UCLA

Posters

Title

NIMS Public Health Applications: Algal Blooms

Permalink

<https://escholarship.org/uc/item/4v96k29q>

Authors

Robert Gilbert Victor Chen Willie Chen [et al.](https://escholarship.org/uc/item/4v96k29q#author)

Publication Date

2005

Center for Embedded Networked Sensing

NIMS Public Health Applications: Algal Blooms

Robert Gilbert, Victor Chen, Willie Chen, Gerald Kim, Yeung Lam, Michael Stealey, Dr. Richard Ambrose, and Dr. William Kaiser

Dr. Richard F. Ambrose's Lab

Introduction: Watershed Health and Water Quality

Anthropogenic Influences

• Landscape Changes Developments cause physical changes in streams and the surrounding watershed. These alterations result in noticeable changes in stream dynamics. Some alterations include: reduction in tree cover, changes in stream substrate, channelization of runoff, and widening of stream basins.

• Nutrient and Pollution Loading Streams receive nutrients and chemicals through runoff and subsurface flow. In developed areas, nutrients and other pollutant loads increase. Some pollutants include: nitrate, ammonia, phosphates, and heavy metals.

Ecological Response

• Algal Blooms

Algae responds quickly to fluctuations in stream conditions. Changes in nutrients, light, substrate, etc. can enable increased algal production. *Algal blooms* can cause a variety of negative effects: fish/invertebrate kills, foul odors, reduction in ecosystem quality, aesthetic degradation, toxicity, and loss of recreational waters.

Other Water Ouality Effects

Waste waters can also carry harmful bacteria and toxic chemicals, which can be an significant public health risk in recreational waters.

Problem Description: High Resolution Spatial and Temporal Water Sensing

Algal blooms and other negative stream conditions result from dynamic, interrelated factors. Understanding complex biotic and abiotic interactions require multi-scale, high-resolution measurements. Stream conditions can change rapidly. Conventional low-resolution field sampling may miss important system dynamics.

Proposed Solution: NIMS-RD & NIMS-3D high resolution sampling

Current Project: Medea Creek

•Monthly 24-h cross section sampling with MiniSonde 4A accompanied by: Dissolved Oxygen, light readings, oxygen isotope analysis, velocity, algal biomass, algal point samples and MiniSonde point sample (Cond., $NO₃$, NH₃, pH, Temp) at sites throughout the stream.

•Conventional grab sampling cannot provide even a fraction of the temporal or spatial resolution provided by the NIMS-RD

•Point sampling makes assumptions regarding homogeneity of nutrients at a sampling site over a 24-hour periods

NIMS-RD performing a comb scan of a urban stream (Medea Creek) in Augora Hills

Down stream trends in Medea Creek with reference site (CC).

Change in nitrate (NO_3) over a 24-hour period for a cross sectiont in Medea Creek. 12pm 7/10/05 to 12pm 7/11/05

Emerging Projects: Merced River

•Deploy NIMS-RD with MiniSonde 4A to explore the dynamics at the junction between two streams: one with heavy industrial runoff and one without

•Opportunity to apply NIMS-RD technology to a larger river system

NIMS-3D Stream Lab

•Modeling these complex nutrient dynamics in an artificial stream lab is very challenging. However, using automated injections with the NIMS-3D system, it is possible to create several nutrient (or pollutant) regimes simultaneously.

•This enables the controlled study of the integrative effect of dynamic exposures to algal taxa by measuring their productivity potential with a colorimetric test.

•Once algal response are quantified, a similar analysis can be used in the field to integrate natural chemical regimes.

•MiniSonde Sensors system includes: temperature, pH, conductivity, nitrate,and ammonia.

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced