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Stürwalda, T. Stuttardu, G. W. Sullivanr, I. Taboadaf, F. Tenholtk, S. Ter-Antonyang, A.

Terliukbf, S. Tilavap, K. Tollefsonw, L. Tomankovak, C. Tönnisaz, S. Toscanom, D. Tosiak, A.
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Abstract

The current and upcoming generation of Very Large Volume Neutrino Telescopes—
collecting unprecedented quantities of neutrino events—can be used to explore subtle effects
in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The
sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations.
With the high number of events that will be collected, there is a trade-off between the
computational expense of running such simulations and the inherent statistical uncertainty
in the determined values. In such a scenario, it becomes impractical to produce and use
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adequately-sized sets of simulated events with traditional methods, such as Monte Carlo
weighting. In this work we present a staged approach to the generation of binned event
distributions in order to overcome these challenges. By combining multiple integration and
smoothing techniques which address limited statistics from simulation it arrives at reliable
analysis results using modest computational resources.

Keywords: Data Analysis, Monte Carlo, MC, Statistics, Smoothing, KDE, Neutrino,
Neutrino Mass Ordering, Detector, VLVνT

1. Introduction

By virtue of their multi-megaton effective mass paired with the magnitude of the at-
mospheric neutrino flux, the next generation of Very Large Volume Neutrino Telescopes
(VLVνTs) dedicated to neutrino oscillation physics, such as the IceCube Upgrade, PINGU,
and ORCA [1, 2, 3, 4], will record tens of thousands of GeV-scale neutrino interactions.
These large-scale water or ice Cherenkov detectors do not have the ability to unambiguously
distinguish between neutrino flavors and interaction types on an event-by-event basis. Even
so, their high statistics data samples can be used to explore effects that are small compared
to the background, such as the tau neutrino appearance rate, the ordering of the neutrino
mass eigenstates (NMO), or potential neutrino physics beyond the Standard Model.

All such physics analyses are carried out by comparing the observed event distributions
with predictions (hereafter referred to as templates) obtained from Monte Carlo (MC)
simulations. The physical phenomena listed above will appear as statistical (in)compatibilities
of templates with differences in event counts as small as a few percent. An inherent problem
when trying to quantify these deviations in high-statistics data sets is that the templates must
be described with an accuracy better than the magnitude of the effect being investigated. A
limiting factor to the accuracy is the amount of MC simulation available, which is in turn
constrained by the availability of computing resources. This particularly applies during the
design optimization phase of a planned experiment, which entails performance assessments
of multiple detector variants.

With an adequate machinery at hand to produce templates, extracting the relevant
physical and systematic parameters typically proceeds via maximizing the likelihood of
obtaining the observed data under a given hypothesis. A common feature to all statistical
methods is that the templates need to be generated for a multitude of parameter combinations,
often thousands or even millions. This process needs to be accurate, but also fast, which
typically prohibits the reproduction of the full MC sample for each template.

∗analysis@icecube.wisc.edu
1also at Università di Padova, I-35131 Padova, Italy
2also at National Research Nuclear University, Moscow Engineering Physics Institute (MEPhI), Moscow

115409, Russia
3Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
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In this article, we present an approach that allows for the fast creation of accurate
templates even from MC sets that are several orders of magnitude smaller than those
necessary when using simpler methods. An alternative approach that does not remove
template inaccuracies but rather mitigates their impact on statistical inference is the inclusion
of the inherent MC uncertainty in the fit statistic; recent overviews can be found in [5, 6].

Our approach was used to calculate the expected sensitivities for atmospheric neutrino
oscillation analyses with the proposed PINGU experiment [2, 3], and a similar approach was
taken in low-energy sensitivity studies for the KM3NeT design [4]. Throughout this article,
we will use the NMO analysis for a generic VLVνT as an example to illustrate our methods,
though it is applicable in a wider range of atmospheric neutrino oscillation analyses, and,
in parts and with limitations, to other experiments. Section 2 details the computational
challenge at hand, followed by a brief introduction of the example NMO analysis in Section 3.
Our approach to overcome this challenge is presented in Section 4 and Section 5, followed by
a discussion of the validity of the approach in Section 6. The performance is compared to
other typical analysis methods in Section 7, while the computational burden is discussed in
Section 8. Section 9 concludes with a brief summary of the article. Finally, in Appendix A
we provide details about the VLVνT toy model that we use to benchmark the performance
of all considered analysis approaches.

2. Computational Challenge

The statistical comparison between experimental data and parametric or MC-based
predictions allows inference of the values of physics parameters under study. It typically
proceeds via a likelihood analysis. We first discuss its most general concepts and variants,
then detail the computational requirements on MC generation, and finally outline two
standard methods of mitigating these computational burdens.

2.1. Likelihood Analysis

Different types of likelihood analyses in particle physics share common features4. An
experiment records data which are used to reconstruct any observables expected to carry the
imprint of the physical phenomenon under study. A selection (triggering, filtering, etc.) is
applied in order to enhance the sought signal. Before performing statistical inference, we
need a theoretical model of the observable distributions to compare to the data. Often this
includes complicated processes like particle interactions and detector response that require
the use of MC methods. Hence, not only the data, but also the model is subject to statistical
fluctuations. However, once an appropriate amount of MC events is available, the data xi can
be compared to templates—theoretical distributions—for different physics parameter values
θ via a likelihood function, L(x1, x2, ..., xn|θ) = ΠiP (xi|θ), where P (xi|θ) is the probability
to observe the data xi assuming that θ corresponds to given values of the physics parameters5.

4See, for example, [7] for a more complete overview.
5If the total number of measurements, n, is also a random quantity, the likelihood function can be extended

to include the distribution of n [8].
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The goal is (in the frequentist picture) to find the maximum likelihood estimators (MLEs) θ̂,
i.e., the parameter values which maximize L.

The methods presented in this paper depend on a likelihood function applied to binned
data. One usually employs either a Poisson likelihood or a χ2 approximation thereof (see
for example [8]); our methods are independent of this choice, but we use the latter in the
example presented in this article. Binning the data hides physics signatures smaller than the
bin size and thus introduces a loss in sensitivity. This can be mitigated by reducing bin sizes,
but smaller bins come at the cost of reduced—and possibly insufficient—MC statistics in
each bin.

Apart from the physics parameters of interest, a model often comes with nuisance
parameters that are also included in the likelihood function. This further increases the
dimensionality of the MLE search, which relies on numerical routines for multidimensional
optimization problems. For the NMO studies, we use the L-BFGS-B algorithm [9] in a
D = 8 dimensional parameter space (see Table 1). The number of steps necessary for the
optimization to converge depends on the particular analysis and model being used (i.e., the
details of the resulting likelihood landscape); in the case of our toy example, an average of
∼ 103 templates (one per realization of θ) were needed to converge.

2.2. Template and MC Generation Requirements

The problems associated with generating such a large number of templates are exacerbated
when estimating the median sensitivity of an experiment. The above process needs to be
applied to an ensemble of random toy MC pseudo-experiments6 of size Np. The comparison of
test statistic distributions T (see Section 3 for details) can be used to estimate a significance
value nσ at which one hypothesis is preferred over the alternative. If T is Gaussian distributed7,
the uncertainty ∆nσ to which nσ can be determined depends upon the number of pseudo-
experiments Np as (see Appendix B for details):

∆nσ =
1√
Np

√
n2
σ

2
+ 2. (1)

With an absolute uncertainty ∆nσ at the 1 % level, determining the sensitivity of an
experiment at a confidence level of 99.7 % (corresponding to nσ = 3) requires O(104) pseudo-
experiments.

Finally, the event count expectations, µ, for all bins in the templates must be determined
at the same level as the physics effects being investigated, which requires at least 1

(1 %)2
= 104

MC events per bin to study sub-percent variations arising in a comparison of the two
NMO realizations. At the same time, the number of bins used in any histograms must be

6Each pseudo-experiment corresponds to a statistical fluctuation of the expected experimental outcome
as predicted by MC events. For certain problems, the generation of pseudo-experiments can be skipped by
applying the Asimov approximation [10, 3].

7While not a prediction from the model, a near-Gaussian distribution of the test statistic is observed in
most NMO studies [3, 4, 11].
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commensurate with the experimental resolution and the feature size of the effect under study.
In the example case, at least O(103) bins are required to resolve the distinct features of the
NMO signature; otherwise the analysis cannot exploit the full potential of the experiment.

Therefore, the brute-force approach to our example case requires a very large number of
neutrino events to be simulated: O(107) events for each of O(103) values of θ probed during
the optimization process for each of O(104) pseudo-experiments—a grand total of O(1014)
events. Even if the time to simulate and reconstruct a single event is 1 s (a very optimistic
estimate for our experiment), full fits to all pseudo-experiments under the two ordering
hypotheses would require O(1010) CPU-core-hours—i.e., a single analysis would keep 105

CPU cores busy for 30 years8—a restriction clearly prohibitive to performing any study.
Various state-of-the-art methods are employed to mitigate the high computational costs. In
the remainder of this section, we briefly present the main ideas behind these methods and
give a conceptual introduction to how they are embedded in the approach we introduce in
this article.

2.3. Weighting and Smoothing

The standard event-by-event MC weighting technique avoids repeated simulation and
reconstruction of events every time a value of a nuisance parameter is changed. This is
possible, first, because the physics processes of neutrino production in the atmosphere (flux),
their propagation involving flavor oscillation, and their detection and reconstruction are
independent. Each of these processes, therefore, can be treated separately.

For a process that has an a priori known parametric form (the parameter values of
which are not necessarily known), the outcome of that process can be predicted by directly
evaluating the parametrization at a set of input values. In our case, both the neutrino flux
prediction and flavor oscillations fall into this category. The second category of processes
are those that require MC simulation. Predictions of the detection and reconstruction of
neutrinos fall into this category because we do not have a complete characterization of the
detector’s response.

This leads to the standard event-by-event reweighting scheme, which estimates the
expected final-level event counts due to all processes by simulating a set of MC neutrinos
(capturing the effects of detection and reconstruction), assigning to each a weight derived from
flux and oscillation calculations, and binning the events’ weights in some set of observable
dimensions, as illustrated in the top row of Figure 1.

In detail: Each MC neutrino—generated with a flavor β and a set of true observables
θtrue
ν —is assigned a posteriori the weight wβ corresponding to the sum over the atmospheric

fluxes Φα(θflux;θtrue
ν ) of all initial flavors α including the probabilities P osc

α→β(θosc;θ
true
ν ) to

oscillate into a neutrino of the flavor β:

wβ ∝
∑
α

Φα(θflux;θtrue
ν )× P osc

α→β(θosc;θ
true
ν ).

8Here we make the assumption that the algorithm can be parallelized perfectly.
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Flux Osc

weight weight histogram
Direct hist.

MC

Flux Osc

weight weight KDEDirect KDE
integrate & bin

Template

Figure 1: Operating principles of direct histogramming (top row) and direct KDE (bottom row), which both
follow the same weighting scheme for MC events but arrive at the template differently, as explained in the
text.

In the above, θflux and θosc are nuisance parameters affecting neutrino fluxes and oscillation
probabilities. For a given realization of non-parametric nuisance parameters θdet affecting the
detector response, applying the detector response simulation (including event reconstruction,
classification, etc.) to each incident neutrino results in a set of reconstructed observables
θreco
ν , whose distribution can be compared to real data. In practice, techniques dealing with

the discrete nature of detector nuisance parameters may be required. Here, however, we
consider only a single realization of the detector parameters (θdet fixed)—a simplification
without any loss of the general applicability of the methods discussed.

Since the process of oscillation is decoupled from the detector simulation, only a single
MC set is required to generate the templates for the different hypotheses under test (e.g., the
two mass orderings); only the weights wβ must be recomputed. This eliminates statistical
fluctuations between the otherwise disjoint MC samples. However, even with a single MC
set, an undersampling of the phase space of the model can result in a bias.

Binning the weights in (a relevant subset of) θreco
ν corresponds to performing MC inte-

gration of the experiment’s event distribution. While the convergence rate of this approach
does not depend on the dimensionality of the integral, errors of the estimates scale as 1/

√
N ,

where N is the number of MC events that fall in a bin.
As it is often infeasible to generate enough MC events to obtain sufficient accuracy in

the MC integration process, smoothing of the final event distributions is a common practice.
This, however, can be computationally slow and can introduce artificial features which
may incorrectly reduce or enhance the signal. One such smoothing technique is kernel
density estimation (KDE) [12]. Specifically, we apply adaptive bandwidth KDE directly to
the weighted MC to compare a state-of-the-art version of this method to the methods we
introduce in this paper in Section 4. Here, a Gaussian kernel with a width calculated as
described in [13] is centered at each MC event’s reconstruction information. A weighted sum
over the kernels of all events then delivers the smoothed distribution as shown in the bottom
row of Figure 1, which will be compared to the distribution our method yields.

Shortcomings of the direct application of the two techniques discussed above—the first
is the weighting method alone (labeled direct histogramming), while the second applies
additional smoothing using adaptive kernel density estimates (labeled direct KDE)—can be
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overcome using the staged approach. Before providing an overview of the staged approach in
Section 4, we briefly introduce the key points of the example NMO analysis used to illustrate
the benefits of the approach with respect to the standard techniques.

3. NMO Analysis

The observation of neutrino oscillations and the demonstration of the neutrinos’ non-zero
masses [14, 15] represented a major step forward in the field of particle physics. While
current experimental techniques have not yet allowed for a direct measurement of the tiny
masses, the magnitudes of their relative differences (mass splittings) are well known.

The ordering of these neutrino mass states (neutrino mass ordering, NMO) presents
a difficult challenge. A powerful method to determine this ordering is the observation of
matter effects on neutrinos. Owing to the high electron density of the Sun, observations
of solar neutrinos have shown the second mass state to be heavier than the first [16]. It
remains an open question, however, whether the third state is the most or least massive. The
former scenario is referred to as the normal ordering (NO), while the second is called inverted
ordering (IO). There is currently no experimental evidence decisively excluding either of the
two scenarios [17, 18, 19, 20].

The study of oscillations of atmospheric neutrinos provides a promising route toward a
decisive measurement of the NMO [21, 2, 3, 4]. The path length (or baseline) varies between
20 km for vertically downward going and 12 700 km for straight upward going atmospheric
neutrinos, with the latter crossing the full diameter of the Earth. With energies ranging from
MeV up to the TeV scale, combinations of baselines and energies varying over several orders
of magnitude are probed. For the longest baseline, the very pronounced first oscillation
maximum of muon neutrinos occurs at a neutrino energy of around 25 GeV, followed by
subsequent maxima at lower energies.

The electron neutrinos’ coupling to electrons (coherent forward scattering) in the Earth
creates an effective matter potential which leads to resonant behavior of the transition
probabilities at energies around 5 GeV, known as matter resonances [22, 23, 24]. Furthermore,
the Earth’s specific density profile encountered by the neutrinos can also parametrically
enhance their oscillations [25]. This enhancement with respect to oscillations proceeding in
vacuum occurs for neutrinos if the NMO is normal, otherwise for anti-neutrinos.

The NMO measurement potential of VLVνTs is based on this asymmetry. Two major
aspects are obstructive, however. The first is the inability of VLVνTs to differentiate
between neutrinos and anti-neutrinos. This reduces the effect to the respective difference in
atmospheric fluxes and interaction cross sections. Energy and directional resolutions of the
experiment present the second hurdle. Both are typically prohibitive to resolving the fast
variations of the oscillation pattern at the relevant energies. As a consequence, the observable
effect is reduced to at most a few percent over the relevant energy and zenith range (see
Figure 2), requiring neutrino telescopes with effective masses on the order of megatons to
achieve sufficient event statistics.

Proponents of various VLVνTs in ice and water have performed studies confirming this
idea, finding that a > 3σ (median) sensitivity to the NMO can be achieved within five
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Figure 2: Expected fractional event rate difference between nominal NO and IO inputs (from Table 1) for
the toy model. Cascades are shown on the left, tracks on the right.

years of exposure time even in less favorable regions of the neutrino oscillation parameter
space [2, 4, 26].

As the oscillation probabilities directly depend on neutrino energy Etrue, oscillation
baseline (∝ cosϑtrue), and flavor, we split our data into bins of log10Ereco, cosϑreco, and event
class9. It is important to choose a binning fine enough to resolve the NMO signature, while
coarse enough to retain a sufficient amount of MC statistics per bin, as motivated in Section 2.
We have found the division into (40× 40× 2) bins to be suitable, covering a range of Ereco

from 1 GeV to 80 GeV, the whole sky (cosϑreco from −1 to 1), and the two event classes
of cascades and tracks. Using this binning, for our toy detector introduced in Appendix
A, Figure 2 shows the expected fractional event rate difference (RNO − RIO)/RNO, where
RNO(IO) is the expected event rate for true NO (IO), based on the two sets of nominal model
parameter values given in Table 1.

As the most powerful test statistic for distinguishing two simple hypotheses [27], the
logarithm of the likelihood ratio

T = −2 ln

max
θ∈NO

L(n|µ(θ))

max
θ∈IO

L(n|µ(θ))

 . (2)

is also useful in assessing the ability of an experiment to discriminate between the two
(composite) NMO hypotheses at a given confidence level. It is representative of the degree at
which observing the data n under the NO hypothesis is favored over observing it under the
alternate IO hypothesis. The observed spectrum at the detector, n, however, is a convolution

9The use of the subscript “true” is used to specify the true variables of the neutrinos and to distinguish these
from the reconstructed variables, denoted with a subscript “reco”, which will be introduced in Section 4.1.
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Figure 3: Example distributions of Equation (3). The distribution on the left (solid line) represents the case
of NO pseudo-data, while the distribution on the right (dashed) is obtained when the pseudo-data is taken
from the IO. Here, 1 − p corresponds to the confidence level at which the IO is correctly rejected with a
probability of 50%.

of the atmospheric neutrino flux, the effects of neutrino oscillations that bear the NMO
signature, the neutrino interaction and detection processes, and the event reconstruction and
classification procedure. Each one of these effects is accompanied by systematic uncertainties.
As their impact on the predicted spectrum µ is modeled, the systematic uncertainties directly
feed in to the likelihood L of the observation.

For this study, we limit ourselves to a simplified treatment using χ2 statistics and the
Asimov dataset. In this approach, the projected median sensitivity is calculated from the
average experimental outcomes under the two possible NMO hypotheses, as opposed to
performing extensive ensemble tests with randomly fluctuated pseudo-experiments. The
log-likelihood expression is a simple χ2, and Equation (2) can be rewritten as the difference

∆χ2 = χ2
NO − χ2

IO . (3)

Here, χ2
NO is the minimum χ2 between model predictions and data, with all nuisance

parameters profiled out using NO priors (χ2
IO follows analogously).

An illustration of example distributions of (3) for the two different NMO hypotheses
is shown in Figure 3. The goal is to obtain a p-value p which quantifies the statistical
compatibility between the hypothesis that is tested and the one assumed to be true. In
the ensemble approach, the two distributions would need to be built up by fitting pseudo-
experiments. In the Asimov approach, however, certain assumptions about the distribution

of (3) allow adopting the expression
√
|∆χ2| as a sensitivity proxy [11], determining the

significance at which the wrong ordering can be excluded without the need for pseudo-
experiments.

For the profiling of the nuisance parameters (any free model parameters), a numerical
algorithm minimizes the χ2 metric. Whenever external constraints are applied to such
parameters, we add those to the χ2 value as penalty terms (priors). While the presence of
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Parameter
Nominal value

Prior
NO IO

νe/νµ flux ratio 1.0 1.0 ±0.03
ν/ν̄ flux ratio 1.0 1.0 ±0.1
Spectral index shift 0.0 0.0 ±0.1
Energy scale 1.0 1.0 ±0.1
Overall normalization 1.0 1.0 ±0.1
θ13 (◦) 8.5 8.5 ±0.2 [28, 29]
θ23 (◦) 42.3 49.5 non-Gaussian [28, 29]
∆m2

31 (eV2) 0.00246 -0.00237 ±4.75× 10−5 [28, 29]

Table 1: Summary of model parameters in the example NMO analysis, including their nominal values for
the two NMO hypotheses and Gaussian ±1σ bounds used as external constraints (priors). The first three
parameters are applied to atmospheric neutrino flux predictions from [30], following the procedure laid out
in Section 5.1. The values for the three oscillation parameters are based on a recent global fit [28, 29].

these penalty terms is meant to illustrate a typical approach to problems of this sort, their
sizes do not follow any precise physical motivation. Table 1 gives an overview of all used
model parameters, their nominal values for NO and IO, and priors (where applied).

4. Overview of the Staged Approach

The method to obtain templates we describe in this article is divided into four independent
parts, referred to as stages. The four stages (flux, oscillation, detection, and reconstruction)
and how they are used to obtain event templates are summarized in this section, while more
technical descriptions of each stage follow in Section 5.

4.1. Stages

Templates for our example case of an NMO analysis using a VLVνT are produced
efficiently and accurately using the following four stages.

Each stage represents a collection of related physical effects. Beginning with the flux
computed by the initial stage, each subsequent stage applies a transformation to the output
of the previous stage.

1. Flux The expected unoscillated atmospheric neutrino fluxes are taken from an external
model [30]. Flux values from this model are provided in the form of tables with discrete
steps in both neutrino energy, Etrue, and direction, here the cosine of the zenith angle,
cosϑtrue. Therefore, an interpolation must be performed for values between those
tabulated. Crucially, these tables give the integrated flux across the bins, which does
not necessarily coincide with the flux value at the bin center. Accordingly, we use
an integral-preserving (IP) interpolation. In general, atmospheric flux models require
external inputs including primary cosmic ray measurements, atmospheric density
models, and hadronic interaction measurements. Many associated uncertainties are
known [31, 32] and need to be included as nuisance parameters in an analysis.
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Figure 4: Illustration of the staged approach for obtaining event templates, here for simplicity using a
characterization in one dimension (energy) only. Steps 1, 2, and 3 are in true energy (Etrue); the product
of these yields the expected event distribution (lower left). Smearing this spectrum with energy-dependent
energy resolution functions (step 4) gives the reconstructed event rate spectrum (lower right). Note that
the dotted green line in step 2 shows a hypothetical change of oscillation parameters, affecting only stage 2.
Smoothing can now directly be applied to the distributions in steps 3 and 4, instead of the fully weighted
MC as in the direct KDE method.

2. Oscillation Flavor oscillations of neutrinos traversing the Earth modify the flavor
content of the original flux in a manner that depends on the energies and path lengths
(derived from the direction) of the neutrinos. Additional intrinsic neutrino properties
determine the standard flavor oscillation probabilities: three mixing angles and two
independent mass-squared splittings, as well as a possible non-zero CP-violating phase.
In addition, matter effects induce modifications in the flavor transition probabilities
compared to vacuum [23, 22, 33], which makes up the basis of the NMO measurement
capability of VLVνTs. In [33], the authors present an analytical expression for the
neutrino flavor transition amplitude in a layer of uniform-density matter, which in turn
was later implemented in, for example, the Prob3++ software [34]. Here, the Earth
density profile [35] is approximated by a finite number of homogeneous layers and the
total transition amplitude is represented by a matrix product of the amplitudes in the
individual layers. The main challenge for this stage, which in contrast to the other stages
does not require any MC simulation, is to keep the burden of these computationally
expensive calculations to a minimum, while retaining sufficient accuracy in the modeling
of the neutrinos’ propagation.

3. Detection The number of observed events is determined by the (oscillated) flux as
well as a quantity known as the effective area (alternatively, the effective mass)10. This

10In contrast, high energy physics experiments often calculate an acceptance instead, which is also based
on simulation.
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Figure 5: Flow of neutrino flavors and interaction types through the stages, here shown for neutrinos only (with
an analogue counterpart for anti-neutrinos). Neutral current events of all flavors are indistinguishable and can
therefore be conveniently added together. The reconstruction stage not only maps from (Etrue × cosϑtrue)-
space to (Ereco×cosϑreco)-space, but also classifies the events into the cascade and track categories, indicated
by the orange and blue color, respectively.

incorporates the probability that a given neutrino interacts within the detector, is
detected, and passes the given data selection criteria. We obtain the eight effective
areas (νe,µ,τ & ν̄e,µ,τ charged current (CC) and ν & ν̄ neutral current (NC) interactions)
from simulated MC events that are run through the same selection criteria as the real
data. In general, each of these effective areas will depend on the energy and arrival
direction of the neutrinos. Depending on the detector geometry, certain symmetries can
be exploited to reduce the number of parameters on which the effective areas depend.
Here we assume azimuthal symmetry and therefore only extract effective areas as a
function of Etrue and cosϑtrue.

4. Reconstruction The process referred to as reconstruction translates the raw signals
recorded by a detector into estimates of the physical properties of events. Uncertainties
in these estimates manifest as statistical fluctuations, with respect to the true properties,
which can be described by probability density functions we refer to as resolution
functions. We estimate the resolution functions from the same MC events as used in the
detection stage, for which we know the true energy, zenith angle, and interaction type
on an event-by-event level. The reconstruction stage uses these estimated resolution
functions to build smearing kernels (ensembles of resolution functions) that map the
event rates from the space of true variables into the space of reconstructed observables.
Additionally—since most VLVνTs cannot exactly distinguish the different neutrino
flavors and interaction types—the events are classified by their signature in the detector.
Here, event classes are tracks and cascades, based on whether the event seems to
contain the expected signature of a starting muon track. This process will separate
νµ CC and ν̄µ CC interactions from all others, albeit with limited efficiency and purity.
For the example NMO analysis, three observables are needed: the primary neutrino’s
reconstructed energy (Ereco), zenith angle (ϑreco), and event classification.

Note that there is no universal prescription for identifying the set of stages appropriate
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for any given physics analysis or detector. Instead, stages are chosen to exploit valid
simplifications for the task at hand. For example, atmospheric neutrino flux and oscillation
calculations depend on readily available tabulated spectra and analytic formulae, respectively.
Cosmic ray observatories or high energy particle colliders, by contrast, might require complex
stages to describe particle showers, which in turn might depend on high-dimensional, analysis-
specific tables. Any physics scenario resulting in multi-particle final states adds further
complexity.

In essence, the specific problem and analysis at hand determine to which extent MC
sampling is necessary and whether the staged approach is applicable. If the latter is indeed
the case, care must be taken concerning the choice of appropriate stages and their specific
implementations. In the remainder of this article, we study in detail the staged approach we
have found particularly effective for an NMO analysis using a VLVνT.

4.2. Template Generation

In order to produce the final-level event templates that are ultimately compared to the
data, the four stages are combined as depicted in Figure 4: integration of the product of the
first three stages (flux, oscillation probability, and effective area) over Etrue and cosϑtrue yields
the event rate in the space of true variables. The event rate in the space of reconstructed
observables is then obtained by a convolution of the true event rate with the reconstruction
resolution functions. Finally, multiplication by detector exposure time results in an event
count, which can be compared directly to observed data or different templates11.

Throughout the stages, different combinations of neutrino flavor and interaction type
(channels) need to be treated separately, as depicted in Figure 5. Starting with the atmospheric
flux, the neutrinos can undergo flavor change via oscillation. Since ντ production in the
atmosphere is expected to be negligible at the energies relevant here, this flavor only appears
through oscillation [36]. The detection rate varies between CC and NC interactions [21].
Finally, after applying the reconstruction resolutions and event classification, event counts are
summed to get the final-level templates for events classified as tracks and cascades separately.
Where not mentioned explicitly, the same treatment is also applied to anti-neutrinos. The
final templates are the sum over both, neutrinos and anti-neutrinos.

Since the transformations computed by individual stages are independent of one another,
a parameter change affecting one stage does not affect the transformations used by the other
three stages, and in particular not the result of the previous stages. Therefore, we include
caching functionality that reduces the overall computational expense when a number of
successive templates are retrieved while changing one parameter at a time.

The transformations performed by the individual stages are dependent on the neutrino’s
energy and zenith angle, and therefore must be computed and applied differentially. All
stages are evaluated on a grid of points distributed over Etrue and cosϑtrue, with the final
templates output in Ereco, cosϑreco, and event class. Points in energy are logarithmically
spaced in the domain 1 GeV to 80 GeV while points in cosine-zenith are linearly spaced

11While not shown here, it is possible to extend the model with more parameters or stages to describe
additional effects, such as the modeling of systematic uncertainties.
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Stage Transformation Output
Flux - 400 Etrue × 400 cosϑtrue

Oscillation 400× 400 400 Etrue × 400 cosϑtrue

Detection 400× 400 200 Etrue × 200 cosϑtrue

Reconstruction 200× 200× 40× 40× 2 40 Ereco × 40 cosϑreco × 2 classes

Table 2: Gridpoints chosen for the staged approach in this work. The output of one stage is the input to the
next stage, and the result of the detection transformation is downsampled from (400×400) to (200×200)
by summing non-overlapping sets of 2×2 adjacent points. Outputs of flux, oscillation, and detection are in
the domain Etrue ∈ (1, 80) GeV and cosϑtrue ∈ (-1, 1) while the output of reconstruction is in the domain
Ereco ∈ (1, 80) GeV, cosϑreco ∈ (-1, 1), and class ∈ {track, cascade}. Within their respective domains, points
in energy are logarithmically spaced while points in cosine-zenith are linearly spaced.

between −1 and 1. The number of bins in each stage (for input, transformation, and output)
is adjusted to reduce numerical integration errors and to avoid smearing out the physical
effects under study. At the same time, this number should be kept as small as possible
to reduce the computational load. An overview of the binning scheme we have employed,
suitably mediating between these two effects, is given in Table 2.

The fundamental motivation for splitting up the process of template generation into a
sequence of stages is that smoothing methods can be chosen for each stage that accurately
reflect their unique physics, which in our example analysis apply to the detection and
reconstruction stages. This approach reduces the required MC statistics with no loss of
detail in the flux and flavor oscillation modeling. In contrast, smoothing events at the final
level, as the traditional direct KDE does, acts on a convolution of effects, including the
rapidly-varying behavior in the underlying oscillation physics. As will be shown later in this
article, this difference is key to achieving higher precision with the staged approach compared
to our reference methods.

For the staged approach, we emphasize that our choice of smoothing techniques is
not unique. The specific techniques we employ are motivated by the typical shapes of
the distributions characterized and have been found to be reliable and robust at modest
computational costs. They should thus be seen as effective but non-exclusive solutions to
problems of the kind discussed in this article.

Note that, in addition to the MC-based calculation of the transformations provided
by the detection and reconstruction stages, we have implemented the option to produce
transformations using the parametric functions of the toy model defined in Appendix A.
The template produced in this way is what we refer to as “truth”.

All MC events we use with the staged approach are samples of the unbinned distributions
of the toy model and are shared between the detection and reconstruction stages. For each
combination of neutrino type and interaction type (for example νe CC, ν̄µ NC), we draw
an identical number of events. This number, one twelfth of the total number of events
constituting a given random sample of the toy model, is referred to as the sample size. A
given sample is used together with the event-by-event MC weighting technique to generate
templates for all possible values of θ, that is, to calculate the associated expected counts in
all bins of each final-level template.
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Figure 6: Operating principles of the different staged approach modes, which differ in how we generate the
transformations of the last two stages. The staged approach without smoothing is employed for validation
purposes in Section 6.1. See text for details.

A complete overview of the different operation modes of the staged approach is given
in Figure 6, which highlights the stages at which these differ in the template generation
process.

5. Technical Implementation of Stages

The stages within our approach, as summarized in Section 4 and illustrated in Figure 4
are subject to different technical and computational challenges due to the physics effects
captured by each one. In this section we examine specific implementation details which
highlight how each stage balances performance and precision requirements—even in the
presence of low MC statistics.

Therefore, we include caching functionality that reduces the overall computational expense
when a number of subsequent templates are retrieved while changing one parameter at a
time.

5.1. Flux

In order to preserve the integral of a tabulated set of data, a spline is fit to the integral
of the data rather than to the values themselves. Interpolated values in the initial space
are then found by evaluating the derivative of these splines. We refer to this method as
integral-preserving (IP) interpolation.

For the NMO example analysis, the tabulated data of interest are the atmospheric
neutrino flux predictions from [30] provided as a function of both Etrue and cosϑtrue. To
simplify the problem, the integration12 is performed along one dimension at a time.

Consider the case with fluxes tabulated at M ×N points in (Etrue, cosϑtrue). To retrieve
the flux at an arbitrary (Etrue, cosϑtrue) point, say (x, y), first one spline of the integrated

12Here, a cumulative sum of the bin values multiplied by the respective bin width.
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flux as a function of cosϑtrue is created for each of the M Etrue locations. The derivative
of each of these splines is evaluated at y, yielding M flux values. The integral of these
values is then interpolated with a spline, and finally this spline’s derivative is evaluated at
x. This concept generalizes to higher dimensions, but can quickly become computationally
intensive as the number of splines grows. While the splines used in the provided example
are of one-dimensional cubic type, other spline variants or interpolation techniques can be
used, as long as these allow for differentiation. For the example analysis of this article, IP
interpolation is approximately an order of magnitude slower than two-dimensional cubic
spline interpolation.

The IP method improves upon standard interpolation techniques in that it correctly
models the turnover of the flux at the horizon (cosϑtrue = 0) and the behavior in the most
upgoing and downgoing regions (cosϑtrue ∼ ±1). This can be seen in Figure 7, which
compares the results of IP to linear and cubic spline interpolation.

For the tables used in this article’s example analysis, IP interpolation preserves the integral
to better than 0.5% over the complete (Etrue, cosϑtrue)-space. More detailed information on
the IP method can be found in [37].

5.2. Oscillation

The oscillation library that we employ is an extension of the code described in [38], where
the authors ported some of the core functions of Prob3++ to a graphics processing unit (GPU)
via the CUDA C API [39]—an application programming interface to perform general purpose
computations on GPUs. We then added back in the ability to handle an arbitrary number
of constant density layers of matter, allowing for highly parallel calculations of three-flavor
oscillation probabilities of neutrinos that encounter a realistic radial Earth density profile,
with fine-grained control over its characteristics. We implemented the oscillation calculations
with floating point precision selectable to either single (32 bits, or FP32) or double (64 bits,
or FP64) precision. With our code run in double precision with Prob3++, evaluated on a
100×100 grid of neutrino energies Etrue ranging from 1 GeV to 80 GeV and cosϑtrue values
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Figure 8: Deviation of νµ survival probabilities computed with Prob3++ compared to nuCraft. The left
panel uses a fixed production height of 20 km for both codes and twelve constant-density layers for Prob3++.
In the right panel the values from nuCraft are the average probabilities for a range of neutrino production
heights across the atmosphere.

spanning the region between −1 and 0, our GPU and CPU implementations of the Prob3++

code produce consistent results to the level of 10−14 or less. These differences are due to
differing hardware implementations of the same mathematical operations. Switching from
double to single precision on the GPU, we find that the magnitudes of the differences stay
below about 10−5 for all oscillation channels. Single precision is desirable from a performance
point of view, since most GPUs comprise a larger number of single precision than double
precision arithmetic units, and these extra units can be exploited by the parallelism in our
code.

To evaluate the effects of an approximated Earth density profile using a limited number of
constant density layers and a constant atmospheric production height—both approximations
that our code makes—we compare the oscillation probabilities from our implementation
of Prob3++ against a reference model. The latter is calculated by nuCraft [40], which is
written in Python and solves the Schrödinger equation numerically. The nuCraft library
also supports a realistic variation of the oscillation baselines according to the distribution of
atmospheric neutrino production heights described in [41] and uses an interpolated radial
density profile of the Earth.

To this effect, we first fix the atmospheric neutrino production height to h0 = 20 km for
both codes, and quantify the deviations arising from the coarser Earth model by calculating
the νµ survival probability residuals on a fine grid in cosine zenith and energy. When
approximating the Earth’s density profile with only four layers (one for each of the upper
and lower mantle, and the outer and inner core), differences of up to 15 % to the output
of nuCraft are seen. These differences decrease to below 5 % when using 12 density layers
(see left panel of Figure 8). Using an even more detailed model with 59 layers results in
differences smaller than 0.3 % across the whole two-dimensional spectrum.
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Comparing the 12-layer Prob3++ probabilities to those obtained under the assumption
of a more realistic distributed atmospheric production height in nuCraft highlights further
discrepancies between the outputs of the two codes (see right panel of Figure 8). However,
the largest differences (∼ ±10 %) appear for near horizontal trajectories, while the residuals
for cosϑ . −0.4 remain roughly unchanged.

Since precise modeling of both the Earth’s density profile and the atmospheric neutrino
production heights come at a significant additional computational cost, depending on the
analysis in question it might be desirable (and justifiable) to neglect one or both of these
effects. In our example NMO analysis we find that it is sufficient to use the 12-layer model
and a fixed production height. Both approximations have very little impact on the final
spectra—mainly due to detector resolution effects—and since they systematically affect
both NMO realizations in an almost identical manner, their effects leave the measurement
comparing the two mass orderings largely unaffected. Moreover, while the atmospheric flux
peaks in horizontal direction (seen, for example, in Figure 9), negligible matter effects for the
corresponding trajectories result in very little intrinsic sensitivity of this part of the spectrum
to the NMO.

5.3. Detection

As a reminder, the effective areas are quantities used to translate an incoming flux to the
event rates in the detector. These effective areas are calculated from a limited number of
MC events, hence they can suffer from statistical fluctuations which can be a non-negligible
contribution to the total uncertainty of the final physics result. At the same time, effective
areas are typically well-behaved quantities in energy and zenith angle (under some realistic
assumptions, e.g., that no discontinuous selection cuts are applied and no gaps exist in
the detector acceptance). Therefore, smoothing techniques can be applied to alleviate the
unwanted uncertainty contributions from statistical fluctuations.

For charged current interactions, we compute the effective area separately for each
neutrino flavor. In contrast, we do not distinguish between flavors for neutral current (NC)
interactions, since their cross sections are identical. Neutrinos and anti-neutrinos are handled
independently, accounting for a total of eight independent effective area functions. For
convenience we include the multiplication by detector exposure time (texp) in the same step,
which means that this stage outputs event counts (Nevents) instead of rates

Nevents = Φ[m−2s−1] · Aeff [m2] · texp[s] , (4)

for some input flux (Φ).
In our staged approach we first evaluate the effective areas on a fine grid in (Etrue, cosϑtrue)

using the MC events via MC integration, where, when generating events, the sampling is
chosen to provide a relatively uniform coverage across all grid points. For our example case
study, we use a uniform sampling across cosϑtrue and a power law spectrum for the energies
∝ E−1

true to closely follow actual IceCube oscillation analyses. (Note that an optimization of
the sampling choices would benefit both the staged approach and the reference methods.)
Still, for small sample sizes, some grid points may have no associated events, leading to gaps
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in the distribution. We remove these by applying a simple Gaussian smearing along the
two-dimensional grid. In a second step, cubic splines are employed to perform smoothing.
Here, first, splines are created along the Etrue dimension individually for every cosϑtrue bin,
and evaluated to obtain new values for every grid point. Then, this splining procedure is
repeated along the cosϑtrue dimension.

Figure 9 shows the truth template of νµ CC events on a grid with nbins = 40× 40 points
together with the fractional deviations that arise when the same template is obtained from
MC samples13 of different sizes using direct histogramming versus the smoothing method
described above. We use νµ CC events as an example here and below. Table 3 gives the
average (binwise, i.e. per degree of freedom) χ2 values defined as

〈
χ2
〉

=
1

nbins

χ2 =
1

nbins

nbins∑
i=1

(
µ′i − µref

i

)2

µref
i

(5)

and maximal χ2 values defined as

χ2
max = max

1≤ i≤nbins

[(
µ′i − µref

i

)2

µref
i

]
(6)

by which the templates from the our method and from direct histogramming deviate from
truth (with bin counts µref

i ).
The χ2 values provide direct insight into how the accuracy of the template description

compares to the statistical uncertainty of the real data that would be observed. Since the
observed data underlies Poisson fluctuations it has an average deviation from truth of χ2 = 1
per bin. An analysis of real data, however, can only test templates based on MC. These
exhibit their own statistical uncertainties, resulting in finite χ2 deviations from truth, shown
in Table 3 as a function of MC sample size. It is essential that these inaccuracies inherent to
the template generation process are considerably smaller than the statistical fluctuations in
data in order to ensure accurate statistical inference.

Applying our method we find deviations that are lower by a factor of about 40 for the
smallest MC set, and by a factor of about 13 for the largest. It is noteworthy that the
maximum deviation (χ2

max) across all bins decreases monotonically with MC sample size,
confirming that the used smoothing method does not introduce any observable bias.

5.4. Reconstruction

The usual way to obtain templates in the space of reconstructed variables is to place each
individual MC event in the final-level distributions according to the reconstruction information
that the event carries. This is the case for both methods that are used for comparison:
direct histogramming and direct KDE, the only difference between these being how the
final-level distributions are estimated. While this approach correctly takes into account
joint dependencies of the event reconstruction on the involved variables, it is particularly

13Generated from the toy model in Appendix A.
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Figure 9: Parametric reference distribution after the first three stages (flux, oscillation, and detection) for
the νµ CC channel in (cosϑtrue, Etrue) (left panel) and relative residuals (|N −Ntrue|/Ntrue) for the direct
histogramming (right panel, top row) and our proposed method (right panel, bottom row) on a 40 × 40
grid using different amounts of simulated events. (Note that the numbers are not percentages.) The three
columns in the right panel represent different MC sample sizes of 103, 104, and 105 events, respectively. The
samples are drawn from the unbinned toy model distributions of Appendix A.

sensitive to small MC sample sizes due to the potentially high dimensionality of the space of
reconstructed variables. In contrast, the staged approach uses the available MC simulation
to construct detector resolution functions which we integrate to form a transformation that
maps a template in true variables (such as that shown on the left in Figure 9) onto the space
of reconstructed variables, what we refer to as the final-level template.

In the case study of the NMO analysis, the mapping of true variables (Etrue and cosϑtrue)
to reconstructed variables (Ereco, cosϑreco, and event class) is extracted from the MC as
a “migration” tensor of order five, Mijklm. It maps the histogram of event counts in the
two-dimensional space of true variables, hij , to the observed histogram of event counts in the

Sample size 103 104 105 106

Direct hist.
〈χ2〉 215 22.5 2.07 0.201
χ2

max 21600 1810 79.4 11.2

Staged approach
〈χ2〉 5.14 0.526 0.0615 0.0156
χ2

max 460 17.2 2.27 0.975

Table 3: Average χ2 per bin and the worst-case bin’s χ2 value comparing templates on a 40 × 40 grid in
(Etrue, cosϑtrue)-space (i.e., before applying reconstruction resolutions) generated by direct histogramming
(top) and the smoothed-staged approach (bottom) with the toy model’s reference template. Shown are values
obtained for independent input MC samples of various sizes (from 103 up to 106 events per flavor/interaction
type).
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three-dimensional space of reconstructed variables, h′klm:

h′klm =
∑
i,j

Mijklmhij . (7)

The reconstruction transform in general has to be computed as a five-dimensional
transform, as all five dimensions can depend on one another—i.e. they are correlated.
Studying the correlations among the dimensions in our particular MC revealed, however,
that Ereco only depends on event class and Etrue, cosϑreco depends on event class and both
input dimensions, and event class only depends on Etrue. For each of the three reconstruction
variables, we subdivide the MC in the quantity’s dependent dimensions to the point that
correlations are not visible and that all events in the subdivision can be assumed to be samples
from the same one-dimensional distribution.—i.e. the resolution functions we generate.

There is a trade-off in terms of how much to subdivide the MC for producing these
resolution functions. Since resolution changes as a function of a dependent dimension,
sufficiently narrow subdivisions in that dimension group together MC events drawn from
essentially the same distribution. Subdivisions that are too wide will group together events
drawn from different distributions and the resulting resolution functions will be erroneous.
However, narrower subdivisions admit fewer MC events in each subdivision and so lead to
greater statistical variations in the estimated resolution functions (i.e., their shapes will be
more affected by random fluctuations in the MC).

To balance these competing factors, we devised the following heuristic. For the quantity
being characterized, we divide each dependent dimension evenly—except event class, which
is binary. Etrue is divided evenly in log-space to help ensure even subdivisions group together
events with similar energy resolution, as this quantity changes more rapidly at low Etrue than
at high Etrue. We allow each subdivision of Etrue to separately expand enough to capture
at least 100 events, and at least 500 events in each subdivision of cosϑtrue. If expansion is
performed, subdivisions’ upper and lower edges are expanded by the same factor (up to the
limits of the dimension). The captured events are then used to produce resolution functions.

The remaining parameters that require tuning in this heuristic are the number of sub-
divisions to use for each dependent dimension for each quantity being characterized. For
this, we visually inspect the 2-dimensional distributions of each characterized quantity as a
function of each dependent dimension and require that the events in each subdivision do not
display strong dependence on the dependent dimension.

If the functional form of the resolution functions is known, a parametric model of this
form fit to the MC yields the most accurate and lowest variance reconstruction transform.
However, as we do not know the form of these functions, a non-parametric density estimation
technique is used to approximate them. In particular, we chose to use adaptive KDE [42]
with bandwidths scaled uniformly such that the narrowest is that found from the Improved
Sheather Jones (ISJ) algorithm [43]. KDE works by placing a kernel function (we use a
Gaussian) centered at the value of each event’s variable to be described and then summing
over all kernels. Adaptive bandwidth KDE uses different widths for each kernel, where the
bandwidths are inversely proportional to the density of points near the location of the kernel.
The ISJ bandwidth selection algorithm used to normalize the kernel widths is an improvement

23



1 0 1
cos reco cos true

1 0 1
ln(Ereco/Etrue)
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Figure 10: Example energy and cosine-zenith-angle resolution distributions for νµ CC events classified as
cascades, estimated with histograms and adaptive KDE. Energy resolution is shown for 100 events with
Etrue ∈ [26.7, 29.8] GeV and cosine-zenith resolution for 100 events with Etrue ∈ [1.0, 1.1] GeV. The samples
used to construct the histogram and KDE are shown by vertical lines beneath the histograms.

over predecessor algorithms (e.g., [44, 13]) in that it does not make assumptions that the
quantity being estimated is drawn from a Gaussian distribution. In our experience, this
outperforms fixed bandwidth KDE by not underestimating the heavy-tailed distributions we
encounter, but it bears repeating that other density estimation techniques can yield better or
worse results depending on the specifics of the MC in question. An example of two resolution
functions (one for both energy and zenith angle, respectively) estimated using the adaptive
KDE method is shown in Figure 10.

Figure 11 again demonstrates that templates obtained from our KDE-based reconstruction
stage deviate much less from the parametric reference template after reconstruction than
templates from direct histogramming of reconstructed MC events.

6. Validation and Comparison of Templates

This section more closely examines the templates generated with the staged approach
and compares them—along with those generated by the other two methods (histograms and
KDE)—to the parametric reference distributions of the toy detector model. This validation
is split into two parts. The first examines the grid of points that are used to numerically
approximate the integral over the first three stages, whereas the effect of smoothing is
investigated in the second.

6.1. Sampling Grid

In order to demonstrate the validity of our choice of grid points shown in Table 2 as
well as the equivalence between the staged approach and traditional MC weighting as grid
point spacing in Etrue and cosϑtrue is reduced, we compare the staged approach without
smoothing (i.e. using raw histograms as transforms in place of smoothing functions and
KDEs) to direct histogramming. The specific comparison done here without smoothing is
solely for the purpose of validating the principle of stages vs. direct histograms.
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Figure 11: Same as Figure 9, but comparing final-level templates after all four stages are applied. Note that
the residuals in the 1k-samples plot for direct histogramming go up to 31 but the scale is clipped at 10.

Grid (M ×N) 40× 40 80× 80 160× 160 320× 320 640× 640 1280× 1280
〈χ2〉 0.01067 0.00253 0.00060 0.00014 0.00003 0.00001
χ2

max 1.45906 0.46930 0.19718 0.04974 0.00634 0.00172

Table 4: Average and maximal χ2 deviations per bin of the final 40× 40× 2 binning between final templates
of non-smoothed staged approach and direct histogramming, for different grid point densities in (Etrue,
cosϑtrue) for the first three stages, using an MC sample of 106 events. The last (=reconstruction) stage uses
a reduced binning, as described in the text.

Table 4 shows the χ2 difference (cf. Equations (5) and (6)) between the final templates
obtained from the staged approach (with bin counts µ′i) and direct histogramming (µref

i ) for
a variety of grid point densities in Etrue and cosϑtrue, using the same MC set of size 106 for
both methods. These templates are output with a binning of 40× 40× 2 in Ereco, cosϑreco,
and event class. The relative decrease in the average χ2 value roughly scales with the inverse
of the relative grid density increase, thus confirming that the two methods will agree to
arbitrary precision in the asymptotic limit. In the following, for practical reasons we limit
ourselves to the specific case summarized in Table 2.

6.2. Smoothing

To validate the final templates with smoothing applied at each stage, we compare them
directly to truth. For reference, we also show the agreement resulting from both the direct
histogramming and the direct KDE methods.

While Table 5 quantifies deviations from the reference distributions again in terms of χ2

and in dependence of MC sample size, Figure 12 displays the final-level templates for each of
the aforementioned methods using a sample with 104 events.

25



-0.75-0.25 0.25 0.75
cosϑreco

1
2
4
8

16
32
64

E
re

co
( G

e
V

)

Cascades

-0.75-0.25 0.25 0.75
cosϑreco

Tracks

0
250
500
750
1000
1250
1500
1750
2000

# 
ev

en
ts

(a) Truth

-0.75-0.25 0.25 0.75
cosϑreco

1
2
4
8

16
32
64

E
re

co
( G

e
V

)

Cascades

-0.75-0.25 0.25 0.75
cosϑreco

Tracks

0
250
500
750
1000
1250
1500
1750
2000

# 
ev

en
ts

(b) Direct Histogramming

-0.75-0.25 0.25 0.75
cosϑreco

1
2
4
8

16
32
64

E
re

co
( G

e
V

)

Cascades

-0.75-0.25 0.25 0.75
cosϑreco

Tracks

0
250
500
750
1000
1250
1500
1750
2000

# 
ev

en
ts

(c) Direct KDE
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(d) Staged Approach

Figure 12: Final-level templates used for the example data analysis. The reference distributions (truth)
obtained directly for the toy detector model parameterizations are shown in panel (a). Given the same
sample of 104 events the estimated distributions using histograms are shown in panel (b), using KDEs in
panel (c), and using the staged approach in panel (d).

The staged approach outperforms the two alternatives in terms of χ2 values by more than
one order of magnitude for all those sample sizes studied here. Furthermore, inaccuracies
of the templates from the staged approach scale with the inverse of sample size almost as
fast as those of templates from direct histogramming. In addition, it is noteworthy that
the KDE method shows comparably slow convergence, i.e., it performs worse than direct
histogramming for the sample size of 106.

While for the experimental data (or pseudo-data) one expects statistical fluctuations on
the order of χ2 = 1.0 per bin, the accuracy of the templates must be better than this. As
shown in Table 5, considering a sample size of 104 and the staged approach, the average χ2

deviation from truth (using the same χ2 definition as for data) is only about 30% of what
is expected just from statistical fluctuations in data, while more than 106 events would be
necessary to achieve the same average χ2 using direct histogramming or KDE. (See Table 5
for details.) Therefore, to reach an equal accuracy, two or more orders of magnitude larger
samples are needed for histogramming or KDE compared to the staged approach. The next
section illustrates the implications for running a data analysis.
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Sample size 103 104 105 106

Direct Histogramming
〈χ2〉 468 42.6 4.27 0.458
χ2

max 3.4 · 104 906 138 10.5

Direct KDE
〈χ2〉 32.2 11.4 3.67 1.25
χ2

max 245 90.2 50.3 25.3

Staged Approach
〈χ2〉 3.01 0.303 0.111 0.0301
χ2

max 47.4 3.03 1.80 0.387

Table 5: Average and maximal χ2 deviations per bin of the final 40× 40× 2 binning between final templates
of the three shown methods and truth, for independent input MC samples of various sizes. Note that the
staged approach has smoothing applied (the default), in contrast to Table 4.

7. Example Analysis Results

To illustrate the impact of sample size, we show the resulting
√

∆χ2 as an estimate for
the sensitivity to the NMO for our example analysis in Figure 13. For reference, the true
result is derived directly from the exact templates based on the parametric toy detector
model and lies at

√
∆χ2 = 5.75. For the three methods discussed throughout this paper,

the statistical uncertainty of the obtained sensitivity is indicated by error bars in the figure.
This uncertainty is computed from several statistically independent MC sets14 and indicates
the central 68% quantile of each ensemble. In particular, as the sensitivity proxy does not
take into account MC uncertainty [5, 6], this range is not, a priori, expected to reflect any
sensitivity bias for the three methods.

The uncertainty reveals that the methods exhibit quite different intrinsic fluctuation of
their respective sensitivity estimates, as well as different scaling behavior of the variance
with sample size. As sample size decreases, direct histogramming without any smoothing
applied results in an increasing overestimation of a VLVνT’s ability to exclude the wrong
neutrino mass ordering. In the most extreme case shown here (corresponding to the smallest
sample size of 103), the sensitivity is estimated to be more than one order of magnitude
greater than the actual capability of the experiment. Only for the sample size of 107 does
direct histogramming indeed give reliable results. This is expected from the simple rule of
thumb (cf. Section 2.2) of O(104) events per bin × O(103) bins.

Illustratively, an undersampling of the detector response distributions due to low MC
statistics is highly likely to lead to an overestimation of the experiment’s sensitivity because
the NMO signature that is present in the space of true variables is carried over to random
bins in the reconstructed observables with reduced cancellation15.

Applying KDE smoothing to the weighted events instead of histogramming them (i.e.,
direct KDE) leads to a reduction of the overestimated sensitivity for sample sizes of up to at

14Each MC set is used together with the staged approach to generate one Asimov toy data template and
O(103) “test” templates.

15For example, if a bin in the final-level template is solely populated by (unweighted) MC neutrinos, and
no anti-neutrinos, or vice-versa, it will contribute artificially strong to the overall NMO sensitivity due to the
missing summation over both event types (cf. Section 3).
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Figure 13: Estimated sensitivity (
√

∆χ2) to the NMO vs. sample size for direct histogramming, direct
KDE, and the proposed staged smoothing methods applied to multiple (between 50 and 200) statistically
independent toy MC sets. Vertical lines indicate central 68% quantiles of the ensemble. The dashed horizontal
line shows the significance obtained from truth templates based on the parametric toy detector model. The
staged approach outperforms the other methods—both in terms of bias and variance—for sample sizes
through 3 · 106, with direct histogramming only matching the staged approach using 107 samples. Note that
no data points exist for direct KDE and sample sizes above 3 · 105, as computational processing times become
impractically large. Also note that direct histogramming is off-scale high for fewer than 3·104 events (mean
values are indicated to the right of the corresponding markers).

least 3 · 105 but is not able to eliminate the bias entirely for the tested sample sizes. For
sample sizes larger than O(105), the direct KDE method is too computationally expensive to
deliver results within a reasonable time (for more details on timing, see Section 8).

The estimated sensitivity using the staged approach is statistically compatible with the
true sensitivity across the whole range of sample sizes considered. It shows no bias and lower
variance for predicting sensitivity to physics compared to the other methods within the limits
of our testing.

8. Benchmarks

Whether a given analysis method is useful in a realistic setting depends not only on its
numerical reliability, but also on how long it takes to compute the quantity of interest (note
that this duration is in addition to the initial time needed to generate the MC). For reference,
we performed benchmarks of the template generation times in the course of a typical analysis
process16. These are compiled in Figure 14.

16Timings were obtained on a computer with an Intel Xeon E5-1660 v3 3.0 GHz CPU and an NVIDIA
GeForce GTX Titan X GPU.
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Note that no initial start-up times—such as the construction of the smearing kernels used
within the reconstruction stage—are included here. For all three methods separate timings
based on our CPU-only and GPU-accelerated implementations are provided.

While for sample sizes below 104 to 105 events direct histogramming is the fastest method,
it is unusable owing to the large fluctuations associated with the templates it produces,
which in turn result in the grossly overestimated sensitivites shown in Figure 13. Direct
KDE only proves competitive when used in conjunction with the smallest datasets. The
faster-than-linear scaling of its computational needs with sample size then quickly renders
it impractical to use. Our proposed method is independent of sample size by construction
(excluding initial start-up costs), but will get more expensive if a finer grid point spacing is
desired.

The timing difference between the CPU and GPU implementation of the staged approach
is not as large as for the other methods, since it is only using the GPU for parallelization
of the neutrino oscillation weights calculation (whereas the other methods make use of the
GPU more extensively).
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Figure 14: Average template generation time during a typical analysis for input datasets of varying size,
shown for the direct histogramming, the direct KDE, and the staged approach. Solid lines represent timings
based on (partial) GPU acceleration, whereas the dashed ones are for CPU-only calculations.

9. Summary

The search for small physics effects in high statistics neutrino oscillation experiments
requires careful treatment and use of simulated data. Statistical fluctuations within dis-
tributions obtained from Monte Carlo simulations are able to severely distort an analysis,
rendering derived constraints or sensitivities essentially meaningless.
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The staged approach we have presented serves two main purposes. Firstly, computational
expense is reduced through sampling of physics and detector response distributions on a
discrete grid instead of computing a weight for every individual Monte Carlo event. In this
respect, we have demonstrated that our method of breaking down the template generation
into independent stages converges to the MC weighting scheme when using a grid of a high
enough, albeit feasible, density. For a fixed number of grid points, the template generation
time has been shown to be independent of the input sample size. Secondly, the staged
approach allows the application of smoothing techniques to a detector’s response functions.
In the specific example shown, the detection stage characterizes the detector’s effective area by
integrating weighted MC events on a grid and smoothing the resulting histogram, followed by
the event reconstruction stage using an adaptive KDE smoothing on the resolution functions
applied to arrive at final-level templates. This has proven superior to the smoothing of the
final event distributions since it is faster and—even more importantly—yields more accurate
and robust results. The presented choice of smoothing techniques works sufficiently well
for our purposes, but this choice is neither unique nor do we claim it to be optimal, and it
depends on the wider experimental context. Beside this choice, our overall approach may
prove particularly useful when a fast assessment of the physics potential of various detector
designs is desired, or when analysis methodologies are optimized. Any final-level analysis
will likely rely on large quantities of MC to guarantee the precise and accurate modelling of
the experiment.

In the example neutrino mass ordering analysis that we have conducted—to benchmark
and compare the different approaches—we found that direct histogramming of events leads
to a gross overestimation of sensitivities when used in conjunction with small numbers of
events (. 106 events for our toy model). Conversely, the proposed staged approach leads to
correct results that are largely unaffected by the sample size across the tested range and the
variance of results is small compared to the result above about 104 neutrino events. This
means that the necessary amount of simulated events is reduced significantly (by about two
orders of magnitude in our example)—an important aspect especially since Monte Carlo
event simulation and reconstruction times can represent major hurdles to progress in the
field of neutrino oscillation experiments.
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Appendix A. Toy Data Model

In the following we provide a parametric toy detector model used to transform the
oscillated atmospheric fluxes into event counts. The functions we use either serve as direct
inputs (truth) to the various stages of the simulation chain laid out in Section 4, or as
sampling distributions from which toy MC samples are drawn. We point out here that these
are entirely empirically motivated, and should only be seen as proxies of the performance
indicators in next-generation VLVνTs (such as the IceCube Upgrade [1], PINGU [2, 3], or
KM3NeT/ORCA [4]).

Simplifications or limitations of the model do not affect the computational analysis tech-
niques themselves. Rather, the goal in the following is to capture the most essential features
of the expected detector response: threshold effects in detection, the finite accuracy and
skew of reconstruction resolution functions, as well as limited flavor and charge identification
capabilities. This does not invalidate the conclusions drawn from comparing the various
analysis approaches.

Appendix A.1. Detection Efficiency

We assume a detector of fiducial mass Mfid = 10 megaton, with a neutrino detection
energy threshold of Eth = 1 GeV for all neutrino flavors and interaction channels apart from
ντ charged current (CC) interactions, where the intrinsic interaction threshold is higher, at
Eth = 3.5 GeV. The detector’s effective mass Mα

eff = ρiceV
α

eff for a given combination, α, of
flavor and interaction type, where ρice is the ice density and V α

eff the detector’s corresponding
effective volume, exhibits a phenomenological dependence on true neutrino energy, Etrue,
asymptotically approaching Mfid according to an exponential function:

Mα
eff(Etrue) = Mfid ×

(
1− e−kα×(Etrue/GeV−Eth/GeV)

)
for Etrue > Eth . (A.1)

We include three effective masses to cover all the neutrino interaction channels: one for
νe, ν̄e, νµ, and ν̄µ CC, one for ντ and ν̄τ CC, and one for all NC channels. For the CC
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channels we choose kα = 0.4, while for the NC channels the function rises more slowly, with
kα = 0.1. The left panel of Figure A.15 shows these dependencies for neutrino energies up to
Etrue = 80 GeV. The detector can be roughly considered fully efficient (Meff = Mfid) for all
detection channels above Etrue ≈ 50 GeV.

The ν-ν̄ asymmetry—which is required to make the NMO measurement—will be intro-
duced through differences in flux and cross sections, i.e., it will become apparent in the
detector’s effective area. The latter we obtain from the effective mass via the conversion

Aαeff(Etrue) = σα(Etrue)× nice/ρice ×Mα
eff(Etrue) , (A.2)

where σα is the total neutrino-nucleon cross section for a given flavor-interaction channel α,
nice ≈ 6× 1023 cm−3 is the nucleon density in ice, and ρice ≈ 0.92 g cm−3 the mass density.

We also make some simplifying assumptions about the cross sections used in Equa-
tion (A.2), in that we take νe and νµ (ν̄e and ν̄µ) CC cross sections to be the same, as well
as all νx (ν̄x) NC cross sections. In addition, we model all the mentioned cross sections to
rise strictly linearly with Etrue above Etrue = 1 GeV [45]:

σα(Etrue)/Etrue = cα × 10−38 cm2 GeV−1 , (A.3)

where we set

cνe,µCC
= 2cν̄e,µCC

= 0.70 , (A.4)

cνxNC
= 2cν̄xNC

= 0.25 . (A.5)

To obtain ντ (ν̄τ ) CC effective areas, we interpolate the corresponding neutrino-nucleon cross
section curves given in [46]. All resulting effective areas as a function of neutrino energy are
depicted in the right panel of Figure A.15. We take these to be invariant in azimuth, but
universally introduce an arbitrary, smooth polynomial modification M with the zenith angle
dependency

M(x) =
1

20
(−x3 + x2 − x) + 1 (x ≡ cosϑtrue), (A.6)

which we normalize to unit area17.

Appendix A.2. Reconstruction Resolutions

Neutrino zenith resolutions with respect to cosϑ are represented by single Gaussian
distributions. The distributions’ parameters are taken as functions of Etrue only. For each
flavor and interaction channel, we assign a mean µ∆ cosϑ(Etrue) = 0 across all energies, and a
standard deviation of σ∆ cosϑ(Etrue) = 0.3√

Etrue/GeV
+ 0.05.

Neutrino energy resolutions we describe using right-skewed Gumbel distributions. These
are shifted and scaled by µ′ and σ′ with respect to their standard form, via the transformation

17 Aeff(Etrue) is the average over the full sky, cosϑtrue ∈ [−1,+1].
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Figure A.15: Effective masses (left) and areas (right) as a function of true neutrino energy for a generic
toy detector with fiducial mass of 10 Mt. The dependency of the effective masses on energy is given in
Equation (A.1). Cross sections are from Equation (A.3), except for ντ and ν̄τ interactions, which are
interpolated from [46]. Effective masses are the same for neutrinos and anti-neutrinos. See text for details.

x→ (x− µ′)/σ′. These parameters again only depend on Etrue. The CC distributions are
assumed identical for all flavors, and are shown in Figure A.16:

µ′CC
∆Eν (Etrue) = 0, σ′CC

∆Eν (Etrue) =

(
0.4√

Etrue/GeV
+ 0.1

)
× Etrue . (A.7)

For NC interactions, we take a spread that scales with Etrue in the same way σ′CC
∆Eν

does, but
assume a non-zero mean due to the undetected energy carried away by the outgoing neutrino:
µ′NC

∆Eν
(Etrue) = −0.6Etrue.

Note that each energy and cosine zenith residual distribution is renormalized such that
its integral over the physical region (∆Eν + Etrue ≥ 0 and −1 ≤ (∆ cosϑ + cosϑtrue) ≤ 1)
yields 1.

Appendix A.3. Event Classification

Correctly identifying few-GeV CC muon neutrino interactions with relatively sparsely
instrumented neutrino telescopes in water/ice is difficult mainly for two reasons. The track
length of a near minimum ionizing muon is only on the order of a few meters, comparable to
the extent of an electromagnetic cascade of the same energy. Also, photon scattering lengths
similar to the horizontal spacing between photomultiplier tubes smear out the Cherenkov
ring around the muon direction, which is otherwise observed at a specific angle with respect
to the muon direction in the medium.

We take into account the muon neutrino CC (“track”) identification efficiency pµ,CC
track

improving with (reconstructed) neutrino energy, Ereco, by setting

pµ,CC
track ≡ pµ,CC

track(Ereco) = 0.9×
(
1− e−0.2×(Ereco/GeV+0.6)

)
. (A.8)

This reflects the track length of the secondary muon increasing linearly with its energy, but
also the possible production of a low-energy muon which cannot be distinguished from the
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Figure A.17: Event classification efficiencies imple-
mented as functions of reconstructed neutrino energy.
Shown is the probability to identify an event of a
given type as “track-like”. Events are identified as
“cascade-like” with complementary probabilities.

accompanying hadronic cascade even for higher-energy muon neutrino CC interactions. All
other (in)efficiencies are assumed to be constant:

pe,CC
track(Ereco) = pNC

track(Ereco) = 0.15 , (A.9)

pτ,CC
track(Ereco) = 0.25 . (A.10)

These are shown in Figure A.17. The probability to identify any event as “cascade-like”
for a given reconstructed energy is just the complementary probability to that of the track
identification.

When a toy MC event is subject to this classification, we assign it one of two dis-
crete numbers—representative of either identification as track or cascade—with the above
probabilities.

Appendix B. Uncertainty in Significance

Under the assumption that the test statistic T under two hypotheses H1 and H2 is
normally distributed (with means µ1 and µ2 and with identical standard deviation σ),
the number of standard deviations (nσ) separating the two hypotheses can be written as
nσ = |µ1 − µ2|/σ (corresponding to a one-sided hypothesis test and a one-sided conversion
from p-value). Sampling each distribution with Np pseudo-experiments results in the following
uncertainties for mean and standard deviation (see for example [47])

∆µ =
σ√
Np

, (B.1)

∆σ =
σ√

2(Np − 1)
. (B.2)
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Since the combination of the quantities is linear, we can perform simple error propagation, so
that the relative uncertainty in significance becomes (with ⊕ denoting sum in quadrature)

∆nσ
nσ

=
∆σ

σ
⊕ ∆|µ1 − µ2|
|µ1 − µ2|

. (B.3)

Using

∆|µ1 − µ2| = ∆µ1 ⊕∆µ2 =

√
2

Np

σ (B.4)

the second term simplifies to

∆|µ1 − µ2|
|µ1 − µ2|

=

√
2

Np

σ

|µ1 − µ2|
=

√
2

Np

1

nσ
. (B.5)

Substituting Equations (B.5) and (B.1) into Equation (B.3) yields

∆nσ
nσ

=
1√

2(Np − 1)
⊕

√
2

Npn2
σ

=

√
1

2(Np − 1)
+

2

Npn2
σ

. (B.6)

The absolute error on the number of standard deviations and its approximation for large Np

then follow immediately as

∆nσ =

√
n2
σ

2(Np − 1)
+

2

Np

(Np>>1)−−−−−→ 1√
Np

√
n2
σ

2
+ 2. (B.7)
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