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A B S T R A C T

Atomic configurations of glassy or amorphous materials containing medium-range order (MRO) may be iden-
tified by comparing fluctuation transmission electron microscopy (FTEM) measurements to FTEM simulations
obtained using model configurations. Candidate model sizes have traditionally been much thinner than the
samples measured experimentally, and publicly available FTEM simulation software has until now omitted
microscope parameters, dynamical scattering, and the phase of the diffracted electron wave. We introduce
MS–STEM–FEM, an open-source software package for simulating FTEM experiments using established multi-
slice TEM simulation techniques to emulate experiment more closely by incorporating microscope parameters
and simulating electron scattering and propagation as a complex valued wave. Simulations using established
models are compared with results of experimental STEM–FEM to validate the software. Several statistical
measures of diffraction are implemented and their responses to model features are compared. Dynamical scat-
tering is found to be less influential than the variety of crystallite orientations which occur in thicker models.
Simulations of variable resolution microscopy confirm that cumulative intensity of the FTEM signal decreases
with reduced model MRO and increased coherence volume. Advantageous model scaling characteristics and
efficient processor performance scaling are demonstrated, along with a study of convergence with respect to
pertinent simulation parameters to identify accuracy requirements.

1. Introduction

Fluctuation transmission electron microscopy (FTEM) is an experi-
mental technique for characterizing medium-range order (MRO) in
glassy or amorphous materials. The occurence of nanoscale crystalline
regions in otherwise amorphous materials has been observed to induce
spatially fluctuating speckle in electron diffraction patterns. FTEM uses
statistical analysis of the fluctuations to quantify the medium-range
order. Correlating atomic configurations with FTEM measurements may
enable computational investigations of technologically important
properties of medium-range ordered materials. Accurate simulations of
the FTEM experiment are desired to identify configurations which
match experimental data, enabling further investigations and a deeper
understanding of the properties of materials having medium-range
order. STEM–FEM is a technique for performing FTEM by rastering the
probe in a nano-beam diffraction measurement. The MS–STEM–FEM
software package introduced here is designed to simulate STEM–FEM
measurements taken in a nano-diffraction setting using a well-estab-
lished multi-slice scanning transmission electron microscopy (STEM)

simulation technique which enables incorporation of instrument para-
meters and accommodates samples of various composition and size to
accurately represent experimental conditions and procedure.

1.1. Fluctuation transmission electron microscopy

Fluctuation transmission electron microscopy uses statistical mea-
sures of electron diffraction to characterize MRO in materials. Many
glassy and amorphous materials of industrial importance lack long-
range order and have atomic configurations which may otherwise ap-
pear random but give rise to speckled diffraction patterns which are
noticeably distinguishable from the isotropic diffraction patterns of
truly disordered materials. MRO is an ordering at the scale beyond
nearest neighbors, on the 1–3 nm scale, which the pair correlation
function g(r) is insufficiently sensitive to characterize [1,2]. FTEM arose
as a consequence of the idea that limiting the coherence volume of the
impingent electron beam would suppress diffraction from long-range
order while enhancing diffraction from pair-pair correlations and
medium-range order [3,4].
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Nano-beam diffraction in a TEM uses beam convergence to tune the
size of the coherent beam and limit the sample volume which con-
tributes to diffraction. Tuning a nano-beam size to the MRO scale and
rastering it across a material sample is a convenient way to obtain
spatial ensembles of limited-coherence-volume diffraction from which
statistical measures may be calculated [2,5]. This procedure is some-
times referred to as STEM–FEM.

1.2. FTEM simulation

Identifying atomic configurations which reproduce FTEM signals is
desirable so that their properties and behavior may be predicted. Direct
inversion from FTEM measurement to atomic configuration is not
possible with current computational capabilities. Instead, a forward
calculation of FTEM from candidate atomic configurations has proven
useful in constructing configurations which match experiment [6].

The available software for simulating FTEM from atomic config-
uration (FEMSIM) uses a kinematic diffraction approximation, wherein
the entire sample is projected into a single two-dimensional plane [7].
In the projected calculation, each atomic pair within a designated cutoff
distance produces a real-valued diffraction intensity proportional to the
product of two Airy discs and a first-order Bessel function. These real-
valued diffraction components are calculated for each contributing re-
ciprocal space vector and summed together. Summing real-valued dif-
fraction contributions, omitting the wave phase encoded in complex
values, loses information about the limited coherence volume which
originally motivated FTEM method development [4]. Model size (in-
cluding thickness) is notably limited in FEMSIM because calculations
scale quadratically with the number of atoms [6].

It has been shown that microscope variation and sample thickness
contribute significantly to STEM–FEMmeasurements [8]. It follows that
an approach of simulating the microscope beam and experimental
procedure is an appealing means of including influential non-idealities
into FTEM simulations. MS–STEM–FEM adapts existing multi-slice TEM
simulation methods to achieve these abilities in an FTEM simulation
which scales well to larger model sizes.

2. Theory and implementation

MS–STEM–FEM follows the multi-slice algorithms, formulas, and
parameter fittings detailed in the publications of Kirkland to simulate
the beam and material interaction in a STEM [9,10]. In the following,
we discuss the theoretical underpinnings of the method and give details
about its implementation.

2.1. Multi-slice method

The multi-slice method approximates a material sample as a series
of two-dimensional projected atomic potentials separated by free space.
The atomic potentials have been tabulated for all of the common ele-
ments [9]. A complex valued probe wave function is repeatedly mod-
ified by the projected atomic potentials and propagated over their se-
parating distances until exiting the sample.

The nano-beam probe is initialized at the origin → =r 0p as a func-
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where Ap is a normalization factor such that ∑ → → =→ r rΨ ( , ) 1,r p p �−1 is
the inverse Fourier transform, Δf is microscope defocus, Cs3 and Cs5 are
the third and fifth order spherical lens aberrations, λ is electron wa-
velength evaluated from the microscope accelerating potential, and
αmax is the maximum beam convergence angle. When the beam raster
position shifts, a copy of these real space values is translated to be
centered at the pixel nearest the raster position and transformed to
reciprocal space via inverse FFT.

Interaction of the beam with the sample follows a weak phase ap-
proximation in which atoms are represented by two-dimensional po-
tentials projected onto the top of each slice, the thickness of which is
tunable by a run-time parameter. After domain discretization, the po-
sition of each atom is shifted to a pixel nearest their true positions to
ensure that the point of maximum atomic potential is not omitted and
the discretized values of each atom’s potential are centro-symmetric
about their maxima. The projected atomic potential vnz(x, y) of the nth
slice, containing atoms indexed by j, is evaluated as
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where fej is the jth atomic scattering factor with fitted parameters ai, bi,
ci, di adopted from [9], Lx and Ly are lateral material dimensions, and γ
is the Lorentz factor of the impingent electrons. The beam wave func-
tion interacts with a slice’s projected atomic potential via the trans-
mission function tn implemented as [10]

= +t x y iσv x y( , ) 1 ( , )n nz (7)
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After interacting with a slice’s transmission function, the beam wave
function is propagated over the slice thickness Δz by reciprocal space
multiplication with the slice’s propagator function Pn

�=+ψ k k P k k z t x y ψ x y( , ) ( , , Δ ) [ ( , ) ( , )]n x y n x y n n n1 (9)

= − +P k k z iπλ k k z( , , Δ ) exp[ ( )Δ ]n x y n x y n
2 2

(10)

To avoid aliasing effects of using the FFT as an alternative to real-space
convolution, the wave function is bandwidth limited to spatial fre-
quencies of magnitude less than 2/3 the maximum spatial frequency of
the shortest lateral dimension after each forward Fourier transform. The
projected atomic potential is bandwidth limited to 1/2 the maximum
spatial frequency of the shortest lateral dimension.

After interacting with the propagator of the lower-most slice, the
diffracted intensity takes the form of the magnitude of the beam wave
function in reciprocal space,

→ → =I k r ψ k k( , ) ( , )p x yfinal (11)

As of this writing the FTEM measures calculated by MS–STEM–FEM do
not include possible non-idealities of an instrument’s detector, such as
random noise or non-linear signal response.

2.2. Extension to fluctuation TEM

Several statistical measures based on the computed diffracted in-
tensity have been implemented. The conventional measure of medium-
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range order in FTEM is the normalized variance of the annular mean
VΩ(k) given by Eq. (12). Additional measures investigated by Daulton
et al. which encapsulate different but potentially useful information
include the normalized variance of ring ensemblesVre (Eq. (13)), mean of
normalized variances of ringsVr (Eq. (14)), and the annular mean of var-
iance imageΩVImage (Eq. (15)) , each of which may be computed from the
same collection of diffraction images.
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We use the notation in which angled brackets < · > x represent
averaging of the enclosed function over the subscripted variable x, and
ϕ is the azimuthal angle of reciprocal space vector

→
k . Note that the

statistical measure used by Gibson and Treacy [11] closely approx-
imates

→
+kΩ ( ) 1VImage .

2.3. Algorithm summary

MS–STEM–FEM assembles the methods of Sections 2.1 and 2.2 into
the following procedure:

1. Initialize discretized domains split over all compute nodes via MPI
2. Initialize nano-beam probe (Eq. (1))
3. Initialize a look-up-table containing projected atomic potential va-

lues (Eq. (4)) for each unique atomic species
4. Divide the model into slices having minimum thickness specified by

the user
5. Initialize transmission function for each slice (Eq. (7)) on the local

node’s spatial domain
6. Accumulate a total projected atomic potential (Eq. (5)) for each

slice, re-centering values of the look-up-table to the pixel nearest
each corresponding atomic position

7. For each rastering position separated by a user-specified value,
(a) Create translated nano-beam wave function values �∈ψ x y( , )

centered at the pixel nearest the rastering position →rp
(b) For each slice of the model recursively transmit and propagate

the beam wave function so that upon exiting the nth slice it will
be

� �=+
−ψ P k k z t x y ψ x y[ ( , , Δ ) [ ( , ) ( , )]]n n x y n n n1

1 (16)

(c) Depending upon requested FTEM measurement quantities, cal-
culate and accumulate diffraction intensity quantities for FTEM
measures

8. Finalize calculations of FTEM measures using Eqs. (12)–(15) and
save output to text, image, and/or netCDF files

2.4. Implementation

MS–STEM–FEM is written in C++with MPI and released under the
GNU Public License version 2 [12,13]. The program is parallelized by
splitting the beam wave-function and material sample properties

among processors along a direction perpendicular to beam propagation.
The FFTW fast Fourier transform (FFT) library is used to transform the
propagating wave function between real and reciprocal space as needed
to efficiently calculate convolutions [14]. Use of the discrete FFT in-
duces periodic boundary conditions and aliasing effects which we
eliminate with bandwidth limiting.

2.5. Construction of models from smaller configurations

Use of established models eases comparison to existing simulation
results, but the majority of available models are not sufficiently large to
obtain comparible resolution in reciprocal space. To obtain a dis-
cretized spacing Δk in reciprocal space comparable to experimental
data, the dimensions of a model with periodic boundary conditions
must be at least −k(Δ ) 1. Imitation of experiment also imposes a
minimum on the model dimension, which we take to be the product of
the number of probe raster positions and their average separation. To
approach these dimensions we extend existing models using a method
similar to the stacking method of Bogle et al. [15]. The model extension
method used in the following sections duplicates a model Nx×Ny×Nz

times as follows:

1. For each layer 1,...,Nz

(a) For each of the Nx×Ny sub-cells
(i) duplicate the basis atom positions into a 3 × 3×3 grid
(ii) choose a rotation by uniformly sampling the special or-

thogonal group of three dimensional rotations, SO(3), and
apply the rotation to the positions of the 3 × 3×3 grid
about its center

(iii) delete all atoms from the reoriented 3 × 3×3 grid which
exceed the bounds of the original smaller model

(b) choose a uniformly distributed lateral translation of magnitude
less than half the width of the basis model and translate the
entire layer by that amount subject to periodic boundary
conditionsFig. 1 shows the paracrystalline basis models used

and an example of a paracrystalline model extension in which the
cubic diamond atoms and their bonds are highlighted in blue, while
the atoms approximating a continuous random network are colored in
red. These basis models were chosen from the work of Bogle et al. and
are referred to by the number of atoms in their crystallites (e.g.
163g123g87g59g has four crystallites containing 163, 123, 87, and 59
atoms, respectively, surrounded by a continuous random network). For
a detailed explanation of their construction see Ref. [15]. The impact
of the lateral periodicity between crystallites is unclear but could
contribute to spatial frequencies near or below that of the periodicity,
being (27 Å)−1 = 0.037 Å−1.

3. Results and discussion

3.1. Comparison of simulations to experiment

To validate the MS–STEM–FEM software we compare VΩ from
MS–STEM–FEM simulations to experimental STEM–FEM results of
amorphous Germanium (a-Ge). Experimental STEM–FEM measure-
ments were adapted from Ref. [16], in which a 33 nm thick a-Ge film
was sputtered onto an approximately 20 nm thick amorphous silicon
nitride (SiNx) membrane. The experimental data set contains mea-
surements from five regions. Existing paracrystalline models of a-Si
from Ref. [15] were dilated to match Ge lattice parameters and then
extended into a 4 × 4×12 grid using the method outlined in the
previous section to have dimensions of 11 × 11×33 nm3, similar in
thickness to that of the experimentally measured a-Ge but an order of
magnitude smaller than the experiment in each of the probed surface
dimensions. The basis models were chosen for their demonstrated
ability to produce a simulated VΩ signal worthy of comparison to ex-
periment. Ten paracrystalline model extensions constructed by the
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method detailed in Section 2.5 were simulated for each smaller basis
model. Model names indicate the number of atoms in the crystallite
regions of each model and the number of times it was duplicated in
each dimension. For example, 211g_4 × 4×12 contains one grain of
211 atoms surrounded by a continuous random network duplicated 4
times in the lateral directions and 12 times in the beam propagation
direction with rotations and translations as detailed in Section 2.5.
Additionally, a continuous random network (CRN) model was adapted
from the work of Barkema and Mousseau [17]. This model of 100,000
Si atoms was scaled to match Ge, extended using the method of the
Section 2.5 into ten larger models, and then trimmed to have a thick-
ness similar to that of the experimental a-Ge film. Unless otherwise
specified, both experiment and simulation used a convergence angle of
1.0 mRad and a 10 × 10 raster of 100 points. This was obtained by a
raster spacing of 10 nm in the experiments and 1.1 nm in the simula-
tions. The shared convergence angle yielded a measured probe full-
width at half maximum (FWHM) of 2.0 ± 0.1 nm in the experiment
and 1.7 nm in the simulation.

Average VΩ values from both experiment and simulation are plotted
in Fig. 2 as solid curves surrounded by shaded regions representing one
standard deviation of the values obtained from several models or re-
gions measured. No single simulated VΩ curve matched an experimental
VΩ curve especially well, so we instead present the averages and stan-
dard deviations derived from multiple models and experiments.
Fig. 2(b) represents data previously published by Li et al. [16] wherein
standard error is presented rather than the standard deviation shown
here.

The shaded regions of Fig. 2(a) indicate that a single small model
may yield a wide range of VΩ values dependent upon the orientations of
its duplicates in the paracrystalline extensions. This sensitivity is a
testament to the ability of VΩ to distinguish between configurations.

The number of peaks and their positions in the average simulated VΩ

shown in Fig. 2(a) are in fair agreement with simulations reported in
Ref. [15]. Comparison among the average values of VΩ in Fig. 2(a)
shows that the models having larger crystalline regions
(429g_4 × 4×12) have greater peak intensities and peak ratios which
more closely resemble the average experimental curve.

The experimental VΩ values are nearly an order of magnitude
smaller than our simulated VΩ. A similar disparity also occurs in kine-
matical scattering simulations for which Rezikyan et al. have proposed
atomic displacement decoherence as an important contribution [18].
Also, exclusion of the SiNx substrate from our models introduces a
difference in thickness which would enhance the simulated VΩ magni-
tude through an inverse proportionality as demonstrated by Yi and
Voyles [19].

Positions and relative heights of the peaks below 0.6 Å−1 are in fair
agreement between the experiment and simulation averages, with the
simulation having a red-shift in the peak near 0.5 Å−1. However, no-
table differences between the experiments and these models occur for
values at or above 0.6 Å− ,1 where the models produce several peaks
which are not significantly pronounced in the experiment. Peaks at

Fig. 1. Paracrystalline basis models and a model extension showing the bonds
and atoms of cubic diamond arrangements in blue, and the approximate con-
tinuous random network atoms in red. (a) 429g, (b) 317g, (c) 211g, (d)
163g123g87g59g, and (e) 429g_4 × 1×3 extension. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. (a) Averaged VΩ calculated over several paracrystalline Ge models, and
(b) average VΩ of experimental STEM–FEM measurement. The experimental
data were previously reported in Ref. [16]. Shaded regions represent one
standard deviation from the average (solid curve) calculated from ten model
extensions in (a) and five material regions in (b). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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these locations are common to the output of both MS–STEM–FEM and
FEMSIM when using these basis models [15] suggesting a need to im-
prove our model construction method. Absence of the amorphous SiNx

substrate from our models and may also contribute to these differences
between simulated and experimental VΩ peaks.

3.2. Comparison of statistical measures

Insight into the sensitivity to model variation of the statistical
measures outlined in Eqs. (12)–(15) may be gained by comparing trends
in their values. Fig. 3 shows the average and standard deviation of each
statistical measure calculated from ten extensions of the CRN model
and ten extensions of each of three paracrystalline models of increasing
% crystallinity. Peak position and shape are similar between Vr and Vre,
suggesting that they contain redundant information . VΩ is the only
measure which appears to be superimposed upon the tail of a decaying
lower frequency peak, which makes it difficult to distinguish low am-
plitude peaks in the range of MRO, especially for the models having
lower % crystallinity.

Examining the standard deviations of these statistical measures,
shown as shaded regions, shows relative variations among model ex-
tensions derived from the same crystallite model are greater in VΩ than
in V ,r Vre, and ΩVImage. Points indicating all local maxima in the ten
curves of 429g models are overlaid upon the average curves to em-
phasize that peak positions vary most for VΩ. This measure is then
better suited to distinguish between paracrystalline constructions which
use a single crystallite. However, the peaks in VΩ for models with lower
% crystallinity may be more difficult to discern from the CRN model
curve than the other measures, in part because the statistical deviations
of VΩ are larger over each set of models.

3.3. Variable resolution simulation

Relating the statistical measurements of diffraction in FTEM to a
property that is easier to physically visualize such as % crystallinity has
been a recurring theme in FTEM. Several studies have identified that
reducing the coherence volume of the electron beam enhances VΩ for
samples having medium-range order on the scale of the coherence vo-
lume [3,20,21]. This method of measuring

→
V k Q( , )Ω as a function of

both aperture and wavevector in a STEM is referred to as variable re-
solution microscopy. To confirm that the multislice method and
STEM–FEM agree with this notion, fluctuation maps for several models
are shown in Fig. 4 where we use the beam probe diameter (FWHM) as
a surrogate for Q.

A few features of Fig. 4 are worth noting. In STEM–FEM experi-
ments on a sample of uniform thickness, coherence volume is tuned by
varying the beam probe FWHM, which is inversely proportional to Q or
αmax (Eq. (1)) and thus also the diffracted disc diameter. The dark re-
gions in the lower left of each plot are the locations of the direct beam
diffraction disc, showing the inverse proportionality in width to the
probe FWHM. The width of peaks in VΩ are visibly similar to the radius
of the direct beam disc, and overlap when their separation is less than
twice the diffraction disc radius. Overlapping diffraction discs result in
peaks in VΩ which may not have previously been properly attributed,
since they do not align directly with reciprocal lattice vectors of the
crystallites.

Fig. 5 illustrates the reduction in cumulative VΩ for models of re-
duced medium-range order, and enhancement for lower coherence
volumes. There is no notable local maximum in intensity when the
probe diameter is similar to crystallite diameters as may have been
suggested previously [21]. However, some notable resonance does

occur in Fig. 4 near 0.22 Å−1 for the model of greatest % crystallinity
having crystallite diameter of nearly 25 Å, 429g_4 × 4×12_01, and
this produces a single peak in the cumulative VΩ of Fig. 5 for a probe
size of less than 5 Å. Except for this point, a small probe is not shown to
yield local peaks in intensity for correspondingly smaller crystallites for
these models in STEM–FEM. Instead, the total intensity of VΩ decreases
with increasing probe size nearly monotonically, where additional ex-
ceptions are due to rectangular harmonics appearing in the shape of the
larger probes due to periodic boundary conditions.

Periodic boundary conditions have a detrimental effect on probe
shape when its size approaches approximately one sixth of the width of
the domain, inducing non-circular probe shapes which modify the dif-
fracted intensities. Horizontal stripes of reduced intensity in Fig. 4 and
5 (e.g. near FWHM ≈20 Å and 40 Å) are due to these artifacts in the
probe shape.

Fig. 3. Comparison of statistical measures (Eqs. (12)–(15)) derived from
STEM–FEM simulations. Average values (solid curves) surrounded by shaded
regions of one standard deviation among ten model extensions show sensitivity
of each measure to crystallinity and crystallite orientation. Local maxima of
curves calculated from the paracrystalline model of greatest % crystallinity
(429g_4 × 4×12) are identified as points to illustrate variations in peak po-
sition. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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3.4. Convergence

To impart confidence in the accuracy of any simulation, it is im-
portant to identify the parameter resolution requirements for obtaining
sufficiently accurate results. For MS–STEM–FEM, these parameters are
the number of pixels per wave-function domain dimension, the number
of slices into which the model is projected, and the beam raster pattern.

Fig. 6(a) shows that for our models containing Ge atoms, domain
discretizations of greater than 4.7 pixels per Angstrom yield dimin-
ishing improvements which are difficult to discern. This value may
prove to be sensitive to material composition due to varying atomic
potential profiles.

Simulations of a fixed area using a varying number of raster points
yielded Fig. 6(b), from which it is clear that a 10 × 10 grid of 100
raster points is sufficient for our model area of 100 Å2 when using a
probe FWHM of 17Å. Inclusion of additional raster points with in-
creasing overlap between probe areas made no difference in the re-
sulting VΩ curve.

Fig. 6(c) shows that using a slice thickness of less than 10–20 Å
produces nearly indistinguishable results for VΩ simulations of our
models. This thickness is substantially greater than slice thicknesses
recommended for multi-slice HRTEM simulations (≈1 Å) [9], and al-
lows for gains in performance by projecting greater model thicknesses
into fewer slices.

3.5. Model thickness and dynamical scattering

As indicated by Fig. 6(c), projecting the entire sample thickness into
a single 340 Å slice (a kinematical approximation) will introduce errors,
which previously might have been attributed to dynamical scattering.
To identify the extent to which dynamical scattering influences FTEM
measures we compare VΩ simulated using models of varying thickness
obtained by either duplication or extension in Fig. 7. Models con-
structed by extension follow the algorithm in Section 2.5, whereas
models obtained by duplication simply duplicate the positions of a
429g_4 × 4×4 model extension along the beam direction to obtain
the desired thickness.

Differences in scattering from models of varying thickness obtained
by extension are attributable to both dynamical diffraction and the
inclusion of a greater variety of scattering conditions in the additional
layers (Fig. 7(a)), while differences in scattering from structures of in-
creasing duplicity along the beam direction (Fig. 7(b)) are attributable
only to dynamical scattering since the additional layers do not in-
troduce scattering conditions which are not already included in the
preceding layers. Although Fig. 6(c) might be interpreted as suggesting
that dynamical scattering has a substantial influence on FTEM, Fig. 7(b)
shows that it is limited. Variation in the curves of Fig. 6(c) could instead

Fig. 4. Fluctuation maps for models of decreasing % crystallinity and corre-
sponding diminishment of VΩ peaks. FWHM is the measured full-width at half
maximum of the simulated nano-beam probe, which varies inversely with both
Q and the convergent beam diffraction disc diameter. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. Cumulative intensity of VΩ as a function of probe size. Peaks for probe
widths greater than 20 Å are due to probe artifacts caused by periodic boundary
conditions. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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be attributed to additional scattering conditions introduced by artificial
proximity of distant atoms which are projected into a single slice.

The cause for VΩ to diminish with thickness in experimental mea-
surements may be an increasing variety of scattering conditions or
crystallite rotations and translations, which is represented by Fig. 7(a).
Simulation of samples thicker than the minimum slice thickness of
approximately 20–50 Å thus require a greater number of atomic co-
ordinates and efficient performance scaling with the number of atoms
in a model.

3.6. Performance scaling

The search for models whose simulated FTEM matches with ex-
periment may require many FTEM simulations of candidate models,
and is thus particularly sensitive to FTEM simulation performance.
Parallel execution using the Message Passing Interface (MPI) commu-
nication protocol helps to reduce the run-time cost and take advantage
of high-performance computing clusters.

A strong-scaling study of MS–STEM–FEM is shown in Fig. 8 which
used a cluster whose nodes each contain sixteen 2.6 GHz processors to
calculate the same problem while varying number of processors. The
speed-up of the current implementation, t1/t, remains close to an ideal
linear halving until internodal communication begins to impart a delay

Fig. 6. Convergence of VΩ with respect to (a) pixel resolution, (b) raster posi-
tions, and (c) minimum slice thickness parameters for a 429g_4 × 4×12
paracrystalline model of Ge. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 7. VΩ trend with model thickness obtained by (a) extending a 429g model
as in Section 2.5, and (b) duplication of a 429g_4 × 4×4 paracrystalline
model along beam propagation direction a sufficient number of times to obtain
the annotated thicknesses. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8. Log-log plot showing speed-up of wall-clock computation time relative
to the single processor computation time t1. The dashed line represents an ideal
halving of computational time when the number of processors is doubled. The
number of pixels in the domain discretization are shown to affect the extent to
which additional nodes contribute to improving computational time speed-up,
the optimal being approximately 1/16th of the number of pixels in the x-di-
rection.

N.H. Julian et al. Ultramicroscopy 194 (2018) 117–125

123



when using more than sixteen processors. Speed-up continues to in-
crease with additional processors until reaching approximately one
sixteenth of the number of pixels in the discretized domain which is
being split among nodes. The current implementation cannot scale to
processor counts greater than the number of pixels in the x-direction
due to the use of FFTW.

Established software is notably limited in the size of models which
may be practically simulated, limiting typical amorphous constructions
to volumes which are far smaller than what is sampled in an FTEM
experiment. To identify model dimensions to which MS–STEM–FEM is
sensitive and demonstrate that models of thickness comparable to ex-
periment are within reach, a study of the performance scaling of
MS–STEM–FEM in response to model scaling is given in Fig. 9.

Fig. 9 shows the results of two weak-scaling studies in which the size
of the computational problems increased with the number of pro-
cessors. Fig. 9(a) presents a linear fit of the square root of wall-clock
time as a function of pixels per domain axis. This fitting indicates that
MS–STEM–FEM scales quadratically with total number of pixels in the
model area perpendicular to beam propagation. Fig. 9(b) shows that
MS–STEM–FEM scales linearly with the model thickness along the beam
propagation direction given fixed slice thicknesses. In comparison,
codes based on a kinematic diffraction approximation like FEMSIM
scale quadratically with number of atoms added along any direction
[6]. MS–STEM–FEM suffers such a quadratic scaling only if additional

atoms require expansion of the area perpendicular to the beam, while
expansion of the model thickness scales linearly at worst. Simulation of
model thicknesses comparable to experiment are thus made more
practical by the multislice method of MS–STEM–FEM.

4. Conclusions

MS–STEM–FEM has been validated by adapting existing para-
crystalline models and comparing their simulated measures to experi-
mental STEM–FEM measurements. Favorable agreement with experi-
ment was shown for low-frequency

→
V k( )Ω peaks. The calculations

also produce high-frequency peaks which are not pronounced in the
experiment but are known to occur with these paracrystalline basis
models. Several other statistical measures derived from diffraction were
investigated. VΩ shows the greatest ability to distinguish between
paracrystalline extensions derived from a single crystallite model, while
Vre, V ,r and ΩVImage produce more easily identifiable peaks for models
having smaller crystallites. Despite having demonstrated a need for
minimum slice thickness to avoid a kinematical approximation, dyna-
mical scattering has been shown to have only a minor influence on the
statistical measures, which were shown to diminish with increased
model thickness due to inclusion of a greater number of crystallite or-
ientations. The software was shown to scale efficiently with number of
computer processors and to work well with models of thickness com-
parable to those which are probed in experiment.
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