
UC Irvine
ICS Technical Reports

Title
Category theory : definitions and examples

Permalink
https://escholarship.org/uc/item/4v71619v

Author
Srinivas, Yellamraju V.

Publication Date
1990-02-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4v71619v
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

_!.Jategory Theory
Definitions and Examples

Yellamraju V. Srinivas
Department of Information and Computer Science

University of California, Irvine, USA
srinivas@ics.uci.edu

Technical Report 90-14
18 February 1990

Abstract

Category theory was invented as an abstract language for describing certain struc
tures and constructions which repeatedly occur in many branches of mathematics, such
as topology, algebra, and logic. In recent years, it has found several applications in
computer science, e.g., algebraic specification, type theory, and programming language
semantics. In this paper, we collect definitions and examples of the basic concepts
in category theory: categories, functors, natural transformations, universal properties,
limits, and adjoints.

Contents

1 Categories: definition and examples 1

2 Using arrows 4

3 Duality 6

4 Commutative diagrams 7

5 Universal properties and constructions 7

6 Functors 13

7 Natural transformations 16

8 Universal arrows 18

9 Limits and colimits 21

10 Completeness 23

11 Adjoints 24

References 27

Index 28

Introduction

Category theory was invented as an abstract language for describing certain structures and
constructions which repeatedly occur in many branches of mathematics, such as topology,
algebra, and logic. As opposed to set theory which is based on the membership relation and
thus leads to the study of the internal structure of abstract entities, category theory takes
morphisms or arrows as fundamental. Thus, in category theory, one studies the external
properties of objects. To define an object, it is necessary and sufficient to describe its
interaction (via morphisms) with all other objects.

As an example, consider the definition of the Cartesian product of two sets. In set the
ory, the product is defined by specifying its internal structure: the product of two sets is
a set consisting of ordered pairs as elements, with the first component of each pair coming
from one of the sets and the second component from the other. In category theory, we con
centrate on the.external properties of products: a product comes equipped with two special
functions, projections, which map ordered pairs onto their first and second components. The
latter definition, generalized by replacing sets by objects and functions by arrows, uniformly
describes products of sets, functions, graphs, data types, groups, topological spaces, and so
forth.

The use of category theory results in parsimonious descriptions of entities, because of its
abstract nature, and its focus on essential external properties. In recent years, it has found
several applications in computer science, e.g., algebraic specification, type theory, program
ming language semantics, graph rewriting, automata theory, and even abstract machines
based on categorial primitives.

In this paper, we provide a rapid introduction to category theory. For a more detailed
description, we refer the reader to the literature. A computer science oriented introduction
to category theory is provided by Rydeheard and Burst all [RB88], Pierce [Pie88], and Pitt
et al. [PAPR85]. Other, very readable, introductions are by Goldblatt [Gol84, Chapters 2
and 3], and Herrlich and Strecker (HS73). The book by Mac Lane, one of the founders of
category theory, is an uncluttered, succinct, and precise treatment [Mac71). Schubert's book
[Sch72] is terse but comprehensive, and thus suitable as a reference book. Goguen (Gog88]
introduces concepts from category theory while addressing substitution and unification. The
series of papers by Goguen et al. (GB84a, GB84b, TBG88) is a description of concepts es
pecially useful for understanding the theory underlying algebraic specification. Lambek and
Scott [LS86] provide a brief introduction to category theory while exploring the relationship
between category theory and logic.

1

1 · Categories: definition and examples

A category is an abstract mathematical structure defined axiomatically as shown below. The
definition is taken from [Gol84].

DEFINITION 1.1: Category. A category C comprises

1. a collection of things called C-objects;

2. a collection of things called C- arrows;

3. operations assigning to each C-arrow f a C-object dom f (the "domain" of J) and a
C-object cod/ (the "codomain" off). If a= domf and b = codfwe display this as

f: a -+ b or a ~ b

4. an operation, "o", called composition, assigning to each pair (g, !) of C-arrows with
dom g = cod f, a C-arrow go f: dom f -+ cod g, the composite off and g, such we have
the

Associative Law: Given the configuration

f b g h d a ----+ ---+ c ---+

of C-objects and C-arrows, we have

h 0 (g 0 !) = (h 0 g) 0 f.

5. an assignment to each C-object b of a C-arrow idb: b -+ b, called the identity arrow on
b, such that we have the

Identity Law: For any C-arrows f: a-+ band g: b-+ c

D

Notation. We drop the prefix "C-" when referring to the objects and arrows of a specific
category whose name is clear from the context. The notation for composition follows usage
in mathematics: go f means that f is applied first, then g. Some authors prefer to write
the composite in diagrammatic order (left to right), as Jg or as f; g.

EXAMPLE 1.2: Trivial examples. Trivial examples of categories include the category 0 with
no objects and no arrows, the category 1 with exactly one object and the identity arrow,
and the category 2 with two objects and one non-identity arrow: ·--1-·.

Any set can be made into a discrete category by treating each element as an object with
an identity arrow, there being no other (non-identity) arrows. D

------~- ------------·- ___ _.. _ _._ _______ __,,__ --- - --------..'...~---

2 1 CATEGORIES: DEFINITION AND EXAMPLES

EXAMPLE 1.3: The category of sets and fundions. The prototypical example of a category
is the category Set whose objects are all sets and whose arrows are all functions between
sets. 1 Composition is the familiar composition of functions defined as (go f)(x) = g(f(x)).
Associated with each set A is an identity function idA, defined as idA(x) = x. Evidently, the
associative and identity laws are satisfied. D

EXAMPLE 1.4: Pre-orders as categories. A binary relation Ron a set P (i.e., R ~ P x P)
is called a pre-order if it is reflexive (i.e., for each p E P we have p R p) and transitive (i.e.,
whenever p R q and q R r, we have p R r). Such a pre-order can be considered to be a
category as follows. The objects are the elements of the set P. The arrows are the pairs
(p, q) for which p R q, with dom(p, q) = p and cod(p, q) = q. Given a composable pair of
arrows

(v.a\ (q,r\
p.::....:..:tq~r,

we define
(q, r) o (p, q) = (p, r).

The arrow (p, r) exists because the relation R is transitive. Since R is reflexive, the arrow
(p,p) always exists. We define idp = (p,p). The associative and identity laws are satisfied
by virtue of transitivity. D

EXAMPLE 1.5: Graphs and graph morphisms. A graph (unlabelled, directed, multigraph)
is a 4-tuple (N, E, s, t) of two sets called nodes (N) and edges (E) and two functions called
source (s) and target (t) assigning nodes to edges. The nodes and edges of a graph G are
denoted by N(G) and E(G), respectively.

A morphism of graphs f: G--+ His a pair of functions

UN: N(G) --+ N(H), fE: E(G) -+ E(H)),

mapping nodes to nodes and edges to edges, such that the pair of functions is compatible
with the source and target maps, i.e., for all edges e E E(G)

sH(JE(e)) = fN(sa(e))

and tH(JE(e)) = fN(ta(e)).

Graphs and graph morphisms form a category, Graph, with composition and identities
the evident extensions from the category of sets. D

1Strictly speaking, the arrows in this category are triples (a, f, b) consisting of a function along with its
domain and codornain. This is so that all the arrows in the category are distinct, and to differentiate between
inclusion functions, a '--+ b, and identity functions, idb.

I

3

EXAMPLE 1.6: Signatures and signature morphisms. A signature 'E = (S, .0), consists of a
set S of sorts and a set n of operation symbols. Associated with each operation symbol is
a sequence of sorts called its rank. For example, f: si, s2, ... , Sn --+ s indicates that f is the
name of an n-ary function, taking arguments of sorts si, s2 , .•. , Sn and producing a result of
sort s. A nullary operation symbol, c: --+ s, is called a constant of sort s.

Given two signatures E = (S, n) and .E' = (S', f!'), a signature morphism a: 'E -+ :'E'
is a pair of functions (O"s: S -+ S', O'n: n -+ f!'), mapping sorts to sorts and operations to
operations, such that the sort map is compatible with the ranks of the operations, i.e.,

for all operation symbols f: S1, S2, ... , Sn --+ S in f!,

the operation symbol O'n (!):as(s1), as(s2), ... , O's(sn) -+ O"s(s) is in n'.

The composition of ~wo signature morphisms, obtained by composing the functions com
prising the signature morphisms, is also a signature morphism. The identity signature mor
phism on a signature maps each sort and each operation onto itself. Signatures ahd signature
morphisms form a category, Sign. 0

EXAMPLE 1. 7: :'E-algebras and Li-homomorphisms. Given a signature E
algebra A = (As, FA) consists of two families:

(S, .0), a E-

1. a collection of sets, called the carriers of the algebra, As = {As J s E S }; and

2. a collection of (total) functions, FA = { f A I f E n }, such that, if the rank of f is
s1, s2, ... , Sn -+ s, then fA is a function from As1 X As2 X · · · X Asn to A 9 • The symbol
x indicates the cartesian product of sets here.

Given a signature E = (S, 0) and two Li-algebras A and B, a E-homomorphism h: A-+ B
is a family of functions { h9 : As -+ Bs I s E S} between the carriers which are compatible
with the operations, i.e., for all operation symbols f: s1 , s 2 , ••• , Sn -+ s, and for all a 1 E
As1 , a2 E As2 , ••• , an E As,,,

hs(f A(ai, a2, ... , an)) = fB(hs 1 (a1), hs2 (a2), ... , hs,, (an)).

The identity homomorphism maps an algebra onto itself. The composition of two ho
momorphisms is also a homomorphism. E-algebras and Li-homomorphisms form a category,
denoted Alg(E). D

EXAMPLE 1.8: Sets with structure. The previous example is an instance of a wide variety
of categories found in mathematics: the objects are sets with structure, and the arrows are
structure-preserving maps. Algebraic structures such as monoids, groups, rings, etc., along
with homomorphisms form categories, with composition and identities being the evident
ones. Similarly, partial orders and monotone maps, and topological spaces and continuous
maps, form categories. D

I
I

4 2 USING ARROWS

EXAMPLE 1.9: Types and terms. We now define a category in which the arrows are a little
unusual. Let :E = (S,O) be a signature. Let X = {X,, Is ES} and Y ={~Is E S}be
sets of variables indexed by the sort set S. Let TE(X) be the set of terms generated from E
using variables in X (see examples 2.10 and 8.3 for a precise definition). A substitution of
the variables in Y with terms generated using the variables X, is a map2 u: Y --+ T:r:(X).

We can form a category, Terms(:E), using these ingredients as follows. The objects are
sorted sets of variables. An arrow from the object X to the object Y is a substitution u: Y--+
T:r:(X).3 Identity arrows are trivial substitutions which replace variables by themselves.

To define composition of arrows, we need the following fact: a substitution u: Y--+ T:r:(X)
can be uniquely extended to a function u: T:r:(Y) --+ T:r:(X).4 Now, the composition of
the arrows u: X -+ Y and 1: Y -+ Z (with corresponding substitutions O": Y -+ T:r:(X)
and 1: Z -+ T:r:(Y)) is defined as the arrow 1 o u: X -+ Z arising from the substitution
u o 1: Z-+ T:r:(X). The associativity of this operation is proved in [Gog88]. 0

Remarks

These examples show the diversity of the concepts "object" and "arrow". The axioms for
categories are quite weak, in the sense that a large number of mathematical structures satisfy
them. Much of the utility of category theory comes from defining more complex constructions
using arrows. Properties determined and proved in the general setting then specialize to any
category in which the construction is possible.

2 Using arrows

As an example of the bias of category theory towards defining concepts using arrows, we
define the concept of isomorphism (compare with the definition of bijective functions on
sets).

DEFINITION 2.1: Isomorphism. An arrow/: a--+ bin a category C is said to be an isomor
phism if there is a C-arrow g: b --+ a such that

g o f = ida and f o g = idb .

0

The arrow g defined above is unique and is denoted by 1-1 • Two objects a and b are
said to be isomorphic, denoted a :: b, if there exists an isomorphism, /:a -+ b, between
them. One of the themes in category theory is that isomorphic objects are "abstractly the
same". At least, they cannot be distinguished within the theory. Thus, all the constructions
outlined below are only defined up to isomorphism.

EXAMPLE 2.2. Isomorphisms in Set are bijective maps, i.e., isomorphic objects have the
same cardinal number. D

2 Actually an indexed collection of maps.
3 Note the change in direction. Arrows in categories are formal entities; their direction is relevant only to

the extent that it defines the domain and codomain. 1

4 This follows from the freeness of TI:(X), see example 8.3 below.

5

EXAMPLE 2.3. Isomorphisms in Sign are bijective renamings of sorts and operations. Iso
morphic signatures are abstractly the same because what matters is the structure of a sig
nature, and not the particular names attached to sorts and operations. o

Here are more instances of "arrows only" definitions, the categorial versions of injective
(one-one) and surjective (onto) functions.

DEFINITION 2.4: Monomorphism. An arrow f: a --+ b in a category C is said to be a
monomorphism (or simply, monic) if for any parallel pair g, h

g

c ::=:!. a~ b
h

of C-arrows, the equality fog = f oh implies g = h. A monic arrow is denoted by f: a >-+ b.
0

DEFINITION 2.5: Epimorphism. An arrow f: a --+ b in a category C is said to be an
epimorphism (or simply, epic) if for any parallel pair g, h

J ~ a--+b--+c
h

of C-arrows, the equality go f =ho f implies g = h. An epic arrow is denoted by f: a-* b.
0

An interesting special case of monic arrows is given by the inclusion arrows in Set: if
A ~ B, then the inclusion function A <-+ B sends each element in A to itself (in B).
Generalizing this (and treating isomorphic objects as the same), we define a sub-object of
an object b to be a monic f: a >-+ b. Note that a sub-object is really an arrow, and not an
object.

We now turn to the definition of extremal objects in a category.

DEFINITION 2.6: Initial object. An object a is said to be initial in a category C if there is
exactly one C-arrow from a to every other object in the category. D

DEFINITION 2. 7: Terminal object. An object a is said to be terminal (also called final) in
a category C if there is exactly one C-arrow to a from every other object in the category. D

Notation. We will show below (section 3) that all initial objects and all terminal objects in
a category are isomorphic. This justifies the use of the definite article, "the", when referring
to these objects. Initial and final objects are usually denoted by 0 and 1, respectively. Given
an object c, the unique arrow from the initial object and the unique arrow to the terminal
object are denoted by Oc: 0 --+ c a.nd le: c--+ 1, respectively. Sometimes, unique arrows are
simply denoted by !, as in !: 0--+ c.

EXAMPLE 2.8. The category Set has the empty set 0 as the initial object and any one
element set as a terminal object. D

EXAMPLE 2.9. In the category Sign, the initial object is the empty signature, containing
no sorts and no operations. The category Sign does not have a terminal object. D

I

6 3 DUALITY

EXAMPLE 2.10. In the category Alg(I;), the terminal objects are trivial algebras, algebras
all of whose carriers are one-element sets, and all of whose functions are defined in the only
way possible.

An initial object in Alg(I;) is the ground term algebra, denoted by Tr:,, and defined as
below. The carriers of Tr:,, denoted by Tr:,, form a family of sets of ground terms { Tr:.,s / s E S}
defined inductively as

1. if c: -t s is a constant of sort s, then the term c E Tr:.,s;

2. if f: s1, s2, ... , Sn -t s is an operation of sort s, and t1, t2, ... , tn are terms in Tr:,, 31 ,

Tr:.,s2 , ••• , Tr:,sn respectively, then the term f{t1,t2, ... ,tnl E Tr:,, 3 •

The operations of Tr:, are denoted by the same names as in I;. They are defined by
(assuming f as above)

J(t1, i2, ···,in) 1---t J{t1, t2, ... , tnl

i.e., each operation carries its arguments onto the corresponding term formed by its ap
plication to those arguments (note that the expression on the left above denotes function
application, while the one on the right is just a formal term).

A proof of initiality of Tr:, can be found in [EM85, Theorem 3.3] or [GTW78, Theorem 2).
0

3 Duality

On closer examination, it can be seen that the definitions of monic and epic arrows, and
initial and terminal objects, are very similar; the only difference is the direction of the arrows
used in the definitions. This is an instance of a more general principle in category theory
called duality.

DEFINITION 3.1: Opposite category. Given a category C, the opposite category C0 P, has
the same objects and arrows as C except that the domain and codomain relations are inter
changed, i.e., for every C-arrow f: a -+ b, we have a C0 P-arrow f°P: b -t a. Identity arrows
remain unchanged, and the composition go f becomes the composition f°P o g0 P. D

The axioms for categories are invariant under the changes described above, from which
we have the following duality principle.

DEFINITION 3.2: Principle of duality. If a statement S is true in a category C, then the
dual statement S*, obtained by interchanging domains and codomains of arrows and by
substituting f°P 0 g0 P for g 0 f, is true in the opposite category C0 P. Consequently, if a
statement S is true in all categories, then the statement S* is also true in all categories. D

For a precise statement of this principle, and a proof, see [Hat82]. In view of this, the
opposite category is also called the dual category. We will illustrate the principle of duality
using the following theorem.

THEOREM. Any two initial objects in a category are isomorphic.

7

PROOF. Let a and a' be two initial objects in a category C. Since both a and a' are initial,
there are unique arrows

f . I d . I .a-+a an g.a -+a.

Now, go f is an arrow from a to a. But the only arrow from a to a is the identity arrow
ida (a being an initial object). Thus the two arrows must be equal, i.e., gof = ida. Similarly,
J o g = ida'. Hence J is an isomorphism and a '.:::'. a'. D

By the principle of duality, we can immediately conclude

THEOREM. Any two final objects in a category are isomorphic.

4 Commutative diagrams

In category theory, we frequently use diagrams to represent relationships between arrows.
Strictly speaking, all such diagrams can be replaced by collections of equations which specify
that certain pairs of arrows are equal. Diagrams have the advantage that domains and
co domains of arrows can be read off at a glance. Moreover, representing composition by
chaining together edges in a diagram allows fast 5 inferencing about equalities between arrows,
an activity called "diagram chasing."

A diagram is a directed graph with vertices labelled by objects in a category and edges
labelled by arrows in the same category. The source of an edge represents the domain of the
arrow corresponding to the edge; the target represents the codomain. Such a diagram is said
to be commutative if, for each pair of vertices v and v', any two paths formed by directed
edges leading from v to v' yield, by composition of labels, equal arrows from v to v'. For
example, the following two diagrams commute if h = g o f and q op = r o s.

a c

p
a-----b

•l r lq
d-----c

An exception is diagrams in which there is more than one arrow between two objects, such
as a =* b; these two arrows need not be equal, unless explicitly indicated.

In a com.mutative diagram, if an arrow is dashed, by convention, that arrow is expected
to be uniquely defined.

5 Universal properties and constructions

A typical way of defining entities in category theory is that of specifying a so-called "univer
sal" property. 6 Such a definition contains two part$. The first part specifies a property to

5 After some practice, of course!
6This is an informal discussion of universal properties. A formal definition of "univers&l" needs more

machinery, and can be found in section 8.

8 5 UNIVERSAL PROPERTIES AND CONSTRUCTIONS

be satisfied by the entity. Of all the entities satisfying this property, the second pa.rt picks
out a special one, 1 in some sense the entity which "minimally" satisfies the property. This
special entity is said to be "universal" among the set of entities satisfying the property. As
an example, we consider the definition of a least upperbound in a pre-order.

EXAMPLE 5.1: Least upperbound. Given a pre-order (P, <), i.e., a set P equipped with a
reflexive and transitive relation :5 on it, an upperbound of a subset S s; P is defined to be
an element u E P such that

Vs E S · s :5 u. (i)
A least upperbound of S is an element l E P such that

l is an upperbound, and, if u is any other upperbound, then 1 :5 u. (ii)
Condition (i) specifies the property to be satisfied. Condition (ii) specifies "minimality". D

Using a universal property to describe an entity is a non-procedural way of defining
that entity and is thus a powerful specification tool. Universal properties have been used
to define parameterization, semantics of programming languages, unification of expressions,
and minimal realizations of behaviour.

We now define some universal constructions8 in category theory. Here are generalizations
of cartesian product and disjoint union of sets. Note the "arrows only" feature of these
definitions.

DEFINITION 5.2: Product. A product in a category C of two objects a and bis a C-object
a x b together with a pair of arrows a ~ a x b .!4 b (called projections) such that to any

other pair of arrows a +!-- c ~ b, there is a unique arrow (!, g): c -+ a x b such that the
following diagram commutes,

c

/l(~
a axb b

i.e., ?r1 o (f,g) = f and ?r2 o (f,g) = g. D

7 As usual, up to isomorphism.
8The term "construction" is a misnomer, although it is widely used. A universal construction is the

specification of some dbject(s) or arrow(s) satisfying a universal property. The entities so defined are not
"constructed"; they are already present in the category.

9

DEFINITION 5.3: Coproduct. A coproduct in a category C of two objects a and bis a C
object a+ b together with a pair of arrows a!:!...i. a+ b ~ b (called injections) such that

to any other pair of a.rrows a_.!_. c ~ b, there is a unique arrow [f,g]: a+ b-+ c such that
the following diagram commutes,

i.e., [!, g] o t1 = J and [!, g] o t2 = g. D

EXAMPLE 5.4. In Set, a product of two sets A and Bis the set Ax B consisting of ordered
pairs (x, y) with x E A and y E B. The projections are defined by 7r1((x, y)) = x and
7r2((x,y)) = y. Products are only defined up to isomorphism; thus Bx A is also a product
of A and B.

A coproduct of A and B is the disjoint union of A and B, which can be defined as
({O} x A) U ({1} x B), where each element is "labelled" to indicate the set it comes from.
The injections are defined by 1..1 (x) = (O,x) and t 2(y) = (1,y). D

EXAMPLE 5.5. Products and coproducts in Graph can be constructed by extending the
constructions in Set. For example, a product of the graphs G and H would consist of nodes

(a, b) with a E N(G) and b E N(H), -.ad edges (a,b> (p,ql (c, d) with a 2-+ CE E(G) and
b ~ d E E(H). D

EXAMPLE 5.6. In pre-orders regarded as categories, a least upperbound is a coproduct and
a greatest lowerbound is a product. D

EXAMPLE 5. 7. Products in the category Terms(E) are more like coproducts in Set (because
of the reversal of arrows, see example 1.9). A product of the variable sets X and Y is their
disjoint union X l±J Y. The projection ?r1 is the substitution which takes each variable in X
to the same variable (possibly renamed to avoid clashes) in X l±J Y. D

Products and coproducts can be defined for arbitrary families of objects. We will see
how to do this in section 9. Now, we describe generalizations of products and coproducts
which take into account "sharing", pullbacks and pushouts, also called "fibred products"
and "amalgamated sums".

10 5 UNNERSAL PROPERTIES AND CONSTRUCTIONS

DEFINITION 5.8: Pullback. Given a pair of C-arrows a -L.+ c ~ b with common codomain,
their pullback is defined to be a commutative square (shown on the left below) formed with

I f'
a pair of C-a.rrows a +!--- d --+ b (i.e., J o g' = g o J') such that for any other pair of arrows

a J:.- e ~ b which also form a commutative squa.re (i.e., Joh =go j) there is a unique
C-arrow e -1!..+ d such that the diagram on the right below is commutative,

h

a __ ____,. c

i.e., g' o k = h and f' o k = j. D

DEFINITION 5.9: Pushout. Given a pair of C-arrows a+!-- c ~ b with common domain,
their pushout is defined to be a commutative square (shown on the left below) formed with

I !'
a pair of C-arrows a~ d ~ b (i.e., g' of= f' o g) such that for any other pair of arrows

a ~ e +2--- b which also form a commutative square (i.e., ho f = j o g) there is a unique

C-arrow d -1!..+ e such that the diagram on the right below is commutative,

9 b 9 b c c

tl
g' k tj

g' k J
a d a d, k

~ h e

i.e., k o g' =hand k of'= j. D

Convention. When we say "pullback" or "pushout", we usually mean the object c at the
corner of the squares in the definitions above.

11

EXAMPLE 5.10. In Set, a pullback of two functions f: A-+ C and g: B -+ C is given by
{ (a,b) I a E A,b E B, and J(a) = g(b) }. The arrows into A and Bare the projections
71"1 and 71"2• As a special case, the pullback of two subsets A '--" C and B '--" C is their
intersection An B (up to isomorphism).

Dually, a pushout off: C -+ A and g: C -+ B is obtained by taking the disjoint union
A 1±1 Band coalescing pairs of elements f(x) and g(x) for each x EC. Note that if inclusion
arrows are used to indicate sharing, a pushout will contain only one copy of the shared entity.

D

EXAMPLE 5.11. In Set, the pullback of a function/: A-+ B along an inclusion C Y. B
(a subset C ~ B) produces the inverse image of C under f, defined by 1-1(C) = { x EA I
f(x)EC}. D

EXAMPLE 5.12. Products and coproducts can be constructed using pullbacks and pushouts
as follows (0 and 1 are the initial and terminal objects, respectively):

71"2
axb---b

··l !1
• la

a---~1

D

12 5 UNIVERSAL PROPERTIES AND CONSTRUCTIONS

EXAMPLE 5.13. Pushouts in Sign are useful for instantiating parameters in a signature as
shown below:9

Formal
Parameter

Specification 1
Morphism

Actual
Parameter

Body of
Parameterized
Specification

1
Instantiated
Specification

Here is a concrete example of parameterized lists, LIST(ATOM), instantiated with the
specification of natural numbers, NAT, to obtain lists of natural numbers, LIST(NAT).

sorts
ATOM

ATOM HNAT 1
sorts

NAT

operations
0: -+NAT

succ: NAT-+ NAT

sorts
ATOM, LIST

operations
nil: -+LIST

cons : ATOM, LIST _, LIST

sorts
NAT, LIST

operations
nil:

1 ATOM HNAT

-+LIST

cons : NAT' LIST _, LIST

0: -+NAT

succ: NAT-+ NAT

0

DEFINITION 5.14: Equalizer. Given a pair of C-arrows f,g: a ~ b with the same domain
and codomain, their equalizer is defined to be a C-object e along with a C-arrow u: e -+ a

such that f o u = g o u, and for any C-arrow h: c -+ a with f o h = g o h, there is a unique
C-arrow k: c-+ e such that the following diagram commutes,

i.e., u o k = h. 0

9See [EM85, Chapter 8] for details.

13

DEFINITION 5.15: Coequalizer. Given a pair of C-arrows f,g: a :::i b with the same domain
and codomain, their coequalizer is defined to be a C-object e along with a C-arrow u: b-+ e
such that u of = u o g, and for any C-arrow h: b-+ c with ho f = hog, there is a unique
C-arrow k: e-+ c such that the following diagram commutes,

f
b

u
a e

g \/:
c

i.e., ko u = h. 0

EXAMPLE 5 .16. In the category Set, the equalizer of two functions f, g: A :::i B is the
largest subset E Y. A of A on which the two functions f and g are equal (henc" "he nar1e
"equalizer"), i.e., E = { x EA I J(x) = g(x) }. Universality guar, sees that Eis e. largest
subset of A on which f and g are equal.

Dually, the coequalizer is the quotient of B by the smallest equivalence relation, ""', which
contains all pairs (! (x), g(x)) for x E A. The coequalizing map u: B -+ B / rv is given by
b ~ [b] for all b EB, which takes each element of B to its equivalence class. D

EXAMPLE 5.17. In the category Terms(2;), the most general unifier of two terms can be
considered as an equalizer as follows. Let t1 and t 2 be two 2;-terms of sort s with free
variables in X. Let I be a singleton set consisting of exactly one variable i of sort s. The
two terms can then be represented as a parallel pair of arrows

t1
X~I

t2

given by the substitutions i ~ t 1 and i ~ t 2• A unifier of these two terms is a substitution
from X into a collection of variables U, represented by the arrow u: U---+ X, such that after
this substitution, the two terms are equal, i.e., t 1 o u = t2 o u. A most general unifier is a
unifier such that every other unifier is an instance (via some substitution) of it; this defines
it to be an equalizer. D

6 Functors

The next step in abstraction is to treat a category itself as an object. What is an appropriate
notion of morphism for categories? Something that maps objects to objects and arrows to
arrows, in a compatible way, just like homomorphisms of algbras. Such a morphism of
categories is called a functor.

14 6 FUNCTORS

DEFINITION 6.1: Functor. A functor F from a category C to a category Vis a function
which assigns to each C-object a, a V-object F(a), and to each C-arrow f: a--+ b, a V-arrow
F(f): F(a)--+ F(b), such that identity arrows and composites are preserved, i.e.,

F(ida) = idF(a)i for all C-objects a, and

F(g o !) = F(g) o F(f), whenever go f is defined in C.

0

EXAMPLE 6.2: Identity functors. Given a category C, the identity functor idc:C --+ C is
defined by idc(a) =a and idc(f) = f for all objects a and arrows fin C. D

EXAMPLE 6.3: Forgetful functors. Let Group be the category of groups and group homo
morphisms. The forgetful (or underlying) functor U: Group --+ Set maps each group onto
its carrier set and each homomorphism onto its underlying function. There is an obvious
extension to many-sorted algebras, e.g., the forgetful functor between Alg(.E) and S-sorted
sets and functions. D

EXAMPLE 6.4: Reduct functors. Given a signature morphism <J: .E --+ .E', we can define
the O'-reduct functor -10': Alg(.E') --+ Alg(.E) which maps .E'-algebras to .E-algebras and .E'
homomorphisms to .E-homomorphisms (note that the reduct functor goes in the opposite
direction to the signature morphism which induces it).

The O'-reduct of a .E'-algebra A', denoted by A'JO', is the .E-algebra A= (As, FA) defined
as follows: (with .E = (S, 0))

As= A~(s)' for s ES, and fA = O'(f)A•, for f E 0.

Given a .E'-homomorphism h': A'--+ B' between two .E'-algebras A' and B', the O'-reduct
of h' is a .E-homomorphism h: A'IO' --+ B'IO', denoted by h'IO', and defined by the family of
functions hs = h~(s), for s E S. D

EXAMPLE 6.5: Monotone functions. A functor F between two pre-orders P and Q treated
as categories, is just a monotone function, i.e., a SP b implies F(a) SQ F(b). D

EXAMPLE 6.6: The category of all categories. The category of all categories, denoted Cat,
contains categories as objects and functors as arrows. Identity functors form the identity
arrows, and functors are composed in the obvious way.

Note that this category leads to foundational difficulties, because we can construct the set
of all sets from it, which leads to Russell's paradox. To avoid this, we can use the set/class
distinction and consider as objects of Cat, only those categories whose collection of arrows
are sets (and not proper classes). Since the class of all sets is not a set, Cat does not contain
itself, and we avoid a paradox. Alternatively, we can consider sets which are small with
respect to some universe, as in [Mac71, section 1.6). D

The functors discussed above preserve the direction qf the arrows. Such functors are
called covariant. A contravariant functor is one which reverses the direction of arrows.

15

DEFINITION 6. 7: Contravariant functor. A contravariant functor F from a category C to •
a category 1J is a function which assigns to each C-object a, a V-object F(a), and to each
C-arrow f: a--+ b, a V-arrow F(f): F(b)--+ F(a) (note the reversal of direction), such that
identity arrows and composites (reversed) are preserved, i.e.,

F(ida) = idF(a)' for all C-objects a, and

F(g o J) = F(f) o F(g), whenever go f is defined in C.

0

EXAMPLE 6.8: Model functor. The functor Alg: Sign --+ Cat which assigns to each
signature :E, the category of :E-algebras and to each signature morphism a the a-reduct
functor, is contravariant. 0

EXAMPLE 6.9: Powerset functor. The contravariant powerset functor P: Set-+ Set takes
each set A to its powerset P(A) and each function f: A--+ B to a function P(f): P(B) -+
P(A) which assigns to each subset X £; B its inverse image J-1(X) £; A. O

Contravariant functors can be made covariant by considering the opposite category for
either the domain or codomain of the functor. Thus the model functor above is usually writ
ten as Alg: Sign--+ Cat0 P. By convention, the word "functor" used alone means "covariant
functor".

In any category C let home (a, b) (called "horn-set") denote the collection of C-arrows with
domain a and codomain b. Observe that a functor F: C -+ V induces functions on horn-sets
(one for each pair a, b of C-objects) defined by

Fa,b:homc(a,b)-+ homv(F(a),F(b)), fr-+ F(f).

DEFINITION 6.10: Full, faithful. A functor F: C--+ 1J is said to be full if each function Fa,b
on the horn-sets is surjective, and faithful when each is injective. D

DEFINITION 6.11: Subcategory. A subcategory S of a category C is a collection of some
C-objects and some C-arrows such that S forms a category (i.e., for each arrow/, the objects
domf and cod fare in S, for each object a, the arrow ida is in S, for each pair of composable
arrows, the composite arrow is in S). D

Corresponding to a subcategory S of C, we have an inclusion functor S '--+ C which sends
each object and each arrow of S to itself. This functor is faithful by definition. If it is also
full, then S is said to be a full subcategory of C.

EXAMPLE 6.12. The category FinSet, consisting of all finite sets and all functions between
them, is a (full) subcategory of Set. D

EXAMPLE 6.13. Let SP = (L:, q>) be a specification consisting of a signature L: and a set
of equations q>, A model of SP is a :E-algebra which satisfies all the equations in q>, 10 The
models of SP and the :E-homomorphisms between them form a category Alg[SP] which is a
(full) subcategory of Alg(:E). D

10See [EM85, Definition 1.13] for a definition of equation and satisfaction.

16 7 NATURAL TRANSFORMATIONS

7 Natural transformations

Now that we have treated categories as objects and functors a.s arrows, the next step in ab
straction is to treat functors themselves as objects.11 We now define a12 notion of morphism
for functors.

DEFINITION 7.1: Natural transformation. Given two functors F, G:C --+ 'D, a natural
transformation T: F ..!.t G is an assignment to each C-object a of a I>-arrow Ta:F(a)--+ G(a)
such that for any C-arrow f: a--+ b, the following diagram commutes.

F(a) Ta G(a)

F(f)j

F(b)

lG(J)

Tb ;;.. G(b)

i.e., G(f) o Ta= Tb o F(f). 0

When the condition above holds, we say that the assignment of Ta to a is natural in a (i.e.,
it preserves categorial structure). We can think of a natural transformation as translating
the image of the functor F in the category 'D into the image of the functor G. The arrows
Ta, Tb, Tc, etc., are called the components of the natural transformation T.

110bviously, we can carry this process further and try to treat natural transformations as objects. However,
such concepts do not seem to be necessary in mathematical practice. Moreover, natural transformations
behave somewhat like functors, in that they can be composed with functors on the left and the right.

12There are other notions of morphisms of functors. For example, in the arrow category Cat-, objects are
functors, and a morphism from an object F: A - B to an object G: C - D is a pair of functors X: A - C
and Y: B - D such that Yo F =Go X.

17

EXA:V1PLE 7.2. We noted in example 5.4 that the products Ax Band Bx A are isomorphic
in the category Set. The intuitive notion that this is true for all sets B is captured in the
definition of a natural transformation. We first define two functors: 13 (here, f: X ---+ Y is a
arrow in Set)

A x _: Set ---+ Set

X 1-+ AxX
f I-+ idA Xj

_ x A: Set ---+ Set

X 1-+ XxA
f I-+ f X idA

We will define a natural transformation tw: Ax _ -..!+ _ x A (tw for "twist"). For each
object X in Set, let twx: Ax X---+ Xx A be defined by twx((a, x)) = (x, a). For any arrow
f: X-+- Yin Set, the following diagram commutes.

Ax X twx :Xx A

idA Xj l l f X idA

Ax Y twy Y x A

Thus the maps tw x form the components of a natural transformation.
A natural transformation, such as tw, for which each of the components is an isomor-

phism, is called a natural isomorphism or natural equivalence. D

EXAMPLE 7.3: Functor categories. Given two categories C and 1) we can define the category
of all functors and natural transformations between them as shown below. This category is
called a functor category and is denoted r:f.

The objects of ~ are functors F: C -+- 'D. The arrows are natural transformations
r: F -..!+ G. The identity arrows, idF: F -..!+ F are identity natural transformations defined for
each C-object c by c 1-+ idF(c) (identity arrows in 'D). Two natural transformations r: F-..!+ G
and µ: G -..!+ H can be composed, denoted µ · r ("vertical" composition14), by composing
their components: (µ • -r)c = µ 0 o Tc (in 'D). It can be shown by straightforward diagram
chasing that µ • T is natural, and that this composition is associative. D

13Given arrows f: A---+ C and g: B---+ D, the arrow f x g: A x B -+ C x Dis defined as {! o 71'1, go 7!'2),

where the notation (_, _) indicates the unique arrow given by the definition of product.
14There is also a "horizontal" composition of natural transformations, see [Mac71, section II.5].

18 8 UNNERSAL ARROWS

8 Universal arrows

The concept of "universal property" introduced in section 5 above can be precisely formulated
in terms of functors as shown below.

DEFINITION 8.1: Universal arrow. Given a functor G: 'D---+ C and a C-object c, a universal
arrow from c to G is a pair15 (r, u) consisting of a 'D-object r and a C-arrow u: c---+ G(r)
such that for every pair (d, f) of a 'D-object d and a C-arrow f: c ---+ G(d), there is a unique
'D-arrow f': r ---+ d such that the following diagram commutes

i.e., G(f') o u = f.

u G(r)

c/ !c(f')
~v
f G(d)

r

I

I !'
v
d

Dually, a universal arrow from G to c16 is a pair (r, v) consisting of a 'D-object r and a C
arrow v: G(r)---+ c such that for every pair (d, f) of a 'D-object d and a C-arrow f: G(d)---+ c,
there is a unique 'D-arrow f': d---+ r such that the following diagram commutes

i.e., v o G(f') = f.

d
I

!':
v
r

G(d) f
.G(f'): ~c

v/
G(r) v

D

15The pair (r, u) is called a universal arrow because the essential information is contained in the arrow
u: c --> G(r). Arrows of this form are objects in the comma category (c l G); a morphism in this category
from u: c--> G(r) to v: c-+ G(s) is a V-arrow /: r--> s such that G(f) o u = v. The definition of a universal
arrow from c to G is equivalent to the statement that u: c--> G(r) is an initial object in the comma category
(cl G).

16We follow Mac Lane [Mac71] in using the terminology "universal arrow from G to c" rather than
"couniversal arrow," which is preferred by other authors.

19

EXAMPLE 8.2: Free categories. For any category C, its underlying graph is given by

(Objects(C), Arrows(C), dom, cod),

with the objects as nodes, arrows as edges, domain and codomain as source and target.
Similarly, underlying every functor is a graph morphism. Thus we have a forgetful functor
U: Cat ""'Graph.

A universal arrow from a graph G to the functor U is a pair (Ca, P: G ---+ U(Ca))
consisting of the free category Ca (also called the path category) generated by the graph G
and a graph morphism embedding G into the underlying graph of Ca.

The free category Ca is constructed as follows. The objects are the nodes of the graph
G. The arrows are finite (directed) paths in G, i.e., a sequence of edges e1 ,e2 , ••. ,en with
s(ei) = t(e;_1), for i = 2, ... , n. Pictorially, this path can be depicted as

The domain of this arrow is defined to be v1 and the codomain to be Vn+i· Composition of
arrows is the concatenation of paths (which is obviously associative), and the identities are
null paths which start and end at the same node.

A proof that the arrow P: G---+ U(Ca) is universal can be found in [Mac71, Theorem II.l].
0

20 8 UNNERSAL ARROWS

EXAMPLE 8.3: Free algebras. Given a signature E = (S, n), let Set(E) denote the subcat
egory of Set consisting of S-sorted sets, i.e., families { Xs I s ES}, and S-sorted functions,
i.e., families { fs: Xa --+ Ya I s E S }.17 The forgetful functor U: Alg(E) --+ Set(E) sends each
E-algebra to its family of carrier sets and each E-homomorphism to itself, considered as a
family of functions.

A universal arrow from a Set(E)-object X to U is a pair (TE(X), tx: X '--+ Tr:(X))
consisting of the free E-algebra generated by X and the inclusion of X into the carriers of
this free algebra.

The free algebra 1I;(X) is obtained just like the ground term algebra Tr; (see exam
ple 2.10), but with the additional rule stating that every variable is also a term:

if x E Xa is a variable of sort s, then the term x is in Tr;,,(X).

TE(X) is thus the collection of all terms that can be generated from the signature E
using free variables from X. The free algebra Tr:(X) has the universal property that, given
any E-algebra A, and an assignment a: X --+ U(A) assigning "values" in the carriers of A to
variables in X, the assignment can be uniquely extended to a E-homomorphism a: Tr:(X) ---+

A, such that the following diagram commutes,

lX
X --'J;»TE(X)

>- i U(a) a~ V
U(A)

Tr:(X)
I
I
1a
v
A

i.e., U(a) o tx = a. The map U(a) corresponds to "evaluating" the terms in Tr:(X) with
values for variables given by the assignment a. 18

A proof that the arrow tx: X '--+ Tr:(X) is universal can be found in [EM85, Theorem 3.3].
0

EXAMPLE 8.4: Products. Given a category C, consider the diagonal functor~: C --+ C x C,
defined by

c 1-+ (c, c)
f: a--+ b 1-+ (!, J): (a, a) --+ (b, b)

A universal arrow from~ to an object (a, b) of C x C is a pair (a x b, (1!'1 , 1!'2)) consisting of
the product of the C-objects a and b together with the pair of projections. The definition of
product is just a rephrasing of the universality of this arrow. D

17The family of functions { f,: X, -+ Y, I s E S} can be considered as the coproduct arrow U f,: U X, -+

U Y., in the category Set.
•ES

•ES sES

lSNote that in algebra, the distinction between the algebra A and its underlying carriers U(A) is fuzzed;
similarly the distinction between a and U(a). Thus, only the left triangle in the commutative diagram is
shown.

21

9 Limits and colimits

The interpretation of the product as a universal arrow can be generalized to other construc
tions such as terminal objects, pullbacks, and equalizers. All these constructions are called
limits and arise as universal arrows for various "diagrams". We first give a definition which
captures the uniformity in the definition of various limits. Later, we see how limits are
universal arrows, and thus are limits for certain functors.

DEFINITION 9.1: Diagram. A diagram in a category C is a collection of C-objects and a
collection of C-arrows between these objects. D

DEFINITION 9.2: Cone. Given a diagram D in a category C and a C-object c, a cone from
the vertex c to the base D is a collection of C-arrows { fi:C-+ di I di E D }, one for each
object di in the diagram D, such that for any arrow g: di ---+ d; in D, the following triangle
commutes

i.e., we have go Ji= f;.
Dually, a cone19 from the base D to the vertex c is a collection of C-arrows { fi: di --+ c I

di E D }, one for each object di in the diagram D, such that for any arrow g: di --+ d; in D,
the following triangle commutes

c

i.e., we have fj o g = fi· 0

19We follow Mac Lane [Mac71] in the terminology here. Some authors use the name "co-cone" .

22 9 LIMITS AND COLIMITS

DEFINITION 9.3: Limit. A limit for a diagram Din a category C is a C-object c along with
a cone { fi: c-+ di I di ED} from c to D such that for any other cone { f[: d-+ d; I d; E D}
from a vertex d to D, there is a unique C-arrow f: d-+ c such that for every object d; in D,
the following diagram commutes

i.e., fi of = ff. D

DEFINITION 9.4: Colimit. A colirnit for a diagram D in a category C is a C-object c along
with a~o-ne { f;: di -+ c I di E D } from D to c such that for any othe?~one { ff: di -+ c' I
di E D } from D to a vertex d, there is a unique C-arrow f: c -+ c' such that for every object
di in D, the following diagram commutes

d; f/y:
c - - - -> c'

f
i.e., f o fi = f[. D

EXAMPLE 9.5. The following table lists limits and colimits for various diagrams. Observe
that we can now define the products and coproducts of arbitrary families of objects.

Diagram Limit Colimit

empty 1 0

(terminal object) (initial object)

a b axb a+b

(product) (coproduct)

{ax J XE X} TI ax U ax
xEX xEX

·+---·-+· pushout

·-+·+---· pullback

·::l· equalizer coequalizer

D

We now precisely formulate limits and colirnits as universal arrows. Let C and .:J be two
categories, .:J being the "index" category (usually finite or small). Then, the image of a

23

functor F: .:! -+ C forms a diagram20 (of "shape" .:!) in C. A limit for this diagram is a limit
for the functor F.

Consider the functor category C.7. Corresponding to any C-object c, we have the constant
functor Ac which maps all ..7-objects onto c and all .:!-arrows onto idc. A cone from c to the
diagram generated by the functor F: .:! -+ C is then a natural transformation Ac -.!+ F. A
limit for F is a universal such cone.

DEFINITION 9.6: Diagonal functor. Given two categories C and :T the diagonal functor
A: C-+ C.7 is defined by (for any C-objects c and c', C-arrow /: c-+ c', and :!-objects j, k)

Ac:..1-+C
J I-+ c

j -+ k I-+ idc
and

Aj: Ac -.!+ Ac'
j I-+ f

DEFINITION 9.7: Limit, Colimit. Given two categories C and :T, a limit (also called inverse
limit, or projective limit) for a functor F:..1-+ C, denoted by limF, is a universal arrow

+-

from the diagonal functor A: C -+ C .7 to F. Dually, a colimi t (also called direct limit, or
inductive limit) for F, denoted by li!pF, is a universal arrow from F to A. · 0

10 Completeness

It is useful to know if all limits (or all colimits) exist in a category. For example, in algebraic
specification, colimits are used to "put together" specifications and theories from smaller
ones; colimits have to always exist for these building operations to be well-defined.

DEFINITION 10.1: Completeness. A category is said to be complete (finitely complete) if
all diagrams (finite diagrams) '.:.ave limits in the category.

Dually, a category is said to be cocomplete (finitely cocomplete) if all diagrams (finite
diagrams) have colimits in the category. D

EXAMPLE 10.2. The category Set is both complete and cocomplete. The category Sign of
signatures and signature morphisms is finitely cocomplete. Pre-order categories are complete
and cocomplete when they form a complete lattice. D

The following theorem shows that all finite limits can be constructed from a few basic
ones.

THEOREM. For any category C, the following conditions are equivalent:

1. C is finitely complete.

2. C has a terminal object, products of all pairs of objects, and equalizers of all parallel
pairs of arrows.

3. C has a terminal object and all pullbacks.

20Some authors (e.g., Schubert [Sch72]) define a diagram to1 be a graph morphism from a graph J to the
underlying graph of the category C. This has the advantage t.hat composition of arrows need not be defined
in the graph J. The two approaches are, however, equivalent; it is not the graph J or the category .J which
matter, it is the image of the graph morphism or functor which matters.

24 11 ADJOINTS

For a proof, see [Mac71, Chapter V] or [HS73].
Limits in one category can be transferred to another category. For example, a functor

which has a left adjoint (see section 11) preserves limits (i.e., maps limit cones to limit cones).
The completeness of a functor category CZ> follows from that of C (all constructions in C can
be "lifted" to constructions in the functor category).

11 Adjoints

Consider again the free category generated by a graph X (example 8.2). It is obtained as a
universal arrow from X to the forgetful functor U: Cat --+ Graph. It so happens that we can
find such a universal arrow for every graph. Now, let 1: X --+ Y be a graph morphism and
let (Cx,ryx:X--+ U(Cx)) and (Cy,77y:Y--+ U(Cy)) be the universal arrows corresponding
to X and Y. We thus have an arrow 7]Y o 1: X -+ U(Cy), and from the universal property
of T/X, it follows that we have a unique arrow C'Y: C x --+ Cy such that the following square
commutes

7]Y

i.e., 7]Y o / = U(C'Y) o T/X·

U(Cx)
I
I
I U(C'f)
v

U(Cy)

Cx
I
I
I c.,.
v

Cy

The assignments X 1-+ Cx and / 1--+ C'Y give us a functor C: Graph --+ Cat which
maps each graph to the free category generated by it, and extends each graph morphism
to a functor. The universal arrows in the picture above also provide us with the following
bijection between horn-sets (for any graph X and any category D):

Graph(X, U(D)) ~ Cat(C(X), D).

The functors C and U are called adjoints, and this situation arises whenever there are "free"
constructions.

DEFINITION 11.1: Adjunction. Let C and D be two categories. An adj unction from C to D
is a triple (F, G, <p): C __., D where F and Gare functors

F
C -;:::::_ D

G
and <p is a function which assigns, to each pair consisting of a C-object c and a D-object d,
a bijection

<f!c,d:C(c,G(d)) ~ D(F(c),d)

which is natural in c and d. D

25

The phrase "natural in c and d!' used above means that the bijection t.p preserves categorial
structure while c and d vary (i.e., it is defined "uniformly" for all c and d). A precise
formulation of this condition makes t.p a natural transformation between two functors from
C0 P x 'D-+ Set (see, for example, [Mac71, Section IV.1]).

There are several equivalent ways of defining adjoin.ts. As we have already seen in the
case of free categories generated by graphs, given an adj unction (F, G, r.p): C __.. 'D, there is a
universal arrow (F(c), 7]c: c-+ G(F(c))) from each C-object c to the functor G. Moreover, the
maps 7]c provided by these universal arrows form the components of a natural transformation
77:idc -4 G oF, called the unit of the adjunction. Similarly, the adjunction determines (and
is determined by) universal arrows (G(d),ed: F(G(d))--+ d) from F to each 'D-object d. The
maps £d form the components of a natural transformation c: F o G-.!+ idv, called the counit
of the adjunction.

Notation. If there is an adjunction (F, G, ip): C __.. 'D, then the functor Fis said to be left
adjoint to the functor G, written F -l G; the functor G is said to be right adjoint to F,
written G f- F.

EXAMPLE 11.2: Free functors. Free functors are left adjoint to forgetful functors. For
example, the forgetful functor U: Alg('E) --+ Set('E) (defined in example 8.3) has a left
adjoint F: Set(E) -+ Alg('E) which maps each S-sorted set to the free 'E-algebra generated
by it and extends each S-s~i:ted function to a 'E-homomorphism.

The functor C: Graph --+ Cat which produces free categories from graphs (see exam
ple 8.2) and extends graph morphisms to functors is left adjoint to the forgetful functor
U: Cat --+ Graph.

Corresponding to the reduct functors -lu: Alg(E') -+ Alg(E), for each signature mor
phism u, there are free functors Fu: Alg(E) -+ Alg('E') which freely extend any E-algebra
to a E'-algebra (see, for example, [EM85, Theorem 7.16] or [GTW78]). These free functors
provide an important way of incrementally building algebraic specifications. D

EXAMPLE 11.3: Limits and colimits. Suppose the category Chas all products. Then, the
functor TI: C x C --+ C which assigns to each pair of objects (a, b) their product a .x b, is
right adjoint to the diagonal functor ~: C --+ C x C defined by c 1-+ (c, c) (see example 8.4 for
details). Dually, if the category Chad all coproducts, then the coproduct functor IJ: C xC -+ C
is left adjoint to ~.

If all limits or colimits of a certain kind exist in a category, then they arise from a right
or left adjoint, respectively, to the diagonal functor ~= c -+ c:r, where .:T is the "shape" of
the diagram for which limits and colimits are being considered. D

26 11 ADJOINTS

EXAMPLE 11.4: Images of functions. For any set A, the powerset 'P(A) consisting of
all subsets of A is a pre-order under inclusion of subsets, and therefore a category. Now,
given a function f: A -+ B, we can define two order-preserving functions (or functors),
J.: 'P(A) --+ P(B) and f*: P(B) -+ P(A), called the direct image function and the inverse
image function, respectively:

f.(X) = {f(x)lxEX},
J*(Y) = {x I f(x) = y for some y E Y}.

It is easy to see that f,.(X) ~ Y if and only if X ~ J*(Y). Thus the functor f,. is left adjoint
to f*.

The inverse image functor r also has a right adjoint j+ defined by J+(x) = { y E y I
f* { y} ~ X } . Here f* { y} is the inverse image of the element y. D

EXAMPLE 11.5: Exponentiation. In the category Set, let the object C 8 denote the collection
of functions from B to C. Multi-argument functions, say from f: Ax B to C can be reduced
to single-argument functions by "Currying" :21

f = ,\x · (,\y · f((x,y))).

We thus have a bijection of horn-sets

Set(A x B, C) ~ Set(A, CB).

This bijection in turn produces an adjunction

_xB

Set +---- Set
(_)B

The counit of this adjunction provides "evaluation" arrows, eval8 ,c: CB x B -+ C, which
when given a function f: B --+ C and an argument b E B, evaluate the function to produce
f(b) EC. D

21 We use ,\-expressions to define functions.

REFERENCES 27

References

[EM85] EHRIG, H., AND MAHR., B. Fundamentals of Algebraic Specification 1: Equational
and Initial Semantics, EATCS Monographs on Theoretical Computer Science, Vol. 6.
Springer-Verlag, Berlin, 1985.

[GB84a] GOGUEN, J. A., AND BUR.STALL, R. M. Some fundamental algebraic tools for the
semantics of computation, Part 1: Comma categories, colimits, signatures and theories.
Theoretical Comput. Sci. 31, 2 (1984), 175-209.

[GB84b) GOGUEN, J. A., AND BURSTALL, R. M. Some fundamental algebraic tools for the
semantics of computation, Part 2: Signed and abstract theories. Theoretical Comput.
Sci. 31, 3 (1984), 263-295.

[Gog88] GOGUEN, J. A. What is unification? A categorical view of substitution, equation and
solution. Tech. Rep. CSLI-88-124, CSLI, Stanford University, Apr. 1988.

[Gol84] GOLDBLATT, R. Topoi: The Categorial Analysis of Logic. North-Holland, Amsterdam,
1984.

[GTW78) GOGUEN, J. A., THATCHER., J. W., AND WAGNER., E. G. An initial algebra ap
proach to the specification, correctness, and implementation of abstract data types. In
Data Structuring, R. T. Yeh, Ed., Current Trends in Programming Methodology, Vol. IV.
Prentice-Hall, Englewood Cliffs, NJ, 1978, pp. 80-149.

[Hat82] HATCHER, W. S. The Logical Foundations of Mathematics. Pergamon Press, Oxford,
1982.

[HS73) HERRLICH, H., AND STRECKER, G. E. Category Theory: An Introduction. Allyn and
Bacon, Boston, 1973.

[LS86] LAMBEK, J., AND ScoTT, P. J. Introduction to Higher Order Categorical Logic.
Cambridge University Press, Cambridge, 1986.

[Mac71) MAC LANE, S. Categories for the Working Mathematician. Springer-Verlag, New York,
1971.

[PAPR85) PITT, D., ABRAMSKY, S., PoIGNE, A., AND RYDEHEARD, D., Eds. Category Theory
and Computer Programming, Tutorial and Workshop (Guildford, UK, Sept. 1985), Lecture
Notes in Computer Science, Vol. 240, Springer-Verlag.

[Pie88] PIERCE, B. C. A taste of category theory for computer scientists. Tech. Rep. CMU
CS-88-203, Computer Science Dept, Carnegie Mellon University, Pittsburgh, 1988.

[RB88) RYDEHEARD, D., AND BURSTALL, R. M. Computational Category Theory. Prentice
Hall, 1988.

[Sch72] SCHUBERT, H. Categories. Springer-Verlag, Berlin, 1972.

[TBG88] TARLECKI, A., BURSTALL, R. M., AND GOGUEN, J. A. Some fundamental algebraic
tools for the semantics of computation, Part 3: Indexed categories. Tech. Rep. ECS
LFCS-88-60, University of Edinburgh, July 198.8.

28 INDEX

Index

The numbers in this index, such as 8.1, refer to either definition 8.1 or to example 8.1.
Numbers in italics indicate the point of definition. Numbers in boldface refer to sections.
Numbers without a decimal point are page numbers. Numbers followed by "n" refer to
footnotes on the indicated page.

adjoint, 11
left - (-1), 25
right - (f-), 25

adjunction, 11.1
counit of-, 25
unit of-, 25

algebra
.E-algebra, 1. 7, 6.4, 6.8, 6.13
free-, Tr:(x), 8.3
ground term-, Tr,, 2.10
reduct of-, 6.4

arrow, 1.1
coproduct -, 19n
epic, see arrow, epimorphism
epimorphism, 2.5
functor, 6, 6.1
horn-set, 15
identity-, 1.1, 3.1
inclusion-, 5.10, 5.11, 5.16, 5, 15
isomorphism, 2.1
monic, see arrow, monomorphism
monomorphism, 2.4
product-, 16n
universal-, 8, 8.1, 9.5, 9.7

arrows (special notation)
!, unique arrow, 5
Oc, arrow from initial object, 5
le, arrow to terminal object, 5
__..., adjunction, 11.1
~,isomorphism, 2.1
-, epimorphism, 2.5
>-+, monomorphism, 2.4
-!t, natural transformation, 7.1

associative law, 1.1

categories
Alg(.E), 1. 7, 2.10, 6.4, 6.8, 6.13, 8.3, 11.2
Alg[SP], 6.13
Cat, 6.6, 6.8, 8.2, 11.2, 24
FinSet, 6.12
Graph, 1.5, 5.5, 8.2, 11.2, 24
Group, 6.3
Set, 1.3, 2.2, 2.8, 5.4, 5.10, 5.11, 5.16, 6.9,

7.2, 10.2, 11.5 .
Set(.E), 8.3, 11.2
Sign, 1.6, 2.3, 2.9, 5.13, 6.9, 10.2
Terms(.E), 1.9, 5.7, 5.17

category, 1, 1.1
- of all categories, 6. 6
discrete-, 1.2
free-, 8.2
functor-, 7.3, 23, 24
opposite - (C0 P), 3.1, 15
path-, 8.2
pre-order -, 1.4
subcategory, 6.11
underlying graph of-, 8.2

cocompleteness, 10, 10.1
cocone, 9.2, 21n
codomain, 1.1, 3.1
coequalizer, 5.15, 9 .5
colimit, 9, 9.4, 9.5, 9. 7

- as left adjoint, 11.3
coequalizer, 5.15
coproduct, 5.3
initial object, 2.6
pushout, 5. 9

completeness, 10, 10.1
composition

- notation (go for J; g or Jg), 1
- of arrows, 1.1, 3.1
- of functors, 6.6
- of natural transformations, 7 .3, 17n

INDEX

cone, 9.2, 23
coproduct, 5.3

- from pushout, 5.12
- of arrows, 19n
arbitrary -, 9. 5

diagram, 9.1
as functor, 22
as graph morphism, 22n
commutative, 4

domain, 1.1, 3.1
dual

- category, see category, opposite
- statement (S*), 3.2

duality, 3
principle of-, 3.2

epimorphism, see arrow
equalizer, 5.14, 9.5

functor, 6, 6.1
- category, 7. 3, 23, 24
adjoint-, 11
contravariant -, 6. 7
covariant-, 6.1
diagonal-, 8.4, 9.6, 11.3
faithful-, 6.10
forgetful-, 6.3, 11.2
free-, 11.2
full-, 6.10
identity -, 6.2, 25
reduct -, 6.4, 6.8, 11.2
underlying-, see forgetful -

graph, 1.5
- morphism, 1.5
free category from-, 8.2
underlying - of category, 8.2

horn-set, 11.1, 15, 24
homomorphism

E-homomorphism, 1. 7, 6.4, 6.13

identity
- arrow, 1.1, 3.1
- functor, 6.2, 25
- natural transformation, 7.3

identity law, 1.1

isomorphism, 2.1
natural -, 7.2

limit, 9, 9.3, 9.5, 9. 7
- as right adjoint, 11.3
equalizer, 5.14
product, 5.2
pullback, 5.8
terminal object, 2. 7

monomorphism, see arrow

natural, 7.1, 11.1
- equivalence, 7.2
- isomorphism, 7. 2

natural transformation, 7, 7.1, 25
components of-, 7.1
cone as-, 23
horizontal composition of-, 17n
identity-, 7.3
vertical composition of-, 7.3

object, 1.1
final - , see terminal -
initial-, 2.6, 5.12, 9.5
terminal -, 2. 7, 5.12, 9.5

pre-order, 1.4
- as category, 1.4

product, 5.2
- as universal arrow, 8 .4
- from pullback, 5.12
- of arrows, 16n
arbitrary-, 9.5

pullback, 5.8, 9.5
pushout, 5.9, 9.5

- for parameterization, 5.13

sets with structure, 1.8
signature, 1. 6

- morphism, 1. 6
subcategory, 6.11
subobject, 5

universal
- arrow, 8, 8.1, 9.5, 9.7, 24
- construction, 5
- property, 5, 5.1

29

