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SI: DEVELOPING BRAIN

Trajectory of frequency stability in typical development

Joel Frohlich & Andrei Irimia & Shafali S. Jeste

# Springer Science+Business Media New York 2014

Abstract This work explores a feature of brain dynamics,
metastability, by which transients are observed in functional
brain data. Metastability is a balance between static (stable)
and dynamic (unstable) tendencies in electrophysiological
brain activity. Furthermore, metastability is a theoretical
mechanism underlying the rapid synchronization of cell as-
semblies that serve as neural substrates for cognitive states,
and it has been associated with cognitive flexibility. While
much previous research has sought to characterize metastabil-
ity in the adult human brain, few studies have examined
metastability in early development, in part because of the
challenges of acquiring adequate, noise free continuous data
in young children. To accomplish this endeavor, we studied a
new method for characterizing the stability of EEG frequency
in early childhood, as inspired by prior approaches for de-
scribing cortical phase resets in the scalp EEG of healthy
adults. Specifically, we quantified the variance of the rate of
change of the signal phase (i.e., frequency) as a proxy for
phase resets (signal instability), given that phase resets occur
almost simultaneously across large portions of the scalp. We
tested our method in a cohort of 39 preschool age children
(age =53±13.6 months). We found that our outcome variable

of interest, frequency variance, was a promising marker of
signal stability, as it increased with the number of phase resets
in surrogate (artificial) signals. In our cohort of children,
frequency variance decreased cross-sectionally with age (r=
−0.47, p=0.0028). EEG signal stability, as quantified by fre-
quency variance, increases with age in preschool age children.
Future studies will relate this biomarker with the development
of executive function and cognitive flexibility in children,
with the overarching goal of understanding metastability in
atypical development.

Keywords Development . Metastability . Dynamics .

Self-organized criticality . Electroencephalography .

Biomarker

Introduction

The electroencephalogram (EEG) signal recorded from
scalp electrodes in humans can be understood in terms
of state variables including amplitude, frequency, and
topographic distribution. EEG state variables are known
to be relatively static and dynamic at different temporal
scales (Freeman and Kozma 2010; Freeman et al. 2003;
Freeman 2004a, b; Kaplan et al. 2005; Thatcher et al.
2008, 2009a, b): this seemingly paradoxical balance be-
tween stability and instability is known as metastability.
The prefix meta- generally modifies the stem of a word by
raising it to a higher level of abstraction (Hofstadter
1979); for instance, metadata is data about data, and
metacognition is cognition about cognition. Thus, meta-
stability is the realization that the condition of stability is
often unstable. An unresolved question in brain develop-
ment is, how does the degree of this instability (i.e., the
balance between stationarity and nonstationarity at
different temporal scales) change with age and cortical
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maturation? Addressing this question in typical develop-
ment is necessary to understand brain stability in relation
to cognitive flexibility in neurodevelopmental disorders
such as autism spectrum disorder (ASD). Furthermore, a
greater balance between opposing stable and unstable
inclinations in functional brain data implies greater brain
complexity, a concept that, while variously defined
(Coffey 1998; Janjarasjitt et al. 2008; Manor and Lipsitz
2012; Meyer-Lindenberg 1996; Sporns 2011; Tononi and
Edelman 1998), has already shown potential as a bio-
marker of ASD (Bosl et al. 2011; Catarino et al. 2011;
Eldridge et al. 2014; Ghanbari et al. 2013).

In dynamical systems theory, a metastable state is tran-
siently stable until the system which exhibits it is
perturbed to another—typically lower—energy state. This
can be conceptualized as a ball stuck in a depression
along the slope of a hill (Fig. 1): the ball remains at rest
until a small perturbation dislodges it and it continues to
the bottom of the hill. In neuroscience, the concept of
metastability provides a theoretical foundation for
explaining the observed coexistence of neural sensitivity
to sensory input and robustness to intrinsic noise
(Rabinovich et al. 2008) and, furthermore, it is the bio-
physical principle underlying the continuous emergence
of new cell assemblies (Hebb 1949) through transient
phase locking of neurons (Sporns 2011; Varela 1995;
Werner 2007). Assuming that different cell assemblies
are substrates for correspondingly different cognitive
states (Varela 1995), metastability can be seen as a mech-
anism which endows the brain with cognitive flexibility
by allowing it to shift between its seemingly opposing
tendencies towards functional segregation and integration
(Friston 1996, 2000; Werner 2007).

The duration of individual metastable epochs is chal-
lenging to directly measure, with most methods
constrained by the need for long recordings of clean data.
In studies of children, often limited by physiological
artifact and variable compliance with testing, proxies of
metastability are needed. Some examples include
multiscale sample entropy (MSE, i.e., signal complexity)
and dimensionality as estimated by principal component
analysis (PCA) (Lippé et al. 2009; McIntosh et al. 2008).
Another potential proxy of metastability not yet studied in
early development is frequency variance. This measure
can capture the synchronization and desynchronization
of cell assemblies underlying cognitive states. Previous
work by Freeman and colleagues has described large
changes in instantaneous frequency (i.e., the time deriva-
tive of the analytic phase) of the resting-state EEG signal;
these leaps, known as phase resets, are thought to repre-
sent transitions between metastable frequency states
(Freeman and Holmes 2005; Freeman 2003, 2004a, b;
Freeman et al. 2003, 2006). Importantly, the measurement

of frequency variance may not require clean data in every
channel, as it can be examined on a channel by channel
basis.

The objectives of our study were, firstly, to establish a
method for measuring instantaneous frequency variance
as a proxy for the phase resetting phenomenon described
above and, secondly, to utilize this method to study
cross-sectional development in a cohort of children of
ages 2 – 6. Specifically, we applied this method to brain-
related independent components (ICs) yielded from an
independent component analysis (ICA) decomposition of
resting-state EEG recordings from sensors in a modified
10–20 montage. The preschool age group was chosen for
our cohort as it is the age at which large gains in
executive function are achieved and the frontal lobes
increase steadily in gray and white matter volumes (De
Luca and Leventer 2010). Moreover, it is the age at
which the clinical features of neurodevelopmental disor-
ders such as ASD emerge (Cox et al. 1999; Fountain
et al. 2011; Hertz-Picciotto and Delwiche 2009). We
hypothesized that this method would serve as a proxy
for artificial phase resets in surrogate signals and, in
empirical signals, yield similar results when applied to
minimal data (less than half a minute) and longer data
(several minutes) from the same subjects, thus establish-
ing it as a useful and valid method for pediatric popula-
tions. Furthermore, we hypothesized that frequency sta-
bility would decrease with age, reflecting faster synchro-
nization and desychronization of cell assemblies, the
repertoire of which should expand with development.
Finally, we believe that this method of quantifying fre-
quency stability has possible advantages over methods
that measure phase locking between EEG sensors
(Thatcher et al. 2008, 2009a, b) and, thus, disregard the
effective simultaneity of phase resets across large scalp
distances (Freeman et al. 2003).

Unstable

Metastable

Unstable

Globally Stable

Fig. 1 A metastable state is analogous to a ball caught in a depression
along a hill: the state is transiently stable until perturbed to a lower energy
state
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Methods

Data collection and processing

Resting-state EEG signals were recorded using an array of 128
Ag/AgCl electrodes (Electrical Geodesics, Inc., Eugene, OR,
USA)while children watched a video of bouncing soap bubbles.
The Mullen Scales of Early Learning (MSEL) (Mullen 1995) or
Differential Ability Scales Second Edition (DAS II) (Elliot
2007) were performed to verify that children had cognitive skills
in the typical range. Children ages 2–6 (N=39, age=53.0±
13.6 months, IQ =118±14.2) viewed abstract shapes on a com-
puter monitor to capture attention for one session 120 s in
duration. Recordings were amplified, digitized at a sampling rate
of 250Hz, and collected using Net Station (Electrical Geodesics,
Inc., Eugene, OR, USA). Signals were bandpass filtered from 1
to 50 Hz and partitioned into 256 sample segments, in view of
the fact that segments containing a number of data points equal
to a power of 2 are ideal for use with the fast Fourier transform
(FFT). Sensors which did not function properly either during
individual recording segments or throughout the entire recording
were marked as such using a 200 μV threshold, and their signals
were interpolated from neighboring channels. To limit the pro-
portion of interpolated data, an upper limit was established such
that the number of interpolated data points in a segment should
not exceed the square root of the total number of data points.
Accordingly, segments with more than 11 channels whose re-
cordings needed to be inferred via interpolation were rejected on
these grounds. Channels that were (A) only interpolated within a
given segment and (B) interpolated for the entire recording both
counted towards the 11 channel interpolation limit for a given
segment. Preprocessed signals were exported to MATLAB and
analyzed using the EEGLAB toolbox (Delorme and Makeig
2004), where they were visually inspected so that segments
containing ocular or muscle artifacts could be rejected.

Independent component analysis

Subsequent to signal preprocessing, a combined approach in-
volving PCA followed by ICA was utilized to identify one or
more brain-related ICs in the recordings. This was accomplished
using the modified infomax ICA algorithm provided by the
EEGLAB toolbox (Amari et al. 1996; Bell and Sejnowski
1995; Delorme and Makeig 2004; Lee et al. 1999). Recordings
acquired using 20 sensors approximately corresponding to the
international 10–20 montage were concatenated across subjects
prior to PCA/ICA in order to ensure that (A) each subject had
the same signal decomposition and that (B) subsequent analysis
results would not be confounded by distinct ICA decomposi-
tions across subjects. Because recordings were vertex-refer-
enced, sensors immediately anterior (FCz) and posterior (CPz)
to Cz were substituted for Cz in this approximation of the 10–20
montage. Use of this montage serves as a spatial filter and

increases the ratio between the number of time points in each
signal to the number of variables in each dataset, which is an
important consideration for assessing the validity of PCA and
ICA decompositions (Onton et al. 2006). We first performed a
dimensionality reduction to 8 principal components (PCs),
which were subsequently decomposed into 8 sub-Gaussian ICs.

Frequency variance

As an inversemeasure of frequency stability and as a proxy for the
phase reset phenomenon, we examined the variance of the instan-
taneous frequencies exhibited by each IC during the resting-state.
To investigate frequency metastability, we used the Hilbert trans-
form, which is a linear transform similar to the Fourier transform
but with higher temporal resolution and lower frequency resolu-
tion. This higher temporal resolution is necessary for estimating
the instantaneous frequency of the signal. The Hilbert transform
H(u) of some signal u(t) is given by the integral equation

H uð Þ ¼ 1

π
P⋅V⋅

Zþ∞

−∞

u t0ð Þ= t−t0ð Þdt0 ð1Þ

where P.V. is the Cauchy principal value needed to solve the
improper integral. The imaginary solution together with the real
signal u(t) yields the analytic signalV(t) by the following relation:

V tð Þ ¼ u tð Þ þ iH uð Þ ð2Þ

From these real and imaginary components of the analytic
signal, it is trivial to compute the analytic phase, Φ(t):

Φ tð Þ ¼ atan2 H uð Þ; u tð Þ½ �; Φ tð Þ∈ −π;þπ½ � ð3Þ

For the purpose of taking the time derivative of Φ(t), it is
necessary to unwrap the phase angles so that they are no
longer bounded between –π and +π. This is accomplished
by the unwrap function, which adds multiples of ±2π at
temporal differences in Φ(t) greater than a tolerance value of
π. The instantaneous frequency, f(t), is the time derivative of
the unwrapped analytic phase of the signal:

unwrap ΔΦi tð Þ½ � ¼
ΔΦi tð Þ þ 2π; ΔΦi tð Þ≤−π
ΔΦi tð Þ; −π < ΔΦi tð Þ< π
ΔΦi tð Þ−2π; ΔΦi tð Þ≥π

8<
: ð4Þ

f tð Þ ¼ dunwrap Φ tð Þ½ �
dt

ð5Þ

One can imagine the analytic phase (i.e., the antiderivative
of instantaneous frequency) of the EEG signal in the context
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of turbulent ascent by a passenger jet into the air. Normally,
the ascent is smooth and altitude is a monotonically increasing
function of time. However, occasional turbulence causes large
dips and jumps in the altitude of the jet. Such dips and jumps
(analogous to phase resets, Fig. 2a) bracket periods of other-
wise stable ascent velocity (analogous to frequency, Fig. 2b).

To emphasize local variance, a normalization operation
was performed whereby the mean instantaneous frequency
was subtracted from all instantaneous frequency values.

f k ¼ f i tð Þ−N−1
X
j¼1

N

f j tð Þ ð6Þ

The variance fv of the normalized instantaneous frequency
fk can be conceptualized as a surrogate measure of phase reset,
and the frequency stability fs of the signal is defined as the
inverse of fv:

f v ¼ var f kð Þ ð7Þ

f s ¼ 1
�
f v

ð8Þ

To ensure that fv is a good proxy of phase resetting, we
induced the latter in several surrogate signals of length N at
random time points using amplitude inversion and measured fv
as a function of the number of phase resets n. Four types of
surrogate signals were used: sinusoids, pink (power-law) noise,
white noise, and the logistic map. The logistic map is a 2nd
degree polynomial mapping that demonstrates chaotic behav-
ior, or extreme sensitivity to initial conditions, for certain pa-
rameter values. Unlike colored noise, the logistic map mimics
deterministic chaos in the EEG signal (Fell et al. 1993; Meyer-
Lindenberg 1996; Soong and Stuart 1989; Stam 2005; Wang
et al. 2010). It is expressed by the following recurrence relation:

xnþ1 ¼ rxn 1−xnð Þ ð9Þ

Our logistic map surrogate signal used parameter values
x0=0.3, r=3.7, a point in parameter space that yields chaotic
solutions.

Unlike the logistic map, the complexity of colored noise
signals is the result of a stochastic process. Pink noise signals
are colored noise with power spectral density inversely pro-
portional to the frequency of the signal raised to some power
α. For our surrogate signals, we used pink noise with α=2.
Pink noise surrogate EEG signals were generated using
MATLAB code by Little et al. (2007), distributed for free
online at http://www.maxlittle.net/software/.

Having measured fv as a function of n in surrogate signals,
we held n/N constant at 0.04, mimicking physiological resets

rates (Freeman et al. 2003) at a sampling rate of 250 Hz, and
measured fv(N) over 10 simulated trials to infer the minimum
value of N for which fv(N) assumes a relatively constant value
in the limit of large N.

For empirical datasets, three separate analyses (Analysis 1-3)
were performed using subjects’ left-posterior IC signals. In each
analysis, the IC signal was beta-gamma filtered from 12 to
48 Hz using inverse FFT filtering. Because ICA was used in
conjunction with traditional methods of artifact reduction, any
artifact which failed to be reduced using traditional methods of
artifact reduction should have been reduced using ICA. The goal
of Analysis 1 was to compute fv while controlling for length of
the signal N, as this variable threatens to confound measure-
ments of variance if not adequately constrained. The first 29
segments of the IC signal were examined, with 29 correspond-
ing to the number of artifact-free segments in the dataset of
shortest time length. Linear trends were removed from all 29
segments to eliminate spurious phase resets possibly created by
concatenating discontinuous segments. A single fv value for the
entire IC signal was then computed. Directional statistics
(Philips 2009) were utilized to examine the directional variance
S of signal phases in the IC,where S= 0 indicates absolute phase
preference and S = 1 indicates zero phase preference.

In Analysis 2, the length of the IC signal was not controlled
for and all artifact-free segments were used. As with Analysis 1,
signals from each subject’s left-posterior IC were beta-gamma
bandpass filtered and S was utilized as a measure of phase
preference. Each signal segment was detrended and a single fv
value was computed for the entire signal.

In Analysis 3, fv was computed for each artifact-free seg-
ment of the beta-gamma filtered left-posterior IC signal, and
the mean intra-segment fv value was adopted as a measure of
frequency variance for each subject. Intra-segment phase pref-
erence was also measured using S. Because the possibility of
spurious phase changes at discontinuities created by concate-
nation cannot be entirely eliminated even by detrending seg-
ments, this analysis was necessary to completely control for
such artifactual phase changes. Furthermore, this analysis
measures fv without detrending EEG signal segments, elimi-
nating the risk of variance reduction as a consequence.

To reiterate, our study examined frequency variance fv in two
contexts: (A) surrogate signals, for which the number of phase
resets could be directly manipulated, and (B) brain-related ICs
from resting-state EEG recordings of typically developing chil-
dren with a scalp topography consistent with a left-posterior
cortical source. For each empirical dataset, the IC of interest
was isolated and the FFTwas then used to filter recordings into
the 12–48 Hz bandpass, chosen so as to include beta-gamma
oscillations which are known to be carrier waves for phase
resets in human scalp EEG (Freeman et al. 2003). After filter-
ing, the Hilbert transform was applied and the distribution of
instantaneous frequencies was computed for the subject. The
variance fv of this distribution was then investigated as a proxy
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for phase resetting. To ensure that fv was not influenced by the
number N of time points in the signal, three separate analyses
were performed using each subject’s IC of interest. Analysis 1
and Analysis 2 both measured fv using concatenated, detrended
EEG segments. However, Analysis 1 controlled for signal
length N, allowing effects of N on fv to be constrained and
examined. Analysis 3 measured the mean intra-segment fre-
quency variance. This controlled for discontinuities in the sig-
nal and eliminated the need for removing linear trends.

Results

Surrogate EEG signals

In surrogate signals, we found that, for sinusoids, pink noise
(i.e., power law-distributed noise) with power law exponentα=
2, and a signal with deterministic chaos properties (logistic
map, x0=0.3, r=3.7) the curve fv(n) increases monotonically
with added noise (Fig. 3). The only signal for which fv did not
increase as a function of n was Gaussian white noise. Subse-
quently, fv(N) was measured while holding n/N constant at 0.04
to ascertain the minimum length of data for which meaningful
measurement of fv can be made. We found that the fv(N) curve
follows the behavior of a damped, noisy oscillation when
examined as a function of the independent variable N (Fig. 4).
To find the value of N where the oscillation asymptotes, we
examined the cumulative variance of fv(N), i.e., the variability
of the instantaneous frequency variance, or “metavariance,” as
a function of signal length. The metavariance monotonically

decreases following a power law and as a function of signal
length after ~2×103 samples (Fig. 5).

Resting-state EEG signals

Data from all subjects were concatenated for the decomposi-
tion, and thus all subjects shared precisely the same ICA
weights matrix (Fig. 6). An IC which was most likely related
to brain activity was identified in the decomposition of the
concatenated data, corresponding to a dipolar pattern over the
left posterior region of the head (Fig. 7). This ICwas selected as
the target of further analysis because (A) other ICs were related
to eye-blinks or noise, (B) other ICs lacked a clear dipolar
pattern (Fig. 6), and (C) the gamma amplitude of posterior
parietal signals is thought to be modulated by thalamic alpha
activity (Roux et al. 2013), which in turn is theoretically impli-
cated in gamma band phase resetting (Freeman et al. 2003;
Thatcher et al. 2009b). The remainder of our analysis is conse-
quently focused exclusively on this IC whose topology resem-
bles that of a left posterior dipole. Averaging the power spectral
density (PSD) of this IC across subjects showed that posterior
alpha rhythms occur at 8–9 Hz in our cohort of children (Fig. 8).

Using all clean EEG segments, we found a weak, yet not
significant, correlation between fv and signal length N (r=
0.25, p=0.12). Additionally, because the phase preference of
IC signals correlated with signal length N (r=0.53, p=5.0×
10−4), we appropriately took the precaution described in the
methods section of performing three separate analyses.

In Analysis 1, the first 29 segments (N=7.42×103) of
artifact-free recordings from each subject were examined (this
corresponded to the length of the shortest artifact-free dataset).
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Using these IC segments, we found a significant negative
correlation between age and fv (r=−0.38, p=0.018; Fig. 9a).
The IC of interest showed little to no phase preference as
measured by directional variance (S=0.99±0.0046).

Furthermore, there was no correlation between phase prefer-
ence, as measured by S, and fv (r=−0.13, p=0.94).

In Analysis 2, which used the entire IC signal composed of
all artifact-free segments, we also found a significant negative
correlation between age and fv (r=−0.41, p=0.010; Fig. 9b).
As with the first analysis, the IC signal showed no phase
preference as measured by directional variance (S=0.99±
0.0035), nor did S correlate with fv (r=0.020, p=0.90).

In Analysis 3—in which linear trends were not removed
from segments and the mean intra-segment frequency variance
was adopted as fv—a negative correlation between age and fv
was found which was both significant and stronger than that
discovered in the previous two analyses (r=−0.47, p=0.0028;
Fig. 9c). Once again, no phase preference was found (S =0.96±
0.0023), and S showed no correlationwith fv (r=0.022, p=0.89).

Discussion

Our study had two principal aims: to establish a method for
measuringmetastable brain dynamics in children, and to use this
newmeasure to study development in a cross-sectional cohort of
young children of ages 2 – 6. Our method improves on other
studies of brain metastability in development by (A) using
frequency variance as a variable that corresponds to synchroni-
zation of cell assemblies, (B) showing applicability to minimal
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used to assess frequency variance as a proxy of phase resets. Shown are
the profiles of the instantaneous frequency variance as a function of phase
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power law exponent α=2, c signal exhibiting deterministic chaos
generated using a one-dimensional logistic map (x0=0.3, r=3.7), and d
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the amplitude inversion method. As expected, frequency variance is seen
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data with missing channels, and (C) avoiding measurements of
phase relations between EEG sensors, which are not sensitive to
global phase resets. Using surrogate signals with artificially
induced phase resets, we showed that fv is a good proxy for
phase resetting. Having established the utility of the method, we
showed that fv correlates with age in young children and gives
similar results with different lengths of recordings (Fig. 9), thus
showing promise as a biomarker of typical and, by extension,
atypical development.

As stated previously, our newmethod for measuring frequen-
cy stability shows strong advantages for studying pediatric
populations, in which children yieldminimal data, overmethods
that directly measure the duration of metastable states, which are
vulnerable tomissing data. Ourmethod allows noisy channels to
be discarded with little consequence and can be applied to
“virtual channels” such as brain-related ICs. Furthermore, our
method takes into account the long range spatial correlations of
phase resets, a consideration disregarded by a similar method-
ology practiced by Thatcher and colleagues (Thatcher et al.
2008, 2009a, b). Our method is also well suited for the short
datasets often obtained from children, as it gives similar results
with both maximal and truncated EEG recordings.

We demonstrated that fv increases monotonically with noise
as a function of the number of artificially induced phase resets in
three surrogate signals: sinusoids, pink noise, and the logistic
map (deterministic chaos) (Fig. 3). The relationship between fv
and the number of phase resets n is almost linear for small phase
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Fig. 6 A combined PCA and ICA decomposition yielding 8 ICs. Only
IC5 features a strong, dipole-like scalp topography indicative of a brain-
related component. Other ICs feature scalp topographies indicative of
ocular artifacts (IC4, IC6), or were otherwise ambiguous in origin (IC1,
IC2, IC3, IC7, IC8)

Fig. 7 A left posterior IC was selected from the ICA decomposition as
the focus for our analysis of frequency metastability and projected onto a
sample head model
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reset rate n/N, where N is length of data. For large n/N, the fv(n)
curve shows the relaxation characteristic of a hyperbolic tangent
function with added noise. In a physiologically plausible scenar-
io, an EEG signal with a sampling rate of 250 Hz and aperiodic
alpha-frequency (10 Hz) phase resets (Freeman et al. 2003), n/N
=0.04, which is a sufficiently small ratio to approximate the fv(n)
curve as linear. For the fourth surrogate signal, Gaussian white
noise, fv did not increase as a function of n. Because the power
spectrum of human EEG is power-law distributed (pink noise)
rather than uniform (white noise) (Pritchard 1992), white noise is
a poor model of EEG, and the finding that fv does not increase
with the number of artificially induced phase resets in white
noise signals should not affect the validity of our subsequent
analysis using empirical data better modeled as pink noise.

Having established that fv is a good proxy for phase resetting
in surrogate signals with similar properties to human EEG, we
measured fv while holding the rate of phase resets constant and
increasing the length of surrogate data. The cumulative variance
(“metavariance”) was computed for the instantaneous frequency
variance fv averaged across signals from 10 simulated trials
(Fig. 5). The curve follows a power law after N≈2×103 points,
as evidenced by the linearization of the curve observed after
applying the logarithmic transform. Power law relationships are
scale-invariant and thus lack a time constant. The identification
of a power law relationship between metavariance and the
number of points in the simulated signal after N≈2×103 sug-
gests that this is the minimum number of points needed to
compute fv with accuracy. Assuming that the minimal N

Fig. 8 The PSD of each subject’s IC5 signal was computed via Welch’s
method, and the grand average of all PSDs plotted on a log-log scale (a),
where dotted lines indicate standard error of the mean. Frequency bands
are color coded for easy interpretation: delta (1 – 4 Hz; purple), theta (4 –
7.5 Hz; yellow), alpha (7.5 – 12 Hz; blue), beta (12 – 30 Hz, green), and
gamma (30 – 50Hz, red). The grand average PSD gave little indication of

muscle noise at beta or gamma frequencies, supporting our conclusion
that data were sufficiently processed to remove muscle artifact. Further-
more, we observed that children had alpha rhythms within the traditional
limits of the alpha bandpass, suggesting that phase resets also occurred
within this frequency range. A histogram of peak alpha frequencies (8.6±
0.67 Hz) for all 39 subjects further supports this conclusion (b)

Fig. 9 Three different correlation analyses of fv and age were performed,
one controlling for length of the IC signal (a), another using all clean
segments of the IC signal (b), and a third using the intra-segment mean fv
of all segments from the IC of interest (c). Whereas the first two analyses

involved removing linear trends from signal segments, Analysis 3 did not.
All three analyses found a significant negative correlation between age
and fv. However, Analysis 3 yielded the strongest correlation (see figure
for r and p values)
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necessary for accurate measurement of fv depends on the number
of phase resets in the recording, an inverse linear relationship
between phase reset rate and minimum necessary recording
length can be inferred. For instance, a signal with phase resets
occurring at an average rate of 5 Hz would require N≈4×103,
i.e. twice the number of samples specified above. Even in the
event that some children had slower average phase reset rates
that simulated in our surrogate data, given a worst-case scenario
in which phase resetting occurs at low theta rates, 6000 samples
would be needed to obtain a signal with 80 phase resets. This is
still shorter than our shortest clean signal, which contained
~7400 samples. We are therefore confident that all signals ex-
amined are sufficiently long for accurate measurement of fv.

In the second half of our study, all 39 subjects had artifact-
free EEG signals longer than the minimum signal length N=2×
103 established by the surrogate signal analysis (N=2.19×104±
9.78×103; min=7.42×103, max=4.91×104). A left posterior
brain-related IC was identified from the ICA decomposition of
all subjects’ EEG recordings (Figs. 6 and 7). Considering evi-
dence that gamma signals recorded over posterior parietal re-
gions are modulated by thalamic alpha activity (Roux et al.
2013), beta-gamma oscillations from this left posterior IC are
strong candidates for phase reset carrier waves. This assertion is
supported by two main points: phase resets are (A) known to
occur at alpha rates in resting gamma signals (Freeman et al.
2003) and (B) thought to be timed and orchestrated by thalamic
oscillations (Freeman et al. 2003; Thatcher et al. 2009b). Fur-
thermore, unpublished data from our lab links left-posterior
theta (4–7 Hz) power to level of functioning in young children
with autism spectrum disorder (ASD). These facts, in conjunc-
tion with the observation that other ICs exhibited either ambig-
uous or artifact-related scalp topographies, justified our decision
to select left posterior IC signals as targets for further analysis.

Inspection of the average PSD computed from this IC
signal shows a spectral peak at 8–9 Hz, which is indicative
of alpha rhythms (Fig. 8). Presuming that phase resets occur,
on average, at alpha frequencies (Freeman et al. 2003), our
model of 10 Hz phase resetting in surrogate signals closely
matches the frequency of alpha oscillations in the children
herein examined. Furthermore, the beta and gamma frequency
bands of this averaged PSD show no spectral peaks indicative
of electromyography (EMG) artifacts, supporting the conclu-
sion that this IC signal is generated by brain-related activity.

Using signals from this IC, we were successful in correlating
fv with age in children ages 2 – 6, implying that frequency
stability changes across early development. By applying the
same methods while controlling for length of signal in Analysis
1 and using all artifact-free recordings in Analysis 2, we obtained
virtually identical results, indicating that our method works well
with the minimal-length signals often obtained from children.
Taking the mean intra-segment fv value for each subject without
removing linear trends from individual segments (Analysis 3)
yielded an even stronger correlation between age and fv as

compared with the first two analyses (Fig. 9), both of which
involved detrending the time courses of the segments. A likely
reason for this finding is the fact that removing a linear trend from
a signal decreases its variance, and is thus detrimental to mea-
suring fv. For signals with discontinuities created by concatena-
tion, we believe the approach adopted in Analysis 3 is ideal for
measuring fv. Instantaneous frequency values for the left posterior
IC examined in this study typically followed a leptokurtic distri-
bution (Fig. 10), with values in the center of the distribution
reflectingmetastable frequency states and values in the small tails
of the distribution reflecting phase resets (state transitions).

Contrary to our hypothesis, we found that fv decreases with
age, indicating that its inverse, frequency stability, increases
with age. This result differs from the findings of prior studies
which used different methods to measure brain variability.
Two prior studies found that brain variability positively cor-
related with age in event related potentials (ERPs) of infants
and children and negatively correlated with behavioral vari-
ability in reaction time and facial recognition (Lippé et al.
2009; McIntosh et al. 2008). Nonetheless, our findings can be
interpreted by taking into account the fact that reciprocal
connections between constituent neurons in cell assemblies
are likely weak in early development, requiring several
months to years of learning before synapses within the cell
assembly are strongly potentiated. Long term potentiation
(LTP) of cell assembly synapses increases the efficacy of

Fig. 10 The instantaneous frequency fv was computed from a typical
dataset. Mean values were not subtracted from fv values (μ=21.6 Hz, σ=
15.2 Hz) to obviate the leptokurtic distribution of values (N=1.66×104,
kurtosis=23.9) about the center of the 12–48 Hz frequency band.
Frequencies within the frequency band are highlighted in red. Note that
the mode of the distribution does not coincide with the center of the
frequency band due to the presence of negative frequencies yielded by the
Hilbert transform
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constituent neurons to excite each other (Bliss and
Collingridge 1993; Hughes 1958), resulting in a stronger,
more stable assembly. Increased durations of stable synchrony
within a cell assembly translate into lower frequency variance
in the EEG signal.

Alternatively, it is possible that transitions between meta-
stable frequency states do not reflect synchronization and
desynchronization of cell assemblies and that our finding of
correlation between frequency stability and age is serendipi-
tous, yet not spurious. Prior work has postulated that phase
resets result from inhibitory bursting in thalamocortical cir-
cuits (Freeman et al. 2003; Thatcher et al. 2009b). In particu-
lar, orchestration and timing of phase resets by the thalamus
may help explain the astonishing spatiotemporal correlation of
cortical phase resets. Phase resets in the resting-state EEG of
healthy adults show strong spatial correlation over temporal
intervals as brief as 5 ms, with phase velocities as large as
40 m/s, considerably faster than serial synaptic corticocortical
conduction velocities (Freeman et al. 2003).

While a similar cross-sectional study of development used
PCA to measure dimensionality as a metric of EEG signal
variability (McIntosh et al. 2008), we did not use PCA for this
purpose, nor did we make any direct estimates of state space
dimensionality. However, the presence of chaotic transitions
in recordings can nonetheless be used to infer a high-
dimensional state space (Tsuda 2013). The dimensionality of
a system betrays possible attractors thereof (closed subspaces
of state space towards which trajectories evolve). For instance,
systems with two or more dimensions are capable of periodic
orbits (limit cycle attractors) and systems with three or more
dimensions are capable of chaos (strange attractors, or ex-
treme sensitivity to initial conditions). Metastability can be
interpreted as saddle points in state space, which attract and
repel trajectories in orthogonal directions, connected by
heteroclinic channels (Fig. 11a). However, heteroclinic chan-
nels are unstable in low-dimensional systems. Alternatively,
metastability may actually be chaotic itinerancy, the slowing
of state space trajectories through quasi-attractors, or “ghosts”
or recently destabilized attractors (Fig. 11b). Chaotic

itinerancy, like heteroclinic cycles, implies a high dimensional
state space (Tsuda 2013). The inferred presence of transitory
dynamics in our data thus suggests a high-dimensional system
with the potential for exotic chaotic behavior (Letellier and
Rössler 2007; Rössler 1979).

Mechanisms of phase resetting

To gain deeper insight into the physical phenomenon of phase
resetting, it is useful to consider phase resets in the context of
nonlinear dynamics (Table 1). As stated earlier, phase resets
are state transitions between metastable cortical frequency
states. State transitions occur in dynamical systems when a
control parameter is tuned past a critical value and a loss of
stability occurs. A familiar example is the liquid to gas state
transition which occurs when water is heated past its boiling
point. In this context, temperature is a control parameter and
the boiling point is a critical value. Might feedforward
thalamocortical inhibition serve as a control parameter for
phase resets? This is consistent with the observation that phase
resets occur at alpha (7.5 – 12.5 Hz) rates in healthy adults
(Freeman et al. 2003) and evidence suggesting that the phase
of thalamic alpha activity modulates the power of cortical
gamma signals (Roux et al. 2013), which are carrier waves
for phase resets (Freeman et al. 2003). Bursts of gamma-
aminobutyric acid (GABA)-mediated inhibition may attenu-
ate the amplitude of the EEG signal, explaining previous
findings of reduced signal amplitude coinciding with phase
resets (Freeman et al. 2003). Such feedforward inhibition
would disrupt bursts of synchronous firing in cortical pyrami-
dal cells, which might subsequently transition to a new fre-
quency of oscillations once disinhibited. Over the course of
development, thalamocortical synapses onto inhibitory corti-
cal interneurons may be lost during synaptic pruning (Bianchi
et al. 2013; Huttenlocher 1979; Huttenlocher and Dabholkar
1997), explaining the increase in frequency stability with age
observed in our recordings (Fig. 9). Over-pruning has already
been hypothesized to trigger neurodevelopmental disorders
such as schizophrenia (Feinberg 1982; Frohlich and van Horn

Fig. 11 Possible scenarios for the mechanisms underlying metastability.
Metastability may be the result of heteroclinic channels between
metastable saddle points (a). Alternatively, the trajectory of the system

through state space may be interpreted as chaotic itinerancy (b), in which
the trajectory is slowed by attractor ruins, or “ghosts” of recently
destabilized attractors
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2014; Granger 1996; Kehrer et al. 2008; Olney and Farber
1997), and may also explain differences in phase locking
duration observed in ASD (Thatcher et al. 2009b), a disorder
which is already associated with mutations in and abnormal
expression levels of GABAA receptor genes (Fatemi et al.
2010, 2011; Kang and Barnes 2013; McCauley et al. 2004;
Menold et al. 2001).

Although the timing and orchestration of phase resets
might be explained in terms of subcortical mechanisms, the
framework of nonlinear dynamics also allows for an explana-
tion consistent with the theory that metastable states between
phase resets represent the activation of cell assemblies. In
nonequilibrium systems such as the brain, a critical point
may serve as an attractor for the system, such that the system
spontaneously undergoes state transitions without the tuning
of a control parameter. This phenomenon, in which systems
enjoy a wide repertoire of possible states by virtue of being
poised near a critical point, is a hallmark of complexity known
as self-organized criticality (SOC) (Bak et al. 1987, 1988). For
example, one can imagine a sandpile which is built until its
slope reaches a critical angle: adding additional sand to the
pile will cause arbitrarily large avalanches ranging in size from
a few grains of sand to a considerable portion of the pile. In
this context, complexity cannot be explained in terms of the
individual parts themselves, but rather in terms of feedback
between a slow process (adding sand) which increases energy
and a fast process (the avalanche) which dissipates energy.
SOC is thus an attractive mechanism by which cell assemblies
might spontaneously synchronize in the brain, with local
synchrony propagating as a neuronal avalanche (Plenz and
Thiagarajan 2007).

An important property of avalanches in SOC is scale-
invariance or fractal organization (Bak et al. 1987). Scale
invariance is observed at almost all levels of the brain,

generally in the form of pink noise, or 1/f noise, where spectral
power is inversely proportional to frequency (He 2014; Plenz
and Thiagarajan 2007). Examples include the temporal distri-
butions of ion channel openings (Toib et al. 1998), spike trains
(Teich et al. 1997), neurotransmitter exocytosis (Lowen et al.
1997), and amplitude fluctuations (Linkenkaer-Hansen et al.
2001) as well as power spectral density (Pritchard 1992) in

Table 1 Interpretations of frequency metastability

Cell assembly synchronization Inhibitory thalamocortical bursting

Computational model Self-organized criticality (SOC) Tuning-dependent state transition

Physical metaphor Avalanche (sandpile model) Thermodynamic phase transition (e.g.,
water boiling into steam)

Neural mechanism Synchronization of neural networks Gamma-aminobutyric acid (GABA)
mediated feedforward inhibition

Cause of developmental changes Synaptic potentiation between constituent neurons Synaptic pruning weakening inhibitory afferents

Evidence -Brain is far from equilibrium system -Explains anomalous phase velocities and
spatiotemporal correlations of phase resets

-Phase resets are aperiodic -Role of GABAA receptors in generating high
frequency EEG rhythms

-Neuronal avalanches reported in vitro -Possible relationship with thalamic alpha activity
-Critical state may enhance computational power of brain

Possible relevance to
atypical development

-Cognitive inflexibility results from reduced ability of cell
assemblies to form as neuronal avalanches

-GABAA receptor mutations associated with
ASD: weakened thalamocortical inhibition
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Fig. 12 A linear region, indicative of power law scaling, is revealed by a
log-log transform of the histogram of |fv|. Power law relationships exist
when one quantity varies as a power of the other. Such relationships are
scale free, as scaling the first quantity by a constant factor only causes a
proportional increase in the second quantity. Power laws and scale in-
variance are features of self-organized criticality (SOC), in which a
system operating near a critical point experiences arbitrarily large
fluctuations
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EEG recordings. Spatially distributed brain data, such as the
topology of functional brain networks, has also been shown to
obey power laws (Sporns 2011). “Neuronal avalanches” have
been widely reported in local field potential (LFP) recordings
from in vitro cortical slices, taking the form of bursts of
spatiotemporal activity following power law distributions
(Beggs and Plenz 2003, 2004; Plenz and Thiagarajan 2007).
In our study, the parameters of the empirical distribution
associated with |fv| revealed power law scaling in the limit of
large |fv|, as illustrated by a log-log transform (Fig. 12)., sug-
gesting that phase resets are, in fact, critical fluctuations driven
by SOC in the brain. Regardless of the mechanism, this
finding adds another entry to the vast body of work describing
scale-invariance in the brain.

Two principal limitations of our study should be consid-
ered. Firstly, our study was performed cross-sectionally and
therefore does not support the same firm conclusions one
might draw from a longitudinal study. Additionally, in com-
paring our study to prior studies of metastability and brain
variability in development (Koenig et al. 2002; Lippé et al.
2009; McIntosh et al. 2008; Thatcher et al. 2009a), we
have simultaneously introduced a new method, a differ-
ent age group, and, in some cases, a different paradigm.
Not having controlled for all variables separately, rea-
sons for differences between our findings and the find-
ings of other groups remain uncertain.

Our recruitment of typically developing children was part
of a larger study of atypical development, and our group is
currently applying this method to age-matched children with
ASD. Other future work should be focused along similar lines
by examining changes in frequency stability with age in
atypical development and neurodevelopmental disorders with
onset in early childhood, such as ASD and attention deficit
hyperactivity disorder (ADHD). Future studies should also
use a longitudinal design to validate conclusions regarding
the relationship between frequency stability and age.

Acknowledgments The authors are deeply grateful to all children and
parents who volunteered their time to advance our knowledge of typical
development. We thank Dr. Mikhail Rabinovich for his comments on
theoretical aspects of this work, as well as Dr. Ted Hutman and Dr. Carrie
Bearden for their much appreciated feedback on the manuscript. Awarm
thank you is also extended to Nima Chenari for his kind help producing
illustrations and to Christina Shimizu, Andrew Sanders, and Amanda
Noroña for their patience and professionalism in assisting with data
collection. This work was supported by NIMH K23MH094517-01.

Informed consent All procedures followed were in accordance with the
ethical standards of the responsible committee on human experimentation
(institutional and national) and with the Helsinki Declaration of 1975, and
the applicable revisions at the time of the investigation. Informed consent
was obtained from all patients for being included in the study

Conflict of interest Joel Frohlich, Andrei Irimia, and Shafali S. Jeste
declare that they have no conflicts of interest.

References

Amari, S.-I., Cichocki, A., & Yang, H.H. (1996). A new learning algo-
rithm for blind source seperation. Adv Neural Informaton Process
Syst 757–763.

Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: an
explanation of 1/f noise. Physical Review Letters, 59, 381–384.

Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality.
Physical Review A, 38, 364–374.

Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical
circuits. The Journal of Neuroscience: The Official Journal of the
Society for Neuroscience, 23, 11167–11177.

Beggs, J. M., & Plenz, D. (2004). Neuronal avalanches are diverse and
precise activity patterns that are stable for many hours in cortical
slice cultures. The Journal of Neuroscience: The Official Journal of
the Society for Neuroscience, 24, 5216–5229.

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization
approach to blind separation and blind deconvolution. Neural
Computation, 7, 1129–1159.

Bianchi, S., Stimpson, C. D., Duka, T., Larsen, M. D., Janssen, W. G. M.,
Collins, Z., et al. (2013). Synaptogenesis and development of pyra-
midal neuron dendritic morphology in the chimpanzee neocortex
resembles humans. Proceedings of the National Academy of
Sciences of the United States of America, 110(Suppl 2), 10395–
10401.

Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory:
long-term potentiation in the hippocampus. Nature, 361, 31–39.

Bosl, W., Tierney, A., Tager-Flusberg, H., & Nelson, C. (2011). EEG
complexity as a biomarker for autism spectrum disorder risk. BMC
Medicine, 9, 18.

Catarino, A., Churches, O., Baron-Cohen, S., Andrade, A., & Ring, H.
(2011). Atypical EEG complexity in autism spectrum conditions: a
multiscale entropy analysis. Clinical Neurophysiology: Official
Journal of the Internat ional Federat ion of Clinical
Neurophysiology, 122, 2375–2383.

Coffey, D. S. (1998). Self-organization, complexity and chaos: the new
biology for medicine. Nature Medicine, 4, 882–885.

Cox, A., Klein, K., Charman, T., Baird, G., Baron-Cohen, S.,
Swettenham, J., et al. (1999). Autism spectrum disorders at 20 and
42 months of age: stability of clinical and ADI-R diagnosis. Journal
of Child Psychology and Psychiatry, 40, 719–732.

Luca C De, Leventer, R. (2010). Developmental trajectories of executive
funtions across the lifespan. Exec Funct Front Lobes Lifesp Perspect
23–56.

Delorme, A., &Makeig, S. (2004). EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent com-
ponent analysis. Journal of Neuroscience Methods, 134, 9–21.

Eldridge, J., Lane, A. E., Belkin, M., & Dennis, S. (2014). Robust
features for the automatic identification of autism spectrum disorder
in children. Journal of Neurodevelopmental Disorders, 6, 12.

Elliot, C. D. (2007). Differential abilitity scales (2nd ed.). San Antonio:
Harcourt Assessment.

Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Rooney, R. J., Patel, D. H.,
& Thuras, P. D. (2010). mRNA and protein levels for
GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered
in brains from subjects with autism. Journal of Autism and
Developmental Disorders, 40, 743–750.

Fatemi, S. H., Folsom, T. D., Kneeland, R. E., & Liesch, S. B. (2011).
Metabotropic glutamate receptor 5 upregulation in children with
autism is associated with underexpression of both Fragile X mental
retardation protein and GABAA receptor beta 3 in adults with
autism. Anatomical Record Hoboken NJ 2007, 294, 1635–1645.

Feinberg, I. (1982). Schizophrenia: caused by a fault in programmed
synaptic elimination during adolescence? Journal of Psychiatric
Research, 17, 319–334.

Brain Imaging and Behavior



Fell, J., Röschke, J., & Beckmann, P. (1993). Deterministic chaos and the
first positive Lyapunov exponent: a nonlinear analysis of the human
electroencephalogram during sleep. Biological Cybernetics, 69,
139–146.

Fountain, C., King, M. D., & Bearman, P. S. (2011). Age of diagnosis for
autism: individual and community factors across 10 birth cohorts.
Journal of Epidemiology and Community Health, 65, 503–510.

Freeman,W. J. (2003). Evidence from human scalp electroencephalograms
of global chaotic itinerancy. Chaos Woodbury N, 13, 1067–1077.

Freeman, W. J. (2004a). Origin, structure, and role of background EEG
activity. Part 1. Analytic amplitude. Clinical Neurophysiology:
Official Journal of the International Federation of Clinical
Neurophysiology, 115, 2077–2088.

Freeman WJ (2004b). Origin, Structure, and Role of Background EEG
Activity. Part 2: Analytic Phase. Clin Neurophysiol 2089–2107.

Freeman, W. J., & Holmes, M. D. (2005). Metastability, instability, and
state transition in neocortex.Neural Network: the Official Journal of
the International Neural Network Society, 18, 497–504.

Freeman, W. J., & Kozma, R. (2010). Freeman’s mass action.
Scholarpedia, 5, 8040.

Freeman, W. J., Burke, B. C., & Holmes, M. D. (2003). Aperidoic phase
re-setting in scalp EEG of beta-gamma oscillations by state transi-
tions at alpha-theta rates. Human Brain Mapping, 19, 248–272.

Freeman,W. J., Holmes,M. D.,West, G. A., &Vanhatalo, S. (2006). Fine
spatiotemporal structure of phase in human intracranial EEG.
Clinical Neurophysiology: Official Journal of the International
Federation of Clinical Neurophysiology, 117, 1228–1243.

Friston, K. J. (1996). Theoretical neurobiology and schizophrenia. British
Medical Bulletin, 52, 644–655.

Friston, K. J. (2000). The labile brain. I. Neuronal transients and nonlinear
coupling. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences, 355, 215–236.

Frohlich, J., & van Horn, J. D. (2014). Reviewing the ketamine model for
schizophrenia. Journal of Psychopharmacology Oxford England,
28, 287–302.

Ghanbari, Y., Bloy, L., Christopher Edgar, J., Blaskey, L., Verma, R., &
Roberts, T. P. L. (2013). Joint analysis of band-specific functional
connectivity and signal complexity in autism. Journal of Autism and
Developmental Disorders. doi:10.1007/s10803-013-1915-7.

Granger, B. (1996). [Synaptogenesis and synaptic pruning: role in trig-
gering schizophrenia]. Presse Médicale Paris France 1983, 25,
1595–1598.

He, B. J. (2014). Scale-free brain activity: past, present, and future. Trends
in Cognitive Science. doi:10.1016/j.tics.2014.04.003.

Hebb, D. (1949). The organization of behavior: A neuropsychological
theory. New York: Wiley.

Hertz-Picciotto, I., & Delwiche, L. (2009). The rise in autism and the role
of age at diagnosis. Epidemiology (Cambridge, Mass), 20, 84–90.

Hofstadter, D. (1979). Gödel, Escher, Bach: An eternal golden braid.
New York: Basic Books.

Hughes, J. R. (1958). Post-tetanic potentiation. Physiological Reviews,
38, 91–113.

Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex -
developmental changes and effects of aging. Brain Research, 163,
195–205.

Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in
synaptogenesis in human cerebral cortex. Journal of Comparative
Neurology, 387, 167–178.

Janjarasjitt, S., Scher, M. S., & Loparo, K. A. (2008). Nonlinear dynam-
ical analysis of the neonatal EEG time series: the relationship
between neurodevelopment and complexity. Clinical
Neurophysiology: Official Journal of the International Federation
of Clinical Neurophysiology, 119, 822–836.

Kang, J.-Q., & Barnes, G. (2013). A common susceptibility factor of both
autism and epilepsy: functional deficiency of GABA A receptors.
Journal of Autism and Developmental Disorders, 43, 68–79.

Kaplan, T., Fingelkurts, A., Fingelkurts, A., Borisov, S. V., &
Darkhovsky, B. (2005). Nonstationary nature of the brain activity
as revealed by EEG/MEG:methodological, practical and conceptual
challenges. Signal Processing, 85, 2190–2212.

Kehrer, C., Maziashvili, N., Dugladze, T., & Gloveli, T. (2008). Altered
excitatory-inhibitory balance in the NMDA-hypofunction model of
schizophrenia. Frontiers in Molecular Neuroscience, 1, 6.

Koenig, T., Prichep, L., Lehmann, D., Sosa, P. V., Braeker, E., Kleinlogel,
H., et al. (2002). Millisecond by millisecond, year by year: normative
EEG microstates and developmental stages. NeuroImage, 16, 41–48.

Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent com-
ponent analysis using an extended infomax algorithm for mixed
subgaussian and supergaussian sources. Neural Computation, 11,
417–441.

Letellier, C., & Rössler, O. (2007). Hyperchaos. Scholarpedia, 2, 1936.
Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., & Ilmoniemi, R. J.

(2001). Long-range temporal correlations and scaling behavior in
human brain oscillations. The Journal of Neuroscience: The Official
Journal of the Society for Neuroscience, 21, 1370–1377.

Lippé, S., Kovacevic, N., & McIntosh, A. R. (2009). Differential matu-
ration of brain signal complexity in the human auditory and visual
system. Frontiers in Human Neuroscience, 3, 48.

Little, M. A., McSharry, P. E., Roberts, S. J., Costello, D. A. E., &Moroz,
I. M. (2007). Exploiting nonlinear recurrence and fractal scaling
properties for voice disorder detection. Biomedical Engineering
Online, 6, 23.

Lowen, S. B., Cash, S. S., Poo, M., & Teich, M. C. (1997). Quantal
neurotransmitter secretion rate exhibits fractal behavior. The Journal
of Neuroscience: The Official Journal of the Society for
Neuroscience, 17, 5666–5677.

Manor, B., & Lipsitz, L. A. (2012). Physiologic complexity and aging:
implications for physical function and rehabilitation. Progress in
Neuropsychopharmacology and Biological Psychiatry. doi:10.
1016/j.pnpbp.2012.08.020.

McCauley, J. L., Olson, L. M., Delahanty, R., Amin, T., Nurmi, E. L.,
Organ, E. L., et al. (2004). A linkage disequilibrium map of the 1-
Mb 15q12 GABA(A) receptor subunit cluster and association to
autism. American Journal of Medical Genetics. Part B,
Neuropsychiatric Genetics : the Official Publication of the
International Society of Psychiatric Genetics, 131B, 51–59.

McIntosh, A. R., Kovacevic, N., & Itier, R. J. (2008). Increased brain
signal variability accompanies lower behavioral variability in devel-
opment. PLoS Computational Biology, 4, e1000106.

Menold, M. M., Shao, Y., Wolpert, C. M., Donnelly, S. L., Raiford, K. L.,
Martin, E. R., et al. (2001). Association analysis of chromosome 15
GABAA receptor subunit genes in autistic disorder. Journal of
Neurogenetics, 15, 245–259.

Meyer-Lindenberg, A. (1996). The evolution of complexity in human
brain development: an EEG study. Electroencephalography and
Clinical Neurophysiology, 99, 405–411.

Mullen, E. M. (1995). Mullen scales of early learning: AGS edition.
Circle Pines, MN: American Guidance Service.

Olney, J. W., & Farber, N. B. (1997). Discussion of Bogerts’
temporolimbic system theory of paranoid schizophrenia.
Schizophrenia Bulletin, 23, 533–536.

Onton, J., Westerfield, M., Townsend, J., & Makeig, S. (2006). Imaging
human EEG dynamics using independent component analysis.
Neuroscience and Biobehavioral Reviews, 30, 808–822.

Philips, B. (2009). CircStat: a MATLAB toolbox for circular statistics.
Journal of Statistical Software, 31, 1–21.

Plenz, D., & Thiagarajan, T. C. (2007). The organizing principles of
neuronal avalanches: cell assemblies in the cortex? Trends in
Neurosciences, 30, 101–110.

Pritchard,W. S. (1992). The brain in fractal time: 1/f-like power spectrum
scaling of the human electroencephalogram. International Journal
of Neuroscience, 66, 119–129.

Brain Imaging and Behavior

http://dx.doi.org/10.1007/s10803-013-1915-7
http://dx.doi.org/10.1016/j.tics.2014.04.003
http://dx.doi.org/10.1016/j.pnpbp.2012.08.020
http://dx.doi.org/10.1016/j.pnpbp.2012.08.020


Rabinovich, M. I., Huerta, R., Varona, P., & Afraimovich, V. S. (2008).
Transient cognitive dynamics, metastability, and decision making.
PLoS Computational Biology, 4, e1000072.

Rössler, O. (1979). An equation for hyperchaos. Physics Letters A, 71,
155–157.

Roux, F., Wibral, M., Singer, W., Aru, J., & Uhlhaas, P. J. (2013). The
phase of thalamic alpha activity modulates cortical gamma-band
activity: evidence from resting-state MEG recordings. The Journal
of Neuroscience: The Official Journal of the Society for
Neuroscience, 33, 17827–17835.

Soong, A. C., & Stuart, C. I. (1989). Evidence of chaotic dynamics
underlying the human alpha-rhythm electroencephalogram.
Biological Cybernetics, 62, 55–62.

Sporns, O. (2011). Networks of the brain. Cambridge, MA: MIT Press.
Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG:

review of an emerging field. Clinical Neurophysiology: Official
Journal of the Internat ional Federat ion of Clinical
Neurophysiology, 116, 2266–2301.

Teich, M. C., Heneghan, C., Lowen, S. B., Ozaki, T., & Kaplan, E.
(1997). Fractal character of the neural spike train in the visual system
of the cat. Journal of the Optical Society of America. A, Optics,
Image Science, and Vision, 14, 529–546.

Thatcher, R. W., North, D. M., & Biver, C. J. (2008). Intelligence and
EEG phase reset: a two compartmental model of phase shift and
lock. NeuroImage, 42, 1639–1653.

Thatcher, R. W., North, D. M., & Biver, C. J. (2009a). Self-organized
criticality and the development of EEG phase reset. Human Brain
Mapping, 30, 553–574.

Thatcher, R. W., North, D. M., Neubrander, J., Biver, C. J.,
Cutler, S., & Defina, P. (2009b). Autism and EEG phase
reset: deficient GABA mediated inhibition in thalamo-
cortical circuits. Developmental Neuropsychology, 34, 780–
800.

Toib, A., Lyakhov, V., & Marom, S. (1998). Interaction between
duration of activity and time course of recovery from slow
inactivation in mammalian brain Na+channels. The Journal
of Neuroscience: The Official Journal of the Society for
Neuroscience, 18, 1893–1903.

Tononi, G., & Edelman, G. M. (1998). Consciousness and complexity.
Science, 282, 1846–1851.

Tsuda, I. (2013). Chaotic itinerancy. Scholarpedia, 8, 4459.
Varela, F. J. (1995). Resonant cell assemblies: a new approach to cogni-

tive functions and neuronal synchrony. Biological Research, 28, 81–
95.

Wang, X., Meng, J., Tan, G., & Zou, L. (2010). Research on the
relation of EEG signal chaos characteristics with high-level
intelligence activity of human brain. Nonlinear Biomedical
Physics, 4, 2.

Werner, G. (2007). Metastability, criticality and phase transitions in brain
and its models. Biosystems, 90, 496–508.

Brain Imaging and Behavior


	Trajectory of frequency stability in typical development
	Abstract
	Introduction
	Methods
	Data collection and processing
	Independent component analysis
	Frequency variance

	Results
	Surrogate EEG signals
	Resting-state EEG signals

	Discussion
	Mechanisms of phase resetting

	References




