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Abstract: We sought to determine the potential effects of pooling on power, false positive 

rate (FPR), and bias of the estimated associations between hypothetical environmental 

exposures and dichotomous autism spectrum disorders (ASD) status. Simulated birth cohorts 

in which ASD outcome was assumed to have been ascertained with uncertainty were created. 

We investigated the impact on the power of the analysis (using logistic regression) to detect 

true associations with exposure (X1) and the FPR for a non-causal correlate of exposure (X2, 

r = 0.7) for a dichotomized ASD measure when the pool size, sample size, degree of 

measurement error variance in exposure, strength of the true association, and shape of the 

exposure-response curve varied. We found that there was minimal change (bias) in the 

measures of association for the main effect (X1). There is some loss of power but there is 

less chance of detecting a false positive result for pooled compared to individual level models. 
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The number of pools had more effect on the power and FPR than the overall sample size. This 

study supports the use of pooling to reduce laboratory costs while maintaining statistical 

efficiency in scenarios similar to the simulated prospective risk-enriched ASD cohort.  

Keywords: pooling; autism spectrum disorders; measurement error  

 

1. Introduction 

In autism etiologic research, as in other areas of perinatal research and epidemiologic investigation, 

there is growing interest in analytic methods that maximize accuracy while minimizing costs. One of the 

methods under consideration to conserve scarce resources is pooling of bio-samples prior to laboratory 

analysis to conserve biological specimens, enable the study of more biomarkers (exposures), minimize 

problems related to the limits of detection, reduce the impact of measurement error in exposure variables, 

and include participants who contributed only a small quantity of bio-samples [1–6]. Pooling may also 

be used to screen batches of samples for an infectious agent or biomarker after which all specimens in a 

positive pool are tested individually [7]. Pooling (combining bio-samples from multiple individuals and 

analyzing them as a single sample) was proposed for public health research and surveillance in 1943 [8] 

and has been receiving increased attention in the epidemiology literature in the context of  

non-communicable diseases since 2012 [3,9–18]. The use of pooling has been investigated in other areas 

of study, such as perinatal epidemiology [3,19], infectious disease epidemiology [8,20–24], 

environmental epidemiology [3,10,25], cancer epidemiology [12], and genetics [10,12] but has only 

recently been studied in the context of research on autism spectrum disorders (ASD) [17,18]. An 

example of a current research area that may greatly benefit from pooling is the potential role of 

polychlorinated biphenyls (PCBs) in the etiology of ASD because the levels of PCBs are low, laboratory 

analyses are very costly, and the blood volumes needed to achieve acceptable sensitivity of analysis are 

large [26,27]. 

In applications of the pooling approach, earlier work suggests that a smaller pool size (number of 

participants per pool ~5) is ideal as it yields the most accurate study results but scarce resources may 

necessitate larger pools (e.g., with 10 or more individuals per pool), which have received less attention 

in the literature. Furthermore, a wide range of pooling strategies in the context of epidemiological 

analyses were presented by Saha-Chaudhuri et al., highlighting that optimal allocation of the number of 

pools and number of subjects per pool should be informed by the specific confounders and effect 

modifiers under consideration [3,28]. Little is known about the impact of pooling in the presence of 

misspecification of the disease risk function (e.g., when investigators assume that there is a monotonic 

gradient in log(risk) when in fact there is non-linearity), miss-measured covariates, and in the presence 

of outcome misclassification. Here we present results of a simulation analysis designed to shed light on 

the effects of pooling and measurement error that is informed by interim data from the Early Autism 

Risk Longitudinal Investigation (EARLI). EARLI is an enriched-risk pregnancy cohort (mothers of a 

child affected by an ASD enrolled at the start of a subsequent pregnancy) intended to generate evidence 

on environmental exposures important in the etiology of ASD (http://www.earlistudy.org/) [29]. Our 

previous work that was informed by the EARLI elucidated the potential impact of measurement errors 
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in exposures and outcomes under different scenarios of study size, precision of exposure measurement 

and magnitude of the true association [30]. We also evaluated the influence of categorization  

of a mismeasured exposure in this context with particular attention to non-linearity of the true  

association [31]. Importantly, EARLI investigators plan to conduct analyses focused on continuous 

phenotypic measures as well as dichotomous outcomes. Quantitative phenotypes are being increasingly 

considered in autism etiologic research (such as in references [32–34]) and may prove to be important 

in the study of environmental risk factors. Here we consider the same general scenarios involving both 

dichotomous outcomes based on categorization of a quantitative measure as in our previous paper as well 

as pools of different sizes and aim to determine the potential effects of pooling on power, false positives, 

and bias of the estimated associations between hypothetical environmental exposures and dichotomous 

ASD status. We also extend our previous work by considering the utility of pooling when the true shape 

of the exposure-response association is unknown and categorization of exposures is deemed undesirable. 

2. Material and Methods  

2.1. Simulated Population 

The population and sample parameters are listed in Table 1 and are based on the synthetic population 

used in our previous work [30,31]. Briefly, we generated a cohort of 1,000,000 children with observed 

sex (Z) and mismeasured gestational age (Wga) distributions similar to the general population in the US, 

accounting for shortened gestation, on average, among boys [35]. We assumed that the cohort was also 

exposed to two agents: exposure (1), represented by X1, and exposure (2), represented by X2, that both 

follow standard normal distributions and are correlated (Pearson ρ = 0.7). We posited that only exposure 

(1) (with values of X1) exerts causal influence on ASD-related phenotype. We simulated true gestational 

age Xga (in weeks) in the cohort to follow a distribution that is (43 − χ2(3)), after which boys were 

assigned gestational age that was one week shorter for 5% of boys. The simulated population was created 

and all analyses were conducted using SAS version 9.2 (SAS Institute, Cary, NC, USA). 

2.2. Covariate Measurement Error 

We assumed that the ith environmental exposure (here: i = 1 or 2) is observed with classical 

measurement error: Wi = Xi + εi, where εi~N(0,σ2
i). Error was added to the individual level values as 

opposed to after pool allocation, implying that errors arise not from the pooling procedure in the 

laboratory or laboratory testing errors but from factors such as variation in the etiologically relevant time 

window when exposure was ascertained and random day-to-day variability in dose. The extent of 

measurement error for exposure 1 (ME1) was selected to span the plausible range: from good precision 

of environmental measurements with error 6% of true exposure variability to poor precision with error 

variance equal to the true exposure variability. Gestational age was subject to two sources of error: (a) 

classical error in the observed continuous measure of the length of gestation, Wga = Xga + εga, where 

εga~N(0,σ2
ga) and (b) round-off error due to reporting gestational age in completed weeks between 23 

and 43 weeks. All errors were conditionally independent of each other. Specific values used in the 

simulation studies are given in Table 1.  
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Table 1. True and observed values in the simulated population. 

Values in the 
Population 
(Notation) 

True Values Observed Values Measurement Error 

Postulated True 
Association with 

Latent Measure of 
Outcome a 

Cutoff Used for 
Dichotomization 

Environmental 

exposure 1 (X1) 

X1~N(0,1), correlated with X2 by 

Pearson correlation ρ = 0.7  
W1 = X1 + ε1 

ε1~N(0,σ2),  

where σ2 ∈ {0.0625, 0.25, 1} 
{0.15, 0.25, 0.5}  

Environmental 

exposure 2 (X2) 

X2~N(0,1), correlated with X1 by 

Pearson correlation ρ = 0.7  
W2 = X2 + ε2 ε2~N(0,0.25) 0  

Sex (Z) Z~Binomial(0.5, 1) Z None 1  

Gestational age (Xga) 

Xga ~ (43 – χ2(3)) 

1 week was subtracted from the above 

gestational age for 5% of males 

Wga = R((Wga + εga); 23, 43),  

Where R(.) is a function that is 

the rounded expression to 

integers, and then truncated to 

23 to 43 weeks. 

1
~ (0, )

72ga Nε   0.1  

Autism 

endophenotype 

(latent, Y) 

εy~N(0,1) 

Linear model 

YL = β1X1 + β3Z + β4Xga + εy,  

Semi-linear model 1: threshold model 

If x1 < −1 then  

YT = β3Z+ β4Xga + εy 

If x1 ≥ −1 then  

YT = 1.5 × β1X1 + β3Z + β4Xga + εy 

Semi-linear model 2: saturation model 

If x1 <−1 then  

YS =1.5 × β1X1 + β3Z + β4Xga + εy 

If x1 ≥ −1 then 

YS = 0.5 × β1X1 + β3Z + β4Xga + εy,  

Y* = R(T(y); 0, 18), 

where T(.) is a function that is 

transformed to the Y log-normal 

distribution that match observed 

AOSI in EARLI 

due to rounding by R(.) b Not applicable 0–6, 7–18 

Notes: AOSI—Autism Observation Scale for Infants; EARLI—Early Autism Risk Longitudinal Investigation; a coefficients of linear regression, see text and bottom of the table 

for details, β’s; b R(f(.); min, max) is the function that rounds values of function f(.) to integers and truncates values (retains only values) that fall within interval [min, max]. 
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2.3. Linear and Semi-Linear Risk Models 

We assumed that in addition to X1, sex (sex ratio of 4 males: 1 female [36]) and gestational  

age [24,37,38] exert causal influence on dichotomous ASD status and continuous ASD-related 

phenotype (Y). We verified that these yielded parameter estimates within the expected range. As the true 

shape of the exposure-response curve is unknown, the simulated disease was modeled using the 

following three forms: 

Linear Model: 

YL = β1X1 + β2X2 + β3Z + β4Xga + εy 

“Threshold” (Semi-Linear) Model: 

If x1 < meanx1-standard deviationx1 then YT = 0 × β1X1 + β2X2 + β3Z + β4Xga + εy 

If x1 ≥ meanx1-standard deviationx1 then YT = 1.5 × β1X1 + β2X2 + β3Z + β4Xga + εy 

“Saturation” (Semi-Linear) Model: 

If x1 < meanx1-standard deviationx1 then YS = 1.5 × β1X1 + β2X2 + β3Z + β4Xga + εy 

If x1 ≥ meanx1-standard deviationx1 then YS=0.5 × β1X1 + β2X2 + β3Z + β4Xga + εy, 

The deviation from linearity is created here by altering the slope of the causal association with X1 

above and below the inflection point defined by (meanx1-standard deviationx1). Constant multipliers 

(here: 0.5, 1, and 1.5) are used. Thus, in the saturation model, the effect of X1 is 3 times greater below 

than above the inflection point because 1.5 × β1X1/ 0.5 × β1X1 = 3. Likewise, in the threshold model, the 

effect of X1 is 1.5 times greater above than below the inflection point because 1.5 × β1X1/β1X1 = 1.5. 

These multipliers were chosen arbitrarily and yet have numerical values that yield plausible “average” 

associations if the linear model was fitted to the data. For all models εy~N(0,1) and β2 was 0 since X2 

had no true effect on Y. The latent values of ASD-related phenotype (YL, T, S) were computed for each 

of three β1 ∈ {0.15, 0.25, 0.5} that correspond to weak, moderate and strong associations as judged by 

expected odds ratios (eOR1) that result if X1 and YL are dichotomized at one standard deviation above 

their respective means, i.e. eOR1 = 1.5, 2, and 4. 

2.4. Case Definition and Outcome Misclassification 

The outcome measure simulated for this particular work was the Autism Observation Scale for Infants 

(AOSI) score that takes on values of 0–18 [39]. Latent continuous ASD-related endophenotype, was 

subjected to rounding error and categorized using a cutoff suggested by prior work (Zwaigenbaum L., 

personal communications). For YL, YT and YS, 
* 0CY =  if Y* is 0–6 and 

* 1CY =  if Y* is 7–18 (Table 1). 

For all exposure-disease models, subjects with a high AOSI score (at least 7) were considered to be 

cases. It must be noted that we do not here equate high AOSI with clinical diagnosis of ASD but merely 

state that ASD is a collection of traits that naturally occur on a continuous scale and are segregated into 

binary disease and healthy groups based on some criteria. This is consistent with the current 
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conceptualization of ASD as a “spectrum” of phenotypes, not a definitive state common to all cases, as 

would be true of another condition such as death from a cardiac event or acquisition of an infection. 

However, diagnostic thresholds are considered essential in clinical practice as well as epidemiology and 

the chosen cutoff of 7 has been suggested to have clinical and/or etiologic significance. One can  

argue that various AOSI sub-scales may be more related to environmental exposure than others but  

this is not our focus here and our argument applies to any measures of continuous traits that have  

AOSI-like properties. 

2.5. Pool Construction and Composition and Simulated Cohorts 

Strata (based on sex and case status) and pool allocation are illustrated in Figure 1. For each model, 

strength of the true association of X1, variance of ME1, and shape of the exposure-disease relationship, 

members of the population were divided into 4 strata based on the value of their dichotomous AOSI 

score (high versus low) and sex, similar to the pooling strategy suggested by Weinberg and Umbach [6]. 

Each stratum was divided into pools. One thousand cohorts (i.e., study samples) each of size (n) 225, 

450 and 675 were randomly selected with 5, 10 and 15 individuals per pool (g will be used to refer to 

the pool size), respectively. The pools were allocated as follows: 10 pools for male controls, 18 pools 

for female controls, 12 pools for male cases and five pools for female cases. Many pool allocation 

schemes are possible but this scheme reflects a plausible situation that would arise when stratifying on 

an established strong risk factor (e.g., sex) and maintaining pools of uniform size within a study. In this 

scheme, the overall cost of laboratory analyses, which is determined by the number of pools, is kept 

constant across simulations, i.e., reflecting the reality of having to conduct a study on a fixed budget. 

 

Figure 1. Strata and pool allocation. ME1—measurement error variance for the causal 

exposure; Sample size 225—5 individuals per pools; Sample size 450—10 individuals per 

pools; Sample size 675—15 individuals per pools. 

2.6. Assessing the Effect of Pooling 

The pooled models were in the form of: 

*
1 1 2 2 3 4( ( 1))cpool o gaLOGIT pr Y c c W c W c Z c W= = +  +  +  +   
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with offset = ln(rgz) where
       

#?

#
z

case pools of size g and sex z

control pools of size gand
r

sex z
g = . 

Thus, for logistic models, exp(c1) is the odds ratio of the estimated effect of X1 (OR1) on odds of 

AOSI ≥ 7 and exp(c2) is the odds ratio of the observed effect of X2 (OR2) on odds of AOSI ≥ 7. All 

independent variables except for z were considered as continuous predictors of the dichotomized AOSI 

score. We also fitted analogous logistic regression models with values of exposure that were not 

contaminated by measurement error, e.g., with X1 instead of W1, etc. These models were repeated tor YT 

and YS. The pooled models were compared to the individual level population and replicate models in 

the form:  

*
0 1 1 2 2 3 4( ( 1) ( )c gaLOGIT pr Y c c X c logistiX c c X cZ= = + + + +  

Regression models that did not converge or with an OR1 or OR2 less than or equal to 0.1 or at least 

10 were considered unstable and not included in bias calculations. 

2.7. Comparison of the Replicates to the Population 

We compared the replicate results to the population results to get an idea of how close pooled 

estimates are to the true parameter values. For each combination of model, strength of the true 

association, variance of ME1, and sample (or pool) size, the mean OR, and the power of the analysis and 

bias in the OR for exposure 1 were calculated for the models without measurement error. These 

quantities as well as the false positive rate (FPR) and bias in the OR for exposure 2 were calculated for 

the models with measurement error.  

The numerator for the power and FPR calculation was the number of models for which OR1 and OR2, 

respectively, were 0.1 or less, at least 10, or statistically significant (α=0.05). The bias was calculated as: 


 #

1

#

k

W

replicates

p

W

k
X

O
opulation

R

OR
OR

bias
stable replicates

=
=  

for replicate ORs between 0.1 and 10. The percent mean difference in OR between the pooled and 

individual level replicate analyses was calculated for X1 and X2. 

2.8. Comparison of the Individual Level Replicate Analysis and Pools of Different Sizes 

A comparison of the pooled results to the individual level replicate results gives us an idea of what 

information is lost due to pooling. For each replicate of sample size 675 with a linear exposure-disease 

relationship, individual level (g = 1) and pooled analyses were compared. Pools of size 5 and 15 were 

analyzed for all replicates. This represents scenarios where the cost of analysis increases for a fixed 

cohort size as the pools become smaller. The power, FPR, and bias in OR1 and OR2 were compared. 

3. Results 

The characteristics of the viable population are similar to what was expected based on the simulation 

parameters (data not shown). The logit plots of the linear, threshold and saturation models appear to be 
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very similar despite the fact that they have potentially very different biological implications (Figure 2). 

Unless otherwise stated, the description of the results pertains to the linear model. 

 

Figure 2. Distribution of high AOSI scores in the linear, threshold and situation models. 

AOSI—Autism Observation Scale for Infants. 

The proportion of the replicates for which there was a stable logistic regression model, which 

converged within 50 iterations and yielded an OR1 and OR2 between 0.1 and 10 (not inclusive), 

drastically decreased between the moderate effect (eOR = 2: when nearly all the replicates produced a 

stable regression model) and strong effect (eOR = 4) and decreased with increasing sample size  

(Table S1). There were a greater number of stable regression models for the semi-linear models than the 

linear models when the eOR was 4. Overall, the models with greater measurement error had a higher 

proportion of stable regression models. The characteristics of the unstable models for pool size 15,  

eOR = 4 and the smallest measurement error variance are in Table S2. (This scenario was chosen as it 

had the greatest number of unstable replicates.) Nearly all of these unstable replicates had OR1 ≥ 10 and 

half of these also had OR2 ≥ 10.  

We next compared results of the pooled replicate analysis with the individual level population 

analysis and individual level replicate analysis. There was a loss of power for many of the pooled models: 

e.g., the power was 25%–50% for the cohort of size 450 and eOR of 2, but little difference in the OR1 

(all bias terms between 0.8 and 1.2 except in cases of strong true association or large variance in 

measurement error) (Table 2, Figure 3). For all combinations of pool size and strengths of the true 
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association, except eOR = 4, there was an increase in power as the pool size (and sample size) increased. 

The FPR was relatively low for the pooled analysis: less than 15% unless there was a strong association 

(eOR = 4), or a moderate association (eOR = 2) and large variance in measurement error. Likewise, the 

mean OR2 (i.e., bias in the estimate for the non-causal exposure) was low (1.0–1.1 in most of the 

scenarios) except in the models with large measurement error and strong true association (eOR = 4), 

when mean estimates of OR2 were 1.4–1.6 (data not shown). In general, the power for detecting 

associations of X1 and W1 was slightly lower for the semi-linear models than the linear models but the 

bias in the estimate of the overall “average effect” was similar (Figure 3). However, for the strong true 

association, large measurement error variance and, especially, bigger pool size, the semi-linear models 

had higher power than the linear models. 

Table 2. Performance of pooled logistic regression analysis: averages of 1000 simulation 

realizations for each scenario with a consistent number of pools (45). 

Cohort (Pool) Size eOR1 (eβ1)  (σ2) 

Comparison to Population Analysis 
Comparison to Individual 

Level Replicate Analysis 

Exposure 1 Exposure 2 % Mean Change in OR d 

Power a (%) Bias b FPR c (%) Exposure 1 Exposure 2 

Linear model 

225 (5) 

1.5 (0.15) 

Truth e 26.3–27.5 1.1  3.1–3.6  

0.0625 15.7 1.1 4.4 3.2 0.0 

0.25 13.1 1.0 5.4 2.7 0.2 

1 9.3 0.9 6.8 1.2 1.1 

2.0 (0.25) 

Truth e 60.8–63.3 1.1  5.7–6.5  

0.0625 36.0 1.1 4.8 6.1 −0.8 

0.25 29.4 1.0 4.2 4.3 0.5 

1 16.6 0.8 11.4 2.4 2.4 

4.0 (0.5) 

Truth e 98.7–98.9 1.3  10.6–12.3  

0.0625 82.1 1.3 3.9 13.6 0.2 

0.25 69.3 1.0 7.6 10.8 1.9 

1 41.5 0.7 23.6 6.0 4.0 

450 (10) 

1.5 (0.15) 

Truth e 40.3–41.6 1.1  3.7–4.1  

0.0625 23.3 1.1 4.2 3.9 −0.7 

0.25 16.8 1.0 4.7 2.9 0.5 

1 12.5 0.9 8.7 1.9 1.5 

2.0 (0.25) 

Truth e 82.0–83.4 1.1–1.2  7.8–8.6  

0.0625 52.1 1.1 5.5 8.3 −1.0 

0.25 41.4 1.0 5.3 7.2 0.3 

1 25.0 0.8 15.8 3.6 3.9 

4.0 (0.5) 

Truth e 92.9–93.6 1.4  16.6–18.3  

0.0625 80.2 1.3 18.4 16.2 −0.7 

0.25 74.2 1.1 14.2 16.6 2.0 

1 51.8 0.7 25.7 10.1 6.6 
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Table 2. Cont. 

Cohort (Pool) Size eOR1 (eβ1)  (σ2) 

Comparison to Population Analysis 
Comparison to Individual 

Level Replicate Analysis 

Exposure 1 Exposure 2 % Mean Change in OR d 

Power a (%) Bias b FPR c (%) Exposure 1 Exposure 2 

Linear model 

675 (15) 

1.5 (0.15) 

Truth e 48.3–50.5 1.1  4.9–5.0  

0.0625 28.8 1.1 3.9 5.4 −0.8 

0.25 24.0 1.0 4.8 5.1 −1.1 

1 15.3 0.9 9.7 2.8 1.3 

2.0 (0.25) 

Truth e 87.8–89.4 1.2  9.4–11.3  

0.0625 57.9 1.2 6.7 11.2 −0.2 

0.25 43.5 1.1 6.1 9.0 0.7 

1 26.9 0.8 16.5 4.5 3.7 

4.0 (0.5) 

Truth e 82.2–84.9 1.3–1.4  15.3–16.8  

0.0625 75.2 1.4 42.8 18.3 −2.9 

0.25 65.1 1.1 33.8 17.0 2.3 

1 28.8 0.7 12.2 0.1 0.1 

Threshold model 

225 (5) 

1.5 (0.15) 

Truth e 22.6–24.4 1.1  2.9-3.3  

0.0625 13.4 1.1 3.6 2.9 −0.1 

0.25 13.9 1.0 5.6 2.8 −0.1 

1 9.1 0.9 6.3 1.2 0.4 

2.0 (0.25) 

Truth e 50.8–54.4 1.1  4.3–4.8  

0.0625 30.1 1.1 5.0 5.0 −0.9 

0.25 25.7 1.0 5.3 4.2 0.1 

1 16.5 0.9 8.9 2.4 1.8 

4.0 (0.5) 

Truth e 96.4–96.9 1.2–1.3  7.8-8.8  

0.0625 73.2 1.2 3.8 9.4 −0.9 

0.25 63.8 1.0 6.8 7.9 0.8 

1 38.1 0.7 20.1 4.4 3.3 

450 (10) 

1.5 (0.15) 

Truth e 36.5–36.7 1.1  3.4–3.6  

0.0625 20.6 1.1 4.8 3.1 0.0 

0.25 17.0 1.0 4.9 2.9 0.4 

1 10.3 0.9 9.0 1.7 1.2 

2.0 (0.25) 

Truth e 73.5–76.2 1.1  6.1–6.9  

0.0625 44.0 1.1 4.3 6.6 0.3 

0.25 35.9 1.0 5.3 6.0 0.9 

1 21.5 0.8 14.1 3.2 2.2 

4.0 (0.5) 

Truth e 95.0–97.1 1.2–1.3  10.8–11.5  

0.0625 79.8 1.2 6.7 12.7 −0.8 

0.25 71.6 1.0 8.4 11.2 1.6 

1 47.5 0.7 25.1 6.8 5.2 
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Table 2. Cont. 

Cohort (Pool) Size eOR1 (eβ1)  (σ2) 

Comparison to Population Analysis 
Comparison to Individual 

Level Replicate Analysis 

Exposure 1 Exposure 2 % Mean Change in OR d 

Power a (%) Bias b FPR c (%) Power a (%) Bias b 

Threshold model 

675 (15) 

1.5 (0.15) 

Truth e 42.9–43.9 1.1  4.2–4.6  

0.0625 22.3 1.1 3.7 4.9 −1.0 

0.25 20.2 1.0 4.3 3.9 −0.5 

1 13.2 0.9 8.0 2.0 1.2 

2.0 (0.25) 

Truth e 80.8–83.1 1.2  7.5–8.5  

0.0625 50.3 1.1 4.6 8.4 −0.6 

0.25 39.5 1.0 5.8 6.6 1.4 

1 25.3 0.9 14.5 3.8 3.5 

4.0 (0.5) 

Truth e 85.0–86.9 1.3  12.2–13.3  

0.0625 71.2 1.3 22.8 15.8 −3.5 

0.25 63.4 1.0 19.0 11.8 3.8 

1 48.7 0.8 27.3 8.3 5.9 

Saturation model 

225 (5) 

1.5 (0.15) 

Truthe 19.4–22.5 1.0–1.1  2.3–3.5  

0.0625 14.6 1.1 5.2 3.4 0.1 

0.25 12.9 1.0 5.1 2.8 −0.8 

1 9.0 0.9 6.3 0.8 −0.1 

2.0 (0.25) 

Truth e 49.7–52.7 1.1  4.7–5.4  

0.0625 29.4 1.1 4.3 4.7 −0.2 

0.25 22.6 1.0 4.6 3.8 0.1 

1 14.9 0.9 10.1 2.5 1.9 

4.0 (0.5) 

Truth e 95.5–96.1 1.2  10.1–10.6  

0.0625 70.7 1.2 3.6 10.6 −0.1 

0.25 60.4 1.0 6.2 8.8 0.5 

1 37.3 0.7 19.5 4.6 3.4 

450 (10) 

1.5 (0.15) 

Truth e 32.9–33.3 1.1  3.4–4.1  

0.0625 19.1 1.1 5.2 3.6 −0.6 

0.25 16.3 1.0 5.1 3.4 −0.1 

1 10.0 0.9 7.3 1.7 1.4 

2.0 (0.25) 

Truth e 72.2–73.8 1.1  6.7–7.0  

0.0625 42.8 1.1 4.3 6.5 0.7 

0.25 37.4 1.0 5.4 5.4 1.2 

1 19.2 0.9 11.3 3.1 2.9 

4.0 (0.5) 

Truth e 95.3–96.6 1.4  15.9–17.7  

0.0625 78.1 1.3 7.6 16.8 −0.4 

0.25 72.2 1.1 9.8 14.6 2.7 

1 45.4 0.8 25.8 7.6 5.8 
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Table 2. Cont. 

Cohort (Pool) Size eOR1 (eβ1)  (σ2) 

Comparison to Population Analysis 
Comparison to Individual 

Level Replicate Analysis 

Exposure 1 Exposure 2 % Mean Change in OR d 

Power a (%) Bias b FPR c (%) Power a (%) Bias b 

Saturation model 

675 (15) 

1.5 (0.15) 

Truth e 41.3–41.8 1.1  4.6–5.3  

0.0625 23.7 1.1 3.8 5.6 −1.1 

0.25 18.6 1.0 5.7 4.1 0.3 

1 11.9 0.9 6.2 2.4 1.3 

2.0 (0.25) 

Truth e 78.7–82.6 1.1–1.2  8.9–9.3  

0.0625 48.4 1.2 5.4 10.3 −1.7 

0.25 38.0 1.0 6.4 7.1 1.1 

1 23.6 0.9 12.8 4.2 3.4 

4.0 (0.5) 

Truth e 85.4–87.3 1.4  15.5–18.2  

0.0625 70.2 1.4 23.6 17.5 −1.7 

0.25 62.6 1.1 19.2 14.3 4.4 

1 43.7 0.8 26.5 10.5 7.9 

Notes: eOR—expected odds ratio; FPR—false positive rate; ME—measurement error; OR—odds ratio;  

(a) 1 1 1
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(e) Models without measurement error. Values vary as a different viable population was selected for each 
measurement error scenario. 

Difference in power a Difference in FPR b 

(A) Linear model 
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Figure 3. Cont. 

(B) Threshold model 

 

(C) Saturation model 

Figure 3. Mean differences in power and FPR due to pooling in 1000 replicates for models 

with measurement error. eOR—expected odds ratio, FPR—false positive rate;  

OR—odds ratio: (a) 11 1
# m 1 10od
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Comparison of Pool (g) and Sample Sizes (n) 

When the pool and cohort size varied, a number of trends emerged (Table 2). Larger cohort and pool 

sizes (n ≥ 450 with g ≥ 10) had more power to detect a relationship than smaller pool sizes for smaller 

true effects with the linear model (e.g., for moderate ME1 and eOR = 2, power = 41%–44% for n = 450 

or 675 and 29% for n = 225). 
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Table 3. Comparison of linear model, individual level and pool sizes of 5 and 15 for the same replicates (linear model only, cohort size = 675). 

eOR1 (eβ1) ME1 (σ2) 
Individual Level Analysis (Pool Size 1) Pool Size 5 Pool Size 15 

Stable 
Replicates a 

Exposure 1 Exposure 2 Stable 
Replicates a 

Exposure 1 Exposure 2 Stable 
Replicates a 

Exposure 1 Exposure 2 
Power b Bias c FPR d Power b Bias c FPR d Power b Bias c FPR d 

1.5 (0.15) 

Truth e 1000 97.5–98.4 1.0  997–999 92.0–93.8 1.1  997–999 48.3–50.5 1.1  

0.0625 1000 90.5 1.0 52.8 992 84.1 1.1 54.8 992 28.8 1.1 3.9 

0.25 1000 86.3 0.9 53.8 994 79.0 1.0 57.1 994 24.0 1.0 4.8 

1 1000 75.6 0.9 66.6 994 70.5 0.9 61.7 994 15.3 0.9 9.7 

2.0 (0.25) 

Truth e 1000 100.0 1.0  967–977 99.7–99.8 1.2  967–977 87.8–89.4 1.2  

0.0625 1000 99.2 1.0 55.4 947 96.5 1.2 57.5 947 57.9 1.2 6.7 

0.25 1000 99.0 0.9 62.4 970 94.0 1.1 63.1 970 43.5 1.1 6.1 

1 1000 93.2 0.8 82.0 978 84.9 0.8 75.1 978 26.9 0.8 16.5 

4.0 (0.5) 

Truth e 1000 100.0 1.0  522–537 100.0 1.3–1.4  522–537 82.2–84.9 1.3–1.4  

0.0625 1000 100.0 0.9 53.1 458 99.7 1.4 68.9 458 75.2 1.4 42.8 

0.25 1000 100.0 0.8 75.4 603 98.2 1.1 71.6 603 65.1 1.1 33.8 

1 1000 100.0 0.6 99.5 769 96.0 0.7 88.9 769 28.8 0.7 12.2 

Notes: eOR—expected odds ratio; FPR—false positive rate; ME1—measurement error variance for exposure 1; OR—odds ratio; (a) Number of replicates  

for which the ORx1/ORw1 and ORw2 were between 0.1 and 10. (b) 1 1 1
# mod 0.1 10

#
x x xels with OR or OR o

Powe
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Total of replic
r

ates

≥
=

≤
; (c) 
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1
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#
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= ; (e) Models without measurement error. Values 

vary as a different viable population was selected for each measurement error scenario. 
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This was also true for the threshold and saturation models. However, for the stronger true effect  

(eOR = 4) and moderate–to-high measurement error variance the power was greatest for pool size 10  

(n = 450) for the linear and semi-linear models. When there was no measurement error, power increased 

with increasing pool sample size for small and moderate true associations and decreased with increasing 

sample size when the true effect of X1 was large. In general, larger sample size resulted in a slight 

increase in FPR for a moderate true effect (FPR = 4%, 5% and 6% for eOR = 2 and moderate ME1). For 

small and large eOR the relationship between FPR and pool and sample size was more complex. 

A comparison of the linear model with cohort size of 675 analyzed at the individual level and using 

pools of size 5 and 15 is shown in Table 3. For more modest eORs (1.5 or 2), the results of the individual 

logistic regression and analysis of pools of size 5 were very similar. There was a dramatic drop in power 

and the FPR between pool sizes of 5 and 15. The bias was identical for the two pool sizes. However, for a 

stronger true association (eOR = 4) and smaller measurement error variance, the bias in OR1 was in the 

opposite direction compared to the individual level models. The bias in the association of the miss-measured 

non-causal exposure (mean OR2) increased slightly when the pool size changed from 1 (individual level 

analysis) to 5 but there was no difference between pool sizes of 5 and 15 (data not shown). The number 

of replicates for which a logistic model was stable was the same for pool sizes 5 and 15.  

4. Discussion 

This study supports the use of pooling as an efficient means to reduce laboratory costs in scenarios 

similar to this specific prospective risk-enriched ASD cohort that aims to elucidate environmental 

associations (EARLI). The results of this series of simulations found that there is some loss of power for 

pooled compared to individual level models. We also quantified the resulting reduction in the false 

positive rate between pool sizes of 5 and 15 when the cohort size was held constant. In addition, there 

was minimal change in the measure of association for the main effect (X1). This was true for the linear 

as well as semi-linear models. Consistent with previous work [30], the models with measurement error 

had lower power than models without measurement error. 

We looked at larger pool sizes than many of the previous articles about pooling methods and 

simulations (e.g., [3,12,28]). Saha-Chaudhuri [28] and Weinberg [3] found that pooling had little effect 

on power with large sample sizes (but did not consider pool sizes larger than (6) and recommended 

smaller pool sizes. Small pool sizes are indeed ideal in many circumstances but as Dorfman observed in 

1943, financial constraints may have an effect on the feasible pool sizes and number of pools [8]. Pool size 

had little effect on bias but greatly affected the power and FPR in our simulations. In addition, we found 

that pool size 5 is best if it is suspected that the true association is weak and pool size of 10 may be better 

when a stronger true effect is hypothesized. A wide range of putative strengths of exposure-autism 

associations was included here to model the possibility of finding either a weak risk factor or a “smoking 

gun” (e.g., as exists for the four-fold increased risk of ASD for males). 

We demonstrated that even pool sizes as large as 15 lead to fairly accurate results, albeit with 

considerable loss of power, even when measurement error is taken into consideration, in scenarios 

similar to those of EARLI. Furthermore, the larger pool size resulted in a much lower FPR, which may 

be desirable in circumstances where multiple exposures will be examined, such as research into the 

etiology of ASD where well-founded a priori hypotheses are lacking. The number of pools has more of 
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an effect on power than the overall number of subjects. Although the loss in power for pool size of 15 

makes it hard to justify looking at larger pool sizes for the sample sizes and number of pools under 

consideration here, investigators with considerably larger samples should consider running this set of 

simulations with a larger pool size. Fortunately, the measures of association are not very biased for large 

pool sizes, so if small pool sizes are cost prohibitive, researchers should focus more on the magnitude 

of these associations than on significance testing.  

It should also be noted that for these numbers of pools (and sample sizes) we were unable to stratify 

by more than two dichotomous variables (case status and sex). Knowledge of the determinants of 

exposure may help construct more efficient pooling schemes, as is done in group-based exposure 

assessment in occupational epidemiology [40]. However, it is not currently clear how pooling and 

exposure modeling or grouping can be used together. 

There were a large number of replicates for which the logistic regression models did not yield a stable 

measure of association (OR between 0.1 and 10) when the pool size and true effect of the causal exposure 

were large. If a researcher has a sample such as this it should be obvious, based on the bivariate and 

stratified analyses, that a regression model is not appropriate. In fact, our inspection of the individual 

simulations revealed that in such cases, an investigator would have no doubt, based on descriptive 

analyses, that there is evidence to support the existence of an association (this presumed certainty of an 

association is the reason for their inclusion in the numerator of the power and FPR calculations).  

Pooling performs well even with a high degree of measurement error as long as the pool size is small 

and the strength of the true association is moderate. Measurement error was added to the individual 

values for exposure (X1) not to the analytical values that results after pooling of specimens. This was done 

based on the assumption that error occurs at the time of sampling measurement and that assay-based error 

is typically miniscule compared to the day-to-day variance in exposure. Weinberg and Umbach modeled 

both types of error and found that “if the measurement error is individual based, the dependence on g 

disappears and pooling has no effect on the bias in the β estimation” [6]. We found that, except in cases 

of a strong true association, the change in bias resulting from increasing variance in measurement error 

was only slightly affected by pooling (Table 3).  

Pooling may offer several advantages in scenarios similar to those in EARLI. In addition to the financial 

savings for analyzing fewer samples for an individual exposure, a limited amount of bio-samples can be 

analyzed for more environmental exposures than would be possible in an individual-level analysis. As 

pooling resulted in fewer spurious results (i.e., the FPR was lower), researchers may have more 

confidence in variables identified through pooled analysis. Power is important but false positives do not 

in any way help create useful interventions. When selecting a pooling strategy, researchers will need to 

balance this lower FPR against the relatively low power in some of the scenarios. Although a multitude 

of scenarios were studied here, we will provide our syntax upon request so that researchers who have 

data with other exposure distributions (including potentially skewed exposure data such as is likely with 

PCBs), exposure-response relationships and error distributions can investigate the ideal pool size for 

their study.  
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5. Conclusions 

In conclusion, our current work supports the use of pooling as a means to reduce laboratory costs 

while maintaining the statistical efficiency of studies that are similar to the simulated prospective cohort. 

Given its commendable track record under the realistic constraints of observational studies, pooling 

should be considered as an analytical strategy in any epidemiological study that faces constraints on the 

cost of analyses and availability of biological samples.  
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