procrustes Problem

Given two matrices A and B of same size with d columns, one asks for an orthogonal matrix

T of size d×d and a d-dimensional columns vector v which most closely aligns A to B, that

is,

T , v = argmin
Ω, ω

AΩ + 1nωT − B F
2 such that ΩTΩ = I . (94)

Here 1n is the n-dimensional column vector containing ones. Equating the derivative of the

objective with respect to ω to zero, we obtain the following condition for ω,
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ω = 1n
n

T
AΩ − B . (95)

Substituting this back in Eq. (94), we reduce the above problem to the standard orthogonal

Procrustes problem,

T = argmin
Ω

AΩ − B F
2

(96)

where

X = I − 1
n1n1n

T X (97)

for any matrix X. This is equivalent to subtracting the mean of the rows in X from each row

of X.

As proved by Schönemann (1966), the above problem, and therefore the variant, has a

unique solution if and only if the square matrix ATB has full rank d. Denote by σd(X) the dth

smallest singular value of X. Then ATB has full rank if σd ATB  is non-zero, otherwise there

exists multiple T which minimize Eq. (94).

D.2 Computation of sm, psm m = 1
M

Here, sm corresponds to the smth intermediate view and psm corresponds to its parent view.

The first view in the sequence corresponds to the largest cluster and it has no parent, that is,

s1 = argmax
m = 1

M
Cm and ps1 = none . (98)

For convenience, denote sm by s, psm by p and V mm′ by Φm
g Umm′ . We choose s and p so

that the view Vsp can be aligned with the view Vps without any ambiguity. In other words,

s and p are chosen so that there is a unique solution to the above variant of orthogonal

Procrsutes problem (see Eq. (94)) with A and B replaced by Vsp and Vps, respectively.

Therefore, an ambiguity (non-uniqueness) would arise when σd V sp
T V ps  is zero. We quantify

the ambiguity in aligning arbitrary mth and the m′th intermediate views on their overlap,

that is, V mm′ and V m′m, by

W mm′ = σd V mm′
T V m′m . (99)
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Note that W mm′ = W m′m. A value of W mm′ close to zero means high ambiguity in the

alignment of mth and m′th views. By default, if there is no overlap between mth and m′th

view then W mm′ = W m′m = 0.

Finally, we compute the sequences sm, psm m = 2
M  so that ∑m = 2

M W smpsm is maximized and

therefore the net ambiguity is minimized. This is equivalent to obtaining a maximum

spanning tree T rooted at s1, of the graph with M nodes and W as the adjacency matrix.

Then sm m = 2
M  is the sequence in which a breadth first search starting from s1 visits the

nodes in T. And psm is the parent of the smth node in T. Thus,

sm m = 2
M = Breadth‐First‐Search T , s1 and psm = parent of sm in T . (100)

E.: Computation of Umm′
g  in Eq. (58)

Recall that Umm′
g  is the overlap between the mth and m′th intermediate views in the

embedding space. The idea behind its computation is as follows. We first compute the

discrete balls Uk
g around each point yk in the embedding space. These are the analog of Uk

around xk (see Eq. 26) but in the embedding space, and are given by

Uk
g = yk′ de yk, yk′ < ϵk

g . (101)

An important point to note here is that while in the ambient space, we used ϵk, the distance

to the klvth nearest neighbor, to define a discrete ball around xk, in the embedding space, we

must relax ϵk to account for a possibly increased separation between the embedded points.

This increase in separation is caused due to the distorted parameterizations. Therefore, to

compute discrete balls in the embedding space, we used ϵk
g in Eq. (101), which is the

distance to the νklvth nearest neighbor of yk. In all of our experiments, we take ν to be 3.

Recall that ck is the cluster label for the point xk. Using the same label ck for the point yk,

we construct secondary intermediate views Um
g  in the embedding space,

Um
g = ∪ck = m Uk

g . (102)

Finally, same as the computation of Umm′ in Eq. (53), we compute Umm′
g  as the intersection

of Um
g  and Um′

g ,

Umm′
g = Um

g ∩ Um′
g . (103)
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F.: Comparison with the Alignment Procedure in LTSA

In the following we use the notation developed in this work. LTSA (Zhang and Zha, 2003)

computes the global embedding Ym of the mth intermediate view Um so that it respects the

local geometry determined by Φm Um . That is,

Y m = Φm Um Lm + emvmT + Em . (104)

Here, Y = [y1,y2,...,yn]T where yi is a column vector of length d representing the global

embedding of xi, Ym is a submatrix of Y of size Um × d representing the global embeddings

of the points in Um, and Φm Um  is a matrix of size Um × d representing the mth

intermediate view in the embedding space (or in the notation of LTSA, the local embedding

of Um). em is a column vector of length Um  containing 1s. The intermediate view Φm Um
is transformed into the final embedding Ym through an affine matrix Lm of size d×d and a

translation vector vm of length d. The reconstruction error is captured in the matrix Em. The

total reconstruction error is given by,

ℒ′ Y , Lm, vm m = 1
M = ∑

m = 1

M
Y m − Φm Um Lm + emvmT F

2 . (105)

LTSA estimates Y and Lm, vm m = 1
M  by minimizing the above objective with the constraint

YTY = I. This constraint is the mathematical realization of their assumption that the

points are uniformly distributed in the embedding space. Due to this, the obtained global

embedding Y does not capture the aspect ratio of the underlying manifold. Also note that

due to the overlapping nature of the views Um, the terms in the above summation are

dependent through Ym’s.

Setting aside our adaptation of GPA to tear closed and non-orientable manifolds, our

alignment procedure minimizes the error ℒ in Eq. (54). By introducing the variables Y
and Em as in Eq. (104), one can deduce that ℒ is a lower bound of ℒ′ in Eq. (105). The

main difference in the two alignment procedures is that, while in LTSA, Y is constrained and

the transformations are not, in our approach, we restrict the transformations to be rigid. That

is, we constrained Lm to be bmTm where bm is a fixed positive scalar as computed in Eq.

(55) and Tm is restricted to be an orthogonal matrix, while there is no constraint on Y .

From a practical standpoint, when the tearing of manifolds is not needed, one can use

either procedure to align the intermediate views and obtain a global embedding. However, as

shown in the Figure 25, the embeddings produced by aligning our intermediate views using

the alignment procedure in LTSA, are visually incorrect. The high distortion views near

the boundary must be at cause here (see Figure 7). Since our alignment procedure works

well on the same views as shown in Section 6.2, this suggests that, compared to LTSA, our

alignment procedure is more robust to the high distortion views. For similar reasons, one
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would expect LTSA to be less robust to the noisy data. This is indeed true as depicted in

Figure 17.

One advantage of using LTSA is the efficiency. LTSA reduces the optimal Y to be the

eigenvectors of a certain matrix leading to a fast algorithm. Our constraint does not allow

such simplification and therefore we developed an iterative procedure by adapting GPA

(Crosilla and Beinat, 2002; Gower, 1975; Ten Berge, 1977). This procedure is slower than

that in LTSA. We aim to improve the run-time in the subsequent versions of our code.

G.: Hyperparameters

Table 2:

Hyperparameters used in the algorithms for the examples in Sections 6.2, 6.3, 6.4 and 6.5.1.

For Laplacian eigenmaps, in all the examples except for square with two holes, all the

searched values of the hyperparameters result in similar plots.

Algorithm Hyperparameters Rectangle Barbell

Square
with
two

holes

Sphere
with a
hole

Swissroll
with a
hole

Noisy
swissroll Sphere Curved

torus
Flat
torus

Möbius
strip

Klein
Bottle

42-dim
signal

strength
data

LDLE η min 5 5 10 5 20 15 5 18 10 10 5 5

LTSA n_neighbors 75 25 10 5 5 50 5 25 25 75 25 50

UMAP
n_neighbors 200 200 200 200 200 200 200 200 200 200 200 50

min_dist 0.1 0.05 0.5 0.5 0.25 0.05 0.5 0.25 0.5 0.05 0.5 0.25

t-SNE
perplexity 50 40 50 50 50 60 60 60 60 60 50 60

exaggeration 4 6 6 4 4 4 4 4 6 4 6 4

Laplacian
Eigenmaps

k nn - - 16 - - - - - - - - 16

k tune - - 7 - - - - - - - - 7

Table 3:

Hyperparameters used in the algorithms for the Swiss Roll with increasing Gaussian noise

(see Figure 17)

Algorithm Hyperparameters σ = 0.01 σ = 0.015 σ = 0.02

LDLE η min 5 15 10

LTSA n_neighbors 50 75 100

UMAP
n_neighbors 50 50 100

min_dist 0.5 0.25 0.5

t-SNE
perplexity 60 50 60

exaggeration 6 6 6

Kohli et al. Page 41

J Mach Learn Res. Author manuscript; available in PMC 2022 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table 4:

Hyperparameters used in the algorithms for the Swiss Roll with increasing sparsity (see

Figure 18)

Algorithm Hyperparameters RES = 30 RES = 15 RES = 12 RES = 10

LDLE

η min 3 3 3 3

k tune 7 2 2 2

N 100 25 25 25

k lv 7 4 4 4

LTSA n_neighbors 5 4 5 10

UMAP
n_neighbors 25 25 10 5

min_dist 0.01 0.01 0.5 0.5

t-SNE
perplexity 10 5 5 5

exaggeration 4 2 4 2

Table 5:

Hyperparameters used in the algorithms for the face image data (Tenenbaum et al., 2000)

(see Figure 22) and the Yoda-bulldog data set (Lederman and Talmon, 2018) (see Figure 23).

Method Hyperparameters

face image data Yoda-bulldog data

LDLE
N = 25, klv = 12, τs = 5, δs = 0.25 for all s ∈ {1,2},

ηmin = 4, to_tear = False

N = 25, τs = 10, δs = 0.5 for all s ∈ {1,2}, ηmin

= 10

LTSA n_neighbors = 10 n_neighbors = 10

UMAP n_neighbors = 50, min_dist = 0.01 n_neighbors = 50, min_dist = 0.01

t-SNE perplexity = 60, early_exaggeration = 2 perplexity = 60, early_exaggeration = 2
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Figure 1:

Embeddings of a rectangle (4 × 0.25) with high aspect ratio in ℝ2 into ℝ2.
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Figure 2:

Embeddings of a sphere in ℝ3 into ℝ2. The top and bottom row contain the same plots

colored by the height and the azimuthal angle of the sphere (0 − 2π), respectively. LDLE

automatically colors the boundary so that the points on the boundary which are adjacent

on the sphere have the same color. The arrows are manually drawn to help the reader

identify the two pieces of the boundary which are to be stitched together to recover the

original sphere. LTSA, UMAP and Laplacian eigenmaps squeezed the sphere into different

viewpoints of ℝ2 (side or top view of the sphere). t-SNE also tore apart the sphere but the

embedding lacks interpretability as it is “unaware” of the boundary.
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Figure 3:

(Left) Distortion of Φ1
∗ (top) and Φ2

∗ (bottom) on discs of radius 0.01 centered at (x,y) for all

x, y ∈ [0, 1] × [0, 1]. Φ2
∗ produces close to infinite distortion on the discs located in the white

region. (Right) Mapping of the discs at various locations in the square using Φ1
∗ (top) and Φ2

∗

(bottom).
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Figure 4:
Comparison of different approaches to estimate Akij in the discrete setting.
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Figure 5:
Distortion of the obtained local parameterizations when the points on the boundary are not

known (left) versus when they are known apriori (right). Each point xk is colored by ζkk (see

Eq. (45)).
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Figure 6:
Computation of the bid for a point in a small cluster by the neighboring clusters in η-th

iteration. (left) xk is a point represented by a small red disc, in a small cluster ck enclosed

by solid red line. The dashed red line enclose Uk. Assume that the cluster ck is small so that

Cck ∈ 0, η . Clusters m1, m2, m3 and m4 are enclosed by solid colored lines too. Note that

m1, m2 and m3 lie in cUk (the nonempty overlap between these clusters and Uk indicate that),

while m4 ∉ cUk. Thus, the bid by m4 for xk is zero. Since the size of cluster m3 is less than

the size of cluster ck i.e. Cm3 < Cck , the bid by m3 for xk is also zero. Since clusters m1

and m2 satisfy all the conditions, the bids by m1 and m2 for xk are to be computed. (right)

The bid bm1 xk, is given by the inverse of the distortion of Φm1 on Uk ∪ Um1, where the

dashed blue line enclose Um1. If the bid bm1 xk is greater (less) than the bid bm2 xk, then

the clustering procedure would favor relabelling of xk to m1 (m2).
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Figure 7:
Each point xk colored by ζckck when the points on the boundary of the square grid are

unknown (left) versus when they are known apriori (right).
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Figure 8:
(left) The intermediate views Um and Um′ of a 2d manifold in a possibly high dimensional

ambient space. These views trivially align with each other. The red star in blue circles

represent their overlap Umm′. (middle) The mth and m′th intermediate views in the 2d

embedding space. (right) Transformed views after aligning Φm Umm′  with Φm′ Umm′ .
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Figure 9:
An illustration of the intermediate views in the ambient and the embedding space as they are

passed as input to Algo. 5 and are scaled using Eq. (55).
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Figure 10:
An illustration of steps R1 to R4 in Algo. 5, in continuation of Figure 9.
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Figure 11:
2d embeddings of a square and a sphere at different stages of Algo. 5. For illustration

purpose, in the plots in the 2nd and 3rd columns the translation parameter vm was manually

set for those views which do not lie in the set A. Note that the embedding of the sphere is

fallacious. The reason and the resolution is provided in Section 5.3.
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Figure 12:
2d embedding of a sphere at different stages of Algo. 5. For illustration purpose, in the plots

in the 2nd and 3rd columns the translation parameter vm was manually set for those views

which do not lie in the set A.

Kohli et al. Page 56

J Mach Learn Res. Author manuscript; available in PMC 2022 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 13:
Global embedding of the square grid when the points on the boundary are unknown (left)

versus when they are known apriori (right).
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Figure 14:

Embeddings of 2d manifolds with boundary into ℝ2. The noisy Swiss Roll is constructed by

adding uniform noise in all three dimensions, with support on [0,0.05].
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Figure 15:
LDLE embeddings when the points on the boundary are known apriori.
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Figure 16:
Violin plots (Hintze and Nelson, 1998; Bechtold et al., 2021) for the distribution of Dk (See

Eq. (64)). LDLE ∂M means LDLE with boundary known apriori. The white point inside

the violin represents the median. The straight line above the end of the violin represents the

outliers.
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Figure 17:
Embeddings of the Swiss Roll with additive noise sampled from the Gaussian distribution of

zero mean and a variance of σ2 (see Section 6.2.2 for details).
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Figure 18:
Embeddings of the Swiss Roll with decreasing resolution and increasing sparsity (see

Section 6.2.3 for details). Note that when RES= 7 (n = 70) none of the above method

produced a correct embedding.
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Figure 19:

Embeddings of 2d manifolds without boundary into ℝ2. For each manifold, the left and right

columns contain the same plots colored by the two parameters of the manifold. A proof of

the mathematical correctness of the LDLE embeddings is provided in Figure 31.
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Figure 20:

Embeddings of 2d non-orientable manifolds into ℝ2. For each manifold, the left and right

columns contain the same plots colored by the two parameters of the manifold. A proof of

the mathematical correctness of the LDLE embeddings is provided in Figure 31.
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Figure 21:

Embedding of the synthetic sensor data into ℝ2 (see Section 6.5 for details).
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Figure 22:

Embedding of the face image data set (Tenenbaum et al., 2000) into ℝ2 colored by the pose

and lighting conditions (see Section 6.5 for details).
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Figure 23:
Embeddings of snapshots of a platform with two objects, Yoda and a bull dog, each rotating

at a different frequency, such that the underlying topology is a torus (see Section 6.5 for

details).
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Figure 24:

Local views containing outliers exhibit high distortion. (left) Input data xk k = 1
n . (middle) xk

colored by the distortion ζkk of Φk on Uk. (right) yk colored by ζkk.
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Figure 25:
Embeddings obtained by using the global alignment procedure in LTSA to align the

intermediate views in the embedding space. These views are the result of the clustering

step in our algorithm.
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Table 1:

Default values of LDLE hyperparameters.

Hyperparameter Description Default value

k nn No. of nearest neighbors used to construct the graph Laplacian 49

k tune The nearest neighbor, distance to which is used as a local scaling factor in the construction of graph
Laplacian

7

N No. of nontrivial low frequency Laplacian eigenvectors to consider for the construction of local views in
the embedding space

100

d Intrinsic dimension of the underlying manifold 2

p Probability mass for computing the bandwidth tk of the heat kernel 0.99

k lv The nearest neighbor, distance to which is used to construct local views in the ambient space 25

τs s = 1
d Percentiles used to restrict the choice of candidate eigenfunctions 50

δs s = 1
d Fractions used to restrict the choice of candidate eigenfunctions 0.9

η min Desired minimum number of points in a cluster 5

to_tear A boolean for whether to tear the manifold or not True

ν A relaxation factor to compute the neighborhood graph of the intermediate views in the embedding
space

3

N r No. of iterations to refine the global embedding 100
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