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ABSTRACT OF THE DISSERTATION

Mechanisms of Nonlinear Oscillations in Biological Control System for Locomotion

by

Yiqin Liu

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2021

Professor Tetsuya Iwasaki, Chair

This research uncover the internal structure and control mechanisms of oscillatory biologi-

cal systems, and generalizes synthesis guidelines to embed multiple desired trajectories for

robotic design, with analytically determined sensory feedback gain. First we proposed an

integrated CPG-leech model amenable for theoretical study, also capable of reproducing

adaptive behavior of actual leech undulation in both water and air. Using this model, the

internal architecture of CPG was explored, which has never been studied before. The conser-

vative oscillator and weak coupling structure were discovered. In current state of knowledge,

the mechanism that how CPGs achieve and maintain orbital stability under perturbations,

and how CPGs adjust trajectories under environmental perturbations are unknown to us.

This conservative oscillator and weak coupling architecture can well-explain the CPG control

mechanism of stabilization and trajectory re-planning. For applications to the community,

today’s design of CPG controller in robotic system relies heavily on manual tuning of the

the sensory feedback or mere open-loop control, lack of established theoretical support. The

synthesis also needs to take the complex dynamics of the plant into consideration in the

process of determining the CPG matrices, which makes the design computationally ineffi-

ii



cient. Based on the newly-found architecture in this research, several design guidelines are

generalized to embed multiple targeted orbits, with analytically determined sensory feedback

gains. The weak coupling structure allow us to design CPGs only using target oscillation

profile, no plant dynamics are required in calculating the connectivity matrix, making the

design process direct and efficient.
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CHAPTER 1

Introduction

Traditional control method, as depicted in Figure 1.1, usually uses a reference signal as a

function of time to specify the desired trajectory [2], [12]. Although this output regulation

method has been proved effective by many [38], [39], [41], it is too rigid because we can

hardly predict the exact movement of a robot . When there are perturbation, the robot may

not be able to get back and stick to the step timing of the reference signal. It would be more

natural to regenerate the oscillation trajectory with no dependence on the previous one. The

system will lose autonomy when forced by a reference signal, which is a fixed function of

time.

Figure 1.1: Standard control

One way to avoid using a fixed reference signal is based on the idea of hybrid zero dynamics

(HZD). In [57], HZD is adopted to realize asymptotically stable walking of a five-link un-

deractuated bipedal robot. Here they used reference signal r(θ) as a function of one of the

state variables θ, by which they achieved autonomy in bipedal walking robots. For example,

when the robot receives some disturbance such as tripping over a stone, it could get back to
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previous stable walking gait without sticking to the step timing of the previous oscillation

trajectory. So avoiding predetermined time reference signal renders the robots to be more

natural and flexible in dealing with real world scenarios. However, robots with this control

method can only work under one single gait specified by r(θ). Very often, robots needs to

switch between different gaits. For example, when the surface of the ground changes from

soil to ice, a robot may need to change the oscillation pattern of legs so that the tangential

frictions on the feet are small. In this case the HZD method will not be able to switch among

different oscillation patterns, which means the HZD method is unable of exploiting natural

dynamics

Exploiting natural dynamics means that adjusting bodies in different gestures and gaits to

be appropriate for different tasks. This is natural and necessary for animals and human.

For example, when switching from walking to running, human will bend knees not only

for the purpose of cushioning but also to reduce effective length of body so as to increase

stride frequency. Similarly, if we could exploit natural dynamics in robots, a more efficient

locomotion gait will be achieved with less energy input. A beautiful and one of the most

prominent examples to exploit robot dynamics is passive dynamic walking, the concept

of which was firstly introduced by [13]. It demonstrated that there exists a class of two-

legged machines that can perform stable walking in startlingly human-like gaits with no

active control or energy input if initiated on a slope, however, they cannot walk on level

ground. Later people working in the control systems for robots solved this problem by

adding compensation for the lack of gravity. [32],[42].

What is desired is a controller that possesses both functions of autonomy and natural en-

trainment that makes robots robust and dexterous to disturbance and seamlessly switch

among optimal gaits in different situations. The answer lies in nature. Animals are born

to have autonomy and natural dynamics properties, and extensive studies have been made

on the topics of rhythmic behaviors and animal locomotion[27], [30], [31], [44], [45]. The

controller in their neural system is called central pattern generators (CPGs). CPG-based
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control can achieve desired input with small amount of control effort by exploiting the nat-

ural dynamics [55]. Robots with these kind of controllers will be extremely energy efficient.

What’s more, CPG-based control can manage a smooth recovery from disturbance by choos-

ing timing flexibly, thus CPG can be an ideal solution to get rid of the dependence on time

reference signal.

A CPG is an oscillator constituted by a group of neurons. It generates membrane potentials,

commanding muscle contraction to reach rhythmic body movements [9],[29]. The oscillation

pattern is adjusted by receiving sensory feedback so that the animal can effectively achieve

desired locomotion [3], [11], [23], [34], [58], [59]. CPGs are widely existent in animals.

Various CPG architectures of different animals have been discovered, including mollusks [4],

lampreys [14], salamanders[26], and leeches [10], [18], [33], [43].

Some detailed mathematical models have been established using systems approach, capturing

the neuronal dynamics essential for generating coordinated oscillations, and verified through

numerical simulations [5], [6], [8], [35], [52]. For example, in biology, some CPG models [17],

[19] utilized the detailed dynamics of neuronal cell membranes based on Hodgkin-Huxley

electrical circuit[1]. The model is computationally very heavy. To reduce the computa-

tion burden, two-variable neuron models were proposed, such as FitzHugh-Nagumo and the

Morris-Lecar [24]. There is a great body of biological findings of significant engineering val-

ues. However, no interpretation yet has been made systematically from engineering design,

especially control, perspective. At preset, we still do not have a complete picture of how CPG

could achieve adptivity and robustness, etc., which motivates this research to uncover the

control mechanism behind these properties, bridging the gap between biological phenomenon

and theoretical understanding as dynamical systems.

Studies have shown that CPGs are able to detect and tune into the mechanical resonance

[21], [25], [46], [50], [51]. Seeing that, people have been using CPG-based controllers to

achieve rhythmic locomotion with heuristic designs. For bipedal locomotion, coordinated

movements were realized as a global limit cycle generated by entrainment between CPG and
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rhythmic movements of a musculo-skeletal system [16]. For quadruped robots, transition

from dynamic walking on irregular terrain to running on flat ground has been achieved

through CPG neural oscillator network [28]. Later a framework for learning trajectories and

reaching frequency adaptation by the method of using CPG as dynamic movement primitives

was invented, and implemented on a bipedal robot [40]. All these research have managed

to realize desired locomotion, nevertheless, the designs of CPG-based neural controllers are

merely some heuristic operations of tuning parameters with some biology intuition. No

underlying control mechanisms have been explored. No generalized guidelines of controller

design has been established; thus, no systematic methodology can be adopted to extend

the results to other relevant applications. For robots to achieve automatic gait transition,

multiple limit cycles shall be embedded in the controllers. Limit cycles are well-studied and

there are established methods to analyze and predict their existence [7], [15], [20], [37], [48].

However, there have not been many general theories for the design of feedback controllers

to achieve multiple stable limit cycles embedding with prescribed oscillation profiles. This

research addresses this open problem, making it possible to generalize CPG-based controller

design embedded with multiple desired limit cycles, with analytically determined sensory

feedback.

This research proposed an integrated model amenable for theoretical study, also capable of

reproducing adaptive behavior of actual leech undulation in both water and air. Using this

model, the internal architecture of CPG was explored, which has never been studied before.

The conservative oscillator and weak coupling structure were discovered. In current state

of knowledge, the mechanism that how CPGs achieve and maintain orbital stability under

perturbations, and how CPGs adjust trajectories under environmental perturbations are

unknown to us. This conservative oscillator and weak coupling architecture can well-explain

the CPG control mechanism of stabilization and trajectory re-planning. For applications

to the community, today’s design of CPG controller in robotic system relies heavily on

manual tuning of the the sensory feedback or mere open-loop control, lack of established

4



theoretical support. The synthesis also needs to take the complex dynamics of the plant into

consideration, which makes the design computationally inefficient. Based on the newly-found

architecture in this research, several design guidelines are generalized to embed multiple

targeted orbits, with analytically determined sensory feedback gains. What’s more, the

weak coupling structure allow us to design CPGs only using target oscillation profile, no

plant dynamics are required in calculating the connectivity matrix, making the design process

direct and efficient.

The dissertation is organized as follows. In Chapter 2, to obtain a suitable model for theo-

retical analysis, we first simplified a fully nonlinear integrated model by approximating the

nonlinearities in hydrodynamics and in delay terms. The model is validated by simulations

to reproduce adaptive oscillatory behaviors observed in leeches under nominal (water) and

perturbed (air) conditions.

With a model amenable for analytical study, in Chapter 3, we first established multi-variable

harmonic balance (MHB) as the analytical tool for periodic motion analysis. Then an oscil-

lation profile estimation algorithm is proposed based on MHB method, which gives decent

estimation of frequency, amplitude and phase. We applied the estimation algorithm to nom-

inal (water) and perturbed (air) cases and confirm the accuracy of the algorithm. With

tools and the algorithm ready at hand, we analyzed the CPG as an input-output operator,

with input being the relative joint angle φ and output being the torque u. Three control

mechanism of CPG are proposed from leech original CPG perspective. The first one is

amplitude-dependent gain of the static nonlinearity, meaning that the controller detects the

outer environment variations by the amplitude change in the membrane potential v, and

then adjusts to different gaits accordingly. The second mechanism is the minimum singu-

lar vector aligned with mode shape, showing how an animal locomotion exploits natural

oscillation. The analysis shows that the amplitudes and phases of the minimum singular

vector of controller transfer function are very close to φ from simulation. The third control

mechanism uncovered is high gain feedback during transient, suggesting the CPG acts like a
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notch filter, exporting a lot more effort during transients to stabilize the gait. In the coupled

oscillator analysis, we demonstrated the connection strength of the mechanical linkage and

its spatial-varying effect on the closed-loop system.

To further explore the internal architecture of CPG, in Chapter 4 we decomposed the CPG

from Chapter 3 into a conservative oscillator and two feed-forward components, using LMI

techniques. The conservative oscillator takes no input in the steady states, and generate

membrane potential v with 360o phase lag, which is the desired phase lag for relative joint

angle φ for leeches. Unlike traditional control using exogenous reference generator sending

out reference signal as a function of time, conservative CPG acts as an internal reference

generator, and the reference is a function of system states, providing the foundation for

adaptivity property. Besides the internal model structure, this decomposition also revealed

the weak coupling structure, essential for stability. When the coupling is nonzero but small,

the stability property is maintained due to continuity of the eigenvalues, and the CPG

(reference generator) receives sensory feedback from the plant through the weak coupling so

that the target oscillation pattern can be modified under perturbations. When the coupling

connection is zero, the CPG acts as the exogenous reference generator which drives the plant

stabilized by feedback loop. The reference tracking would be achieved by stability of the

feedback system consisting of the plant and muscle stiffness component. The proof for the

necessary and sufficient condition for the stability of the quasi-linear eigenstructure system

is given in this chapter.

By uncovering the control mechanism of CPG from decomposition, insights are gained for

designing controllers to achieve orbital stability for robotic systems, summarized in Chapter

5. We use prototype mechanical rectifier (PMR) as an example to demonstrate how one can

utilize the diffusive coupling structure to design a CPG controller in a closed-loop setting. We

first calculate the optimal gait for the PMR given desired rotating disc speed. For the con-

troller synthesis, the weak coupling eigenstructure discovered in Chapter 4 made the design

process a lot more straight forward than current existing methods. After specifying desired
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oscillation profile (ω, φ̂) of the plant, we can synthesize the conservative CPG assuming weak

feedback input. This synthesis can avoid the constraints on the dynamics of either complex

or simple but with low fidelity model, making the process direct. Here we show single and

multiple stable limit cycles can be embedded in the CPG with only one connectivity matrix.

The simulation confirms the orbital stability and adaptivity of the closed-loop CPG-PMR

system. We saw automatic transition from one desired orbit to another under environmental

variations, which shows the synthesized CPG demonstrated the adaptive property as in the

biological CPGs.

Finally, in Chapter 6, we summarize the contributions of this research and future avenues

for which this research can be expanded.
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CHAPTER 2

Integrated model development

To obtain a suitable model for theoretical analysis, we first simplified a fully nonlinear in-

tegrated model by approximating the nonlinearities in hydrodynamics and in delay terms.

The adaptivity and robustness properties of neuronal central pattern generator (CPG) are

of great value in autonomous gait generation, stabilization, and transitions for robotic lo-

comotion systems. Yet the feedback control mechanisms and dynamics of CPGs have not

been understood well. Here, we develop a simple integrated model for leech swimming as

an exemplar for analytical study of biological control principles. The model is validated by

simulations to reproduce adaptive oscillatory behaviors observed in leeches under nominal

(water) and perturbed (air) conditions. An algorithm using the multivariable harmonic bal-

ance (MHB) method to estimate the oscillation profile will be proposed. Based on the MHB

analysis, we study the adaptive and robust behaviors achieved by the nonlinear CPG oscil-

lator from a linear system perspective. Three properties of the biological CPG controller are

revealed: amplitude-dependent transfer function of the nonlinear dynamics for embedding

multi-stable limit cycles, mode shape of the target gait as the minimum singular vector of

the transfer matrix, and high gain stabilization of the orbit by a spatial filter effect.

2.1 Integrated model development

For autonomous robotic systems, methods are needed for designing a controller that is ro-

bust against perturbations and capable of multi-mode operations in accordance with the

environment variation. The state-of-the-art control systems are fast in speed and accurate
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in precision; nevertheless, when applied to robotics, it is often considered stiff, stubborn, or

even dangerous for interacting with humans.

The central pattern generator (CPG) that exists in neural control systems has been found

to have the ability to be adaptive to outer environment change, and to conform oscillatory

movements to natural dynamics through sensory feedback [9]. This type of neuronal CPG

circuits command muscle contractions to achieve rhythmic body movements during locomo-

tion of a wide variety of animals [29]. Various CPG architectures of different animals have

been discovered, including mollusks [4], lampreys [14], and leeches [18], [33]. Some detailed

mathematical models have been established using systems approach, capturing the neuronal

dynamics essential for generating coordinated oscillations, and verified through numerical

simulations [35], [52]. Thus, there is a full body of biological findings of significant engineer-

ing values. However, no interpretation yet has been made systematically from engineering

design, especially control, perspective. At present, we still do not have a complete picture

of how a CPG could achieve stable limit cycles with adaptivity and robustness.

Engineers have been using CPG-based controllers to achieve rhythmic movements for robotic

locomotion with some success. For bipedal locomotion, coordinated movements were realized

as a stable limit cycle generated by entrainment between CPG and rhythmic movements of

a musculo-skeletal system model [16]. For quadruped robots, gait transition from dynamic

walking on irregular terrain to running on flat ground, or from undulatory swimming to

walking, has been achieved through neural oscillator networks [28], [49]. Some frameworks

for learning trajectories and/or achieving frequency adaptation were proposed, using the

CPG as dynamic motion primitives, and implemented on bipedal robots [40], [47]. All

these research efforts have produced desired locomotions. Nevertheless, many of CPG-based

control designs depend on some heuristic tuning of parameters. The designs are bio-inspired,

but deeper understanding and exploitation of biological control mechanisms would make

them more systematic and effective.

In this chapter, we will develop a simple integrated model for animal locomotion using
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undulatory leech swimming as an exemplar. A previously developed model [63] assembles

component dynamics into a feedback control system, encompassing the CPG [53], muscle

contraction [62] through motoneuron activation [60], body-fluid interactions [61], and sensory

feedback by stretch receptors. The present work simplifies the model to allow for analytical

study of the control mechanisms underlying the undulatory locomotion. The simple model is

validated against the original model, and is shown to be capable of reproducing the nominal

swimming behavior in water as well as bi-stability of two distinct limit cycle oscillations

under a perturbed environment in air.

We then apply the multi-variable harmonic balance (MHB) method [54], [56] for theoretical

analysis of the model, and show that a descent estimation of oscillation profile is possible

within a quasi-linear framework. Based on the MHB analysis, three control mechanism will

be provided to explain an adaptive gait transition and convergence to stable limit cycles,

from a systems and control perspective.

This chapter lays a foundation for uncovering the control principles behind robust and adap-

tive oscillations, bridging the gap between biological observations and system-theoretic con-

cepts for dynamical feedback systems.

2.1.1 Overview

This section presents an integrated model for undulatory leech swimming. The model pre-

viously developed in [63] (Fig. 2.1) consists of several components: CPG, motoneuron ac-

tivation of muscle contraction (labeled as MN), body-fluid interactions, and passive muscle

dynamics (Muscle). The CPG is modeled as a chain of segmental oscillators, which gives

out the membrane potentials v that oscillate with a phase coordination among the segments.

Motoneuron activation translates v into neural impulse frequencies, which innervate the mus-

cle to generate active bending moments uA on the dorsal and ventral sides of the leech. The

difference of uA and the passive bending moments uP , resulting from muscle stiffness and

damping, gives rise to the total torques u, which, together with the hydrodynamic forces
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from the environment, shapes body undulations by determining the curvature (or joint an-

gles in the spatially discrete model) φ. The sensory feedback of the total torques to the CPG

modifies the oscillatory activities adaptively to the outer environment.

In general, the locomotion results from dynamic interactions of the neuronal control circuits

(left half of Fig.2.1) and the flexible body in fluid environment (right half). The following

two sections provide mathematical descriptions of these halves obtained by simplifying the

model in [63]. The definitions and values of all the model parameters are as given in the

Supporting Information section of [63] except for those so described in the appendix.

Figure 2.1: Integrated model for leech swimming

2.1.2 Flexible Body in Fluid Environment

Equations of motion for the general multi-body locomotion system can be derived using the

Euler-Lagrange equation. Since the leech body as well as the nerve cord are segmented, the

mechanics of the leech body is modeled as a chain of n rigid links with n = 18, four of which

are shown in Fig. 2.2. The equations of motion for this system have been developed [36]

in terms of the link angles θ ∈ R18 and the velocity (ẋ, ẏ) of the mass center. The model

adopted in [63] is based on this result in combination with a fluid force model developed

specifically for leech swimming in [61].
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Figure 2.2: Multi-link model for slender leech body

We simplify this fully nonlinear model by assuming that the body shape remains slender

during locomotion, i.e., the joint angles φi := θi − θi+1 are small. The body frame is

introduced by defining the orientation angle θo ∈ R as the average of all θi. The velocity of

the mass center (ẋ, ẏ) is expressed as (vt, vn) with the tangential and normal components in

the body frame. We also assume that the normal velocity vn is small. Our model is then

obtained by applying the theoretical framework in [64] for developing and approximating a

model for a general class of locomotion systems. The process is tedious but straightforward,

and hence we present the simplified model without detailed derivations.

The equation of motion for leech body-fluid interaction system in body frame can be ex-

pressed as

Jφ̈+ Dφ̇+ vtLφ = u,

jζ̈ + dζ̇ + vtλ
>φ = 0,

mv̇ + C(φ, φ̇, ζ̇)v + B(φ̇>Lφ+ ζ̇λ>φ) = 0,

(2.1)

Jφ̈+ Dφ̇+ vtLφ = u,

jζ̈ + dζ̇ + vtλ
>φ = 0,

mż + C(φ, φ̇, ζ̇)z + B(φ̇>Lφ+ ζ̇λ>φ) = 0,

(2.2)

where φ ∈ R17 are the joint angles, ζ := θo + q>φ ∈ R is the orientation variable, v :=

(vt, vn) ∈ R2 is the locomotion velocity, u ∈ R17 are the joint torque inputs (i.e. total muscle

bending moments). The nominal values of all the parameters remain the same as listed in

the Table S1 in [63], except for those described below.
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The coefficients in (2.2) are given by

j := J22, d := D22, λ := Λ>21,

J := J11 − qJ21, D := (cN/mo)J, L := Λ11 − qΛ21,

C :=

ncT + co‖Tφ‖2 −m(ζ̇ − q>φ̇)

m(ζ̇ − q>φ̇) ncN

 , B :=

1

0

 ,
with the following definitions:J11 J12

J21 J22

 :=

T>
e>

 J [T e
]
,

T := B>(BB>)−1,

q := J12J
−1
22 ,

J := (mo`
2
o)(I/3 + F>F ), D := (cN/mo)J,

Λ := co`oF
>, F := TA, co := cN − cT ,

`o := `/(2n), mo := m/n, e :=
[
1 · · · 1

]>
,

A :=
[
I o

]
+
[
o I

]
, B :=

[
I o

]
−
[
o I

]
,

where o is the n− 1 dimensional zero vector, and Λij and Dij with i, j = 1, 2 are defined for

Λ and D by the same congruence transformation as in Jij.

Newly added parameters for the integrated model are

cT := 5.4ct`o
√
ρµd|vN |, ct := 0.44,

cN := cpρd`o|vN |, vN := 0.03 m/s,

℘ := −δaorµmααo, ao = 5.7,

km := µmdo(1 + αfb)nr
2/`, do := 106.8,

cm := 2nr2c/`.

and gk and tdk are defined by

e−jωkτd =
gk

1 + jωtdk
, ω = 2π/0.391,

for k = 1, . . . , 5. In the above, ct was modified from 0.6, while the same values for ao and do

were implicitly used in [63]. The sensory feedback gains (ς1, . . . , ς17) in the new model are

equal to 20/19 times the values in [63].
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The output signal is defined to be the passive muscle bending moment uP ∈ R17 given by

uP = cmφ̇+ kmφ, (2.3)

where cm is the muscle damping coefficient, and km is the bending stiffness. The input u is

given as the total effect of the active and passive moments u = uA − uP , where the active

moments uA are determined by the neural control system described in the next section.

During the simplification process to arrive at the above model, the nonlinear model of the

hydrodynamic forces in [63] has been approximated by a linear model. In particular, the

hydrodynamic forces in the tangential and normal directions on each link are originally

modeled as

~ti = cTivti , cTi := 2.7ct(`/n)
√
ρµd|vni |,

~ni = cNivni , cNi := 0.5cpρd(`/n)|vni |,

where vti and vni are the tangential and normal components of the velocity of the ith link,

which depend on the generalized coordinates. In our new model, we set |vni | = 0.03 m/s, an

approximate value from nominal swimming, so that cTi and cNi are constant and uniform

over the body, i.e. the same value for all i, denoted by cT and cN . The tangential fluid drag

coefficient ct is then tuned so that the nominal water swimming simulation will have the

steady state speed close to the observed speed in [63]. As a result, the value is revised from

ct = 0.6 to 0.44 here.

2.1.3 Neuronal Control Circuits

The CPG and MN dynamics are described in [63] as

vi = F (s)ϕ(vi)− hiui + ε
z∑

k=1

dk(s)Dϕ(vi−k)

+ε
z∑

k=1

dk(s)Aϕ(vi+k),
(2.4)

uAi = N(s)vi (2.5)
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for i = 1, . . . ,ℵ, where vi = 0 when i < 1 or i > ℵ, and

F (s) :=
µγ

1 + τγs


0 −1 0

0 0 −1

−1 0 0

 , hi :=


0

0

ςi

 ,

D :=


2 0 0

0 0 0

0 0 0

 , A :=


0 −1 0

0 0 −1

0 0 0

 ,
ϕ(x) := σ tanh(x/σ), µγ := (1− γ)µ, τγ := (1− γ)τ,

N(s) :=
dM(s)

1 + τcs
· (1− βo

1 + τos
)
[
℘ 0 0

]
.

The details of this model are given in [63]. Here we provide a brief explanation of this model

and present our simplifying modifications.

The CPG is a chain of ℵ segmental oscillators (ℵ = 17), each of which comprises three

neurons with the membrane potentials vi(t) ∈ R3 for segment i. The neurons within each

segment are connected in a recurrent cyclic inhibition loop, described by F (s). The low

pass filter in F (s) describes the synaptic dynamics, where the parameter γ is the excitatory

(constant) input from the gating neurons to modify the coupling strength µ and time constant

τ . The hyperbolic tangent function ϕ(x) describes the threshold effect of the synapse, and

acts on its vector-valued argument elementwise. The segmental oscillator receives the local

bending moment ui(t) ∈ R as the sensory feedback signal. The third and fourth terms

in (2.4) represent the intersegmental neuronal connectivity that projects up to z segments

away (z = 5) with communication delay dk(s). The active bending moment uAi(t) ∈ R is

generated from vi(t) through the motoneuron activation dynamics N(s), which contains the

adaptation effect with time constant τo and muscle activation delay dM(s) and time lag τc.

To avoid the infinite dimensionality problem in the state space analysis, here we replace the

pure time-delay terms in [63] by rational transfer functions:

dM(s) = e−τas ∼=
1− τas
1 + τas

, dk(s) = e−kτds ∼=
gk

1 + tdks
.
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A Padé-like approximation is used for the muscle activation delay dM(s), which is an all-pass

filter with gain 1 and phase close to that of e−τas at the swim frequency. The neural commu-

nication delay dk(s) is replaced by a first-order low-pass filter since the Padé approximation

will cause problematic algebraic loops in (2.4). The parameters gk and tdk are chosen so

that the approximation becomes exact at an observed nominal water swimming frequency

(ω = 2π/0.391 rad/s).

With these modifications, the phase lag of the joint angles φ is found to be 355◦ from head to

tail when the closed-loop system is simulated under the nominal water condition. To make

the phase lag match more closely the value in [63], which is 360◦, the sensory feedback gains

ςi are scaled up by a factor 20/19. Thus, the values we use here are slightly larger than those

in [63] but this additional modification is not essential for the result reported here.

2.2 Model validation

2.2.1 Overview

The simple model is validated against the original model, and is shown to be capable of

reproducing the nominal swimming behavior in water as well as bistability of two distinct

limit cycle oscillations under a perturbed environment in air.

Closed-loop simulations are performed for three cases to validate the simplified integrated

model against the original model in [63]:

Case 1. Nominal swimming in water.

Case 2. Undulation in air with the initial condition on the

nominal swimming orbit in water.

Case 3. Undulation in air with the initial condition away

from the nominal swimming orbit in water.
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For the ”air swimming” conditions (Cases 2 and 3), the fluid drag coefficients (cT , cN) are

simply set to zero.

Table 2.1 gives a summary of the simulation results, where the first row of each case is the

result of the original model in [63], and the second row in bold is the result of the simplified

model. The amplitude and phase lag of φ are calculated by the first term of the Fourier

series; the average over the body for the former and the difference between head and tail for

the latter. Although the drag coefficient ct in the new model is tuned to match the swim

speed only, we see that the new model is able to accurately reproduce nominal swimming in

terms of other parameters as well. For the other two cases of air swimming, similar behaviors

are maintained after the simplification of the model.

Table 2.1: Comparison of original and simplified models

Case Period [ms] φ Amplitude φ Phase lag Speed [m/s]

1 391 10.00◦ 360◦ 0.1257

393 10.02◦ 360◦ 0.1258

2 398 10.52◦ 331◦ -

395 10.62◦ 336◦ -

3 490 16.75◦ −38◦ -

488 16.37◦ −11◦ -

1: nominal water; 2: air, traveling wave; 3: air, standing wave

The gait of oscillatory body motion under these three different conditions can be visualized

in terms of the joint angles φ and the body snapshots as in Fig. 2.3. The first two sets of

snapshots are very similar in shape, exhibiting body waves traveling down from head (left)

to tail (right), except that the body in water is moving toward left due to the hydrodynamic

force. The snapshots for the third case show that the leech is undulating in “C” shape

with standing waves, corresponding to the roughly synchronized oscillations of relative joint
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angles φ shown above the snapshots.

Figure 2.3: Relative joint angles φ(t) (top) and corresponding body snapshots (bottom).

Case 1 (left): Nominal swimming in water, Case 2 (middle): Traveling waves in air, Case 3

(right): Standing waves in air.

The two undulation modes resulted from different initial conditions in the same air environ-

ment suggests that the CPG achieves bistability of two limit cycles and has the properties

of robustness and adaptivity; Case 2 shows that the CPG can maintain in air an undula-

tory gait similar to that for nominal swimming in water, while Case 3 shows that the gait

transition is possible when the environment changes. Thus, the simplified model demon-

strates capabilities of the leech CPG to defend against perturbation and robustly maintain

the nominal gait, and also to adapt the gait to outer environment changes and modify the

oscillation profile. These properties were observed in leech experiments and reproduced in

the original model [63], and here we show that they are preserved in our simplified model.

The result will be examined more quantitatively in the following subsections.
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2.2.2 Nominal Water Swimming Case

Figure 2.4: Nominal swimming in water. Membrane potentials υ1, total torques u, relative

joint angles φ and velocity (vt, vn)

The time courses of some variables in the closed-loop simulation are shown in Fig. 2.4. Here,

υ1 ∈ R17 are the membrane potentials of the first neurons of the 17 segments (υ1i = vi1). We

see the convergence of the trajectory to a periodic orbit within several cycles of undulation.

In the third plot of Fig. 2.4, φ are almost evenly distributed over time, meaning the phases of

the joint angles φi decreases linearly from head to tail with the total lag close to 360◦. This

phase property indicates that the leech is undulating with the wavelength roughly equal to

the body length, consistently with the observed result in experiment.
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Figure 2.5: Phase and amplitude (Case 1: nominal water)

A detailed comparison of the oscillation profiles between the results of the original model
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in [63] and our simplified model is given in Fig. 2.5, in dashed and solid lines respectively,

plotting the phasors1 of some variables. From the overlap of the dashed and solid curves,

we confirm the accurate reproduction of nominal swimming behavior by our new model. In

the phase plot, the phase lag of uA, uP , υ1 and φ are almost identical, overlapping on top

of each other; in the amplitude plot on the right, we see that each of the pairs (φ, uP ) and

(υ1, uA) share the same shape. The reason behind the matching of the shapes for each pair

is seen in (2.3) and (2.5); each entry in phasor vectors φ̂ and υ̂1 is magnified by the same

scalar gain K(jω) and N(jω) to produce ûP and ûA, respectively, where

K(s) := cms+ km

is the transfer function of the passive muscle dynamics, and ω is the swim frequency. The

phase curves of each pair appear to overlap because the phase angles of K(jω) and N(jω)

are small; roughly 3◦ and −8◦. On the other hand, the overlap of the phase curves for φ and

υ1 may be closely related to the CPG control mechanism. For example, this may suggest

that the CPG acts as an internal model of the body-fluid dynamics so that υ1 “estimates”

φ from input u.

2.2.3 Air Swimming Cases

For Case 2, the leech is placed in water at the beginning, simulated as in Fig. 2.4, then is

pulled up into air at time instant t = 4 s, and simulated with cT = cN = 0 until a steady

state is reached. The result displayed in Fig. 2.6 shows that the trajectory converges to

another stable limit cycle in the air environment, which shares a similar but not identical

oscillation profile to the one in the nominal water swimming condition. This indicates that

the CPG controller demonstrates good robustness under perturbation.

1The phasor x̂ ∈ Cn of a T -periodic signal x(t) ∈ Rn is defined by x̂i := aie
jbi where ai, bi ∈ R are the

amplitude and phase of the sinusoidal approximation xi(t) ∼= ai sin(ωt + bi) + ci using the Fourier series,
where ω := 2π/T . All the signals in this chapter oscillate with nearly zero bias (ci ∼= 0). The amplitude ai
and phase bi are plotted in Fig. 2.5 and other figures with the time axis shifted to normalize the phase for
φ1(t) to zero. We will use the ”hat” notation x̂ to denote the phasor of x(t).
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For Case 3, we mimicked the leech being placed in air for the same set of parameter values

as Case 2, but with the initial condition chosen away from the limit cycle orbit of the

nominal water swimming. It is observed that the trajectory converges to a stable limit cycle

whose oscillation profile (Fig. 2.7) is very different than the nominal water swimming gait;

undulation frequency becomes 23.4% larger (from 397ms to 490ms), and the phase lag of φ

drops from 360◦ to less than 40◦, meaning that all of the 18 links are flapping up and down

almost synchronously.

The simulated behaviors of the simplified model (solid curves) are reasonably close to those

of the original model (dashed curves) as seen in Figs. 2.6 and 2.7, and the new model is thus

validated under the perturbed conditions.

Figure 2.6: Phase and amplitude (Case 2: air, traveling wave)

Figure 2.7: Phase and amplitude (Case 3: air, standing wave)

2.3 Summary

The leech swimming CPG has demonstrated good adaptive and robust properties. Motivated

by the desire for designing controllers capable of autonomous transitions or robust stability
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of limit cycles for robotic systems, we first simplified a fully nonlinear integrated model

which captures observed leech behaviors well. The resulting model is more amenable to

analytical study, and can reproduce almost identical behaviors as the original model under

nominal water and perturbed air conditions. To analyze the closed-loop system, we proposed

a numerical algorithm to solve the MHB equation and estimate the oscillation profile. The

MHB analysis allowed for study of CPG control mechanisms from the quasi-linear perspective

using the controller transfer function C(s). We have found that (i) the neuronal threshold

nonlinearity acts as amplitude-dependent gains to adjust C(s) and achieve robustness and

adaptivity, and (ii) the CPG control acts as a spatial notch filter to block the desired mode

shape by aligning it with the minimum singular vector of C(s), with high-gain feedback under

perturbation for fast recovery. These analysis provides insights for designing CPG-inspired

controllers.
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CHAPTER 3

Analysis of coupled CPG-Body-Fluid system

3.1 Oscillation profile analysis

To analyze the closed-loop system, we proposed a numerical algorithm to solve the MHB

equation and estimate the oscillation profile. Applying the MHB method to the leech swim-

ming model for the three cases, we get estimated oscillation profiles (ω, x̂) and their accuracy

is evaluated in comparison with the simulated results. The comparison shows that a descent

estimation of oscillation profile is achieved within a quasi-linear framework.

3.1.1 MHB method

With a validated model, now we could perform analytical study which cannot be done with

the model in [63]. The multivariable harmonic balance (MHB) method will be adopted

for estimating the profile of oscillation (i.e. frequency, amplitude, phase) with sinusoidal

approximations. While simulations can determine the oscillation profile directly as was done

in the previous section, the value of the MHB method is to provide a means to analyze the

CPG control mechanism in the linear framework once the accuracy of the MHB estimation

is confirmed.

First, we approximate the locomotion speed vt by a constant vo = 0.1258 m/s, which is the

average value obtained by simulation (see Table 2.1). Then with (2.3) and the first equation

in (2.2), the flexible body side of the system in Fig. 2.1 is linear, and the closed-loop system
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with the neural control (2.4) and (2.5) can be described as

ẋ = Ax+ Bϕ(v), v = Cx (3.1)

for some appropriately defined matrices (A,B,C), where v is the vector obtained by stacking

v1, . . . , v17 in a column, and x contains φ, φ̇, and the states for F (s), dk(s), and N(s).

Next we approximate the nonlinearity ϕ by the gain

κ(a) =
2

πa

∫ π

0

ϕ(a sin θ) sin θdθ, (3.2)

which is the describing function [22]. In particular, when the input w(t) ∈ R is a sinusoidal

signal with amplitude a, the output ϕ(w) is approximated by its first harmonic κ(a)w.

Assuming that v(t) ∈ R51 are close to sinusoids of amplitudes α ∈ R51, the closed-loop

system (3.1) is quasi-linearized as

ẋ = (A+ Bκ(α)C)x,

κ(α) := diag(κ(α1), ..., κ(α51)).
(3.3)

A harmonic solution x(t) = <[x̂ejωt] satisfies this equation if and only if

jωx̂ = (A+ Bκ(α)C)x̂ (3.4)

holds, which is the MHB equation. We can obtain an estimated frequency and the phasor

of state variables (ω, x̂) by solving the MHB equation subject to the constraint |Cx̂| = α.

We propose the following algorithm for solving the constrained MHB equation. The solution

is not unique in general, and the algorithm searches for the solution (ω, x̂) that gives the

phasor φ̂ := Dx̂ close to φ̂o, where matrix D is defined to select φ from x by φ = Dx, and

φ̂o is the complex vector φ̂o := Dx̂o defined in terms of an initial guess x̂o of the phasor x̂.

Later in the analyses, x̂o is chosen to be the phasor of x(t) from the simulation of the fully

nonlinear closed-loop system for Case 1, 2, or 3 as described in Section 2.2.

Algorithm:
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0. Let ε1 and ε2 be small positive numbers, εo be a real number such that 0 < εo < 1;

initialize (lb, ub) so that 0 < lb < ub; initialize κ0 := κ(|Cx̂o|). Let x̂o be a complex

vector such that the first entry of φ̂o := Dxo is a positive real number.

1. Let a = (ub + lb)/2 and k = 1.

2. Solve the minimization problem:

min
(λ,x̂)

‖Dx̂− φ̂o‖

s.t. λx̂ = (A+ Bκk−1C)x̂,

‖x̂‖ = a, φ̂ := Dx̂, =(φ̂1) = 0.

Let (λk, x̂k) be the optimizer and update

κk = κk−1 + εo∆k, ∆k := κ(|Cx̂k|)−κk−1.

3. If ‖∆k‖ ≥ ε1, increment k and go to Step 2.

If ‖∆k‖ < ε1, then update the upper or lower bound: ub = a if <(λk) < 0,

lb = a if <(λk) ≥ 0,

and go to Step 4.

4. If ub − lb ≥ ε2, go to Step 1 and iterate. Otherwise, stop; The eigenvalue λk is

(approximately) on the imaginary axis, and let ω be the imaginary part of λ. Then

(ω, x̂k) is the solution satisfying (3.4) and |Cx̂| = α.

The idea behind the algorithm is as follows. We start with (lb, ub), an initial guess for the

upper and lower bounds on the norm of the solution x̂. With a fixed magnitude a at the

middle point of the interval (lb, ub), the inner loop (Steps 2-3) searches for (λ, x̂) such that

they are the eigenvalue/eigenvector pair of matrix A+ Bκ(|Cx̂|)C with magnitude ‖x̂‖ = a

that gives Dx̂ closest to φ̂o. With εo = 1, the inner loop is a fixed-point iteration on κk,
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which we often found to be divergent (or continuously fluctuating). Choosing a smaller value

for εo, the error ‖∆k‖ can be made to decrease and converge to zero. If εo is chosen too

small, ‖∆k‖ will be decreasing but convergence is slow. Hence εo should be chosen properly

to adjust the rate of convergence.

The outer loop (Steps 1-4) iterates on the amplitude a through a bisection search to move λ

onto the imaginary axis. On exit from the inner loop, <(λk) is seen as a function of a, and

the implicit assumption is that a and <(λk) are negatively correlated, which was found to

be true for all three cases of our analyses. However, in other scenarios positive correlation is

equally possible, and in such case, the update rule for ub and lb in Step 3 should be swapped.

With the outer loop iteratively narrowing down the range (lb, ub) by bisection, we eventually

solve the MHB equation with the numerical accuracy set by ε1 and ε2.

3.1.2 Results for undulations in water and air

Applying the MHB method to the leech swimming model for the three cases, we get estimated

oscillation profiles (ω, x̂) and their accuracy is evaluated in comparison with the simulated

results in Section 2.2.

In Figs. 3.1–3.3, the solid lines are phase lag and amplitude of phasors of signals estimated by

the MHB method, and the dashed lines are those from simulations of our integrated model.

For all cases, the MHB method gives reasonable estimations of the oscillation profile. The

phase estimates, in particular, are especially accurate. The amplitude estimates are about

8% off, but the shapes of the curves (i.e. distribution over the body) are fairly accurate. The

error may be attributed to the fact that the amplitudes of v are more than 10 mV while the

nonlinearity ϕ(v) saturates at σ = 20/3, resulting in significant distortion from sinusoids.

Figure 3.4 shows the eigenvalues of the quasi-linear system (3.3) in the vicinity of the os-

cillation mode jω found by the algorithm (marked red). It has been shown [56] that or-

bital stability of the limit cycle corresponding to the estimated oscillation (ω, x̂) can be
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expected from the marginal stability of the quasi-linear system, i.e., all the eigenvalues of

A + Bκ(|Cx̂|)C) being in the open left half plane except for a pair on the imaginary axis.

The eigenvalue distribution in Fig. 3.4a indicates the marginal stability, and is consistent

with the expectation.

The eigenvalue distributions in Fig. 3.4b and 3.4c are similar to each other. This is reasonable

since both cases share the same system matrices (A,B,C) for the air swimming condition.

The only difference in the quasi-linear system is the amplitude of v̂ := Cx̂. We see that

the standing wave is expected to be stable due to the marginal stability, while the traveling

wave is not due to the eigenvalue in the right half plane, giving a counter example to the

expectation as this oscillation is stable when simulated. The eigenvector corresponding to

the eigenvalue to the right of the red circle in Fig. 3.4b has a similar mode shape to φ̂ for the

standing wave; likewise, the eigenvector corresponding to the eigenvalue to the immediate

left of the red circle in Fig. 3.4c has a similar mode shape to φ̂ for the traveling wave.

3.2 CPG analysis as input-output operator

Given that the MHB method is able to make reasonable predictions of x̂, now we can analyze

the CPG control mechanisms using the transfer functions between φ and u based on the MHB

result.

The closed-loop system with the fixed constant speed vt(t) ≡ vo, which was assembled into

the state space form in (3.1), is given by

Jφ̈+ Dφ̇+ voLφ = u,

v = M(s)ϕ(v) +Hu,

u = N(s)v −K(s)φ,

(3.5)

where M(s) and H are properly defined to describe (2.4). In terms of transfer functions, the
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Figure 3.1: Oscillation profile for Case 1 (nominal water).
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Figure 3.2: Oscillation profile for Case 2 (air, traveling wave).
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Figure 3.3: Oscillation profile for Case 3 (air, standing wave).

system is described as

Q(s)φ = u, u = C(s)φ,

Q(s) := Js2 + Ds+ voL,

C(s) := (N(s)
(
I −M(s)κ(α)

)−1
H − I)−1K(s),

where the CPG controller is quasi-linearized using the describing function ϕ(v) ∼= κ(α)v.

The feedback system can be visualized through the block diagram in Fig. 2.1, where Q(s)−1

represents the “Body Fluid” module, and C(s) represents the rest of modules combined.
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Figure 3.4: The eigenvalue (red) corresponding to the eigenvector whose phase lag is the

most similar to φ̂

A naive guess for the role of CPG controller is acting like a PD controller during steady

state.

Define

Acl :=

 0 I

−J−1(voL−Ro) −J−1(D− Io)


where

Ro := <[C(jω)], Io = =[C(jω)/ω].

Fig. 3.5 is the eigenvalue distribution of Acl for the water swimming case. It does not satisfy

the condition that all the eigenvalues of closed-loop Acl matrix are in OPLH, thus it is

clear that a PD controller could not stabilize the system during steady states. Some more

advanced control mechanisms are functioning behind.
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Figure 3.5: C(s) acts more than a PD controller in steady state
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3.2.1 Amplitude-dependent gain of the static nonlinearity

For all three conditions that were simulated, the CPG controller remained the same. Yet,

two different plants (in water and air) exhibited similar traveling wave gaits (Cases 1 and

2), and an identical plant (in air) exhibited two limit cycles of traveling and standing waves

(Cases 2 and 3). From the quasi-linear perspective, these robust and adaptive behaviors

are accomplished by the change of α in the describing function, which are the amplitudes

of the first harmonics of v. The approximate “gain” κ(α) of the static nonlinearity ϕ(v) is

adjusted by the amplitude, which results in modification of the controller transfer function

C(s) via the amplitude-dependent mechanism. The controller detects the outer environment

variations by the amplitude change in v, and then adjusts to different gaits accordingly.

3.2.2 Minimum singular vector aligned with mode shape

An important question often posed in biology is whether an animal locomotion exploits nat-

ural oscillation. If the body-fluid dynamics were conservative (with negligible “damping”

effect), the first equation in (3.5) with u = 0 would have a periodic solution φ. If the CPG

controller adopts this solution as an undulatory gait, then û = C(jω)φ̂ = 0 should hold

in the steady state, and the phasor φ̂ would be in the null space of the controller C(jω).

In reality, the damping of the system could not be neglected, and some control effort u is

required to cancel the damping effect. This motivates us to compare the simulated gait φ̂

with the singular vector of C(jω) associated with the minimum singular value.

Figures 3.6–3.8 show the amplitudes and phases of the minimum singular vector η ∈ C17

of C(jω) in comparison with the simulated phasor φ̂ for Cases 1–3. The singular vector is

not unique due to the freedom of scalar multiple p ∈ C, and is set as η = pηo where ηo is a

given singular vector and p is fixed so that ‖φ̂ − pηo‖ is minimized.1 The phase lag of the

1Since the first entry of ηo has an unreasonably high amplitude, it is treated as an outlier and excluded

30



minimum singular vector is independent of p and is very similar to the phase lag of φ̂, which

essentially determines the undulatory gait of the rhythmic locomotion. The snapshots of

animation created by the time-domain signals recovered from minimum singular vectors are

also shown in the figures. We see the oscillatory gaits are very close to those snapshots from

simulation in Fig. 2.3.
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Figure 3.6: Min singular vector for Case 1 (nominal water)
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Figure 3.7: Min singular vector for Case 2 (air, traveling wave)
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Figure 3.8: Min singular vector for Case 3 (air, standing wave)

from the calculation.
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3.2.3 High gain feedback during transient

The singular vector analysis suggests that the CPG control may exploit the natural dynamics.

If so, the role of the controller would be to cancel the damping effect adversary to locomotion.

To examine this expectation, let us look at the surf plots of the magnitudes of ωD, Q(jω)

and C(jω) in Fig. 3.9. If all the controller does is to cancel the damping effect as expected,

then the magnitude of C(jω) should be comparable to that of Q(jω) and/or ωD. However,

the peak magnitude of C(jω) is more than 10 times larger than those of ωD and Q(jω). This

suggests that the controller uses high-gain feedback to stabilize the gait during transient.

This can be seen from the time-domain signal of control effort. In the second plot in Fig. 2.4,

from t = 0.4 s to 1.5 s the amplitude of u(t) is about 3 three times larger than the amplitude

in steady state, indicating that the controller is doing more than just canceling the damping

effect. From the plots of the muscle bending moments for the nominal swimming case

(Fig. 3.10), we see that the amplitudes of uA(t) and uP (t) are comparable to each other and

are much larger than the amplitude of u(t). Thus, during the steady swimming, the passive

moment uP generated by muscle contraction on one (e.g. dorsal) side of the body is mostly

cancelled by the active moment uA on the other (e.g. ventral) side to produce a small total

moment u := uA − uP . If the body motion φ is perturbed, uP deviates away from uA and a

large corrective input u can be generated.
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Figure 3.9: Magnitude of ωD(jω), Q(jω) and C(jω)
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Figure 3.10: u(t), uP (t), uA(t) in nominal swimming case

3.3 Closed-loop analysis as coupled oscillators

3.3.1 Effects of intersegmental coupling via neural and mechanical linkages

The closed-loop system of the leech swimming system, after quasi-linearization using the

describing function at amplitude α, is given by

v = f(s)
(
S + ε∆(s)

)
κ(α)v, ∆(s) := L(s) +B(s), v(t) ∈ R51

L(s) :=



0 A1(s) A2(s) · · · A5(s) · · · 0

D1(s) 0 A1(s)
. . . . . . . . .

...

D2(s) D1(s) 0
. . . . . . . . . A5(s)

...
. . . . . . . . . . . . . . .

...

D5(s)
. . . . . . . . . . . . . . . A2(s)

...
. . . . . . . . . . . . . . . A1(s)

0 · · · D5(s) · · · D2(s) D1(s) 0


, fk(s) :=

gk
f(s)(1 + tdk)s

,

Ak(s) := fk(s)


0 −1 0

0 0 −1

0 0 0

 , Dk(s) := fk(s)


2 0 0

0 0 0

0 0 0

 , So =


0 −1 0

0 0 −1

−1 0 0

 ,

tdk :=
1

ωo
tan(kωoτd), gk :=

√
1 + ω2

ot
2
dk
, f(s) :=

µγ
1 + τγs

, S := diag(So, . . . , So),

B :=
1

εf(s)
BsgP (s)

(
P (s) +K(s)

)−1
N(s)κ(α)−1 = [Bij(s)], α := col(α1, . . . , α17),
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Bsg = diag(ς1b, . . . , ς17b), b :=
[

0 0 1
]>
,

N(s) = diag(n(s)c>, . . . , n(s)c>), c :=
[

1 0 0
]>
,

Bij(s) :=


0 0 0

0 0 0

χij(s) 0 0

 , χij(s) :=
ςin(s)

εf(s) · c>κ(αi)c

[
P (s)

(
P (s) +K(s)

)−1]
ij

where f(s)S is block diagonal, representing the neural segmental oscillators, ε is the inter-

segmental coupling strength, εL(s) represents the intersegmental neuronal connections, and

εB(s) is the coupling of segments through the mechanical linkage. The segmental oscillator

dynamics are given by So ∈ R3×3 and then S has So on the block diagonal, repeated m = 17

times. Partition L(s) into m×m blocks, each of which is of dimension 3× 3, and denote the

(i, j) block by Lij(s). Use the same notation for B(s) and define Bij(s) accordingly. Here we

use ωo = 2π
0.391s

= 16.06 rad/s, where 0.391 is the nominal swimming period in PNAS paper.

Also, µγ = 3.6 and τγ = 120 ms.

Let `, r ∈ C3 be the left and right eigenvectors of So:

Sor = λor, `∗So = λo`
∗, `∗r = 1,

where λo is the maximal eigenvalue. Then the solution of the MHB equation for each segment

v̂o = f(jωo)Soκ(|v̂o|)v̂o, v̂o ∈ C3

is given by

v̂o = αor, r = ` =

√
3

3


1

e−j(2/3)π

ej(2/3)π

 , f(jωo)κ(αo) =
1

λo
.

The solution of the MHB equation for the whole system

v̂ = f(jωo)
(
S + ε∆(jωo)

)
κ(|v|)v̂, ∆(jωo) := L(jωo) +B(jωo), v̂ ∈ C51,

may then be approximated by

(λo + εµ)v̂ =
(
S + ε∆(jωo)

)
v̂, v = h⊗ v̂o, h ∈ C17
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because ε > 0 is small, where εµ is the perturbation of the eigenvalue, and h is a vector to

be determined so that |hi| ∼= 1, assuming uniform amplitudes. Noting that λov̂ = Sv̂, we

have

µv̂ = ∆(jωo)v̂.

Then

Λ := diag(`, . . . , `), R := diag(r, . . . , r),

⇒ µL∗v̂ = Λ∗∆(jωo)v̂, v̂ = αoRh

⇒ µh = (Λ + Ξ)h, Λ := Λ∗L(jωo)R, Ξ := Λ∗B(jωo)R.

Thus, the intersegmental phases ∠h can be estimated by the eigenvector h of Λ+Ξ associated

with the maximal eigenvalue µ. Slightly modified from the Chen 2008 paper,

Λij = rAe
jηAk , rA = (2/3)/|f(jωo)|, ηA = π/3, (i < j)

Λij = rDe
jηDk , rD = (2/3)/|f(jωo)|, ηD = 0, (i > j)

ηAk := ηA − tan−1(ωotdk)− ∠f(jωo),

ηDk := ηD − tan−1(ωotdk)− ∠f(jωo),

where ωoτd ∼= 13.8o and k := |i− j|. Define

Ω := Λ + Ξ = Λ∗∆R,

rij := |`∗Bij(jωo)r| = | −
1 + j

√
3

6
χij(jωo)| =

1

3
|χij(jωo)|,

ηij := ∠(`∗Bij(jωo)r) = ∠[−1 + j
√

3

6
χij(jωo)] = ∠[χij(jωo)]−

2

3
π.

For each element Ωij := Λij + Ξij of Ω, we have

Ωij =


rAe

jηAk + rije
jηij (i < j)

rije
jηij (i = j)

rDe
jηDk + rije

jηij (i > j)

(3.6)
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To understand whether intersegmental neural dynamics or mechanical dynamics plays a

dominant role, and how mechanical connection modifies the intersegmental phase lag from

180o in the isolated CPG case to 360o in the closed-loop CPG-plant case, we can plot the

amplitude and phase of each element in Ω, with Ω := Λ, Ω := Ξ and Ω := Λ+Ξ respectively.
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Figure 3.11: Amplitude and phase of Ωij with neural only(upper), mechanical only (middle),

and both neural and mechanical linkage (lower), for i < j (blue), i > j (red)
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In Fig. 3.11, the y-axis is the amplitude or phase in degree; x-axis represents the column index

(j) Ωij. Blue denotes for ascending dynamics, red for descending dynamics. For amplitude,

comparing top-left plot with bottom-left plot, and middle-left plot with bottom-left plot, the

mechanical dynamics Ξ is the dominant force in amplitude modification, especially in the

anterior part. This domination of mechanical dynamics over intersegmental neural dynamics

in leech anterior part also shows in the phase plot, where when j = 1, the phase is increased

to over 200o in the bottom-right plot, comparing to the flat around 100o in the top-right

figure.

3.3.2 Analysis of intersegmental phase lag

To estimate the average phase lag per segment, let us consider the limiting case where the

oscillator chain is infinitely long (m =∞). In this case, a generic row i of the MHB equation

(µI − Ω)h = 0 takes the following form:

5∑
k=1

[
(Ωi,i+khi+k + Ωi,i−khi−k

]
= (µ− Ωii)hi (3.7)

Due to the uniformity of the intersegmental connections over the chain (that makes ∆ a

Toeplitz matrix), the eigenvector h has the structure such that hi+1/hi is constant over i.

Consequently, the intersegmental phase lag is uniform over the chain, and we may let

hi = re−j(iηo) (3.8)

Substituting Eqn. (3.8) into Eqn. (3.7) and solving for the maximal eigenvalue µ, we have

µe−j(iηo) =
5∑

k=1

[
rAe

j(ηAk−(i+k)ηo) + ri,i+ke
j(ηi,i+k−(i+k)ηo)

+ rDe
j(ηDk−(i−k)ηo) + ri,i−ke

j(ηi,i−k−(i−k)ηo)
]

+ riie
j(ηii−iηo)

∴ µ =
5∑

k=1

[
rAe

j(ηAk−kηo) + ri,i+ke
j(ηi,i+k−kηo) + rDe

j(ηDk+kηo) + ri,i−ke
j(ηi,i−k+kηo)

]
+ riie

jηii

(3.9)
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Figure 3.12: The maximal eigenvalue µ of Ω (blue lines, top row). The right hand side of

(3.9) for each of i = 1, . . . , 17 with the edge effect (red curves, top row). The real part of

the right hand side of (3.9) for each i (bottom row)

This is a parametrization of the set of infinitely many eigenvalues of the infinite matrix Ω

in terms of ηo ∈ R. The profile of a stable oscillation can be estimated from the maximal

eigenvalue, and hence, we are interested in finding ηo such that f(ηo) := <[µ] takes its

maximum value. Taking the derivative of µ w.r.t ηo, dropping the imaginary part and

setting it to zero, we have
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<
(
∂µ

∂ηo

)
=

5∑
k=1

k
[
rA sin(ηAk − kηo) + ri,i+k sin(ηi,i+k − kηo)

− rD sin(ηDk + kηo)− ri,i−k sin(ηi,i−k + kηo)
]

∼=
5∑

k=1

k
[
rAηAk + ri,i+kηi,i+k − rDηDk−ri,i−kηi,i−k

]
−
[ 5∑
k=1

k2(rA + rD + ri,i+k + ri,i−k)
]
ηo

∴ ηo =
5∑

k=1

k
[
rAηAk + ri,i+kηi,i+k − rDηDk − ri,i−kηi,i−k

]
/

5∑
k=1

k2(rA + rD + ri,i+k + ri,i−k)

(3.10)
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Figure 3.13: The exact and approximation of <
(
∂µ
∂ηo

)
; ηo and right hand side of eqn(3.10)

We see there is a deviation in the result from small angle approximation (red) to the actual

value of ηo (blue) in the above figures. This gap comes from the inaccuracy of the approxi-

mation of sin(ηAk − kηo) by ηAk − kηo. Therefore the following change was made to reduce

the inaccuracy from this approximation.

For each element Ωij of Ω, use the polar coordinates

Ωij = ρije
jφij .

This is due to the reason that the approximation

Ωij = rAe
jηAk + rije

jηij = ρije
jφij ⇒ rAηAk + rijηij ∼= ρijφij
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which exists between the two formulations would be accurate if ηAk and ηij are small.

Substituting eqn (3.8) into eqn (3.7) and solving for µ, we have

µ =
5∑

k=1

[
Ωi,i+ke

−jkηo + Ωi,i−ke
jkηo + Ωii

]
(3.11)

Taking the derivative with respect to ηo,

<
(
∂µ

∂ηo

)
=

5∑
k=1

k
[
ρi,i+k sin(φi,i+k − kηo)− ρi,i−k sin(φi,i−k + kηo)

]
∼=

5∑
k=1

k
[
ρi,i+k(φi,i+k − kηo)− ρi,i−k(φi,i−k + kηo)

]
Setting the derivative to zero and solving for ηo,

ηo =
5∑

k=1

k(ρi,i+kφi,i+k − ρi,i−kφi,i−k)
/ 5∑

k=1

k2(ρi,i+k + ρi,i−k). (3.12)
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Figure 3.14: The exact and approximation of <
(
∂µ
∂ηo

)
; ηo, right hand side of eqn(3.12),∑17

i <
(
∂µ
∂ηo

)

Comparing with the red curve in the right plot in Fig. 3.13, the approximation of the

average phase lag per segment (red curve) in the right figure in Fig. 3.14 is a lot closer to

the actual ηo (blue curve).

General formulation
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The formula developed above is a special case of the following where the interactions are

between nearest 6 neighbors. The eigenvalue/eigenvector equation is

Ωh = µh, h` = r`e
−j`ηo ⇔

∑
`

Ωi`r`e
−j`ηo = µrie

−jiηo .

Denoting Ωi` := ρi`e
jφi` and solving for µ, we have

µ =
∑
`

Ωi`(r`/ri)e
−j`ηoejiηo =

∑
`

ρi`(r`/ri)e
j(φi`+(i−`)ηo).

Taking the derivative with respect to ηo,

<
(
∂µ

∂ηo

)
=

∑
`

(`− i)ρi`(r`/ri) sin(φi` + (i− `)ηo)

∼=
∑
`

(`− i)ρi`(r`/ri)(φi` + (i− `)ηo).

Setting the derivative to zero and solving for ηo,

ηo ∼=
∑
`

(`− i)ρi`r`φi`
/∑

`

(`− i)2ρi`r`.

Maybe a sensitivity analysis gives some insight. Setting the derivative to zero and takeing

the partial derivatives with respect to ρij and φij,

(j − i) sin(φij + (i− j)ηo) + (j − i)ρij(i− j) cos(φij + (i− j)ηo)
∂ηo
∂ρij

= 0,

(j − i)ρij cos(φij + (i− j)ηo)
(

1 + (i− j) ∂ηo
∂φij

)
= 0,

⇒ ∂ηo
∂ρij

=
tan(φij + (i− j)ηo)

(j − i)ρij
,

∂ηo
∂φij

=
1

j − i
.
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Figure 3.15: Surf plot of ∂ηo
∂ρij

and ∂ηo
∂φij

Similarly, if we use the following to represent each element in Ω, we could solve for ∂ηo
∂rij

and

∂ηo
∂ηij

.

Ωi` =


rAe

jηAk + ri`e
jηi` (i < `)

ri`e
jηi` (i = `)

rDe
jηDk + ri`e

jηi` (i > `)

Using the same eigenvalue/eigenvector equation,

µ =
∑
`

Ωi`(r`/ri)e
−j`ηoejiηo =



∑
`(r`/ri)(rAe

jηAk + ri`e
jηi`)ej(i−`)ηo (i < `)∑

` ri`(r`/ri)e
jηi` (i = `)∑

`(r`/ri)(rDe
jηDk + ri`e

jηi`)ej(i−`)ηo (i > `)

<
(
∂µ

∂ηo

)
=


∑

`(`− i)(r`/ri)
(
rA sin(ηAk + (i− `)ηo) + ri` sin(ηi` + (i− `)ηo)

)
(i < `)∑

`(`− i)(r`/ri)
(
rD sin(ηDk + (i− `)ηo) + ri` sin(ηi` + (i− `)ηo)

)
(i > `)

and taking the partial derivatives with respect to rij and ηij and using k = |i− j|,

∂ηo
∂rij

=


sin
(
ηij−kηo

)
k
[
rA cos(ηAk−kηo)+rij cos(ηij−kηo)

] (i < j)

sin
(
ηij+kηo

)
−k
[
rD cos(ηDk+kηo)+rij cos(ηij+kηo)

] (i > j)
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∂ηo
∂ηij

=


rij cos

(
ηij−kηo

)
k
[
rA cos(ηAk−kηo)+rij cos(ηij−kηo)

] (i < j)

rij cos
(
ηij+kηo

)
−k
[
rD cos(ηDk+kηo)+rij cos(ηij+kηo)

] (i > j)

General formulation using polar coordinate

In the CPG model

v = f(s)Mϕ(v), (3.13)

the MHB equation, assuming uniform amplitude, is given by

λv̂ = Mv̂, λ :=
1

f(jω)κ(α)
=

1 + jωτ

κ(α)
.

The “standard” analysis stated that the maximal eigenvalue of M is the one that gives a

good estimate of the oscillation profile. The maximal eigenvalue is defined to be the one with

the greatest (most positive) real part. Looking at the formula for λ above, this is equivalent
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to the smallest κ(α), of the largest amplitude α. So, another way to write the MHB equation

is

σv̂ = f(jω)Mv̂, σ :=
1

κ(α)
,

where σ is the maximal eigenvalue of f(jω)M . This rewriting is not very useful for the

analysis of (3.13), but is useful for the analysis of the weakly coupled segmental oscillators,

or

v = f(s)
(
S + ε∆(s)

)
κ(α)v, ∆(s) := L(s) +B(s), v(t) ∈ R51

Let us rewrite this as

v =
(
f(s)S + ε∇(s)

)
κ(α)v, ∇(s) := f(s)∆(s),

The MHB equation is

λv̂ =
(
f(jω)S + ε∇(jω)

)
v̂, λ :=

1

κ(α)
.

We follow the previous analysis. Let `, r ∈ C3 be the left and right eigenvectors of So:

Sor = λor, `∗So = λo`
∗, `∗r = 1,

where λo is the maximal eigenvalue. Then the MHB equation for each segment is

σov̂o = f(jωo)Sov̂o, σo =
1

κ(αo)
= λof(jωo), v̂o = αor

where λo specifies ωo, αo, and σo. The MHB equation for the whole system may be approx-

imately given by

(σo + εγ)v̂ =
(
f(jωo)S + ε∇(jωo)

)
v̂, v̂ = h⊗ v̂o, h ∈ C17

because ε > 0 is small, where εµ is the perturbation of the eigenvalue, and h is a vector to

be determined so that |hi| ∼= 1, assuming uniform amplitudes. Noting that σov̂ = f(jωo)Sv̂,

we have

γv̂ = ∇(jωo)v̂,
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Using the left and right eigenvectors,

γh = Λ∇(jωo)Rh.

Assume linear phase lag

hm = e−jmηo ,

the MHB condition becomes

γ =
∑
n

ρmne
j(θmn+(m−n)ηo), ρmne

jθmn := `∗∇mn(jωo)r,

where∇mn(jωo) is the (m,n) block of∇(jωo). Consider the case where there is no mechanical

linkage (i.e. B(s) = 0). Note that, when k := n−m > 0,

θmn = ηA − tan−1(ωotdk) = π/3− kωoτd =: ηAk , (k := n−m > 0),

θmn = ηD − tan−1(ωotdk) = −kωoτd =: ηDk , (k := m− n > 0).

rA = rD := 2/3

This approach is exactly the same as before except that the effect of f(jωo) is now included

in γ. This formulation is actually the same as the Chen 2008 paper, and may give a more

accurate estimate of the phase lag even after the approximation sin(x) ∼= x.

Also, this formulation may be useful to give an estimate of the effect of each connection on

the intersegmental phase lag. The real part of the eigenvalue is

<[γ] =
∑
n

ρmn cos(θmn + (m− n)ηo).

If the (m,n) block were the only intersegmental connection, then the real part of γ is maxi-

mized when

θmn + (m− n)ηo = 0 ⇒ ηo = θmn/(n−m) =

 π/(3k)− ωoτd, k := n−m > 0,

ωoτd, k := m− n > 0.
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A rough value of the delay effect is

ωo = 6π, τd = 0.015, ωoτd ∼= 16o.

Hence a descending connection (m > n) contribute to making the intersegmental phase lag

ηo = 16o. An ascending connection (n > m) gives ηo = 60o/k − 16o, which adds up to

ηo = 11.4o on average for the 5 segment span m = n − 5, n − 4, . . . , n − 1. These numbers

seem reasonable.

If the (m,n) block were the only intersegmental connection,

θmn = ∠[Xmn(jωo)]−
2

3
π := ∠

[ ςin(jωo)

εc>κ(αi)c

[
P (jωo)

(
P (jωo) +K(jωo)

)−1]
mn

]
− 2

3
π =: ηmn

ρmn = | − 1 + j
√

3

6
Xmn(jωo)| =

1

3
|Xmn(jωo)| =: rmn

therefore, overall we have

Ωmn =


rAe

jηAk + rmne
jηmn (m < n)

rmne
jηmn (m = n)

rDe
jηDk + rmne

jηmn (m > n)

γ =
17∑
k=1

[
Ωm,i+ke

−jkηo + Ωm,m−ke
jkηo + Ωmm

]
(3.14)

Taking the derivative with respect to ηo,

<
(
∂γ

∂ηo

)
=

17∑
k=1

k
[
ρm,m+k sin(θm,m+k − kηo)− ρm,m−k sin(θm,m−k + kηo)

]
(3.15)

∼=
17∑
k=1

k
[
ρm,m+k(θm,m+k − kηo)− ρm,m−k(θm,m−k + kηo)

]
(3.16)

Setting the derivative to zero and solving for ηo,

ηo =
17∑
k=1

k(ρm,m+kθm,m+k − ρm,m−kθm,m−k)
/ 17∑

k=1

k2(ρm,m+k + ρm,m−k). (3.17)
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Figure 3.16: The maximal eigenvalue µ of Ω (blue lines). The right hand side of (3.14) for

each of i = 1, . . . , 17 with the edge effect (red curves).
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Figure 3.17: The exact and approximation of <
(
∂γ
∂ηo

)
; ηo from simulation (blue), right hand

side of eqn(3.12) (red), numerical result of ηo using bisecion (yellow),
∑17

m <
(
∂γ
∂ηo

)
(purple)

Comparing with the red curve in the right plot in Fig. 3.13, the approximation of the average

phase lag per segment (purple curve) in the bottom-right figure in Fig. 3.17 is a lot closer to

the actual ηo (blue curve).

∂ηo
∂ρmn

=
tan(θmn + (m− n)ηo)

(n−m)ρmn
,

∂ηo
∂θmn

=
1

n−m
.

∂ηo
∂rmn

=


sin
(
ηmn−kηo

)
k
[
rA cos(ηAk−kηo)+rmn cos(ηmn−kηo)

] (m < n)

sin
(
ηmn+kηo

)
−k
[
rD cos(ηDk+kηo)+rmn cos(ηmn+kηo)

] (m > n)
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∂ηo
∂ηmn

=


rmn cos

(
ηmn−kηo

)
k
[
rA cos(ηAk−kηo)+rmn cos(ηmn−kηo)

] (m < n)

rmn cos
(
ηmn+kηo

)
−k
[
rD cos(ηDk+kηo)+rmn cos(ηmn+kηo)

] (m > n)
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CHAPTER 4

Control mechanisms underlying leech swimming

In this chapter, we will discuss about the control mechanism for leech swimming. Using the

MHB method in the previous chapter, three control mechanism are proposed in the first sec-

tion. To better understand the internal reference generator and weak coupling stabilization,

we will decompose the CPG and discuss using eigenstructure theory. Finally, generalized

CPG design guidelines are given on CPG controller design for robotic systems to achieve

target oscillation with stability.

4.1 Internal architecture of CPG

We proposed two control architectures shown in Fig. 4.1a and Fig. 4.1b. The idea behind the

first one is that part of the CPG consists of a conservative oscillator (”CPG” in Fig. 4.1a)

and a damping compensator (”D(s)” box between φ̂ and û). For the mechanical plant side,

we separate the body-fluid module into ”ideal body-fluid” part, which is a conservative plant,

and the dissipative part. TheK(s) on the plant side denotes the stiffness dynamics of the

plant. For the second one in Fig. 4.1b, we think there is a symmetry structure between

controller and plant through weak coupling in the closed-loop system (signal w ∼= 0 in

the steady states). Part of the CPG functions as a reference generator or internal model,

generating signal û similar to the torque u fed into the plant. Why would we want to do

the decomposition? What’s the difference between the original and the decomposed CPG?

The difference is that the decomposed is an exact internal model. Without any input, the

decomposed CPG can generate v with 360o phase lag, same as the φ from the plant, while
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the original CPG generates v with 180o phase lag without input.

In this section, we would want to find out the dynamics inside CPG that acts like this

reference generator, by using LMI technique, then verify this decomposition by simulation

in three conditions.

(a) Damping compensation architecture (b) Eigenstructure architecture

Figure 4.1: Proposed architectures

The CPG has been modeled as

v = M(s)ϕ(v) +Bu.

We decompose the CPG into the two components

v =
(
M(s) +BD(s)

)
ϕ(v) +B(u− ũ), ũ := D(s)ϕ(v), (4.1)

as shown in Fig. 4.1a (the use of û is avoided to reserve the hat notation for phasors). The

task is to determine D(s) so that

• ũ = D(s)ϕ(v) generates the muscle bending moment ũ = u from the membrane po-

tentials, as observed during intact swimming

• the internal CPG model v =
(
M(s) + BD(s)

)
ϕ(v) has the observed membrane po-

tential oscillations as a stable limit cycle.
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We assume that the bending moment of the ith segment, wi, is generated by the membrane

potentials of the ith segmental oscillator with the intrasegmental synaptic dynamics:

D(s) = f(s)χ, χ := diag(χ1, . . . ,χ17) ∈ R17×51, χi ∈ R1×3, f(s) :=
µγ

1 + τγs
.

(4.2)

Using phasor and describing function to approximate periodic signal v and the nonlinear

function ϕ(v),

ϕ(v) ∼= κ(αi)v, vi ∼= αi sin(ωt+ βi), v̂i = αie
jβi

the first constraint on D(s) is expressed as

f(jω)χκ(α)v̂ = û (4.3)

where (û, v̂) are the phasors of the harmonic approximations of (u, v) during intact swimming,

obtained by closed-loop simulation of the integrated model, α := |v̂| ∈ R17 are the amplitudes

of v, and κ(α) ∈ R17×17 is the diagonal matrix of the describing functions. Similarly, the

internal CPG model is constrained by the MHB condition:

v̂ = (M(jω) + f(jω)Bχ)κ(α)v̂ (4.4)

For orbital stability of the oscillation v(t) ∼= <[v̂ejωt], we require the characteristic equation

det[I − (M(jω) +BD(jω))κ(α)] = 0

to have all the roots s except ±jω satisfy <[s] < 0. This condition is equivalent to the

marginal stability condition on quasi-liner system:

v̂ = (M(jω) +BD(jω))κ(α)v̂.

4.1.1 Three ways of state-space realizations

To further analyze the stability of the system, we shall represent the CPG in state-space

realization. By observing the internal, conservative CPG model
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v =
(
M(s) +BD(s)

)
ϕ(v) (4.5)

there are multiple ways to represent Eqn.(4.5) in state-space. We will list all three ways

here.

4.1.1.1 Realizations from transfer functions

The first method is to partition the internal CPG model described by transfer function in

Eqn.(4.5):

v =
(
M(s) +Bf(s)χ

)
ϕ(v)

=
[
M(s) Bf(s)

]
︸ ︷︷ ︸

ss(A,B,C,0)

 ϕ(v)

χϕ(v)


After partitioning B into

[
B1 B2

]
according to the dimension of ϕ(v) and χϕ(v), and

approximating ϕ(v) by κ(α)v, the system could be described as
ẋ = Aχ+ (B1 + B2χ)κ(α)v

v = Cx

⇒ ẋ =
[
A + (B1 + B2χ)κ(α)C

]
x.

4.1.1.2 Realizations from for-loop

Looking at the original CPG neuronal circuits Eqn.(2.4), we can define different state-space

A and B matrices w.r.t. intrasegmental or intersegmental dynamics.

For intrasegmental dynamics,

xki =
µγ

1 + τγs
κ(αi)vi where k = 6, i = 1, .., 17, xki ∈ R3
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∴ ẋki = (
−1

τγ
I)xki + (

µγ
τγ
I)κ(αi)vi

For intersegmental dynamics,

xki =
1

1 + kτds
κ(αi)vi where k = 1, ..., 5, i = 1, .., 17, xki ∈ R3

∴ ẋki = (
−1

kτd
I)xki + (

1

kτd
I)κ(αi)vi

Therefore, by arranging the order of the states x, the subscript k = 6 represent the intraseg-

mental dynamics; k = 1, ..., 5 denote the intersegmental dynamics in state-space:

Ak =


−1
τγ
I3×3 if k = 6

−1
kτd
I3×3 if k = 1, ..., 5

Bk =


µγ
τγ
I3×3 if k = 6

1
kτd
I3×3 if k = 1, ..., 5

Expressing M(s) +BD(s) in state space representation, we will have:


ẋki = Akxki + Bkϕ(vi) ∼= Akxki + Bkκ(αi)vi

vi = (Mo +Biχi)x6i +
∑5

k=1Cdxk,i−k +
∑5

k=1Caxk,i+k

(4.6)

where

Mo :=


0 −1 0

0 0 −1

−1 0 0

 Bi :=


0

0

hi

 Cd :=


2 0 0

0 0 0

0 0 0

Ca :=


0 −1 0

0 0 −1

0 0 0


To write equation (4.6) in the form ẋ = Ãx (not closed-loop equation containing plant states,

only CPG controller):
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ẋ = Ãx = (A + BχC)x

ẋ1

ẋ2

ẋ3

...

ẋ6

...

ẋ12

...

ẋ17



= (



A+M1 a1e
>
1 a1e

>
2 · · · a1e

>
5 · · · 0

d2e
>
1 A+M2 a2e

>
1

. . . . . . . . .
...

d3e
>
2 d3e

>
1 A+M3

. . . . . . . . . 0
...

...
...

. . . . . . . . .
...

d6e
>
5 d6e

>
4 d6e

>
3

. . . . . . . . . 0
...

. . . . . . . . . . . . . . .
...

0
. . . . . . . . . . . . . . . a12e

>
5

...
. . . . . . . . . . . . . . .

...

0 · · · d17e
>
5 · · · d17e

>
2 d17e

>
1 A+M17


306×306︸ ︷︷ ︸

:=A

+




B1

...

B6

κ(α1)B1

︸ ︷︷ ︸
18×1 

B1

...

B6

κ(α2)B2

. . . 
B1

...

B6

κ(α17)B17


306×17︸ ︷︷ ︸

:=B

χ

diag(
[
0 I3

]
︸ ︷︷ ︸

3×18

)


51×306︸ ︷︷ ︸

:=C

)x

(4.7)
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where

xi =


x1i

...

x6i

 , ei =



0
...

0

I3

0
...

0


18×3

← ith, A =


A1

A2

. . .

A6

 , Mi =


B1

...

B6

κ(αi)Moe
>
6

ai =


B1

...

B6

κ(αi)Ca, di =


B1

...

B6

κ(αi)Cd

Removing ±jω from the eigenspce of Ã(χ), we will get a 2 dimension smaller matrix Ã−(χ),

which should be asymptotically stable satisfying

Ã−(χ) + (Ã−(χ))> < 0 (4.8)

Equation (4.3), (4.4), and (4.8) should be considered in LMI to solve for χ.

4.1.1.3 Analytically minimal realization

The third method gives an analytically minimal realization. If we define w := u − ũ and

approximate the static nonlinearity ϕ(v) by describing functionκ(α)v, the decomposed CPG

model Eqn.(4.1) could be written as

v ∼=
(
M(s) +BD(s)

)
κ(α)v +Bw

Let M(s) be decomposed into the block diagonal part f(s)So, and off diagonal (coupling)

part of L(s). The membrane potential v can be given by
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v = L(s)κv + f(s)Soκv +Bf(s)χκv +Bw

= L(s)κv + SDf(s)κv +Bw

SD := So +Bχ

Let the state space realization be given as

L(s) = (Al, Bl, Cl), f(s)I51 = (Af , Bf , Cf ), N(s) = (An, Bn, Cn).

Then the CPG controller is described as

ẋl

ẋf

ẋn

û

ûp


=



Al +BlκCl BlκSDCf 0 BlκB

BfκCl Af +BfκSDCf 0 BfκB

BnCl BnSDCf An BnB

0 χCf 0 0

0 −χCf Cn 0


︸ ︷︷ ︸

:=

 Ac Bc

Cc 0




xl

xf

xn

w


(4.9)

The realization in (4.9) is a minimal realization with Ac ∈ R257×257.

C1

C2

 := Cc.

4.1.2 Phasor conditions for CPG decomposition

Now we have the CPG model expressed in state-space, LMI conditions could be written out

to find proper values for χ.

In closed-loop simulation, membrane potential v and total torque u strictly satisfy

v = M(s)ϕ(v) +Bu
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After approximating ϕ(v) by κ(α)v, the left and right side of the equation are not exactly

equal. Thus we use MHB analysis to find a proper α so that the new v̂ and û strictly satisfy

v̂ = M(jω)κ(α)v̂ +Bû

LMI condition 1: marginal stability

The first condition is to enforce the marginal stability of the CPG closed-loop system (not

containing plant states). The oscillatory trajectory will converge to a stable limit cycle

if there is one pair of eigenvalues on the imaginary axis (the oscillation frequency is the

imaginary part), and the rest of eigenvalues are all located in the OLHP.

In the following equations, A+BχC is the CPG closed-loop A matrix, γ is the LMI variable

we want to minimize, representing the maximum real part of eig(A + BχC). If the result

yields a γ close to zero, the closed-loop system is marginally stable.

D(A + BχC)N + [D(A + BχC)N ]
>
< γI

∴ DBχCN + (DBχCN)
>

+ (DAN +N
>
A
>D>) < γI

where C
D

 =
[
R N

]−1

N = N (R>), R = [<(x̂) =(x̂)]

x̂ki = (jωI −Ak)−1Bkκ(αi)v̂i, k = 1, ..., 6, i = 1, ..., 17

LMI condition 2: MHB equation for the decomposed CPG

According to Equation (4.4),

f(jω)Bχκ(α)v̂ = v̂ −M(jω)κ(α)v̂

∴ Bχκ(α)v̂ =
1

f(jω)
[I −M(jω)κ(α)]v̂︸ ︷︷ ︸

4
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Since all the matrices in LMI should be real matrices, we will separate the real part and

imaginary part of the elements in κ(α)v̂ and 4.

Bχ [Re(κ(α)v̂) Im(κ(α)v̂)]︸ ︷︷ ︸
F,51×2

= [Re(4) Im(4)]︸ ︷︷ ︸
G1,51×2

⇒

 ε1I BχF−G1

(BχF−G1)
>

ε1I

 > 0

LMI condition 3: reference generation of desired torque û

According to Equation (4.3), the decomposed part of CPG should satisfy the following:

f(jω)χκ(α)v̂ = û

∴ χκ(α)v̂ =
1

f(jω)
û

χ [Re(κ(α)v̂) Im(κ(α)v̂)]︸ ︷︷ ︸
F,51×2

= [Re(
1

f(jω)
û) Im(

1

f(jω)
û)]︸ ︷︷ ︸

G2,17×2

⇒

 ε2I χF−G2

(χF−G2)
>

ε2I

 > 0

Enforcing LMI condition 3 by pseudo-inverse

Actually, from condition 3 and original CPG equation:

f(jω)χκ(α)v̂ = û

v̂ = M(jω)κ(α)v̂ +Bû

We could obtain condition 2:

⇒ v̂ = M(jω)κ(α)v̂ +Bf(jω)χκ(α)v̂
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Since condition 3 has lower dimension, we choose only to implement LMI condition 1 and 3.

Let’s take a closer look at condition 3. The use of LMI might not be necessary:

û = χ f(jω)κ(α)v̂︸ ︷︷ ︸
:=Wo

For each entry of û, it can be expressed by the element of Wo:

ûi =
[
xi1 xi2 xi3

]
ŵi1

ŵi2

ŵi3


Then we separate the real and imaginary part of the above matrices:

[
<(ûi) =(ûi)

]
︸ ︷︷ ︸

:=U∈R2

=
[
xi1 xi2 xi3

]<

ŵi1

ŵi2

ŵi3

 =


ŵi1

ŵi2

ŵi3




︸ ︷︷ ︸
:=W∈R3×2

(4.10)

∴ Ui = χiWi

⇒ χi = UiW
†
i + Zi(I −WiW

†
i )

• If we set xi3 6= 0, equation (4.10) is under parametrized, we will have one more degree

of freedom in Zi. If we set Zi = 0, then we will obtain solution χ with minimum norm,

and this χ is very likely to be different from the χ obtained from LMI calculation.

• If we set xi3 = 0, which physically means intrasegmental connection within the third

neuron in each segment is forbidden, then we will get a unique solution for equation

(4.10), and this χ is theoretically identical with the χ obtained from LMI calculation.

If we choose to obtain χ in this fashion, we can avoid running LMI calculation, and

the marginal stability condition (condition 1) can be checked by plotting the eigenvalue

distribution of Ã after plugging χ.
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Therefore, there are three decomposition processes we can choose from:

Process a

Process a is enforcing condition 1, 2 and 3 in constraints and minimizing γ, the maximum

real part of the eigenvalues of closed-loop A matrix.

min
χ

γ

s.t. DBχCN + (DBχCN)
>

+ (DAN +N
>
A
>D>) < γI ε1I BχF−G1

(BχF−G1)
>

ε1I

 > 0

 ε2I χF−G2

(χF−G2)
>

ε2I

 > 0.

(4.11)

Process b

This process uses pseudo-inverse to calculate χ, with one more degree of freedom as χi3 is

not zero.

χi = UiW
†
i + Zi(I −WiW

†
i ), Zi = 0, χi3 6= 0 (4.12)

Process c

This process also uses pseudo-inverse to calculateχ. Withχi3 = 0, we will obtain an unique

analytical solution of χ.

χi = UiWi† + Zi(I −WiW
†
i ), Zi = 0, χi3 = 0 (4.13)

4.1.3 Stability analysis by simulation of decomposed CPG

After getting χ both from LMI (process a) and pseudo-inverse method (process b and c),

we run simulation of the equation

v =
(
M(s) +BD(s)

)
ϕ(v), D(s) = f(s)χ. (4.14)
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This is the equation of decomposed, conservative CPG. It is expected to see the CPG repro-

duces phase lag of v close to 360◦ in nominal water and air traveling, and generates standing

waves in air standing case.

4.1.3.1 Nominal water
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Figure 4.2: Process a; sensory feedback B multiplied by χ and eigenvalues of Ã
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Figure 4.3: Time domain signal of Eqn.(4.14); phase lag and amplitude of membrane poten-

tial v: simulation of closed-loop CPG-plant system, 15.96 Hz(solid); Eqn.(4.14), 15.80 Hz

(dashed)

The left figure in Fig. 4.2 is the dot product of χB, the amplitude of which is around 0.2.

Comparing with the absolute value of the elements of the connectivity matrices in Eqn.(4.6),

which are 1 or 2, the value of χ is reasonable in terms of amplitude. The middle figure is

the eigenvalue distribution of matrix Ã; right is the close-up around imaginary axis. We see
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with the approximation of static nonlinearity by describing function in Ã, there is a pair of

eigenvalue in the ORHP.

The stability of the nonlinear system of Eqn.(4.14) could be checked by simulation. The left

figure above is the time-domain signal of membrane potential v, which reaches and maintains

stable oscillation around t = 3s, after going through some transients at the initial stage. The

middle and right figures are the phase lag and amplitude of v at each segment. The solid

line is the result of closed-loop CPG-plant system simulation in chapter 2, from which it

is expected to see little deviation of simulation of Eqn.(4.14), showed in dashed line. The

smallness of the gap between dashed and solid lines signifies that one of the functionality of

the decomposed, conservative CPG is the internal reference generation of desired closed-loop

membrane potential v.
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Figure 4.4: Process b; sensory feedback B multiplied by χ and eigenvalues of Ã
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Figure 4.5: Solid: closed-loop, 15.96 Hz; dashed: decomposed CPG, 15.82 Hz
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Similar results are also yielded by Process b, in terms ofχ amplitude, eigenvalue distribution,

and nonlinear simulation stability.
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Figure 4.6: Process c; sensory feedback B multiplied by χ and eigenvalues of Ã
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Figure 4.7: Solid: closed-loop, 15.96 Hz; dashed: decomposed CPG, 15.75 Hz

Similar results are also yielded by Process c, in terms ofχ amplitude, eigenvalue distribution,

and nonlinear simulation stability. One thing to be noticed is that, since χi3 = 0 in Process

c, the yellow line is flat at value 0 as expected in Fig. 4.6.

4.1.3.2 Air standing

Similar results are also yielded by Process a, b and c for air standing simulation of Eqn.(4.14),

in terms of χ amplitude, eigenvalue distribution, and nonlinear simulation stability. The

time-domain signal of v converges to stable standing wave oscillation after t = 3s. The gap
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between closed-loop CPG-plant system simulation and Eqn.(4.14) simulation is minor, per

oscillation profile (frequency, amplitude, phase lag).
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Figure 4.8: Process a; sensory feedback multiplied by χ and eigenvalues of Ã
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Figure 4.9: Solid: closed-loop, 12.80 Hz; dashed: decomposed CPG, 12.99Hz
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Figure 4.10: Process b; sensory feedback multiplied by χ and eigenvalues of Ã
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Figure 4.11: Solid: closed-loop, 12.80 Hz; dashed: decomposed CPG, 13.03 Hz
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Figure 4.12: Process c; sensory feedback multiplied by χ and eigenvalues of Ã

0 10 20

-600

-400

-200

0

0 5 10 15 20

0

5

10

15

20

25

Figure 4.13: Solid: closed-loop, 12.80 Hz; dashed: decomposed CPG, 13.07 Hz
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4.1.3.3 Air traveling

Similar results are also yielded by Process a, b and c for air traveling simulation of Eqn.(4.14),

in terms of χ amplitude, eigenvalue distribution, and nonlinear simulation stability. The

time-domain signal of v converges to stable standing wave oscillation after t = 2s. The gap

between closed-loop CPG-plant system simulation and Eqn.(4.14) simulation is minor, per

oscillation profile (frequency, amplitude, phase lag).
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Figure 4.14: Process a; sensory feedback multiplied by χ and eigenvalues of Ã
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Figure 4.15: Solid: closed-loop, 15.98 Hz; dashed: decomposed CPG, 15.45 Hz
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Figure 4.16: Process b; sensory feedback multiplied by χ and eigenvalues of Ã
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Figure 4.17: Solid: closed-loop, 15.98 Hz; dashed: decomposed CPG, 15.53 Hz
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Figure 4.18: Process c; sensory feedback multiplied by χ and eigenvalues of Ã
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Figure 4.19: Solid: closed-loop, 15.98 Hz; dashed: decomposed CPG, 15.47 Hz

From the results above, we conclude that

• In nominal water, air standing and air swimming these three cases, utilizing Process

a, b and c, the gap between closed-loop CPG-plant system simulation and Eqn.(4.14)

simulation is minor, per oscillation profile (frequency, amplitude, phase lag).

• The eigenvalue distribution plot of matrix Ã by all three processes will have a pair of

eigenvalues in ORHP. This shows that

– The LMI method (Process a), intended to minimize the maximum real part of

eigenvalues of Ã, is conservative: only minimizing the upper bound of the maxi-

mum real parts.

– The pseudo-inverse method (Process b and c), minimizing the error norm, also

fail to generate a set of χ that pushes that pair of eigenvalues to the OLHP.

We see no difference in the sets of χ obtained by these three processes. In the consid-

eration of avoiding self-feedback effect (sensory feedback matrix B is a block-diagonal

matrix with non-zero element populated at the 3rd element in each block), we choose

to adopt Process c for later study.
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Figure 4.20: Eigenvalue distribution of Ac from realization 3

There is one eigenvalue in the ORHP, consistent with the ideal CPG simulation result above.

4.2 Eigenstructure analysis of the closed-loop system

4.2.1 Quasi-linearization via describing function

After finding out the dynamics responsible for generating the reference signal ũ for the plant

in section 4.1 (ũ := D(s)ϕ(v)), we proposed a control architecture using eigenstructure

theory which can well explain that CPG is responsible for both reference generation and

closed-loop stabilization.

Using describing function κ to approximate the static nonlinearity, the following are the

equations of the quasi-linearized CPG-plant system:
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uP = koφ+ cmφ̇ := Kxp

uA = N(s)v

û := D(s)κv, D(s) := f(s)χ =
µγ

1 + τγs
χ

ûP := uA − û = (N(s)−D(s)κ)v

w := ûP − uP = (N(s)− f(s)χκ)v −Kxp

= C2xN − C1xf −Kxp

u = w + û

v = (M(s) +BD(s))κv +Bw

(4.15)

4.2.2 Eigenstructure and stability of oscillation

The block diagram in Fig. 4.21 visualize Eqn. (4.15).

Figure 4.21: Eigenstructure in leech system
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In real life, one likely scenario would be that we want the plant to maintain a stable periodic

movement. For example, a bipedal robot in walking, or a operational robot helping clean

windows. For the closed-loop system to have a desired solution, the controller needs to

embed the desired dynamics.

Lemma 1. Consider the feedback control system

ẋp = Apxp +Bpu,

y = Cpxp,

ẋc = Acxc +Bcw,

u = C1xc + w,

w = C2xc − y.

(4.16)

Suppose, for each vector η, there exists a solution of the closed-loop system such that

xp(t) = Xpe
Λtη, w(t) = 0.

Then there exists Xc such that

AcXc = XcΛ,

ApXp +BpU = XpΛ,

C2Xc = CpXp,

U := C1Xc.
(4.17)

Moreover, xc(t) = Xce
Λtη holds on the solution.

Proof. The closed-loop system can be described as

ẋ = Ax, w = Cx,

where

x :=

xp
xc

 , A :=

Ap −BpCp Bp(C1 + C2)

−BcCp Ac +BcC2

 , C :=
[
−Cp C2

]
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The supposd properties imply

AX = XΛ, CX = 0, X :=

Xp

Xc


for some Xc. These equations are equivalent to (4.17).

In MATLAB verification, AX = XΛ holds by 1e− 10 error; CX = 0 holds by 1e− 17 error.

The leech swimming system in Fig. 4.21 has an additional property that the body oscillation

xp in the steady state (or the gait) can be generated by a linear combination of the CPG

state xc (e.g. the neuronal membrane potential v can be scaled to generate φ). This means

that there is a matrix Co such that Xp = CoXc . Using this property, the oscillatory mode

Λ can be isolated from the closed-loop dynamics as follows.

Lemma 2. Consider the feedback system (4.16). Suppose, for each vector η, there exists a

solution of the closed-loop system such that

xp(t) = Xpe
Λtη, xc(t) = Xce

Λtη, w(t) = 0

Then Xp and Xc satisfy (4.17). Suppose further that there exists Co such that Xp = CoXc,

then every solution converges to the above solution for some η if and only if the system

ζ̇
θ̇

 =

Ap −BQ̊Cp Z

HQ2Cp S

ζ
θ

 (4.18)

is asymptotically stable, where

B := [Bp − Co], Q̊ :=

Q1

Q2

 =

 I
Bc

 , Z := (CoAc − ApX −BpU)F,

F, S,G,H is defined by the spectral decomposition of Ac :
[
Xc F

]Λ 0

0 S

G
H

 = Ac.
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Proof. Consider the coordinate transformation:θ
γ

 :=

H
G

xc, ζ := Coxc − xp.

Then, using the properties in (4.17), the closed-loop system is described as
ζ̇

θ̇

γ̇

 =


Ap −BQ̊Cp Z 0

HQ2Cp S 0

GQ2Cp 0 Λ


︸ ︷︷ ︸

Acl


ζ

θ

γ

 . (4.19)

Thus we have the result.

Let’s take a closer look at Eqn.(4.19). Acl is a block matrix, with Λ being a 2 × 2 matrix

representing the oscillatory mode; S being a 255× 255 matrix in leech example, containing

all the stables modes in CPG. The above lemma tells us Q̊ is responsible for stabilizingAp Z

0 S

+

 B[
0 H

]
 Q̊ [Cp 0

]
in the closed-loop system.
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Figure 4.22: Eigenvalue distribution of closed-loop system

The max real part of the closed-loop eigenvalue is of 1e-11 order.
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4.3 Control mechanisms from decomposed CPG perspective

By exploiting the control architecture of eigenstructure for leech, we found that the weak

coupling through Q̊2 between neural and mechanical dynamics and the weak feedabck gain in

û can well explain the stabilization mechanism of CPG under environmental perturbations.

4.3.1 Weak coupling of neural and mechanical dynamics

Define the (1, 1) block of (4.19) to be R, and Ro is the approximation of R:

R :=

Ap −BQ̊Cp Z

HQ2Cp S

 ∼= Ro :=

Ap −BQ̊Cp Z

0 S

 . (4.20)

This approximation is valid if the stabilizing effect of Q̊2 is sufficiently small. The ”smallness”

is justified by:

‖Ap‖ = 1.65e3, ‖BpQ̊1Cp‖ = 9.02e6, ‖CoQ̊2Cp‖ = 1.07e3

‖Ap −BQ̊Cp‖ ‖Z‖

‖HQ̊2Cp‖ ‖S‖

 =

9.01e6 1.41e5

6.6e3 7.08e1


• ‖CoQ̊2Cp‖ � ‖BpQ̊1Cp‖: the direct feedback to the plant dynamics is much smaller

for Q̊2 than Q̊1.

• eig(R) ∼= eig(Ro)
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Figure 4.23: Eigenvalue distributions of R and Ro: max(real(eig(R))) = -0.37,

max(real(eig(Ro))) = 0.64

• Eigenvalue distributions of Ap, R, S, and Ap−BpQ1Cp: the open-loop plant Ap (body-

fluid without stiffness) is unstable, but is stabilized by the muscle stiffness BpQ1Cp (the

eigenvalues in purple hexagram outside the shown range are all stable). The isolated

neural control dynamics S are not strictly stable (the largest real part is 0.64) but

are roughly marginally stable. The coupling of the neural and mechanical dynamics

through Q2 does not move the eigenvalues with a significant amount as seen by the

distributions of yellow and red markers (they are also close to each other outside the

shown range). Hence, weak sensory feedback to the CPG (i.e. small Q2 ) maintains

the stability property.
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Figure 4.24: Eigenvalue distributions of Ap, R, S, and Ap −BpQ1Cp

The control mechanism may be explained as follows. When Q̊2 = 0, the CPG acts as

the exogenous reference generator which drives the plant stabilized by feedback Q̊1 (with

only one eigenvalue having positive real part 0.64, whose effect is not pivotal under the

static nonlinearity in simulation). The reference tracking would be achieved by stability

of the feedback system consisting of the plant and Q̊1. When Q̊2 is nonzero but small, the

stability property is maintained due to continuity of the eigenvalues, and the CPG (reference

generator) receives sensory feedback from the plant through Q̊2 so that the target oscillation

pattern can be modified under perturbations.

4.3.2 Benefit of sensory feedback

The following two block diagrams demonstrate that when Q̊2 = 0, the original non-decomposed

CPG functions as an exogenous reference generator.
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Figure 4.25: What happens to the original CPG when Q̊2 = 0

Simulation verification: the benefit of Q̊2 under perturbations

Here to verify that through Q̊2 the CPG can modify the original reference signal so to

drive the plant to another oscillation pattern to better suit the environmental changes, we

simulated the closed-loop leech system (Fig. 4.1b) under these conditions:

Case 1. Nominal swimming in water.
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Case 2. Change the tangential drag coefficient c′t = 3ct, while Q̊2 = 0.

Case 3. Change the tangential drag coefficient c′t = 3ct, while Q̊2 = Bc.

We increased the tangential drag coefficient to three times as large as the original value in

case 2 and 3 in order to see how leech CPG reacts when drag/thrust ratio is a lot larger than

in nominal water case. For case 2 and 3, the initial states are set to be the steady states of

case 1 nominal swimming.

Table 4.1: Simulation result summary

Case Period [ms] u Amplitude [10−5 Nm] φ Phase lag Speed [m/s]

1 393 0.91 360◦ 0.1258

2 398 1.88 335◦ 0.0786

3 384 0.89 397◦ 0.0490

(a) v1, u, φ and center mass velocity
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(b) Solid: phase and amplitude of case

2; dashed: case 1

Figure 4.26: Simulation result for case 2 in comparison with case 1
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(a) v1, u, φ and center mass velocity
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(b) Solid: phase and amplitude of case

3; dashed: case 1

Figure 4.27: Simulation result for case 3 in comparison with case 1

As we can see from Table 4.1 and following plots, in Case 3, through Q̊2 CPG modified

the gaits to keep low input torque by lowering swimming speed and increase wave number

during one cycle; whereas in Case 2 where there is no feedback to the CPG when Q̊2 is set

to be zero, the system is trying hard to maintain its original oscillatory gait and speed at a

cost of doubled input torque.

4.3.3 Plant stabilization through muscle stiffness

As mentioned earlier, when Q̊2 = 0, the CPG acts as the exogenous reference generator

which drives the plant stabilized by feedback loop, Fig. 4.25. The reference tracking would

be achieved by stability of the feedback system consisting of the plant and muscle stiffness

component.

To be more specific, showed in Fig. 4.24, the plant itself is unstable, having eigenvalues with

positive real parts. When the dynamics of muscle stiffness K(s) = cms+ km added into the
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loop, it helps stabilize the system under disturbance.

4.3.3.1 Simulation verification: the stabilization effect of muscle stiffness under

disturbance

Here to verify the stabilization effect of muscle stiffness, we simulated Fig. 4.25. The initial

conditions are the steady states of nominal swimming, except for u, φ and φ̇. For t < 0.1s,

φ and φ̇ are set to be 0, u to be 10 times of nominal values, in order to mimic the situation

where the leech is coming to a sudden stop due to large outer disturbance.

(a) v1, u, φ and center mass velocity
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(b) Solid: phase and amplitude for dis-

turbance case; dashed: case 1

Figure 4.28: Simulation result for disturbance when Q̊2 = 0

As we can see from the figure above, u and φ go through huge disturbance at the beginning,

and before 0.5s with the stabilizing effect from muscle stiffness in the feedback loop, both

signals converge to steady states. In the phase plot on the right, at steady states, the phase

lag is 335◦, similar as case 2.
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4.3.3.2 Stiffness control from another perspective

We can examine the mechanism of ”plant stabilization through muscle stiffness” from the

small gain theorem perspective. The closed-loop system can be decomposed into two parts

of dynamics: G1(s) and G0(s), as shown in Fig. 4.29.

Figure 4.29: w converges to zero if Go(s) is stable and G1(s) is stable with small gain

We thought of two ways of decomposition shown in Fig. 4.30: the input to the firstGo(s) is ûp,

to the second is û, the output for both Go(s) is w. However, for the first decomposed, Go(s)

is unstable, having infinite H-infinity norm. For the second decomposition, the H-infinity

norm is finite, ‖H‖∞ = 742.9. G1(s) drives Go(s) with weak feedback û (in simulation the

amplitude of u is 5 times smaller than that of ûp in steady state, a weaker feedback than the

first decomposition).
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Figure 4.30: w converges to zero if Go(s) is stable and G1(s) is stable with small gain

Using (4.16), the state space realization of the second Go(s) can be described as


ẋp

ẋc

w

 =


Ap −BpCp BpC2 Bp

−BcCp Ac +BcC2 0

−Cp C2 0


︸ ︷︷ ︸

:=

 AGo BGo

CGo 0




xp

xc

û


(4.21)
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(a) Time domain signals
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(b) Phase and amplitude, dashed: nominal

closed-loop simulation

Figure 4.31: Results of simulation of G0(s)

The stability of G0 is verified in nonlinear simulation, where the w signal into G1 is cut off.
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G1 works as a reference generator, whose initial states are set to be the steady states of

nominal water swimming. The initial states of G0 are set to be very close to zero.

From the figure above, the simulation shows that the stability of limit cycle of nominal water

swimming in G0. This is achieved by the muscle stiffness in the feedback loop.
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Figure 4.32: Singular values of Go(s) over frequency

One interesting observation is that the minimal singular value of Go(jω) hits the valley of

-150 db at nominal oscillation frequency 14.8 Hz. This observation is consistent with the

stability property of the second decomposition. For the second decomposition, the input-

output relationship is

w = Go(s)ũ. (4.22)

Having the minimal singular value at -150 db means that Go(jωo) has a zero eigenvalue at

the nominal oscillation frequency ωo:

Go(jωo)vo = 0, ũ = Re(voe
jωot), (4.23)

where vo is the corresponding eigenvector. Combining (4.22) and (4.23), we will have w = 0.
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According to

min
ˆ̃u

||Go(jω)ˆ̃u||
||ˆ̃u||

= σmin (4.24)

we plotted the minimal singular vector of Go(jωo), which has the similar phase lag of 135

deg as the phasor of ũ. For the max singular value, it is not clear why the peak occurs at

13.9 Hz, very close to the nominal oscillation frequency.
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Figure 4.33: Left: minimal and maximal singular values of Go(s); middle: the phase lag of

P (jω)vmin and P (jω)vmax; right: amplitude of P (jω)vmin and P (jω)vmax.
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CHAPTER 5

CPG Inspired Control Design

This section use the prototype mechanical rectifier (PMR) as an example to demonstrate

how we can utilize the diffusive coupling structure to design a CPG controller in a closed-loop

setting.

5.1 Design guidelines

In this section, we suggest guidelines for designing a CPG-based controller for a mechanical

system such that a desired oscillation (or a periodic orbit) is embedded in the closed-loop

system as a stable limit cycle approximately. The guidelines are developed from the obser-

vations made on the leech CPG control model in the previous sections.

Step 1: Specify desired oscillation profile (ωo, φ̂) of the plant

Step 2: Find input u to the plant that can generate desired output φ in open-loop

setting

Figure 5.1: C(s) Find proper input u that can generate desired output φ

Take the leech for example, the bending moment u and relative joint angels φ satisfy the
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relation
(
Js2 + Ds + vtL

)
φ = u, thus the nonlinear plant can be approximated by an LTI

system, when we set the tangential velocity of center mass to be the nominal swimming

speed vo:

P (s) =
(
Js2 + Ds+ voL

)−1
.

The phasor û at nominal swimming frequency can be obtained by:

û = P (jωo)
−1φ̂.

Step 3: Design CPG that can generate v̂ with similar phase lag as φ̂ when there

is no input

v = MD(s)ϕ(v) +Bw ∼= MD(s)ϕ(v) (5.1)

The subscript ”D” in MD(s) denotes for ”design”. Take the leech case for example, MD :=

M(s) +BD(s). The problem now reduces to MHB design of CPG.

Problem 1. Given (ωo, α, β) ∈ R×Rn ×Rn, find M ∈ Rn×n such that v = f(s)Mϕ(v) has

solution vi(t) ∼= αi sin(ωot+ βi), where f(s) is the cell membrane dynamics.

For the choice of f(s), we could use low-pass filter or band-pass filter. The implicit parametriza-

tion of M could be solved by LMI:

Mκ(α)R = RΩ

<[ρ(N>Mκ(α)N)] < 1

⇒
Mκ(α)R = RΩ

(N>Mκ(α)N) + (N>Mκ(α)N)> < 2γI

where R :=
[
v v̄

]
Γ, Γ := 1

2

−j 1

j 1

 , Ω := Γ−1

λ 0

0 λ̄

Γ, λ := 1
f(jωo)

, N>R = 0, N>N = I.

Step 4: Design C1 that takes v as input and generates ũ which has the same

oscillation profile as u

C1(jωo)v̂ = ˆ̃u = û (5.2)
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Step 5: Design C2 that takes v as input and generates ũP which has the same

oscillation profile as the output of K

C2(jωo)v̂ = ˆ̃uP = ûP (5.3)

The design guidelines outlined above will be applied to a simple locomotion system to illus-

trate the design process and demonstrate its effectiveness later in this chapter.

5.1.1 Single limit cycle embedding

The single limit cycle embedding fits into the scenario where the PMR is expected to rotate

under fixed environment, e.g. the friction coefficient at arm/disk contact cc remains the same

all the time.

The CPG design for single limit cycle embedding can directly follow 5.1.

5.1.2 Multiple limit cycles embedding

The multiple limit cycle embedding fits into the scenario where the PMR is expected to rotate

under varying environments, e.g. the friction coefficient at arm/disk contact cc changes.

The equation of the system can be described by:

v = f(s)(Mϕ(v) +Bsfw)

w = Cϕ(v)− uP

u = w + Fϕ(v)

uP = P (s)u−Kd(s)φ

(5.4)

where M is the constant connectivity matrix in CPG; Bsf is the sensory feedback matrix;

F and C are constant matrices, taking in ϕ(v) and generating û and ûP respectively.

The problem statement is the following.
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Problem 2. Given multiple sets of (ω, û, φ̂) (denoted by subscript k), find M,B,C, F with

constraint ŵ = 0.

First, let’s write out the MHB equations for the quasi-linear system:
v̂ = f(jω)Mκ(α)v̂

ûP = Cκ(α)v̂

û = Fκ(α)v̂

(5.5)

where v̂ = αφ̂. α is determined so that the ||v||∞ = 1.

For each set of (ω, û, φ̂), if we separate the real and imaginary part of complex vectors in

Eqn. (5.5) into real matrices, we will have
VkΩk = MκkVk

UPk = CκkVk

Uk = FκkVk

(5.6)

where Ω := Γ−1

λo 0

0 λ>o

Γ, Γ := 1
2

−j 1

j 1

, λo := jωkτo + 1, τo = 0.1 s, a tuning

freedom. Using describing function to approximate ϕ(v) in Eqn. (5.4), we can write out the

quasi-linear system from uP to u:

v = f(s)(M +BsfC)κv − f(s)BsfuP

u = (C + F )κv − uP

(5.7)

Let’s look at the equations for the original non-decomposed CPG of PMR:

v = f(s)
(
Moϕ(v) +Bsfu

)
u = (C + F )ϕ(v)− uP

(5.8)
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If we replace the static nonlinearity by describing function and replace u by the second line

in Eqn. (5.8) and uP = Cϕ(v) in the steady states, we can obtain

v = f(s)
(

(Mo +BsfF )κv
)
.

Let’s put the above equation and the describing function approximation of the first line in

Eqn. (5.4) side by side. When the system reaches steady states (w = 0), the equation of

decomposed CPG of PMR becomes

v = f(s)Mκv.

The above two equations can help us design CPG embedded multiple limit cycles. The idea

is that: for each limit cycle, we will have a unique decomposed conservative CPGc and

corresponding connectivity matrix Mk, also the feed-forward matrix Fk and Ck; while the

original non-decomposed CPG connectivity matrix Mo stays the same, so do the motoneuron

dynamics and sensory feedback gain Bsf . For each of the decomposed CPGc matrix Mk, it

can be expressed by Mo and Fk. Then we can write out constraints for each of desired vk,

uPk and uk:

M1 −BsfF1 = M2 −BsfF2 = ... = Mk −BsfFk = ... = Ml −BsfFl,

C1 + F1 = C2 + F2 = ... = Ck + Fk = ... = Cl + Fl,

VkΩk = MkκkVk,

UPk = CkκkVk,

Uk = FkκkVk,

(N>MkκkNk) + (N>MkκkNk)
> < 0, k = 1, 2, ..., l

(5.9)

where N is the null space of V >, satisfying N>[V N ] = [O I].

The aim is to solve for Mk, Ck, Fk, Bsf using LMI. However, the first line of Eqn. (5.9) is

not linear in variable Bsf and Fk. Here we restrict Bsf = BoG, with Bo fixed and G being
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a square variable matrix. Suppose there are m segments in the PMR, and r neurons per

segment, therefore matrix B ∈ Rmr×m. One reasonable choice could be

Bo =

b 0

0 b

 , b =


1

1

1


when m = 2, r = 3. Therefore, the LMI formulation is the below:

Process a

Fix v̂ and Bo, solve:

UPk + Uk = EκkVk,

VkΩk = (Mo +BoF̄k)κkVk,

He
(
N>(Mo +BoF̄k)κkNk

)
< γI,

GUk = F̄kκkVk

(5.10)

where F̄k := GFk, E := Fk + Ck, Mo := Mk − BsfFk, the matrices in boldface are LMI

variables. The original parameters can be constructed by

Fk := G−1F̄k,

Ck := E − Fk,

Mk := Mo +BsfFk,

Bsf := BoG.

(5.11)

By making G an LMI variable, we improve the manual tuning method in finding sensory

feedback Bsf .
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5.2 PMR design example

Consider a mechanical system composed of a two-link arm and a rotating disk as shown

in Fig. 5.2. The pivot O of the arm is fixed to the inertia frame; two joints O and A are

attached with actuators to generate torques u1 and u2 and sensors to measure the angular

displacements θ1 and θ2. The tip of the arm B is not fixed to, just touches, the disk, on

which it can exert friction force. The center of the disk is affixed to the inertia frame through

a bearing and the disk can rotate around C.

Figure 5.2: Prototype mechanical rectifier (PMR)

The intended movement of the system is to make the disk rotate at a desired angular velocity,

through the rectifying friction force exerted at tip B. This property motivates us to call the

system a prototype mechanical rectifier (PMR). The system captures the essential dynamics

of many forms of animal locomotion. For example, the motion is analogous to human legs

propelling a bicycle, but for the fact that tip B is not fixed to the pedal, adding one more
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degree of freedom and some more complex dynamics.

5.2.1 PMR model

The differential equations governing the motion of the PMR are presented below. For sim-

plicity, we impose the following:

Assumption 1. • Each link has a uniform mass distribution and both links have the

same mass density and an identical shape (i.e., proportional dimensions).

• There are frictions at the disk bearing C and the contact point B between the disk and

arm, and their magnitudes are proportional to the angular velocity of the disk and the

relative velocity between the arm tip and point B on the disk, respectively.

The equations of motion derived from Euler-Lagrange equation can be described as

Jθθ̈ +Gθθ̇
2 + cR>θ (Rθθ̇ + nθθ̇o) = Bu

Jrθ̈o + cn>θ (Rθθ̇ + nθθ̇o) + θ̇o = 0,
(5.12)

where the time axis has been scaled so that the derivative are with respect to the new variable

τ := cbt/J1,

θ :=

θ1

θ2

 , u :=
J1

c2
b

u1

u2

 , c :=
cc`

2
1

cb
, α :=

`1

`2

, Jr :=
Jo
J1

, zc :=

 yc/`1

−xc/`1

 ,
Cθ :=

 cos θ1 0

0 cos θ2

 , Sθ :=

 sin θ1 0

0 sin θ2

 , Ωθ :=

 cos θ1 cos θ2

sin θ1 sin θ2

 ,
` :=

 1

α

 , Rθ := ΩθL

nθ := Ωθ`+ zc,
, Jθ := J + SθHSθ + CθHCθ, Gθ := SθHCθ − CθHSθ,

J :=

 1 0

0 α5

 , H := 3

 1 + 4α3 2α4

2α4 α5

 , L :=

 1 0

0 α

 , B :=

 1 −1

0 1

 ,
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Table 5.1: Variables and parameters of the PMR

θo rotational angle of disk

θ1, θ2 link angles from downward vertical

u1, u2 torque inputs

`1, `2 link lengths

(xc, yc) coordinate of disk center (O is the origin)

cb friction coefficient at disk bearing

cc friction coefficient at arm/disk contact

d friction coefficient between links

Jo, J1, J2 moments of inertia for disk and links

and the variables and parameters are summarized in Table 5.1.

The term cR>θ (Rθθ̇ + nθθ̇o) and cn>θ (Rθθ̇ + nθθ̇o) are environmental forces applied on the

disk.

We now consider a periodic link motion θ(t) about a nominal posture η, in which the tip

B is placed at the center of the disk, and η is the nominal angles of the two links defined

by nθ = 0. Assuming the oscillation around the nominal position is small ϑ := θ(t) − η,

we can linearize Eqn. (5.12) by expanding each expression into its Taylor series in terms of

ϑ, and keeping up to the first order terms. However the essential dynamics for rectification

turns out to be embedded in the second or higher order terms in the second equation of

Eqn. (5.12), and hence the linearized model fails to capture the locomotion dynamics. For

this reason, we choose to linearize the first equation in terms of the linear term in ϑ and its

derivatives, but keep up to the quadratic terms of ϑ and ϑ̇ in the second equation.
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Jθ ∼= Jη := J + SηHSη + CηHCη, nθ ∼= vϑ := Ω1Lϑ, Rθ
∼= (Ωo + Ω1Θ)L

Ωo :=

 cos η1 cos η2

sin η1 sin η2

 , Ω1 :=

 − sin η1 − sin η2

cos η1 cos η2

 , Θ :=

 ϑ1 0

0 ϑ2

 .
From these we obtain

Jηϑ̈+Dϑ̇+ ωoΛϑ = Bz

Jrω̇o +
(
1 + c ‖vϑ‖2)ωo + ϑ̇>Λϑ = 0

uP = kφ+ dφ̇ := Kd(s)φ

φ = B>ϑ

(5.13)

where ωo is assumed not necessarily small and

D := D1 +BD2B
>, Λ := cα sin (η2 − η1)

 0 −1

1 0


D1 := c

 1 α cos (η2 − η1)

α cos (η2 − η1) α2

 , D2 = diag(d).

5.2.2 Optimal gait analysis

The objective here is to minimize the input power.

min T∈R+
ϑ,z∈PT

1
T

∫ T
0
ϑ̇>Bzdt

s.t.


∫ T

0
ωodt = ν

Jηϑ̈+Dϑ̇+ ωoΛϑ = Bz

(5.14)

where ν is the desired angular velocity of the disk.
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If we define

X(ω) :=
1

2

 P (ω)

I

∗Π(jω)

 P (ω)

I


Y (ω) := P (ω)∗ (S(ω)− νQ1)P (ω)/ (2ν)

S(ω) := jω
(
Λ− Λ>

)
/2

P (ω) :=
(
νΛ + jωD − ω2Jη

)−1
B

Π(jω) :=
1

2

 0 −jωB

jωB> 0


Q1 := c(Ω1L)

>
(Ω1L)

(5.15)

Then the solution to the original problem(5.14) is approximately given by the 2nd equation

in (5.16) where (ω, ẑ) is the solution to the 1st equation in (5.16).

min
ω∈R,ẑ∈C`h

{ẑ∗X(ω)ẑ : ẑ∗Y (ω)ẑ = 1}

ϑ̂ = P (ω)ẑ.

(5.16)

When optimization process completes, the input torque phasor û can be constructed from ẑ

and ϑ:

û = ẑ −D2B
>jωθ̂. (5.17)

5.2.3 Design results

Here is the simulation result of Eqn. (5.4) after Process a completes.
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Figure 5.3: Time-domain signal in simulation of nonlinear system in Eqn. (5.4)

In the simulation configuration, at t = 60 s the contact damping cc changed from 30 to

50, mimicking some environmental variation, for example the transition from aquatic to

terrestrial locomotion. We see in Fig. 5.3), after t = 60 s the amplitude of relative joint

angle φ immediately decreased. This amplitude drop is expected, because when the contact

damping increase, the arm of the PMR shall have lower angular displacement to achieve the

same rotating speed of the disc.

In Fig 5.4, the red curve is the optimal trajectory when cc = 30, blue when cc = 50. Yellow

curve is the simulated trajectory. The initial condition is on the red curve. After t = 60 s

when contact damping changed, we can see the yellow curve made transition to blue in the

upper part of the figure.
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Figure 5.4: Tip trajectory ρ

One thing to be noticed is that Eqn. (5.10) will yield reasonable results under the assumption

that w ∼= 0 in the steady states. These assumption requires G to have small L2 norm, which

will cause numerical error when calculating Fk and later Ck in Eqn. (5.11).

Using F̄k = GFk in Eqn. (5.11), we can avoid using variable F̄k:

Process ã

Fix v̂ and Bo, solve:

UPk + Uk = EκkVk,

VkΩk = (Mo +BoGFk)κkVk = MoκkVk +BoGUk,

He
(
N>(Mo +BoGFk)κkNk

)
< γI,

Uk = FkκkVk

(5.18)
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The original parameters can be constructed by:

Ck := E − Fk,

Mk := Mo +BsfFk,

Bsf := BoG.

(5.19)

To confirm weak coupling assumption holds in steady states, we shall first make sure the

LMI formulation with G = 0 can work as intended:

Process ão

Fix v̂ and Bo, solve:

UPk + Uk = EκkVk,

VkΩk = MoκkVk,

He
(
N>(Mo)κkNk

)
< γI.

(5.20)

The connectivity matrix for decomposed CPG will be the same as the connectivity matrix

Mo in the original CPG:

Mk := Mo (5.21)

When Process ão completed, the quasi-linear CPG-PMR system will be simulated:



v = f(s)Mkκk

w = Cκk − uP

u = w + Fκk

uP = P (s)u−Kd(s)φ

(5.22)

Following is the simulation result for k = 1 (contact damping cc = 50). The upper left figure

is the relative joint angel φ(t), upper right is the angular displacement θ(t). The lower left

is the input torque applied on the two joints. Lower left is the membrane potential signal

v(t). We see that the v is close to sinusoidal.
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Figure 5.5: Time-domain signal in simulation of quasi-linear system in Eqn. (5.22)
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Figure 5.6: Tip trajectory ρ

Fig. 5.6 shows the tip trajectory ρ. The initial condition of the simulation is set to be on
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the desired trajectory (blue), and we see the simulation result (yellow) overlaps with the

desired blue trajectory, meaning that the CPG synthesized from Process ão can maintain

stable oscillation on desired orbit in the quasi-linear CPG-PMR system.

When simulation is successful on quasi-linear system, we can move on simulating the non-

linear system 

v = f(s)Mkϕ(v)

w = Cϕ(v)− uP

u = w + Fϕ(v)

uP = P (s)u−Kd(s)φ.

(5.23)

The following is the plot of time-domain signal φ(t), θ(t), u(t), v(t) and tip trajectory ρ.
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Figure 5.7: Time-domain signal in simulation of nonlinear system in Eqn. (5.23)
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We see that in Fig 5.7, the membrane potential v(t) deviates a lot from sinusoidal signal.

In Fig. 5.8, the simulated trajectory (yellow) failed to stay on the desired trajectory (blue)

when the initial condition of the simulation is set to be on the desired trajectory. The reason

is that MHB approximation in synthesis process is not accurate enough to represent the

non-linear system in the simulation.
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CHAPTER 6

Conclusion

6.1 Summary of contributions

This research aims to uncover the control mechanisms of CPG and generalize design guide-

lines of controllers for robotic systems.

The leech swimming CPG has demonstrated good adaptive and robust properties. Motivated

by the desire for designing controllers capable of autonomous transitions or robust stability

of limit cycles for robotic systems, we first simplified a fully nonlinear integrated model which

captures observed leech behaviors well. The resulting model is more amenable to analytical

study, and can reproduce almost identical behaviors as the original model under nominal

water and perturbed air conditions.

With a model suitable for analytical study, we obtained results in oscillation profile esti-

mation and coupled oscillator analysis with mechanical linkage. To analyze the closed-loop

system, we proposed a numerical algorithm to solve the MHB equation and estimate the

oscillation profile. The MHB analysis allowed for study of CPG control mechanisms from

the quasi-linear perspective using the controller transfer function C(s). We have found that

(i) the neuronal threshold nonlinearity acts as amplitude-dependent gains to adjust C(s) and

achieve robustness and adaptivity, and (ii) the CPG control acts as a spatial notch filter to

block the desired mode shape by aligning it with the minimum singular vector of C(s), with

high-gain feedback under perturbation for fast recovery. These analysis provides insights for

designing CPG-inspired controllers, as an input-output operator. To understand effect of
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mechanical linkage on the closed-loop system, coupled oscillator analysis are performed in

this chapter. We found that strength of mechanical connection are about the same as the

neural connection. The effect of mechanical linkage are stronger in the anterior portion than

posterior portion of in leech system.

To further understand the internal architecture of CPG, we decomposed the CPG in Chapter

3 into a conservative oscillator and two feed-forward components, using LMI techniques. The

conservative oscillator takes no input in the steady states, and generate membrane potential

v with 360o phase lag, which is the desired phase lag for relative joint angle φ for leeches.

Unlike traditional control using exogenous reference generator sending out reference signal as

a function of time, conservative CPG acts as an internal reference generator, and the reference

is a function of system states, providing the foundation for adaptivity property. Besides

the internal model structure, this decomposition also revealed the weak coupling structure,

essential for stability. When the coupling is nonzero but small, the stability property is

maintained due to continuity of the eigenvalues, and the CPG (reference generator) receives

sensory feedback from the plant through the weak coupling so that the target oscillation

pattern can be modified under perturbations. When the coupling connection is zero, the

CPG acts as the exogenous reference generator which drives the plant stabilized by feedback

loop. The reference tracking would be achieved by stability of the feedback system consisting

of the plant and muscle stiffness component. The proof for the necessary and sufficient

condition for the stability of the quasi-linear eigenstructure system is given in this chapter.

By uncovering the control mechanism of CPG from decomposition, insights are gained for

designing controllers to achieve orbital stability for robotic systems. The weak coupling

eigenstructure discovered in Chapter 4 made the design process a lot more straightforward

than current existing methods. After specifying desired oscillation profile (ω, φ̂) of the plant,

we can synthesize the conservative CPG assuming weak feedback input. This synthesis can

avoid the constraints on the dynamics of either complex or simple but with low fidelity

model, making the process direct. In Chapter 5, we take PMR as the design example,

105



showing single and multiple stable limit cycles can be embedded in the CPG with only

one connectivity matrix. The simulation confirms the orbital stability and adaptivity of

the closed-loop CPG-PMR system. We saw automatic transition from one desired orbit to

another under environmental variations, which shows the synthesized CPG demonstrated

the adaptive property as in the biological CPGs.

This research proposed an integrated model amenable for theoretical study, also capable of

reproducing adaptive behavior of actual leech undulation in both water and air. Using this

model, the internal architecture of CPG was explored, which has never been studied before.

The conservative oscillator and weak coupling structure were discovered. In current state

of knowledge, the mechanism that how CPGs achieve and maintain orbital stability under

perturbations, and how CPGs adjust trajectories under environmental perturbations are

unknown to us. This conservative oscillator and weak coupling architecture can well-explain

the CPG control mechanism of stabilization and trajectory re-planning. For applications

to the community, today’s design of CPG controller in robotic system relies heavily on

manual tuning of the the sensory feedback or mere open-loop control, lack of established

theoretical support. The synthesis also needs to take the complex dynamics of the plant into

consideration, which makes the design computationally inefficient. Based on the newly-found

architecture in this research, several design guidelines are generalized to embed multiple

targeted orbits, with analytically determined sensory feedback gains.

6.2 Future directions

This research also laid a good foundation for future analysis.

First, the study in Chapter 5 shows the limitation of MHB analysis. The marginal stability

of the quasi-linear system (linearized by describing function) is not a sufficient condition for

the orbital stability of the nonlinear system. The discrepancy results from the sinusoidal

approximation of the original periodic signals. The approximation is valid when the original
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signal is close to sinusoids. In the later study, one should develop additional mathematical

tools amenable for analyzing nonlinear systems with non-sinusoidal oscillation profiles.

Second, the current model of CPG is an abstraction of the biological leech CPGs. In each of

the segmental oscillator, 3 neurons with 120o phase lag apart is a functional abstraction of

the actual 13 neurons in each of the ganglion in leech CPGs. This abstraction can reproduce

traveling wave undulation in water and air, and standing wave oscillation in air. It can also

generates the adaptive behavior of real leeches: automatic gait transition when environment

settings is changed from water to air. However, this 3-neuron representation does not capture

the robustness properties observed in leeches. The leech yield undulatory movement in the

posterior half when the body is cut at the mid body. When the nerve cord is severed in

the middle, the leech can maintain traveling wave undulation in water, the oscillation profile

of which is similar to intact nerve cord cases. These observations were not reproduced by

the integrated model with the CPG model described in this dissertation. More realistic

representation of the CPG should be explored later, based on the weakly coupled CPG

structure identified in this research.
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