
UC Irvine
ICS Technical Reports

Title
A subquadratic algorithm for constructing approximately optimal binary search trees

Permalink
https://escholarship.org/uc/item/4v7249bv

Author
Larmore, Lawrence L.

Publication Date
1986

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4v7249bv
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(T,itle 17 U.S.C.)

A Subquadratic algorithm for constructing
approximately optimal binary search trees

Lawrence L. Larmore
~ ~

Technical Report # 86-03

February 1986

I .

)I w·/ !l 1 '·'' - f/"--- '). ,1 ___ ,;__

/1 ~,

l..,,,~'1

·nr. C' I ~ z;,.. u. t'>ly ~ou

c. '-~-

A Subquadratic algorithm for constructing
approximately optimal binary search trees

Abstract

Lawrence L. Larmore
University of California, Irvine

An algorithm is presented which constructs an optimal binary search tree for an
ordered list of n items, and which requires subquadratic time if there is no long sublist
of very low frequency items. For example, time = 0 (nl.6

) if the frequency of each item
is at least E/ n for some constant E > 0.

A second algorithm is presented which constructs an approximately optimal
binary search tree. This algorithm has one parameter, and exhibits a tradeoff between
speed and accuracy. It is possible to choose the parameter such that Ume = 0 (nl.6

)

and error= o(l). ,

1. Introduction

A common method for storing information is the binary search tree. We are

given items B1, ... Bn ordered by some key value, and 2n+l frequencies /31, ... /3n and

a0,a1 ... an, where j3i is the frequency of encountering Bi, and ai is the frequency of

encountering an item X such that Bi< X < Bi+t· It is convenient to create fictitious

items B0 and Bn+l' with frequencies j30 = /3n+l = 0, whose key values are respectively

lower and higher than all actual items.

A binary search tree for the items B1, ... Bn is a binary tree T with n interior

nodes, labeled in inorder B1, ... Bn, and (n+l) leaves, labeled (B0,B1), ... (Bn,Bn+l).

Let bi be the depth of Bi in T, and let ai be the depth of the leaf (Bi,Bi+l). To retrieve

an item X, bi+ 1 comparisons are needed if X = Bi, while ai comparisons are needed if

Bi< X < Bi+l· The wei'ghted path length of T, defined to be E1~i~nj3i(bi+I) +

E0$i~naiai is the expected number of comparisons needed to determine whether Xis a

member of the list.

Knuth has found an algorithm which requires 0 (n2
) time and 0 (n2

) space to

find an optimal binary search tree, that is, a binary search tree with minimum weighted

February 3, 1986

path length. We describe that algorithm in detail in the section 2, since it will be used

as a subalgorithm of the the two algorithms presented here.

There ilave been a number of publications dea!ing with approxiMate~y optimal

binary trees which can be constructed in subquadratic time. ([1],[6],[7]) If Tapprox is any

approximately optimal binary search tree, whose weighted path length is Papprox' we

define the error to be the difference Papprox - Popt' where Popt is the weighted path

length of an optimal binary search tree. The best subquadratic approximation to date is

the min-max tree, defined by Bayer [2). The definition of a min-max tree is top-down:

the root is chosen so as to minimize the maximum of the weights of the resulting left

and right subtrees. Bayer has shown that the error for a min-max tree is O(log Popt),

and Fredman [3) has exhibited an algorithm for constructing a min-max tree in 0 (n)

time.

An interesting lower bound result by Allen [1] is that none of the existing

subquadratic algorithms produce approximately optimal trees with 0(1) error. These

existing approximation algorithms use a top-down approach. The algorithms presented

in this paper, on the other hand, use a bottom-up approach, as does Knuth's original

algorithm.

Summary of Results. We introduce, in this paper, two algorithms, which we call

the Basic Algorithm, and the Approximation Algorithm. Let <P = (1 + J5)/2 ~

1.6180339, the "Golden Ratio." In the theorems below, we assume that the frequencies

have been normalized, i.e., :Eai + E/3i = 1.

Theorem 1.1: Let I < n be an integer, and let 0 < ,\ < I be a real number such

that ni + /3i+l + ni+l + ... + /3j + aj ~ ,\for all i, j such that j - i > I. Then the

Basic Algorithm computes an optimal binary search tree in 0 (n(I + ,\ -log4>2Iogn)) time.

Corollary 1.2: Suppose /3i + ai ~ E/n for all i, where f. > 0 is constant. Then the

Basic Algorithm computes an optimal binary search tree in O(nO'(log n)r) time, where u

= 1 + 1/(l+log</J) ~ 1.59023 and r = I - 1/(l+log</J) ~ 0.40977.

February 3, 1986 -2-

Theorem 1.3: For any choice of real 0 < r < 1, the Approximation Algorithm

computes a binary search tree Tapprox such that

where Popt is the weighted path length of the optimal binary search tree, and Papprox is

the weighted path length of Tapprox· The time for the Approximation Algorithm is

O(nl+r).

Corollary 1.4: For any choice of r > 1/(l+log</>) ~ 0.59023, the Approximation

Algorithm computes a binary search tree whose weighted path length differs from that

of the optimal binary search tree by o(l), in time O(nl+r).

Note that it is pointless to choose r < 1/(1 + log</>), since in that case the

weighted path length of the tree constructed by the Approximation Algorithm would

exceed the weighted path length of an almost complete binary tree, which can be

constructed in linear time.

2. Knuth's Monotonicity Lemma and the Quadratic Algorithm

The Traditional Algorithm. The traditional bottom up dynamic programming

approach to finding an optimal binary search tree requires cubic time. The method is to

compute the optimum binary search tree for each sublist, in order of length. The

method depends on the observation that each subtree of an optimal binary search tree is

also an optimal binary search tree. Knuth [5] uses a monotonicity property of the

optimal binary search trees for sublists to speed this algorithm up by an entire order of

magnitude.

The kth step of Knuth's algorithm is to compute the optimal binary search trees

on each sublist of length k, given that optimal binary search trees have been computed

for each sublist of length k-1. The roots of these trees form a monotone increasing

sequence of length n-k+2.

February 3, 1986 - 3 -

The correctnes.s of Knuth's algorithm depends on his Monotonicity Theorem

(named simply "Theorem" on page 18 of [5]), which is a simple corollary of the

Quadrangle Lemma introduced below, which is similar to the quadrangle condition

introduced t~- Yao [8]. We will need the Quadrangle Lemma for our Aporcximation

Algorithm.

Notation. After Knuth, we let Wi,j and Pi,j be the total weight and weighted

path length of an optimal binary search tree Ti,j for all items lying strictly between Bi

and Bi' when i<j. From [5] we have:

I. p. ·+1 = 0 i, i

2. wi,i+l = ai

3. For i < j, Wi,j+I = Wi,j + f3; + aj

4. For i < j-1, Pi,j = mini<k<;(Pi,k + Pk,;) + Wi,j° Furthermore, Pi,j =

Pi,k + Pk,j + Wi,j if and only if k could be chosen to be the root of TiJ"

For i ~ j, we let Wi,j = Pi,j = 0.

Lemma 2.1 (Quadrangle Lemma): Suppose 'o ~ i1 and j0 ~ j 1. Then

p . . + p . . < p, . + p . ..
io,Jo i1,J1 - 1o•J 1 il'Jo

Proof: If 'o = i1 or Jo = jl' both sides are equal.

If j 0 ~ i1, the algorithm follows from the observation that Ti
1
. is empty, and

l' 0 .

that the set of nodes Ti
1
. contains the sets of nodes of Ti

1
. and Ti

1
. as disjoint

O' 1 O' 0 l' 1

subsets. For a ~ b < c ~ d let Pa di b c be the contribution to Pad of the nodes strictly , , ,
between Bb and BC. Let T.: 1" be the tree obtained from Ti ,. by deleting all other

•o• o o• 1

nodes and promoting enough nodes to restore the tree condition. Let Pi
1
. be the

. O' 0

weighted path length of Ti
1
. . Since no node is demoted, Pi

1
. ~ Pi

1
- I·

1
.. Ti

1
. and

o• o o• o o• 1 'o• o l' i

Pi
1
. are defined similarly. Since j 0 ~ i1, Pi J. = 0. Thus Pi

1
. + Pi

1
. ~ P;

1
. + p: ·

l' 1 1 0 O' 0 l' 1 •0 1 0 '1•J1
< p. · I· · + p. · I· · < p. · ·
- io,11 io,1o '0•11 '1111 - io,11

February 3, 1986 - 4 -

The remaining case is that r0 < i1 < j0 < j 1, which we prove by induction on

11-r0. Let r be the root of T . . and 8 the root of Ti ,. . Without loss of generality,
•1,Jo o• 1

r ~ 8. By the inductive hypothesis, P. r + Pi 8 ~ Pi 8 + Pi r· Note also that
'o• 1' O' 1'

W . . + w. W . . + w . .. Using these two relationships, we have:
~Jo ~J1 ~J1 ~Jo

This concludes the proof of 2.1.

Knuth's monotonicity lemma states that the root of the optimal binary search

tree of a sublist is essentially a monotone function of the sublist. More formally:

Lemma 2.2 (Monotonicity Lemma): Let r0 ~ i1,j0 ~ j 1. Let r,8 be the roots of

Ti
1
. , Ti

1
. respectively. Then either r ~ 8, or Ti ,. , Ti J. can be replaced by optimal

O' 0 1' 1 · O' 0 1 1

trees T' 4 1
., T',; . for the same subproblems, whose roots are 8 and r, respectively.

'0' 0 ·1·11

Proof: Assume r > 8. Let Ti
1
. be a binary search tree for all items strictly

O' 0

between Bi and B. rooted at 8, which has minimum weighted path length for all such
o lo

trees. Let T~
1
. be a binary search tree for all items strictly between Bi and B

1
. rooted

il' 1 1 1

at r, which has minimum weighted path length for all such trees. Let Pi
1
. and Pi

1
. be

O' 0 1' 1

the weighted path length of those trees. Let ..\ = Pi
1
- - Pi

1
. ~ 0, and let µ =

0' 0 0' 0

P[. - P . . ~ 0. Since the left and right subtrees of Pi . must be optimal, we have
1•11 i1'11 o•lo

hence

Similarly

But, by the Quadrangle Lemma, we have:

and

February 3, 1986 - 5 -

It follows easily that ,\ + µ ~ O, whence ,\ = µ = 0. Thus, Ti
1
. and Ti

1
. are optimal.

01 0 11 1

Knuth's Quadratic Algorithm. In the version of the algorithm we present here,

arrays root[i,;; and J1i,J1 are constructed for all 0 ~ i < j ~ n+l. J1i,J] will contain the

value of P. ., the weighted path length of the optimal tree T.
1
., while root[i,J] will

~ ~

contain the root of that tree.

Knuth's Quadratic Algorithm

Pl i, i+ l J +- 0 for all i
for g +- 2 to n+ 1 do

for i +- 0 to n+l-g do

Compute rootli,i+gJ and Pli,i+g]

The action of the compute step is to examine each r which is a candidate for

root[i,i+g]. A value of r for which Pi,r + Pr,i+g is minimized is assigned to root[i,i+g],

and J1i,i+g] is assigned the value Pi,r + Pr,i+g + Wi,i+u·

The compute step is executed approximately n2 /2 times. In principle, all integers

in the range [i+l, ... i+g-I] are candidates for root[i,i+g]. If all candidates were

examined, the combined time for all executions of the compute step would be 0 (ng) for

each g, 0 (n3
) overall. However, if g > 2, the monotonicity lemma guarantees that only

values in the range [root[i,i+g-1], ... root[i+1,i+g]] need be considered as candidates.

The total number of examinations of candidates for all the compute steps for one value

of g is thus at most 2n-g+2. It follows that the time required for each value of g is

0 (n), and th us the en tire algorithm requires only 0 (n2
) time.

3. The Monotone Rowmin Problem

In this section we introduce a divide and conquer algorithm which will be used in

the Basic Algorithm of the next section.

The Matrix Rowmin Problem. Given an nx m matrix M, let Rowmin[i] be the

February 3, 1986 -6-

J

minimum value of Min the ,.th row. The Matrix Rowmin Problem is to determine, for

each I ~ i ~ n, some j = Mi'npos[i] for which M[i,J] = Rowmin[i]. The obvious

algorithm, which is also the best in general, requires examination of every entry of M.

We say that a matrix Mis monotone if the column position of the minimum

en try in each row is a monotone increasing function of the row. Formally, Mis

monotone if, for any row indices i0 < i1 and any column indices j0 > j 1 such that

M[i0,j0] = Rowmi'n[i0] and M[i1,j1] = Rowmin(i1], it follows that M[i0,j1] = Rowmi'n[i0]
and M[i1 ,j0] = Rowmi'n[£1].

The Rowmin Problem can be solved for a monotone nx m matrix in time

0 (n + m logn) as follows. First, let k = f n/21, then corµpute j = Minpos[kJ by linear

search. Apply the same algorithm recursively to upper left submatrix of size (k-1) xj

and the lower right submatrix of size (n-k)x(m-j+l). Monotonicity guarantees that

correct values of Mfopos will be found in those restricted ranges. It is a simple recursion

exercise to verify the time complexity.

4. The Basic Algorithm

In this section, we show first how the optimal binary search tree problem can be

reduced to the classical minimum weight path problem for a directed acyclic graph.

Throughout this section, we assume that the frequencies have been normalized.

Abstract Bfoary Trees. In any binary tree T, the abstract posi'Uon of a

node xis the bit list of descent commands necessary to find x from the root. Let

positionT(x) E E* (write position(x) if Tis understood) be the abstract position of x in

T, where E = {0,1}, and where 'O' and '1' symbolize left and right descent, respectively.

For example, positfon(root) = E, the empty string, and position(x) = 110 if xis the right

son of the left son of the left son of the root.

February 3, 1986 - 7 -

E* is an infinite complete binary tree in the obvious way: the root of E is E, and

for any w E E*, left(w) = uO and ri'ght(w) = wl.

We sa.v that a finite subset t C E* is an abstract binary tree if t = PREF(t),

i.e., any ancestor (prefix) of any member of t is also a member of t. To determine that

t = PREF(t), it suffices to check that it contains all of its own parents.

E* can be made into a directed acyclic graph by using an "inorder successor"

relation. If u, v E E*, we say that u => v if vis the inorder successor of u in some

abstract binary tree. Thus, u => v if and only if v = uIOk or u = vOl k for some k ~ O.

If X = (x1, ... xn) is any list, a bfoary search tree for Xis specified by a map

· posUion:X ~ ~/ which satisfies the following three conditions:

(4-1) position(x1) E 0*

(4-2) position(xn) El*

(4-3) position(xi) => position(xi+ 1) for all i

In other words, the image of the function position consists of the nodes of a path

in E* from the "start set" o* to the "final set" 1 *. The following lemma shows that

conditions (4-1)-(4-3) suffice to define an binary search tree for X.

Lemma 4.1: Let (w1, ... wnJ be the nodes of a path in E* such that w1 E o* and

wm E 1 *. Then W = { w1, ... wm} is an abstract binary tree.

Proof: It suffices to prove that parent(w) E W for all w f=. E. If W = { E} we are

done. Otherwise, let wi be the longest member of W. Without loss of generality, the

last symbol of wi is 0.

If i = 1, then w1 = ok for some k > 0, and w2 = ok-l. Otherwise, since neither
k * wi-l nor wi+l can be longer than wi, we have that wi = wIO for some k > O, w EE ,

that wi+l = wIOk-l, and that wi-l = wl; thus, wi-l => wi+l· In either case, W - { w)

is an abstract binary tree by the inductive hypothesis, hence contains its own parents.

February 3, 1986 - 8 -

Since parent(wi) = wi+l' it follows that Wis an abstract binary tree.

The Graph Gd'

For any fixed integer d ;::: 0, we construct a weighted acyclic directed graph Gd

such that the minimum weight of any path in Gd from its source to its sink is the

weighted path length Popt of the optimal binary search tree T for (B1, ... B n).

Let E(d) ={we E* I lwl~ d}. We define Gd= (Vd,Ed), where

Vd = {B
1

, ... B }xE(d)}u{source,sink}
Rd= {((B,) u),(Bi+l' v))I u,v e E(d), u= v}u{(source,(Bpv))I v e o•}u{((Bn,u},sink} I u e 1•}
Sd = {((B;, u),(Bpv)) I i<j;u,v e E(a') ,u:.v,max{I ul,I ~}=d}u{(source,(BJ' v)) I lvl=d}U{((B;,u),sink) I 1 ul=d}
Ed= R~Sd .

The members of Rd we call regular edges, while the members of Sd we call special

edges. (Note that Rd n Sd-:/=- 0, however.)

We also define the rank of each vertex: rank(Bi,w) = i, rank(source) = O, and

rank(sink) = n+ 1. We define the span of an edge to be the difference of the ranks of its

end points. An edge is regular if and only if its span is 1.

At variance with the usual practice, we place weights on both vertices and edges

of the graph. The weight of any path in Gd will be defined to be the total weights of the

vertices and edges of the path. Weights will be defined as follows:

for vertices:

weight(source) = weight(sink) = 0

weight(Bi,w) = (lwl+l),Bi

for regular edges:

weight((Bi,u),(Bi+l'v)) = (max{juj,jvl}+l)ai
. k

weight(source,(B1,o)) = (k+l)a0

February 3, 1986 - 9 -

for special edges:

weight((Bi,u),(Bi'v)) = Pi,i + (d+l) Wi,i

weight(source,(Bi'v)) = P0,j + (d+l) W0,i

weight((Bi,u),sink) = Pi,n+I + (d+I) Wi,n+I

Lemma 4.2: Let x be a path in Gd from source to sink. Then there is a binary

search tree T such that positionf.,_Bi) = wJor each interior node (Bi,wi) of X·

Furthermore, the weighted path length of Tis the 'weight of X·

Proof: Let x = (source= x0, x1, ... xm =sink). Let ik = rank(xk). For

0 < k < m, we write xk = (Bi ,wk), and 1 ~ i1 < i2 < ... < im-I ~ n. Note that
k

(xk,xk+1) is a regular edge if and only if ik+I = ik + 1. By Lemma 4.1, there exists a

binary tree T' whose nodes are {Bi}, where positionT' (Bi) = wk for each k. For each
k k

0 ~ k < m, attach the optimal subtree Ti i to T' as the left subtree of Bi or the
"' k+l k+l

right subtree of Bi; exactly one of those two choices will be possible in each case. Let

" T be the resulting tree. It is straightforward to verify that the weighted path length of

Tis the weight of the path x.

Lemma 4.3: Let T be a search tree (not necessarily optimal), and let P be its

weighted path length. Let Xd = {(Bi,wi)lwi = positionr(Bi), lwil ~ d}. Then the

elements of Xd are exactly the interior nodes of some path x in Gd from source to sink.

Furthermore, weight(x) ~ P.

Proof: We can order the elements of Xd by rank. Write Xd = {(Bi ,wk)}O<k<m'

" where ik < ik+I for all k. As in the proof of Lemma 4.3, let x0 = source, xm = sink, 'o =
O, and im = n+l. Then (xk,xk+I) is a regular edge if and only if ik+l = ik + 1, and is a

special edge otherwise. Thus x = (x0, xv ... xm) is a path in Gd' Let T' be the tree

constructed from x by Lemma 4.3, with weighted path length P'. T' and Tare

identical down to level d, and the subtrees of T' rooted at level d+ 1 are "optimized"

versions of the corresponding subtrees of T. Thus, weight(x) = P' ~ P.

February 3, 1986 - IO -

The following theorem, which shows the reduction of the optimal binary search

tree problem to the minimum weight path problem, is then an immediate corollary of

Lemmas 4.3 and 4.4.

Lemma 4.5 (Reduction Lemma): Let Topt be an optimal binary search tree and

let Popt be the weighted path length of Topt' Then, for any fixed d ~ 0, Popt equals the

weight of a minimum weight path in the graph Gd from source to sink.

Note that this reduction does not yield a subquadratic algorithm by using general

graph techniques to find the minimum weight path in Gd' since that graph is too large.

In fact, Gd has n(2d+1-1) + 2 vertices, (n-1)(2d+2-2d-4) + 2(d+l) regular edges, and

(2d-l)(n-l)(n-2) + 2(n-l)(d+l) special edges which are not regular. The algorithms

we introduce will use techniques which take advantage of the special structure of Gd.

The Function f d' For any d and for any vertex x of Gd' we define f d(x) to be the

least weight of any path in Gd from source to x. Recall that we have defined the weight

of a path to be the sum of the weights of the vertices and the edges of that path, and

that the weight of the last vertex is included. Thus, f d(sink) = Popt· If no path exists

from source to x, fix) = oo. For a fixed integer I ~ n, let Gd 1 be the subgraph of Gd
I

consisting of all the vertices and only edges of span not exceeding I. For any vertex x,

let f d 1(x) be the least weight of any path in Gd 1 from source to x. Clearly f d 1(x) ~
' . ' ,

! d(x).

Let F k denote,the kth Fibonacci number.

Lemma 4.6: If Wi,j > 2/ F d+3 for all pairs i, j such that j - i > I, then Popt =
f d,l(sink).

Proof: By Lemma 4.5, P = f d(sink) ~ f d 1(sink). Now suppose
I

f d,l(sink) < f i sink). The path in G d,l corresponding to Topt must therefore use some

edge of Gd 1 not available· in g d' which would have to be a special edge of span greater
I

than/. This implies that Popt has a subtree TiJ for j-i >I rooted at depth d, which,

February 3, 1986 - 11 -

by [4, Th. 2] implies that the weight of Ti,j cannot exceed 2/ F d+3, contradiction.

We now present the Basic Algorithm, in top-down form. The output of the

algorithm is the value f d,l(sink), which will equal F~pt·

Basic Algorithm

Choose d, I
Compute fd 1(B .,o") for all i

d ' I
w +- 0

while w -:/= 1 d do

begin

end

w +- the inorder successor of w in E(I)

Compute f d, 1(B;,w) for all i

Compute f d 1(sink)
'

Detail of the Basic Algorithm and Time Analysis. For any vertex y, f d,1(y) =
weight(y) +min{/ d 1(x) + weight(x,y)}, where the minimum is taken over all edges (x,y)

'
of the graph Gd 1. The classic minimum weight path algorithm examines all edges. The

'
Basic Algorithm examines all regular edges, but only a small subset of the special edges.

The first step of the Basic Algorithm is to find the smallest integers d, I such that

l = r2 dlog nl and Wi,j > 2/ F d+3 for all pairs i, j such that j - i > I. It requires 0 (n)

time to determine whether a particular candidate value for dis suitable, since it suffices

to check Wi,i+l for all i, and there are at most lognloglogn values of d to check. Thus,

the step "Compute d, l" requires 0 (n logn loglogn) time.

For any i, there is at most one edge to (Bi,Od), and that edge is from source. It

thus takes 0 (n) time to compute f d 1(Bi,Od) for all i.
'

d . . (d)
Suppose that w ::/= 0 , and that f d,l(Bi,u) has been computed for all u e E ~uch

that u => w. Let w' be the inorder predecessor of w in E(d). We define an nx n matrix

February 3, 1986 - 12 -

Mas follows: M{j, •1 = Id, I (Bi, w,) + Pi,j + (d+ 1) wi,j provided 0 < j- i ~ I, and M{j, •1

= oo otherwise. Then the minimum value in the /'h row of Mis precisely the minimum

weight of any path in Gd,l from source to (B;iw) where the last edge of that path is a

special edge. By the Quadrangle Lemma (Lemma 2.1), Mis monotone, and thus finding

those minimum row values is an instance of the Monotone Rowmin Probiern. introduced

in section 2. The minimum row values are found in 0 (n log n) time using the divide

and conquer algorithm. Each regular edge is then examined once to possibly find even

lower values for f d,1(B;iw). Thus, the total time for the main loop of the algorithm is

0(2dn log n).

The final step of the Basic Algorithm is to compute f d 1(sink), which involves
'

examining each of the I + d edges to sink. This step takes linear time.

We conclude that the Basic Algorithm takes O(nl + 2dn log n) = O(nl) time.

Correctness of the Basic Algorithm is implied by Lemma 4.6.

5. The Approximation Algorithm

In this section we describe a modification of the Basic Algofcithm which executes

in subquadratic time, and yields an approximately optimal binary search tree. There is

a tradeoff between accuracy and speed. Again, we assume that the frequencies are

normalized, i.e., "Liai + "Li/3i = 1.

The Approximation Algorithm has one real parameter, r. Although r could be

chosen to be any value in the range 0 < r < 1, it is pointless to choose r < 1/(1 log¢)

~ 0.59023, since weighted path length of the tree constructed by the algorithm would

exceed that of an almost complete binary tree.

The worst case for the Basic Algorithm is the case where there are a large

number of consecutive items with very low frequency. The idea of the Approximation

Algorithm is to delete such runs of low frequency items, then apply the Basic Algorithm

to construct an optimal binary search tree on the remaining items, then to attach the

February 3, 1986 - 13 -

low frequency nodes to that tree in a manner which does not add much to the weighted

path length.

Description of the Approximation Algorithm. Let r < 1 be the parameter. Let

l = f n1, and let o = (log n) 10g¢> /11+log¢>. Let D = {l::;i::;nlai_ 1+,8,+ai<.6}. Use the

Basic Algorithm to construct an optimal binary search tree T' for the list obtained by

deleting both Bi and (Bi,Bi+l) for all i e D. We now organize those deleted items into

almost complete binary trees and attach them to T', as follows. Write Das the disjoint

union of maximal runs, i.e., D = [i1 .. j 1]u ... u[im .. jJ where ik+l > jk + 1. For each

k, let Tk be the almost complete binary search tree for the items strictly between Bi _ 1
I;

and Bi1;+l· We now form T, a binary search tree for all the nodes, by removing from

T' each external node (Bi _1,Bi) and replacing it with Tk.

" "
Time Complexity. After the deletion, the weight of any run of items of length l

·is at least 18 = (log n/ 1)10g¢>. The time to run the Basic Algorithm is thus 0 (nl) =
O(nl+r). The remaining parts of the Approximation Algorithm require only linear

time.

Analysis of the Error. Let P, P' be the weighted path lengths of T, T',

respectively. Let Popt be the weighted path length of the optimal binary search tree.

Obviously P' ::; Popt' since P' is an optimal tree constructed after deletetion of 0 or

more items. Let h be the height of T'. By [4, Th. 2], h = O(log n). The sum of the

weights of the Tk cannot exceed no, and their heights cannot exceed log n. The amount

that is added to the weighted path length by attaching the Tk must therefore be

O(n 8 logn). It follows that:

error= P- Popt::; P- P' = O(n 8 logn) = O(nl-r(l+loglf>)(log n)l+loglf>).

6. Open Questions

The results of this paper leave open the problem of whether a subquadratic

algorithm can be found for constructing an optimal binary search tree in all cases.

February 3, 1986 - 14 -

However, we do believe the following, weaker, "Las Vegas" version to be true:

Conjecture. Suppose the values of the ai and the /3i are chosen at random, from

two given distributions; then normalized by dividing by Eai + 'Ei/3i. Then there exists

an agorithm to construct the optimal binary search tree, which runs in saoquadratic

expected time.

Note that the Basic Algorithm of this paper answers the conjecture affirmatively,

unless the distributions are such that all but very few of the values are very small.

Since we expect that few distributions occuring in applications would be extremely

skewed, the Basic Algorithm should construct the optimal binary search tree in

subquadratic time in most practical situations.

References

[1] Allen, B., "Optimal and Near-Optimal Binary Search Trees," Acta Informatica

18 (1982) pp. 255-263.

[2] Bayer, P.J., "Improved bounds on the costs of optimal and balanced binary

search trees," Project MAC Technical Memorandum og MIT Cambridge MA

(1975)

[3] Fredman, M.L., "Two applications of a probabilistic search technique: Sorting

X + Y and building balanced search trees," 7th ACM Symposium on Theory of

Computing, Albuquerque (1975), pp. 240-244.

(4) Hirschberg, D.S., Larmore, L.L. and Melodowitch, M., "Subtree Weight Ratios

for Optimal Binary Search Trees", Tech Rept. 86-02, JCS Dept, University of

California Irvine (1986). Also submitted for publication to Acta Informatica.

[5] Knuth, D.E. "Optimum binary search trees," Acta Informatica 1 (1971), pp. 14-

February 3, 1986 - 15 -

25.

[6] Mehlhorn, K. "Nearly optimal binary search trees," Acta Informatica 5 (1975),

pp. 287-295.

[7J Unterauer, K. "Dynamic Weighted Binary Search Trees," Acta Informatica 11

(1979), 341-362.

[8J Yao, F.F. "Efficient dynamic programming using quadrangle inequalities," Proc.

12th Annual ACM Symp. on Theory of Comput. (1980), pp. 429-435.

February 3, 1986 - 16 -

