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Abstract
Fuel-cell catalyst layers (CLs) are porous electrodes that are
fabricated from CL inks: colloidal dispersions of catalyst par-
ticles and ion-conducting polymer (ionomer), dispersed in
solvent(s). The complex interactions between the ink compo-
nents ultimately dictate CL microstructure and electrochemical
performance. To control the CL formation process and optimize
fuel-cell performance, knowledge of these ink interactions is
vital. In this review, we analyze data from ink-focused papers to
elucidate how ink parameters (solvent type, ionomer-to-carbon
ratio, etc.) impact ink interactions and CL performance. We
then discuss these results in the context of the current un-
derstanding of two critical ink interactions: ionomer/solvent and
ionomer/catalyst particle interactions.
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Introduction
The heart of proton-exchange-membrane fuel cells are
their catalyst layers (CLs): heterogeneous porous elec-
trodes composed of agglomerates of catalyst particles,
ion-conducting polymer (ionomer), and void space. The
www.sciencedirect.com
ionomer serves both to bind the CL together and pro-
vide a pathway for ion transport [1,2]. Similarly, void
space is crucial for gas and water transport, whereas the
catalyst particles provide reaction sites and electron
conduction pathways. These structures are necessarily
complex, and characterization is nontrivial [3e5]. As
such, there have been decades of research into CLs
[1,6]. However, most studies have focused on relating

structure to performance. Fundamental understanding
of how those structures form is missing, with CL fabri-
cation relying mostly on empiricism. This gap poses
challenges for the community: if we are to engineer
next-generation optimized CLs in an efficient manner,
knowledge of how CL structures arise is crucial [7].

CLs are fabricated from inks that contain the catalyst
particles and ionomer, dispersed in a solvent [7]. The
particles and ionomer form agglomerates (on the order of
100s of nanometers) in the ink [1,6] that eventually

determine the final CL microstructure. Important pa-
rameters that impact (or are impacted by) this ink-to-CL
progression are shown in Figure 1. Ultimately, one desires
to know how inputs (ink parameters) affect measurable
outputs (CL parameters). Different ink parameters
result in different interactions; these interactions
modulate CL microstructure and performance. For
example, the ionomer/solvent interaction controls the
ionomer conformation in solution. The ionomer/particle
interaction dictates how the ionomer adsorbs to the
catalyst particles in the ink, modifying the ionomer/par-

ticle interface in the CL. Interactions between all three
determine the agglomerate sizes and structures that self-
assemble. Metrics of ink properties that reveal these
different interactions are listed as interaction descriptors.

By understanding how ink parameters affect ink prop-
erties/interactions (which in turn dictate CL structure/
performance), we can engineer inks to control and direct
specific CL microstructures rather than rely on empir-
ical and time-consuming optimization. With that goal in
mind, this review is divided into two sections: first, a

screening to understand how the ink parameters in
Figure 1 impact ink and CL properties using literature
data, and second, a discussion of the current state of
understanding of two critical ink interactions (ionomer/
Current Opinion in Electrochemistry 2021, 29:100744

mailto:azweber@lbl.gov
https://www.sciencedirect.com/journal/current-opinion-in-electrochemistry/special-issue/10PDD2B98XM
https://www.sciencedirect.com/journal/current-opinion-in-electrochemistry/special-issue/10PDD2B98XM
https://doi.org/10.1016/j.coelec.2021.100744
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coelec.2021.100744&domain=pdf
www.sciencedirect.com/science/journal/24519103
www.sciencedirect.com/science/journal/24519103


2 Fundamental and Theoretical Electrochemistry
solvent and ionomer/particle) to help elucidate
observed trends.
Ink parameter screening
Although there has been much CL research, the litera-
ture is full of contradictory data, partly because the
properties or values of the ink parameter categories in
Figure 1 (catalyst properties, ionomer chemistry, solvent
type, and fabrication method) can be drastically
different. Catalyst particles (on the order of a few
nanometers) are usually platinum or platinum-alloy
nanoparticles supported on larger carbon nanoparticles
(although some efforts are focused on noneplatinum
group metal catalyst development [8e10]). The cata-
lyst loading on the support particle can vary. Multiple
carbon supports (w30e50 nm diameter) may be used:
two common commercial types are Vulcan and high-
surface-area carbon (HSC), although novel carbon sup-
ports are also explored [11e13]. Vulcan is more graphitic
(and hydrophobic) than HSC. Because of Vulcan’s low
internal porosity, most platinum decorates the external
surface in Vulcan-supported catalysts. In contrast, in
HSC-supported catalysts, much platinum is located in
Figure 1

Pictorial representation of ink and catalyst layer structure (not meant to be ex
govern these structures/properties. Parameter list is not exhaustive. These par
in Supplementary Material.
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internal pores. Furthermore, many ionomer chemistries
are used. The most ubiquitous class of cation-
conducting ionomers is perfluorosulfonic-acid (PFSA)
ionomers, which consist of Teflon-like backbones and
pendant sidechains that terminate in sulfonic-acid
groups. However, even within PFSA chemistries, side-
chain spacing (i.e. charge density, defined by the
equivalent weight [EW], grams polymer/mole sulfonate)

and length can differ; these alter the intrinsic ionomer
properties [2]. Two commonly used ionomers are Nafion
and Aquivion; Nafion possesses a longer sidechain
(structures are shown in Supplementary Material
Figure S1). Finally, the solvents used to disperse the
ionomer and particles are not standardized: although
alcoholewater mixtures are the most common, myriad
others have been investigated [14]. In addition, even
when considering the same solvent system, the
composition may vary (i.e. the ratio of alcohol to water).

To complicate matters further beyond just material se-
lection, fabrication choices can influence final proper-
ties. The method [15] and length of mixing [16] may
differ. The ratio of components (namely, ionomer-to-
act or drawn to scale) and associated relevant important parameters that
ameters guided the database collection and regression analysis, as shown

www.sciencedirect.com
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Fuel-cell ink analysis Berlinger et al. 3
carbon [I:C] ratio) can be modified, as well as the total
solids loading, which is often set by the deposition
method: different techniques have different viscosity
requirements. Ultrasonic-spray coating [17e19], doctor
blading [20], screen printing [21], and roll-to-roll [22]
processing of electrodes can occur either on the mem-
brane to form a catalyst-coated membrane, on diffusion
media to form a gas-diffusion electrode, or on a decal

[23e25] and later transferred and hot pressed.

This disparate and massive parameter space makes it
exceedingly difficult to compare studies directly to each
other. In addition, within the literature, there are two
main types of papers: CL focused and ink focused. Most
papers fall into the former category and often report
incomplete ink parameters, as their emphasis is on
characterizing CL structure and performance. On the
other hand, ink-focused papers systematically vary one
ink parameter but typically investigate its impact on

only one or two CL parameters. This yields collective
information rich on either end of the ink-to-CL
spectrum but lacks information connecting the two
states. In an attempt to do so, we gathered data from
ink-focused papers [19e21,24e42] that had sufficient
detail about ink parameters listed in Figure 1 and
performed a linear regression to test the correlation
between these parameters and both ink interaction
descriptors and CL parameters. To limit the scope, only
papers using PFSA and platinum-based catalysts and
those that investigated at least three variations of one
Figure 2

Data from Refs. [19–21,24–42] that displays the effect solvent dielectric cons
and zeta potential) and (c, d) catalyst layer parameters (limiting current density
each subplot categorize similar data based on ionomer type (left) or carbon su
regression fit (dotted line).

www.sciencedirect.com
parameter (i.e. three different solvents or I:C ratios,
etc.) were chosen. Input parameters chosen for analysis
were continuous variables (not discreet) that were
consistently reported, and output variables were chosen
based on the prevalence of data available. From these
criteria, we selected I:C ratio, solvent dielectric con-
stant (ε), zeta potential, agglomerate size, electro-
chemical surface area (ECSA), and limiting current

density (ilim) as variables to perform the regression.
More details on data collection/analysis, additional
parameter plots, the full database, and parameter se-
lection (listed in Table S1) can be found in
Supplementary Material.

Figure 2 examines the influence of ε on interaction
descriptors (agglomerate diameter and zeta potential)
and CL parameters (ilim and ECSA). Because a wide
range of solvents and solvent mixtures have been
explored, solvent is represented by ε to easily compare

across different studies. Figure 3 plots the same
properties, now as a function of I:C ratio. The first
thing to note is that no parameter of the ones studied
is controlling; there are certainly correlations, but
outcomes cannot be predicted solely from one
parameter. Spread in the data is because of the vari-
ability in all the other ink parameters. In addition,
particularly for the I:C ratio data, there are clusters of
points located at one value (i.e. I:C ratio of 1); vari-
ability in the y-value is again because of the differ-
ences in the other parameters not held constant. That
tant (ε) has on (a, b) ink interaction descriptors (agglomerate diameter, d,
, ilim, and electrochemical surface area [ECSA]). The left and right panels of
pport type (right). The shaded region represents one standard error of the

Current Opinion in Electrochemistry 2021, 29:100744
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4 Fundamental and Theoretical Electrochemistry
being said, a few general trends are observed. First,
there is no strong correlation between agglomerate
diameter and zeta potential as a function of ε,
suggesting that the primary forces controlling the ag-
gregation process are not electrostatic in nature.
However, CL performance does seem to be related to
ε: Figure 2 shows ECSA and ilim increasing with ε.
This is in agreement with recent studies that

demonstrated the impact of water:propanol ratio on
CL performance and ionomer agglomerate coverage
[19].

In Figure 3, we see zeta potential generally becomes
more negatives as I:C ratio increases, likely because of
greater ionomer adsorption to the agglomerate surface.
We also see CL parameters are impacted by I:C ratio,
which has been the focus of a number of studies
[21,41,43,44]. Electrochemical performance is
controlled by how much ionomer is in contact with the

catalyst sites: too much results in high transport re-
sistances and catalyst poisoning, whereas too little
ionomer coverage yields insufficient ion conduction
[45e50]. The lack of consensus on an optimal I:C ratio
value indicates that it is material dependent; this is
evidenced by the different I:C ratio trends for HSC and
Vulcan in Figure 3. Most probably, optimal I:C ratio also
depends on parameters such as solvent, EW, etc.
Although these trends are complex, it is clear solvent
choice and I:C ratio alter ink interactions and CL
parameters.
Figure 3

Data from Refs. [19–21,24–42] that displays the effect ionomer-to-carbon (I:C
and zeta potential) and (c, d) catalyst layer parameters (limiting current density,
each subplot categorize similar data based on ionomer type (left) or carbon su
regression fit (dotted line).

Current Opinion in Electrochemistry 2021, 29:100744
Ionomer/solvent interactions
Because molecular weight distributions are difficult to

characterize for PFSAs, most PFSA dispersion analysis
has relied on characterizing aggregate structure; the
PFSA dispersing solvent affects its conformation. Scat-
tering [14,51,52] and molecular dynamics (MD) simu-
lations [53e56] reveal that in many polar solvents, PFSA
forms cylindrical bundles, although swollen spheres and
random coils have also been observed. This solvent-
induced conformation is driven by competing prefer-
ences for hydrophobic backbone aggregation and elec-
trostatic sidechain repulsion. The solvent/ionomer
interaction has been described using solubility param-

eters that have been measured for both the backbone
and the sidechains [29].

As mentioned earlier, waterealcohol mixtures are some
of the most commonly studied solvents. Changing the
water:propanol ratio changes the relative acidity of the
dispersions, which is hypothesized to be because of
sidechain/solvent versus backbone/solvent interactions
[26]. Namely, the sidechains of PFSA may preferentially
extend outward into solution in water-rich solvents,
whereas in propanol-rich solvents, PFSA conformation

may have a more hydrophobic exterior. Similar struc-
tures were predicted using MD simulations; by explic-
itly considering both solvents, it is shown that different
solvents partition inside versus outside the PFSA
aggregate [56].
) ratio has on (a, b) ink interaction descriptors (agglomerate diameter, d,
ilim, and electrochemical surface area [ECSA]). The left and right panels of
pport type (right). The shaded region represents one standard error of the

www.sciencedirect.com
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Fuel-cell ink analysis Berlinger et al. 5
These dispersion conformations modulate the proper-
ties of films and membranes once cast [57e60]. In situ
scattering was recently used to understand the
dispersion-to-film transition and how different solvents
determine the evolution of thin-film morphology during
drying [60,61]. Conductivity and water uptake mea-
surements show that as the water content in the
dispersion increases relative to propanol, the transport

properties of the cast film improve [60]. It is possible
the enhanced ilim in Figure 2 at higher ε could in part be
because of this effect.

The fact that solvent type alters the final structure and
properties of thin films has additional implications.
PFSA used in ink formulations and thin-film studies is
often diluted from stock dispersions that come in
various different solvents themselves. One must
consider both the solvent used to dilute (i.e. the ink
solvent) as well as the native stock solvent, as these will

both alter PFSA behavior.

Finally, these different dispersion conformations
(aggregate size, degree of hydrophilicity/hydrophobicity,
etc.) will influence how the ionomer adsorbs to catalyst
particles in solution (altering the ionomer/particle
interaction, discussed in the next section). Modified
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory
has been applied to ink systems to try to understand
aggregation processes [30,62]. Although these are
important first steps in modeling ink interactions, they

overlook some important physics. In DLVO theory, sol-
vent modifies the Hamaker attraction term and the
electrostatic repulsion potential through changes in ε.
However, in addition to changing ε, solvent alters the
physical characteristics of the PFSA aggregate, as
discussed previously. Both these effects will influence
overall aggregation behavior, and the coupling between
them cannot be ignored. Figure 2 demonstrates this
point: solvent ε definitively changes CL performance,
but the aggregation process is not governed by classical
(electrostatic) DLVO forces (exemplified by the
aggregate size and zeta potential trends).
Ionomer/particle interactions
The ionomer/particle interaction encompasses both the
ionomer/platinum and the ionomer/support (carbon)
interaction. Let us first consider the ionomer/carbon

interaction. MD simulations have shown that PFSA in-
teracts with carbon surfaces via backbone adsorption
[63,64]; this interaction is likely hydrophobic in nature
[63]. Importantly, adsorption was predicted to be a
strong function of solvent environment and EW [64].
This was recently verified experimentally by quartz
crystal microbalance experiments [65]. In addition,
PFSA binding behavior to carbon has been probed with
isothermal titration calorimetry; the analysis of the
entropic and enthalpic contributions to the binding free
www.sciencedirect.com
energy reveals that the binding process is entropically
dominated [65,66]. This also points to hydrophobic in-
teractions between PFSA and the carbon surface.

Because the ionomer/platinum interface controls elec-
trochemical reactions, the ionomer/platinum interaction
has received much attention in the literature. During
fuel cell operation, many groups have noted that the

PFSA sulfonate moieties interact with the platinum
catalyst surface, effectively poisoning the catalyst by
blocking active sites [49,50,67e69]. This is also
evidenced by increased oxygen transport resistance
[45,70]. A number of groups have extrapolated the re-
sults of these operando studies and have assumed there is
a strong, inherent platinum/sulfonate interaction; they
postulate this interaction drives adsorption to agglom-
erates in the ink. However, it is important to note that
this interaction is potential dependent and primarily
noted at elevated potentials [67] (above the potential of

zero charge [71,72]). In addition, spectroscopic studies
have shown that in addition to sulfonate groups, there is
co-adsorption of fluorocarbon [67,68,73] and ether
oxygen groups [50]. In inks, while binding strength does
increase with decreasing EW, the amount of PFSA that
adsorbs to platinum is less than the amount that adsorbs
to a hydrophobic (carbon-like) surface [65]. Moreover,
the binding mechanism is entropically driven, similar to
that seen with carbon [65].

All previously mentioned information suggests that the

ionomer/platinum ink interaction is different from that
in operating fuel cells: in inks, it is not particularly
strong, compared with the other interactions present.
Although ex situ thin-film studies have revealed different
behavior on platinum surfaces versus on silicon [74,75],
it is possible this is merely because of changes in sub-
strate hydrophobicity, rather than because of strong
specific-ion binding between sulfonate and platinum. In
fact, PFSA structures have been shown to order differ-
ently on substrates of varying hydrophobicity [76].
These ionomer/platinum ink interactions are also sub-
ject to dispersion solvent effects: atomic force micro-

scopy studies reveal that PFSA films are smoother when
they adsorb from mixed water-propanol solvents onto
platinum, rather than from high-water concentration
solvents [73].

Given the differences (and similarities) between the
ionomer/platinum and ionomer/carbon ink interaction,
and because of the larger surface area of carbon relative
to platinum on the exterior of catalyst particles, it is
likely that solution-level interactions are primarily
controlled by ionomer/carbon interactions. This in-

dicates that different carbon types should manifest
different ionomer/carbon interactions; the impact this
has on CL performance should be evident when
exploring I:C ratio. This is seen in Figure 3: parameters
Current Opinion in Electrochemistry 2021, 29:100744
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have different trends as a function of I:C when using
Vulcan versus HSC.
Concluding remarks
Ultimately, the goal is to be able to predict
CL performance, given certain ink parameters, or even
better, be able to determine how an ink would need to
change to achieve optimal CL performance via opti-
mized structure. That way, if a more active catalyst type
is created, or a more conductive and stable ionomer is
synthesized, one could know a priori how it would affect
CL properties, without the need for months of empirical
optimization. To make this a reality, we must understand

how ink parameters impact ink interactions (and inter-
action descriptors) and, in turn, how these interactions
dictate CL parameters. However, because of disparate
material sets used and often incomplete experimental
methods detailing CL fabrication, it is difficult to make
use of the wealth of CL literature. Rather, systematic,
ink-focused research is needed, and the community
must make a concerted effort to report all relevant ink
details (i.e. metadata) moving forward.

Despite these challenges, great strides have been made

toward understanding how ink parameters influence ink
interactions, in particular, ionomer/particle and ionomer/
solvent interactions. Next, it is imperative to link
interaction descriptors to CL parameters. In this way, we
can completely understand (and therefore control) the
ink-to-CL fabrication process, enabling ink engineering
for smarter CL design.
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