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The Critical Roles of Proteostasis 
and Endoplasmic Reticulum Stress in 
Atrial Fibrillation
Padmini Sirish 1,2*, Daphne A. Diloretto 1, Phung N. Thai 1,2 and Nipavan Chiamvimonvat 1,2,3*

1 Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, 
United States, 2 Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States, 
3 Department of Pharmacology, University of California, Davis, Davis, CA, United States

Atrial fibrillation (AF) remains the most common arrhythmia seen clinically. The incidence 
of AF is increasing due to the aging population. AF is associated with a significant increase 
in morbidity and mortality, yet current treatment paradigms have proven largely inadequate. 
Therefore, there is an urgent need to develop new effective therapeutic strategies for AF. 
The endoplasmic reticulum (ER) in the heart plays critical roles in the regulation of excitation-
contraction coupling and cardiac function. Perturbation in the ER homeostasis due to 
intrinsic and extrinsic factors, such as inflammation, oxidative stress, and ischemia, leads 
to ER stress that has been linked to multiple conditions including diabetes mellitus, 
neurodegeneration, cancer, heart disease, and cardiac arrhythmias. Recent studies have 
documented the critical roles of ER stress in the pathophysiological basis of AF. Using an 
animal model of chronic pressure overload, we demonstrate a significant increase in ER 
stress in atrial tissues. Moreover, we demonstrate that treatment with a small molecule 
inhibitor to inhibit the soluble epoxide hydrolase enzyme in the arachidonic acid metabolism 
significantly reduces ER stress as well as atrial electrical and structural remodeling. The 
current review article will attempt to provide a perspective on our recent understandings 
and current knowledge gaps on the critical roles of proteostasis and ER stress in 
AF progression.

Keywords: atrial fibrillation, endoplasmic reticulum stress, inflammation, oxidative stress, electrical remodeling, 
structural remodeling

INTRODUCTION

Atrial fibrillation (AF) is the most commonly diagnosed sustained arrhythmia, affecting 46 
million people worldwide (Kornej et  al., 2020). The prevalence of AF has increased 3-fold 
over the past 50 years due to the aging population (Kornej et  al., 2020). AF is associated with 
a significant increase in morbidity and mortality (Chugh et  al., 2001, 2014; Estes et  al., 2011), 
yet, current treatment paradigms have proven largely inadequate (Prystowsky et  al., 2010; 
Wilton et  al., 2010; Van Wagoner et  al., 2015). Clinically available anticoagulants and anti-
arrhythmic drugs aim to prevent clot formation and restore sinus rhythm, respectively; however, 
they carry the risk of unwanted bleeding and proarrhythmia, including lethal ventricular 
tachyarrhythmias (Lemme et  al., 2018; van Gorp et  al., 2020). The success rate for catheter 
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ablation in longstanding persistent AF is only 30–50% (Scherr 
et al., 2015). Given its rising prevalence and lack of effective 
treatments, there is a need for a deeper understanding of the 
mechanisms underlying AF progression.

AF is self-promoting and progressive in nature (Nattel et al., 
2020). Ectopic activity represents one of the main mechanism 
that initiates AF (Staerk et  al., 2017). The pulmonary veins 
(PVs) are the main source of ectopic firing within the atria 
(Staerk et  al., 2017; Nattel et  al., 2020). The PVs’ unique 
electrical properties and complex structure promote ectopic 
activity and reentry, which is needed to sustain the arrhythmia 
(Staerk et  al., 2017; Nattel et  al., 2020). PVs have shorter 
action potential duration and amplitude compared to atrial 
cardiomyocytes (CMs; Mahida et al., 2015). Similarly, branched 
fibers within the PVs have abrupt orientation change, which 
can potentially allow for reentrant circuits (Nattel et al., 2020). 
The ectopic firing is mainly due to spontaneous Ca2+ leak 
from the sarcoplasmic reticulum (SR), which in turn activates 
an inward current via the Na+-Ca2+ exchanger (NCX). This 
influx of Na+ causes the CM to spontaneously depolarize. The 
ectopic activity from these events directly triggers an AF 
episode, coupled with conduction abnormalities within the 
tissue can then generate a reentrant circuit to sustain the  
arrhythmia.

Aging, as well as injury to the heart, causes the atria to 
undergo structural remodeling and fibrosis. In response to 
chronic pressure overload, inflammation or hypoxia, signaling 
molecules including angiotensin II (ANG II), transforming 
growth factor-β1 (TGF-β1), platelet-derived growth factor 
(PDGF), and connective-tissue growth factor (CTGF) activate 
membrane receptors that lead to the production of extracellular 
matrix (ECM) and fibrosis (Nattel et  al., 2020). Downstream 
signaling pathways include NLR family pyrin domain containing 
3 (NLRP3) and nuclear factor-κB (NF-κB). Conduction slowing 
from the downregulation of connexins coupled with tissue 
fibrosis result in the increased propensity for reentrant circuits, 
which allow for sustained arrhythmias (Nattel et  al., 2020).

Given that AF progresses over decades, age is the most 
significant risk factor (Kornej et al., 2020). Hallmarks of aging, 
including chronic inflammation and increased reactive oxygen 
species (ROS) production, damage vasculature and myocardium, 
ultimately increasing one’s risk of developing AF (Kornej et al., 
2020). Hypertension is an underlying condition for a fourth 
of all AF patients (Kornej et  al., 2020). The elevated blood 
pressure triggers structural remodeling and fibrosis. Similarly, 
type 2 diabetes mellitus patients have a 40% increased risk of 
developing AF. Here, oxidative stress and inflammation seen 
in this condition lead to mitochondrial dysfunction and DNA 
damage, which can predispose one to AF (Kornej et  al., 2020). 
While AF usually occurs in the presence of other comorbidities, 
AF can also lead to a variety of complications including heart 
failure and stroke. Given its clinical significance, the underlying 
mechanisms of AF must be well understood to design effective 
therapeutic strategies. The current review article will attempt 
to provide a perspective on our recent knowledge in the effects 
of endoplasmic reticulum (ER) stress and inflammation on 
AF progression.

PROTEOSTASIS

Protein folding is a critical mechanism that sustains specialized 
cell and tissue function, which ultimately maintains our 
physiology and protects us from disease (Balch et  al., 2008; 
Powers et al., 2009; Bouchecareilh and Balch, 2011; Hetz et al., 
2015). The tightly regulated generation and maintenance of 
these proteins are known as protein homeostasis or proteostasis 
(Balch et  al., 2008; Powers et  al., 2009; Bouchecareilh and 
Balch, 2011). The ER is the organelle that houses protein 
synthesis, folding, and maintenance. While about 30% of our 
proteins are made within the ER, all proteins are transported 
back to the ER for quality control screenings (Hetz et  al., 
2015; Navid and Colbert, 2017). Here, over 2,000 chaperones, 
including heat shock proteins, and degradative molecules make 
up the proteostasis network (PN), which guides protein synthesis, 
folding, conformational maintenance, and degradation (Hetz 
et  al., 2015; Navid and Colbert, 2017; Hipp et  al., 2019). The 
chaperones use ATP-dependent and independent interactions 
to fold proteins into a more energetically favored state and 
maintain these configuration (Bouchecareilh and Balch, 2011; 
Hipp et  al., 2019). However, if the chaperones are not able 
to fold the proteins correctly, ER-associated degradation (ERAD) 
systems, such as the ubiquitin–proteasome system (UPS) and 
autophagosomal–lysosomal pathway, are able to digest and 
degrade the proteins to prevent downstream dysfunction 
(Bouchecareilh and Balch, 2011; Hetz et  al., 2015; Navid and 
Colbert, 2017; Hipp et  al., 2019).

PN activity is determined by many signaling pathways, 
including the unfolded protein response (UPR), heat shock 
response (HSR), UPS, Ca2+ sensing, and inflammatory response 
(Bouchecareilh and Balch, 2011). Despite being tightly regulated, 
the PN can become overwhelmed and damaged by various 
factors, including genetic mutations, pathologies, environmental 
stressors, and pollutants (Bouchecareilh and Balch, 2011). When 
the ER’s processing capability cannot meet its demand, the 
cell begins to experience ER stress (Bouchecareilh and Balch, 
2011; Navid and Colbert, 2017; Chadwick and Lajoie, 2019). 
Here, the ER is overloaded with misfolded proteins, which 
can become toxic to the cell (Adams et  al., 2019).

ER STRESS

Most cells are performing near their functional limits; therefore, 
overwhelming the ER and triggering ER stress can occur 
during hypoxia, nutrient deprivation, point mutations that 
hinder protein folding, redox changes, and Ca2+ imbalances 
that impair PN chaperones and challenge proteostasis (Hetz 
et  al., 2015; Adams et  al., 2019). Under ER stress, the cell 
initiates the UPR, a specialized surveillance system, to prevent 
damage to the cell (Hetz et  al., 2015; Adams et  al., 2019). 
Abnormal proteins are screened before they are secreted out 
of the ER and potentially hinder cell functions (Hetz et  al., 
2015). Once ER stress is detected, the UPR initiates signaling 
cascades that tune protein folding capability and protein 
synthesis to restore proteostasis (Hetz et  al., 2015; Navid and 
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Colbert, 2017; Adams et  al., 2019). While the UPR is an 
effective method for mediating ER stress, if the cell’s condition 
does not improve, “terminal UPR” will be  initiated and 
ultimately lead to cell apoptosis (Hetz et  al., 2015). Given 
UPR’s lethality if left on too long, chronic ER stress has 
been identified as a key contributor to many disease pathologies, 
including neurodegeneration, diabetes, cancer, inflammatory 
and metabolic disorders, and heart disease (Hetz et  al., 2015; 
Liu and Dudley, 2018; Chadwick and Lajoie, 2019). Therefore, 
the cell must carefully balance the UPR to safely remedy ER 
stress and maintain proteostasis.

UPR SIGNALING

Early discoveries of an adaptive response to ER stress within 
yeast Saccharomyces cerevisiae prompted the search for a similar 
mechanism within mammals (Figure 1; Kozutsumi et al., 1988). 
Soon after, the three main mammalian UPR sensors, inositol 
requiring enzyme 1α/β (IRE1; Tirasophon et al., 1998), PKR-like 
ER kinase (PERK; Harding et  al., 1999), and activating 
transcription factor 6α/β (ATF6; Haze et al., 1999) were discovered 
(Hetz et  al., 2015; Adams et  al., 2019). The activation of these 
transmembrane sensors halts de novo protein synthesis and 
increases the ER’s folding capabilities to allow for the proteins 
within the organelle to be  processed effectively and efficiently 
(Hetz et  al., 2015; Adams et  al., 2019).

UPR activation is dependent on the chaperone binding 
immunoglobulin protein/glucose-regulated protein 78 kDa (BiP 
also known as GRP78) binding to the misfolded proteins within 
the ER lumen (Hetz et  al., 2015; Bhattarai et  al., 2020). When 
inactive, BiP is bound to IRE1, PERK, and ATF6 (Hetz et  al., 
2015; Chadwick and Lajoie, 2019; Hipp et  al., 2019; Bhattarai 
et  al., 2020, 2021). However, once BiP dissociates from these 
sensors and binds to misfolded proteins, various cascades are 
initiated that ultimately slow down protein translation, improve 
folding capabilities, and restore proteostasis.

Once BiP dissociates from IRE1, the sensor is primed for 
oligomerization and auto-transphosphorylation (Hetz et  al., 
2015). After undergoing dimerization and phosphorylation, 
IRE1 undergoes a conformational change that activates its 
RNase domain (Hetz et al., 2015). The RNase excises an intron 
within the X-box binding protein 1 (XBP1) mRNA, which 
shifts the reading frame and activates the transcription factor 
XBP1s (Hetz et  al., 2015; Adams et  al., 2019; Bhattarai et  al., 
2020). This factor translocates to the nucleus and controls 
protein folding by upregulating chaperones and decreases demand 
by producing more ERAD components (Navid and Colbert, 
2017; Adams et  al., 2019; Bhattarai et  al., 2020). XBP1s also 
instructs the ER to grow so that it can accommodate for the 
excess misfolded proteins (Oakes and Papa, 2015; Liu and 
Dudley, 2018). In addition, IRE1 activation causes mRNA within 
the ER to be  degraded via a process known as regulated IRE1 
dependent decay (RIDD; Liu and Dudley, 2018; Bhattarai et al., 

FIGURE 1 | Schematic representation of the unfolded protein response (UPR) pathway.
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2021). Altogether, this response allows for the ER to better 
manage protein folding and match its proteins  
synthesis demand (Hetz et  al., 2015; Navid and Colbert, 2017; 
Adams et  al., 2019).

The PERK sensor is responsible for regulating protein 
translation (Adams et  al., 2019). Similar to IRE1, once BiP 
detaches from PERK, the sensor is dimerized and phosphorylated. 
This activated PERK then phosphorylates eukaryotic initiation 
factor 2-α-subunit (eIF2α), which inhibits ribosomes, degrades 
mRNA, and halts global protein synthesis to remedy ER overload 
(Hetz et  al., 2015; Liu and Dudley, 2018; Adams et  al., 2019; 
Bhattarai et al., 2020). Paradoxically, eIF2α also activates activation 
transcription factor 4 (ATF4), which is involved in antioxidant 
pathways and increases the ER’s protein folding capabilities by 
producing more chaperones (Hetz et al., 2015; Liu and Dudley, 
2018; Adams et  al., 2019; Bhattarai et  al., 2020).

The ATF6 sensor, which is regulates protein folding capabilities 
and ERAD pathways, has a slightly different mechanism of 
action. When BiP is not bound to this protein, ATF6 displays 
an export motif. Once it leaves the ER, ATF6 travels to the 
Golgi complex and becomes activated after being cleaved by 
site-1 and site-2 proteases (S1P and S2P). ATF6’s cleaved 
cytosolic domain, ATF6f, localizes within the nucleus and 
activates transcription factors that upregulate the production 
of ERAD components as well as protein folding chaperones 
(Hetz et  al., 2015; Adams et  al., 2019). Again, these cascades 
aim to decrease the amount of proteins within the ER and 
increase its folding capabilities to allow for its quality control 
machinery to work within its limits.

Together, these three UPR sensors work toward lowering 
the ER’s protein load and increasing its folding capacity to 
restore proteostasis (Adams et  al., 2019). To match this 
translational shutdown, ribosomes also dissociate from the ER 
to prevent further translation (Hetz et  al., 2015). Increased 
ERAD and autophagy activity clears misfolded proteins from 
the ER to alleviate stress (Hetz et  al., 2015). However, if this 
response is over activated, the cell runs the risk of shifting 
toward terminal UPR and ultimately becoming apoptotic.

CHRONIC ER STRESS AND CELL 
DEATH

Given that one of UPR’s main mechanism of action depends 
on the halt of new protein translation, if this block was to 
be  prolonged, the cell would not be  able to keep up with its 
metabolic demands and die (Adams et  al., 2019). Therefore, 
the branches of the UPR have the potential to trigger 
pro-apoptotic cascades if over activated in the case of chronic 
ER stress and terminal UPR. During prolonged ER stress, IRE1 
begins to interact with tumor necrosis factor receptor associated 
factor-2 (TRAF2) to activate apoptosis signal-regulating kinase 1 
(ASK1). This kinase then activates c-Jun amino-terminal kinase 
(JNK), which ultimately leads to apoptosis (Bhattarai et  al., 
2020, 2021; Read and Schroder, 2021). The IRE1-TRAF2 
interaction is also able to phosphorylate IκB kinase, which in 
turn causes NF-κB to localize in the nucleus and promote 

inflammatory gene transcription (Bhattarai et al., 2021). Similarly, 
if PERK is over activated, the cell can become apoptotic. The 
downstream transcription factor ATF4 also activates the 
pro-apoptotic gene CCAAT/enhancer-binding protein 
homologous protein (CHOP; Hetz et al., 2015; Liu and Dudley, 
2018; Bhattarai et  al., 2020). Therefore, during chronic ER 
stress, CHOP is highly expressed and promotes pro-apoptotic 
pathways. CHOP and ATF4 have also been shown to interact 
with one another to upregulate protein synthesis, which further 
burdens the ER (Hetz et  al., 2015; Bhattarai et  al., 2020, 2021). 
This in turn depletes ATP and produces ROS, which ultimately 
leads to cell death (Hetz et  al., 2015). This delicate balance 
between the UPR sensors being protective and promoting cell 
death highlights the significance of the PN and the need for 
an effective response to prevent prolonged ER stress and 
UPR activation.

ER STRESS AND INFLAMMATION

ER stress-induced UPR signaling mediates inflammation via 
NF-κB. All three branches of the UPR activate NF-κB via 
gene transcription (Hasnain et  al., 2012; Chipurupalli et  al., 
2021). Under normal conditions, NF-κB forms a complex with 
inhibitor kappa B (ΙκΒ) and is unable to translocate to the 
nucleus and activate gene transcription. Under ER stress, IκB 
is phosphorylated and degraded, ultimately allowing NF-κB 
to translocate and trigger cytokine expression. Initially, IRE1 
branch is activated when the chaperone BiP that is usually 
bound to the three factors, IRE1, ATF6, and PERK, disengages 
due to the accumulation of misfolded proteins in the ER. This 
leads to the autophosphorylation of IRE1 and binding to adaptor 
protein, TRAF2, activating JNK/AKT pathways (Hasnain et al., 
2012; Chipurupalli et  al., 2021). The IRE1/TRAF2 complex 
also activates ΙκΒ kinase, which phosphorylates IκB, leading 
to NF-κB nuclear translocation and cytokine expression. The 
autophosphorylation of PERK results in the expression of 
inflammatory cytokines interleukin (IL)-1, 6, and tumor necrosis 
factor alpha (TNF-α; Chipurupalli et  al., 2021). CHOP which 
is activated within the PERK branch also regulates NF-κB. 
Finally, the ATF6 branch of the UPR relies on mTOR/AKT 
signaling to activate NF-κB, leading to inflammatory cytokine  
expression.

CRITICAL ROLES OF ER STRESS IN 
CARDIOVASCULAR DISEASE

As our bodies and cells age, the PN becomes increasingly 
burdened and is unable to maintain proteostasis (Chadwick 
and Lajoie, 2019; Hipp et  al., 2019). Chaperone expression 
tends to decline, ultimately allowing for misfolded proteins to 
accumulate within the ER (Chadwick and Lajoie, 2019; Hipp 
et al., 2019). Exposure to oxidation further impairs the existing 
chaperones and contributes to the aggregation of misfolded 
proteins (Chadwick and Lajoie, 2019; Hipp et  al., 2019). Key 
UPR molecules including BiP and PERK also become damaged 
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over time and hinder the PN’s efficiency to respond to ER 
stress (Chadwick and Lajoie, 2019). Given that a hallmark of 
an aging proteome is a decline in protein solubility, this causes 
proteins to aggregate, making the PN work harder, and ultimately 
creating a positive feedback loop and further disturbs proteostasis 
(Hipp et  al., 2019).

While our PN steadily declines with age, ER stress has 
been linked to multiple conditions, including diabetes mellitus, 
neurodegeneration, cancer, heart disease, and arrhythmias (Oakes 
and Papa, 2015; Liu and Dudley, 2018; Chadwick and Lajoie, 
2019). Mutations due to protein misfolding, aggregating proteins, 
and dysfunctional UPR sensors have been shown to lead to 
these conditions (Oakes and Papa, 2015). A declining PN 
introduces the risk of incorrect folding of insulin’s precursor, 
preproinsulin, which can lead to diabetes (Oakes and Papa, 
2015; Chadwick and Lajoie, 2019). Misfolded proteins can 
be  toxic once secreted from the ER and can harm neurons, 
which can lead to neurodegeneration (Oakes and Papa, 2015). 
In the case of cancer, the unfavorable conditions, such as 
hypoxia, nutrient deprivation, and oxidation, that trigger ER 
stress are often where tumor cells infiltrate and metastasize 
(Oakes and Papa, 2015). CMs near the myocardial infarct also 
experience hypoxia and ER stress, which initiates the UPR. 
However, since this tissue normally experiences chronic ER 
stress, terminal UPR signals the CMs toward a pro-apoptotic 
cell fate, leading to significant CM loss and potentially heart 
failure (Oakes and Papa, 2015).

The UPR is especially important for the maintenance of 
our heart, given CMs’ lack of regenerative capabilities (Liu 
and Dudley, 2018). Since adult CMs cannot efficiently repair 
themselves or replicate, the existing cells must be  carefully 
taken care of. The SR, a specialized domain of the ER, tightly 
regulates Ca2+ stores and transients within CMs that allow for 
the cell to survive and function as expected (Liu and Dudley, 
2018). Therefore, it is especially crucial that the ER is regulated 
and maintained within its functional limit to ensure CM viability 
and cardiac function. As mentioned previously, cardiovascular 
diseases put great stress on the ER due to the extreme conditions 
the CMs endure. Therefore, these conditions tend to trigger 
chronic ER stress, which can then further lead to cardiac 
dysfunction (Liu and Dudley, 2018).

INFLAMMATION IN AF

Inflammation is one of the major risk factors that has been 
linked to AF. Both local inflammation as seen in patients with 
myocarditis and systemic inflammation associated with post 
coronary artery bypass grafting or autoimmune diseases are 
correlated with increase AF risk (Morgera et  al., 1992; Bruins 
et  al., 1997; Lazzerini et  al., 2016). Inflammatory infiltrates 
and increased serum levels of proinflammatory cytokines have 
been shown to be  present in both animal models and patients 
with AF (Sun et  al., 2007; Corradi et  al., 2008; Harada et  al., 
2015). In our study using mouse pressure overload thoracic 
aortic constriction (TAC) model, we demonstrated a significant 
increase in proinflammatory cytokine and chemokine levels 

including interferon-γ (IFN-γ), TNF-α, and monocyte 
chemoattractant protein-1 (MCP-1) in the TAC mice compared 
to sham animals (Figure  2A; Sirish et  al., 2016). We  utilized 
an in vitro model of human induced pluripotent stem cell 
derived-cardiomyocytes (hiPSC-CMs) to elucidate the critical 
downstream NF-κB signaling cascade affected by the increase 
in inflammatory cytokine. Our data demonstrated an increased 
nuclear translocation of NF-κB in hiPSC-CMs and a significant 
increase in the pIκBα and nuclear NF-κB in response to TNF-α 
stimulation. Activated NF-κB increases the gene expression of 
inflammatory cytokines, intensifying inflammation and eventually 
contributing to atrial remodeling substantiating the “AF begets 
AF” phenomenon.

ROLE OF ER STRESS IN AF

Several studies have correlated inflammatory cytokines, such 
as MCP-1, with disruption protein folding in the ER leading 
to the activation of ER stress response (Azfer et  al., 2006). 
ER stress has been shown to be  involved in the 
pathophysiological basis of AF (Yuan et  al., 2020). The ER 
in the heart contributes to the regulation of excitation-
contraction coupling and perturbation in the ER homeostasis 
due to intrinsic and extrinsic factors, such as inflammation, 
oxidative stress, and ischemia, leads to ER stress, which 
contributes to cardiac hypertrophy, fibrosis, and apoptosis 
(Park et  al., 2012; Groenendyk et  al., 2013; Luo et  al., 2015). 
Cardiomyocyte apoptosis further contributes to the 
development and maintenance of AF (Castillero et al., 2015). 
ER stress results in the activation of ER transmembrane 
protein sensors PERK and IRE1α, the upregulation of ER 
chaperones, such as BIP, initiation of ER-related apoptotic 
proteins, such as CHOP, and activation of mitogen-activated 
protein kinase (MAPK) signaling cascade (Groenendyk et al., 
2013; Bettaieb et  al., 2014; Harris et  al., 2015). We  have 
demonstrated that chronic pressure overload in TAC animals 
resulted in the activation of BIP, CHOP, PERK, and IRE1α, 
and their downstream targets α-subunit of eIF2α and XBP1. 
We  also demonstrated a significant increase phosphorylation 
of PERK (Thr980), IRE1α (Ser724), p38 (Thr180/Tyr182), 
and c-Jun N-terminal kinases (JNK, Thr183/Tyr185) in atrial 
tissues contributing to increase in ER stress, which further 
promotes the production of inflammatory cytokines 
(Figures  2B,C; Sullivan et  al., 2020).

ER stress can potentially be  targeted to mitigate cardiac 
remodeling in AF. Wiersma et al. (2017) have elegantly shown 
that the use of chemical chaperone 4-phenyl butyrate (4PBA), 
an inhibitor of ER stress, prevents the activation of autophagy 
thereby, reducing electrical and contractile dysfunction in 
both in vitro and in vivo AF models. Using tachypaced HL-1 
atrial CMs, they demonstrated that blocking ER stress using 
4PBA or by overexpression of ER chaperone-protein heat 
shock protein A5 or mutant constructs of eIF2α prevents 
the activation of autophagy and Ca2+ transient loss. Similarly, 
pharmacological inhibition of ER stress and autophagy 
decreased dysfunction in heart wall contractions in tachypaced 
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Drosophila. A large animal model of atrial-tachypaced mongrel 
dogs was used to demonstrate that inhibition of ER stress 
attenuated electrical remodeling, ER stress, autophagy, and 
AF progression.

EXPERIMENTAL MODELS FOR THE 
STUDIES OF ATRIAL ARRHYTHMIAS

Experimental models to help elucidate atrial arrhythmogenesis 
and to investigate therapeutic potentials are profoundly impactful 
and significant for patients. Due to a variety of experimental 
models that currently exist for atrial arrhythmias and the 
differences in electrophysiology among the commonly used 
species (Milan and MacRae, 2005; Clauss et  al., 2019), careful 
interpretations of the results are absolutely essential to translate 
findings to humans. Nonetheless, the array of experimental 
models available allows investigators to uncover mechanistic 
insights and to develop drug therapies to improve 
clinical outcomes.

CARDIOVASCULAR DISEASE MODELS 
THAT MAY INDUCE ATRIAL 
ARRHYTHMIA

Atrial arrhythmia is a common comorbidity with other 
cardiovascular complications and diseases, such as cardiac 

hypertrophy, myocardial infarction, ischemic and dilated 
cardiomyopathy, and HF (LaMori et al., 2013). Hence, animal 
models that have been used to induce cardiovascular diseases 
may be  susceptible for AF. Commonly used models for 
cardiac hypertrophy and heart failure, such as aortic 
constriction, have been utilized in mice to study atrial 
structural and functional remodeling (Sirish et  al., 2016). 
Indeed, other overload models, such as mitral regurgitation, 
mitral valve disease, and vascular shunt, have also been 
documented to induce atrial remodeling (De Jong et  al., 
2011), as structural and electrical remodeling of the atria 
contributes to the initiation and maintenance of AF (Polejaeva 
et  al., 2016; Sirish et  al., 2016). These surgical procedures 
produce atrial arrhythmias secondary to other cardiovascular 
diseases, which may be  clinically relevant to study atrial 
arrhythmias in the context of other comorbidities, but may 
complicate atrial arrhythmogenesis investigation.

CONSIDERATION FOR ANIMAL MODELS

Animal models provide a wealth of knowledge to our current 
understanding of atrial arrhythmias in patients. However, 
careful interpretations of extrapolated results and 
understanding of each model’s limitations will provide more 
valuable insights. For instance, although small animals provide 
multiple benefits, such as the ease of breeding, inexpensive 
maintenance costs, and simplicity of genetic manipulation 

A

D E
F

B C

FIGURE 2 | (A) Serum concentration of cytokines from Sham, Sham + sEHI, TAC, and TAC + sEHI treated mice. (B) ER Stress assay from Sham, TAC, and 
TAC + sEHI treated mice. (C) Bar graphs representing normalized data. (D) Cardiac sections stained with Picrosirius red and wheatgerm agglutinin showing an 
increase in collagen deposition in Sham, Sham + sEHI, TAC, and TAC + sEHI treated mice. Scale bar: red-500 μm and black-20 μm. (E) Transient outward K+ current 
recordings from single isolated atrial myocytes and (F) the corresponding current–voltage (I–V) plot from Sham, Sham + sEHI, TAC, and TAC + sEHI treated mice. 
n = 3–5 animals. *p < 0.05 by ANOVA. Mean ± SEM (Sirish et al., 2016).
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(Bryda, 2013), their cardiac anatomy and electrophysiology 
are largely different than humans (Boukens et  al., 2014). 
Indeed, commonly used small rodents, such as mice, rats, 
and guinea pigs, exhibit shorter action potential (AP) duration 
(APD), primarily due to shortened and rapid repolarization 
phase (Edwards and Louch, 2017; Schüttler et  al., 2020), 
which translate to a much higher heart rate relative to 
humans (Milani-Nejad and Janssen, 2014). In contrast, larger 
animals, such as rabbits, pigs, goats, and dogs, experience 
more similar APs as humans, but their generally small litter 
size, lengthy gestational period, ethical concerns, high 
maintenance cost, and difficulty for genetic modulation deter 
investigators from using them as their primary choice. Indeed, 
proof of concept is usually derived from smaller animals, 
which is further validated in larger animals, before it is 
applied to humans.

STRUCTURAL AND ELECTRICAL 
REMODELING IN AF

“Atrial cardiomyopathy” is a term that describes the 
pathological changes perpetuating AF and the key contributor 
of which is atrial fibrosis (Xintarakou et  al., 2020). Atrial 
fibrosis is a complex process involving multiple contributors, 
including, excessive oxidative stress, pro-fibrotic cytokines, 
such as TNF-α, MCP-1, IL-6, IL-8, and ANG II, and their 
downstream mediators, MAPKs and TGF-β1 (Kupfahl et  al., 
2000; Burstein and Nattel, 2008; Sirish et al., 2013; Xintarakou 
et  al., 2020). TGF-β promotes atrial fibrosis by activating 
Smad transcription factors, which activate the promoters of 
collagen I  and III genes and by suppressing the activity of 
matrix metalloproteinases and protease inhibitors (Kupfahl 
et  al., 2000; Dobaczewski et  al., 2011; Sirish et  al., 2013). 
Increased ROS production in CMs causes the activation of 
members of the MAPK pathway, extracellular signal regulated 
kinase 1 and 2 (ERK1/2) and JNKs, and the members of 
the TGF-β superfamily, all of which promote myocardial 
hypertrophy (Zhang et  al., 2003; Dobaczewski et  al., 2011; 
Bjornstad et  al., 2012). We  have demonstrated an increase 
in both atrial fibrosis using Picrosirius red stain and wheat 
germ agglutinin (Figure 2D) and atrial myocyte hypertrophy 
in the chronic pressure overload model. We  also specifically 
demonstrated a significant increase in the percentages and 
the proliferative capacity of atrial fibroblasts from TAC mice, 
human atrial appendage as well as hiPSC-fibroblasts, and 
hiPSC-ACMs (atrial cardiomyocytes) in response to ANG 
II treatment. We also examined the activation of downstream 
members MAPK and TGF-β, the ERK1/2 and Smad2/3  in 
atrial fibroblasts, and myocytes. We demonstrated a significant 
elevation in the levels of phosphorylated ERK1/2 (pERK1/2) 
in atrial fibroblasts and myocytes in the TAC mice suggesting 
the activation of atrial fibroblasts, the leading contributor 
of adverse atrial structural remodeling associated with AF.

Abnormalities in electrical impulse formation or impulse 
conduction can initiate and maintain AF. Chronic or persistent 
AF alters the AP wavelength, which induces rapid AP rates 

in the atria, further feeding the arrhythmia (Nattel et  al., 
2008). While structural atrial remodeling hinders the 
propagation of AP therefore decreasing the conduction 
velocity, atrial electrical remodeling effects the refractory 
period, and the APD. The rapid atrial rate can be  due to 
one of many possibilities. (1) The ectopic activity could 
be  caused because of the slope of the phase 4 of the atrial 
AP is accelerated, which could be  partially because of the 
increased atrial expression of the ion channels subunits of 
“funny current” (If). (2) Another cause of rapid atrial rate 
delayed afterdepolarizations (DADs) can be  attributed to 
the abnormalities in Ca2+ overload which causes the cell 
firing when the DAD becomes large enough to reach the 
threshold potential. (3) Early afterdepolarization (EADs): 
excessive prolongation of APD causes Ca2+ currents to recover 
from inactivation leading to early after depolarization and 
maintenance of AF (Wakili et  al., 2011). Our ex vivo optical 
mapping of isolated atria demonstrated a slowing of activation, 
a prolonged APD in left atria, and importantly an increased 
dispersion of APD and effective refractory period, a known 
pro-arrhythmic factor. At the cellular basis, we  show that 
electrical remodeling involves downregulation of transient 
outward K+ current (Ito) in atrial cells which can significantly 
alter AP shape and duration contributing to electrical 
remodeling (Figures  2E,F). The reduction in Ito has been 
shown to be  due to the decrease in the auxiliary subunit 
of the K+ channel thereby impairing the channel assembly 
via the activation of NF-κB signaling cascade (Panama 
et  al., 2011).

We and others have shown the critical role of K+,  
Na+, and Ca2+ channel dysfunction in cardiac arrhythmias  
(Remme and Bezzina, 2010; Lu et  al., 2015; Chen et  al., 
2016; Chiamvimonvat et  al., 2017; Weisbrod, 2020). Genetic 
variations in genes of the pore forming subunits or accessory 
β-subunits of the rapid and slow delayed rectifier K+ channels 
(IKr and IKs) have been linked to human arrhythmia syndromes 
(Chen et  al., 2016; Chiamvimonvat et  al., 2017). Single-
nucleotide polymorphisms in the ion channel genes including 
small conductance Ca2+-activated K+ channels (SK), Kv11.1 
(hERG) and the α-subunit of the Nav1.5 sodium channel 
(SCN5A) significantly increase AF susceptibility (Remme 
and Bezzina, 2010; Zhang et  al., 2021). L-type calcium 
channel (Cav1) remodeling has been shown to be  important 
for AF in both mouse-models and in patients (Lu et  al., 
2015). The abnormal splice variants of SCN5A in the failing 
hearts trapped in the ER activate PERK, causing the 
downregulation of the full-length of normal Nav1.5 protein 
expression, resulting in the decrease in conduction velocity 
(Liu and Dudley, 2018). Using specific inhibitors of  
PERK and IRE1 arm, Dudley’s group has elegantly shown 
that the UPR activation causes the downregulation of  
multiple cardiac ion channels, including Cav1.2, hERG, and 
KvLQT1, resulting in APD prolongation and the reduction 
in the AP upstroke velocity (Liu and Dudley, 2018). UPR 
directly and indirectly through UPR-induced oxidative stress, 
altered glycosylation, and Ca2+ homeostasis contributes to 
ion channel remodeling resulting in increased arrhythmic risk.
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UPSTREAM THERAPEUTIC TARGETS 
FOR ATRIAL FIBRILLATION

A recently publish study by Dudley’s group showed that the 
pharmacological inhibition of PERK reduced arrhythmia risk by 
altering ion channel regulation post-MI (Liu et al., 2021). Specifically, 
post-MI mice exhibited downregulation of ion channel proteins 
as well as ionic currents compared to the sham group. Ion channels 
affected by the PERK activation were identified by treating MI 
mice with PERK inhibitor and using cardiac-specific PERK-KO 
mice, leading to a significant improvement in channel availability, 
expression, and conduction velocity. However, reductions in Cav1.2 
and Kir2.1 were not rescued with the treatment, demonstrating 
that PERK directly influences only Nav1.5, Kv1.5, and Kv4.3 channels.

Inflammation has been implicated in the pathophysiology of 
AF through its effect on signaling pathways that lead to the 
development and maintenance of AF (Everett and Olgin, 2007; 
Burstein and Nattel, 2008; Guo et  al., 2012). In addition, 
inflammation has been associated with comorbidities that predispose 
patients to AF (Guo et  al., 2012; Harada et  al., 2015). AF can 
aggravate inflammation which further perpetuates the arrhythmia. 
Hence, targeting inflammation has become the focus of new 
therapeutic strategies for the treatment of AF. One of the most 
biologically important groups of oxylipins is the eicosanoids, which 
are derived from the 20-carbon atom arachidonic acid. Tissue 
injury leads to the activation of phospholipase A2 and the release 
of arachidonic acid, which is metabolized through the cyclooxygenase 
(COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) 
pathways. While several of the COX and LOX metabolites are 
proinflammatory and have been studied in detail, underpinned 
by the translation of inhibitors of these enzymatic pathways 
demonstrated by aspirin and zileuton in the treatment of 
inflammatory diseases, the translational manipulation of the CYP450 
pathway remains unexplored and underutilized clinically. The 
CYP450 epoxidized products, the epoxyeicosatrienoic acids (EETs) 
have been shown to have anti-inflammatory with several 
cardioprotective effects (Li et  al., 2009, 2011; Liu et  al., 2010; 
Qiu et al., 2011; Sirish et al., 2013, 2020). EETs function primarily 
as autocrine and paracrine effectors in the cardiovascular system 
and kidney (Roman et  al., 2000; Schmelzer et  al., 2005). EETs 
modulate ion transport and gene expression, producing 
vasorelaxation, anti-inflammatory, and pro-fibrinolytic effects. All 
EET regioisomers function as endogenous hypotensive agents 
(Katoh et al., 1991; Roman et al., 2000). However, EETs are further 
metabolized by soluble epoxide hydrolase (sEH) to form the 
corresponding diols (DHETs) with diminished anti-hypertensive 
and anti-inflammatory activities and we  and others have found 
that there is a significant decrease in EETs/DHETs ratios in several 
diseased models (Zeldin et  al., 1996; Yu et  al., 2000). To increase 
the cardioprotective activity of endogenous EETs, novel inhibitors 

of sEH (sEHI) can be  used to block the degradation of EETs to 
corresponding DHETs (Morisseau and Hammock, 2005).

We have previously demonstrated the beneficial effects of sEHIs 
in clinically relevant models of cardiac hypertrophy and failure, 
resulting in a significant improvement in cardiac function (Xu 
et  al., 2006; Li et  al., 2009, 2011; Sirish et  al., 2013). We  further 
demonstrated that treatment with sEHIs results in the prevention 
of ventricular myocyte hypertrophy, electrical remodeling, cardiac 
fibrosis, and reduces both atrial and ventricular arrhythmia 
inducibility in MI models (Chiamvimonvat et  al., 2007; Li et  al., 
2009, 2011; Sirish et  al., 2013, 2016). Metabolic profiling was 
utilized to unravel one of the molecular mechanisms underlying 
the prevention of arrhythmia inducibility and electrical remodeling 
with sEHI treatment, which is the normalization of Ito downregulation, 
which is well described in AF (Li et  al., 2009; Sirish et  al., 2013, 
2016). Our study with the pressure overload model, which represents 
the development of hypertension, a major risk factor for AF, shows 
a decrease in the EETs/DHETs ratio in the TAC animals, which 
was increased with sEHI treatment (Sirish et  al., 2016). Moreover, 
analysis of arachidonic acid metabolites of the COX pathway 
demonstrates an increase in proinflammatory thromboxane and 
prostaglandin levels in the TAC model which was attenuated with 
sEHI treatment (Sirish et  al., 2016). Thus, we  demonstrated that 
treatment with sEHIs to normalize the EETs/DHETs ratios represents 
an unexplored avenue to modify atrial fibrosis, alleviate inflammatory 
cytokines and chemokines, and reduce atrial electrical remodeling, 
all of which help in the prevention and progression of AF. Very 
little is known about the role of this new class of compounds in 
the treatment of AF. There is consequently an enormous opportunity 
to uncover a potentially very powerful class of compounds, which 
may be  used effectively in the clinical setting.
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