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Vortex Simulations on a 3-Sphere

O.M. Dix and R.J. Zieve
Physics Department, University of California at Davis

We generate vortex tangles using a Hopf flow on a 3-sphere, in place of the standard torus defined by periodic

boundary conditions. These tangles are highly anisotropic, with vortices tending to align along the flow direc-

tion. Standard power law dependences change accordingly from their values in more isotropic tangles. The line

length density 〈L〉 is proportional to v1.28
ns , where vns is the drive velocity, and the reconnection rate depends

roughly on 〈L〉2. We also discuss the effect of the full Biot-Savart law versus the local induction approximation

(LIA). Under LIA the tangle collapses so that all vortices are nearly aligned with a single flow line, in sharp

contrast to the torus where they become perpendicular to the driving velocity. Finally we present a few torus

simulations with a helical velocity field, which in some ways resembles the 3-sphere flow.

I. INTRODUCTION

The notoriously intractable equations governing fluid flow

generate a great deal of numerical work [1–4]. While many

calculations deal directly with the velocity field, others focus

on the vorticity [4]. The latter is natural for a variety of flows

with intense vorticity, including airplane trailing vortices, se-

vere weather events such as hurricanes and tornadoes, and the

molecular clouds that lead to star formation. Vortex methods

track the positions of vortex filaments over time, by calculat-

ing the velocity field from the vortex locations and then using

it to update the vortices. Such calculations are particularly

well-suited to superfluid helium, where the restriction of vor-

ticity to angstrom-scale cores makes the “slender filament”

approximation quite accurate, and a great deal of work has

been devoted to understanding such simulations of superfluid

vortices [5, 6].

Efforts to identify general principles necessarily focus on

idealized cases, such as homogeneous turbulence. Since ho-

mogeneity is destroyed near a boundary, computations can

take two approaches. One is to use a large, finite volume,

but to evaluate properties only in a smaller region far from

the boundaries. The other is to run calculations in a space

without boundaries. The latter has several advantages, no-

tably that there is no need to deal with the complex behavior

at surfaces, and that the entire computational power can be de-

voted to the region of interest. The standard choice is periodic

boundary conditions. Topologically, these three-dimensional

simulations run on the three-dimensional torus T 3 rather than

in infinite R3.

The choice of periodic boundary conditions can affect the

calculation results. An example encountered in vortex fila-

ment simulations is the tendency of vortices to fall into an

“open-orbit” state, where they align parallel to each other and

perpendicular to the driving velocity field [7, 8]. In this con-

figuration they interact only trivially with the velocity field,

resulting in uniform translation of the entire set of vortices, so

the open-orbit state persists indefinitely. Since this state re-

quires the vortices to be closed loops that are perpendicular to

the velocity field everywhere, it corresponds to a set of infinite

straight vortex lines in R
3. Vortex rings in R

3, unlike those in

T 3, cannot exhibit such behavior. The particular case of the

open-orbit state can be prevented by including non-local inter-

action terms between vortices in addition to the Arms-Hama

local term [9], but it nevertheless demonstrates the possibility

of topological artifacts. This raises the question of how else

the topology may affect simulation results.

Here we present vortex filament simulations in a different

three-dimensional space, namely a 3-sphere S3, the surface of

a four-dimensional ball. We find several unusual behaviors,

including a tendency for vortices to align with the velocity

flow instead of perpendicular to it. A particularly interesting

result is the unusually high degree of directionality in homo-

geneous vortex tangles, which provides a testing ground for

predictions about anisotropic turbulence.

II. COMPUTATIONAL CONSIDERATIONS

As is standard in vortex filament simulations [5, 10], we

consider a vortex line s(ξ , t), where ξ is arc length and t is

time. The vortex moves according to

ṡ = ṡ0 +αs′× (vn − ṡ0). (1)

Here s′ = ds/dξ is the unit tangent to the vortex, vn is the ap-

plied normal fluid velocity that supplies energy to the vortex

tangle, and α is a coefficient of mutual friction between the

normal and superfluid components. We take α = 0.1, corre-

sponding to a temperature of about 1.6 K in superfluid 4He.

The complete version of Equation 1 includes an additional

mutual friction term −α ′s′ × (s′ × (vns − ṡ0)), but as is of-

ten done in helium vortex simulations we set the coefficient

α ′ = 0 and neglect this contribution. Finally, ṡ0 is the local

superfluid velocity, given by the Biot-Savart law. In R
3 this is

ṡ0 =
κ

4π

∫

L

(s1 − s)× ds1

|s1 − s|3 ,

where κ is the circulation quantum and the integral is over

all the vortex lines. We will discuss below the modifications

needed to this integral for use in S3.

For numerical evaluation, the vortex is approximated by

a sequence of points with straight line segments connecting

neighboring points. In evaluating the velocity at s, the two

vortex segments adjacent to s must be removed from the in-

tegral. They are replaced by a term proportional to the local

curvature of the vortex line, which is scaled to agree with the

analytically calculated velocity for circular vortex rings. The

http://arxiv.org/abs/1906.09660v1
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expression for local superfluid velocity becomes

ṡ0 = β s′× s′′+
κ

4π

∫ ′

L

(s1 − s)× ds1

|s1 − s|3 ,

where s′′ = d2s/dξ 2 is the curvature vector. The prefactor β
is set to

β =
κ

4π
ln

(

2
√
ℓ+ℓ−

e1/4a0

)

,

which yields the correct behavior for circular vortex loops in

R
3 with uniform point spacing. a0 is the core radius of a

vortex filament, and ℓ± are the distances between the point

where the velocity is being calculated and its neighbors on

each side. Our calculations use values appropriate to super-

fluid 4He, κ = 9.969× 10−4 cm2/s and a0 = 1.3× 10−8 cm.

We use a 3-sphere embedded in R
4, consisting of points

(x,y,z,w) such that x2 + y2 + z2 +w2 = R2. (Mathematicians

often use S3 for the sphere of unit radius, but we will use this

notation more generally for our sphere of radius R.) Four-

dimensional Cartesian coordinates help with much of the nec-

essary calculation. For the driving velocity, we use a Hopf

vector field, given in R
4 as v = v

R
(−y,x,−w,z). This Hopf

velocity field possesses several useful properties. It is tangent

to S3, so it drives vortex motion entirely within the manifold.

It also has uniform magnitude v and zero divergence. How-

ever, it is not irrotational; in fact its curl in S3 is 2
R

v, parallel

to the Hopf field itself [11]. We assign the driving Hopf ve-

locity field to the normal fluid, which unlike the superfluid is

not required to be irrotational. Nonetheless, as we shall see,

the non-zero curl has consequences for the vortex behavior.

Several adjustments are needed when restricting to S3. To

begin with, distances such as |s1 − s| should be calculated

along the geodesic through the two points, rather than along

the shorter chord that connects the points in R
4. Next, vec-

tors defined at a point on S3 lie in the tangent space of S3 at

that point. Vector operations such as dot products or cross

products can be performed within a tangent space. However,

in our calculations relevant vectors are often defined at two

different points of S3, where the tangent spaces themselves

differ. Viewed as a vector within R
4, one vector may not even

be in the tangent space where the other vector is defined. For

vectors in different tangent spaces, we parallel transport one

vector along a geodesic to the location of the other vector, be-

fore carrying out any further vector operations [12]. Once we

are working with two vectors in the same tangent space, the

dot product takes exactly its value in R
4. For cross-products

in the tangent space at q, we use the determinant of a 4× 4

matrix:

cross(v1,v2,q) ·a =
1

R

v1x v1y v1z v1w

v2x v2y v2z v2w

qx qy qz qw

ax ay az aw

Here a is an arbitrary vector in R4; taking it to be a unit vector

selects the component of the cross-produce in that direction.

Given three vectors v1, v2, and q/R, the cross-product is a

vector orthogonal to all three and with magnitude defined by

the volume of the parallelopiped spanned by the three vectors.

Since q is the normal vector to the 3-sphere, the cross-product

must lie in the tangent space at q.

Some of the vectors involved in the calculations, particu-

larly the curvature vectors of vortex lines as calculated in R
4,

may have components along the 3-sphere radius vector. Such

radial components give no contribute to cross-products, but

they could affect dot products. We explicitly remove any ra-

dial component of a vector before proceeding with further op-

erations. In the case of curvature vectors, this has the effect

of removing the intrinsic curvature of the 3-sphere from our

calculations.

Another issue is that numerical evaluation of Equation 1

yields a velocity vector in a tangent space to S3, not in S3

itself. Using such velocity vectors to update the locations of

vortex core would result in new locations outside the 3-sphere.

Projecting these points directly back to the 3-sphere would

slightly decrease the distance traveled during the time step.

Instead, we move the vortex points by the desired distance but

along the geodesic defined by the projection of the velocity

onto S3.

The Biot-Savart law must also be treated differently on S3

from on T 3. The torus has no curvature, so within regions very

small compared to the torus diameters, the Biot-Savart expres-

sion of R3 can be used. As the distance between the vortex

segment and the test point grows, additional contributions en-

ter corresponding to paths that loop around the torus, as shown

in Figure 1 for T 2. The shortest path between any part of

the vortex and the point indicated lies near the dotted line 1;

in the analogous three-dimensional situation, this would give

certain Biot-Savart contributions to the velocity field at the

test point. On the other hand, the dotted line 2 corresponds

to paths not much longer but in an entirely different direction,

which would give very different contributions. Other paths,

wrapping around the torus one or more times, are also pos-

sible. The multiple contributions have sometimes been ac-

counted for by representing the torus as a periodic cube tiling

R
3, and adding contributions from the original vortex segment

and also from its images, out to some distance beyond which

further contributions are deemed negligible [13].

On S3 the standard Cartesian Biot-Savart expression is

again merely an approximate solution, both because alternate

paths may traverse the sphere in different directions and be-

cause the curvature of the sphere makes the resemblance to

R
3 only local. Some of our computations use the standard Eu-

clidean Biot-Savart law within a limited region of S3. To up-

date the position of a point P along the vortex core, we need

to calculate the fluid velocity at that point. We use parallel

transport to map all vectors needed for the calculation into the

tangent space at P. We then carry out the calculation within

that tangent space. We calculate contributions only from vor-

tex segments sufficiently close to P.

Most of our calculations use a different approach. Unlike

on T 3, there exists an exact form for the Biot-Savart law on

S3 [14, 15], which allows a more complete calculation of

the velocity field produced by vortex segments. We gener-

ally use the full 3-sphere Biot-Savart law. We retain contri-

butions to velocity either from vortices on the entire sphere,
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or from those in a limited region surrounding the evaluation

point. Whether we use the Cartesian Biot-Savart law or the

exact expression on S3, we project the calculated velocity vec-

tor onto a geodesic and move P an appropriate distance along

that geodesic.

1

2

FIG. 1: Two possible paths from a vortex loop (blue online) to the

same point (red online) on a torus.

We follow the presentation by DeTurck and Gluck of the

Biot-Savart law on the 3-sphere [14]. The contribution to the

velocity field at a point q from a vortex line U on S3 is given

by

dv =
∫

U
∇qφ(u,q)×Pqudu. (2)

Here Pqu is the parallel transport operation described above,

which takes a vector from the tangent space at u to the tangent

space at q. The function φ depends only on the distance h =
|q−u| along the geodesic connecting its two arguments and

has the form

φ(h) =
κ

4π2R2

(

π − h

R

)

csc
h

R
. (3)

The familiar Biot-Savart law in R
3 would instead use φ(h) =

κ/4πh, with h the distance along the straight-line path from q

to u.

For the Biot-Savart calculation we consider the vortex core

as a series of points connected by straight segments, i.e.

geodesics. We evaluate the integral of Equation 2 exactly

along each of these finite-length geodesic segments, as shown

in Figure 2. In the integrand, ∇φ is calculated in the tangent

space at q. Since φ depends only on the separation between

the points u and q, the gradient must be in the direction where

this separation changes the fastest, which is the direction of

the geodesic containing the two points. We use

∇qφ =
∂φ

∂h
∇qh

and observe that ∇qh has magnitude 1 and is directed away

from u along the geodesic connecting u and q.

Next consider the effect of parallel transport along this

geodesic. The geodesic lies in a plane of R4, defined by the

tangent to the geodesic and the normal to the 3-sphere at any

point on the geodesic, such as u. Parallel transport of any vec-

tor rotates the vector within this plane, without affecting the

components orthogonal to the plane. This has two implica-

tions for the calculation at hand. First, no parallel transport

q

u1

u

u2du

hq∇

FIG. 2: Integration along a geodesic (solid curve), to evaluate Biot-

Savart contribution at point q. The dashed curve is the geodesic be-

tween q and a point u on the integration path.

calculation is necessary for the integral of Equation 2. Only

the components of Pqudu within the tangent space but perpen-

dicular to the geodesic contribute to the cross-product in the

integrand, and these are exactly the components unchanged

by parallel transport. Second, we can use u to construct a unit

vector along the geodesic. The plane of a geodesic contains

the normal vectors to S3 at every point on that geodesic, so u

can be decomposed into one component along q and another

tangent to the geodesic at q. Its projection into the tangent

space at q is this latter component. Since the angle between

u and q is h/R, the two components have magnitude Rcos h
R

and Rsin h
R

. Rescaling, the projection of − 1
sin(h/R) û into the

tangent space at q is a unit vector along the geodesic, directed

away from u. For Equation 2 we can use − 1
sin(h/R) û rather

than ∇qh; although these vectors are not identical, the compo-

nent of the former perpendicular to the tangent space does not

contribute to the cross-product. Using this fact and explicitly

calculating ∂φ/∂h, Equation 2 becomes

dv =
κ

4π2R2

∫ u2

u1

du× û
sin h

R
+(π − h

R
)cos h

R

sin3 h
R

.

Up to this point the discussion does not depend on the

shape of the integration path from u1 to u2. We now take

that path to be a geodesic. This is distinct from the geodesic

of the previous paragraph, which goes from the test point

to the integration path. Next we set coordinates for evalu-

ating the integral. The geodesic integration path defines a

plane in R
4, which we take as the xy-plane. We take the

projections of q within and perpendicular to the xy-plane

to lie along the positive x and z axes, respectively. Thus

u = R(cosθ ,sinθ ,0,0), with θ1 and θ2 denoting the integra-

tion limits, and q = R(cosψ ,0,sinψ ,0), where 0 ≤ ψ ≤ π/2.

Hence du=R(−sinθ ,cosθ ,0,0)dθ and the integral becomes

dv =− κ

4π2
ŵ

∫ θ2

θ1

dθ sinψ
sin h

R
+(π − h

R
)cos h

R

sin3 h
R

,

where h depends on θ . We can also adjust the integral so that

sinθ ≥ 0, as follows. If the original choice of coordinates

gives sinθ ≤ 0 along the entire geodesic, then rotation by π
in the yw-plane switches the geodesic segment to positive θ
without altering q. If sinθ changes sign along the geodesic,
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then the curve can be divided into two segments and the cal-

culation carried out separately for the two. The geodesic seg-

ments we integrate along connect consecutive points on a vor-

tex core and are always too short for sinθ to change sign more

than once.

The variables θ , ψ , and h are related through

cos
h

R
=

u ·q
R2

= cosθ cosψ .

Using − 1
R

sin h
R

dh =−sinθ cosψdθ and assuming sin θ ≥ 0,

we have

dv =−κ sinψ

4π2R
ŵ

∫ h2

h1

dh
sin h

R
+(π − h

R
)cos h

R

sin2 h
R

√

cos2 ψ − cos2 h
R

.

An additional minus sign would appear if sinθ cosψ < 0, but

our choice of coordinates ensures that this is not the case. In-

tegrating gives

dv = ŵ
κ sinψ

4π2(cos2 ψ − 1)

(

− arcsin

(

cos h
R

cosψ

)

+
(π − h

R
)
√

cos2 ψ − cos2 h
R

sin h
R

)∣

∣

∣

∣

h2

h1

where our coordinates again eliminate any ambiguity in the

sign of the first term. In the coordinates used above for the

geodesic segment, the contribution is always in the w direc-

tion. We then rotate it back into the original coordinate frame

in which the vortices are defined, repeat for each geodesic seg-

ment along the vortices, and add the results to obtain the Biot-

Savart integral along the entire set of vortices.

III. PROPERTIES OF STABLE TANGLES

Calculations using these equations successfully produce

vortex tangles, as shown in Figure 3. We use two types of

projection, Hopf and stereographic, to display the vortex con-

figuration. These are described in more detail in the appendix,

as well as in algebraic topology textbooks [16]. The right col-

umn of Figure 3 uses stereographic projection, which maps S3

onto flat three-dimensional space R3. One point of S3 goes to

infinity, and its antipode maps to the origin. A sphere within

S3, centered at either of these points, maps to a sphere in R
3

centered at the origin. Hence the half of S3 closest to the point

sent to the origin maps to a ball centered at the origin. The

other half of S3 maps to the remainder of R3 outside of the

ball. Some portions of the vortex lines in Figure 3 lie outside

the displayed region. The second type of visualization, shown

in the left column of Figure 3, is the Hopf projection, which

maps S3 onto S2, the two-dimensional surface of a ball in R
3.

Each Hopf fiber maps to a single point of S2. This mapping is

particularly informative when vortices align closely with the

velocity field, since after projection such vortices appear as

points or very small loops.

(a) (b)

(c) (d)

(e) (f)

FIG. 3: Hopf and stereographic projections of vortex tangles for vns

= 1, 2, 4 cm/s.

0 1 2 3 4 5
Time (s)

<
L

>
 (

10
5 /c

m
2 )

FIG. 4: Line length density as a function of time, for (bottom to top)

vns = 1, 1.2, 1.4, 1.6. 1.8, 2 cm/s.

As seen previously in many calculations using periodic

boundary conditions [7–9, 13, 17, 18], the vortex tangle even-

tually reaches a steady state where various statistical proper-

ties remain constant over time. Figure 4 shows the time devel-

opment of the average vortex line density, for several different

driving velocities. The flat portion of each curve corresponds

to the steady-state situation. As the driving velocity vns in-

creases, the line density increases monotonically and the time

to reach the steady-state density decreases.
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We find that the statistical behavior of tangles is indepen-

dent of the initial conditions for the calculations, as shown

in Figure 5. Furthermore, the more familiar, approximate

Biot-Savart calculation provides confirmation that the exact

formula functions correctly. The two agree well for dynam-

ics of simple vortex configurations, such as a single circular

vortex ring. Their results for line length density and tangle

anisotropy also agree, not only for very short-distance calcu-

lations of vortex interactions, where the approximation should

be quite good, but even when applied on as much as a full

hemisphere. Thus Figure 5 shows that line length density

equilibrates at the same level for three simulations with dif-

ferent initial conditions, two using the exact Biot-Savart law

and the third using the approximate version. In each case vor-

tex interactions out to a hemisphere were included. We do

not attempt to use the approximate Biot-Savart law at larger

distances.

Despite the rapid achievement of a steady-state line density

in Figure 4, the tangles, particularly for low vns, are not en-

tirely homogeneous. Figure 6 shows the line density in four

of the sixteen orthants of S3. Although the line density is very

similar in certain pairs of orthants, in others it differs signifi-

cantly. We number the orthants by assigning one bit to each

of the four Cartesian coordinates of the space R4 that contains

the 3-sphere. A negative coordinate corresponds to a bit value

of zero, and a positive or zero coordinate to a value of one. We

place the x bit in the rightmost position, then the y bit, then z,

and finally the w bit in the leftmost position. Thus orthant 1

has x ≥ 0, y < 0, z < 0, and w < 0, while orthant 13 has x ≥ 0,

y < 0, z ≥ 0, and w ≥ 0. As Figure 7 shows, the line densi-

ties in certain pairs of orthants continue to diverge for several

seconds, even though the long-time average line density is the

same in both orthants. The issue is not a slow approach to

the steady state line density, but rather slow communication

between different regions of S3 even in the steady state.

The top frame of Figure 8 shows the line length density for

0 0.5 1 1.5 2
Time (s)

1

2

3

4

<
L

>
 (

10
5 /c

m
2 )

FIG. 5: Line length density 〈L〉 as a function of time, for vns = 1.4
cm/s and non-local interactions calculated within a hemisphere, for

three different initial configurations. The two calculations with ini-

tially increasing 〈L〉 use the exact Biot-Savart law, while the third

uses the approximate Biot-Savart formula.

0 1 2 3 4
Time (s)

0

0.5

1

1.5

2

2.5

<
L

>
 b

y 
or

th
an

t (
10

5 /c
m

2 )

FIG. 6: Line length density as a function of time for vns = 1 cm/s, for

orthants 9 (magenta, dashed), 10 (black, solid), 12 (blue, dashed),

and 15 (green, solid). The two solid curves track each other closely,

as do the two dashed curves, showing rapid homogenization in the

corresponding orthants.

10 20 30
Time (s)

0

2.5

<
L

>
 b

y 
or

th
an

t (
10

5 /c
m

2 )

FIG. 7: Continuation of line length density from Figure 6, for or-

thants 12 (blue, dashed) and 15 (green, solid). Over sufficiently long

times the average density is the same in each orthant.

all sixteen orthants, averaged over the same four seconds of

steady-state tangle shown in Figure 6. The orthants separate

into four groups by line density. Orthants 0, 5, 10, and 15

have by far the largest line density. The next group is orthants

1, 7, 8, and 14; then orthants 2, 4, 11, and 13 with nearly

identical line length densities; and finally orthants 3, 6, 9, and
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0.8

1

1.2

1.4

1.7

1.8

1.9

0 5 10 15
Orthant number

2.8

2.9

<
L

>
 b

y 
or

th
an

t (
10

5 /c
m

2 )
1 cm/s

1.4 cm/s

2 cm/s

FIG. 8: Line length density for the sixteen orthants of S3, for steady-

state tangles with vns = 1 cm/s (top), vns = 1.4 cm/s (center), and

vns = 2 cm/s (bottom). In each case the average is over a 4-second

interval.

12. These groupings track the velocity field. For example,

consider the point (− 1
2
,− 1

2
,− 1

2
,− 1

2
), which lies exactly in

the center of orthant 0. The flow line through this point also

passes through quadrants 5, 10, and 15; in fact, it reaches the

points ( 1
2
,− 1

2
, 1

2
,− 1

2
), ( 1

2
, 1

2
, 1

2
, 1

2
) and (− 1

2
, 1

2
,− 1

2
, 1

2
) at the

centers of these orthants. Likewise the centers of orthants 1,

7, 8, and 14 lie on a common flow line, and similarly for the

remaining two sets of orthants. A generic flow line actually

passes through eight orthants, two of the listed sets of four.

The portion of the flow line within an orthant is always identi-

cal for the four orthants in a set. In particular, flow lines which

pass through a large portion of one orthant do the same for the

other orthants in the same group, alternating with briefer sec-

tions in the orthants of a second group. Hence it makes sense

to think of the velocity field as roughly conveying any vortex

tangle from one orthant into the other orthants grouped with

it. The implication for homogeneity is that when vortices are

swept directly from one orthant to another through the influ-

ence of the applied velocity field, the line length in those or-

thants quickly equilibrates. The process is much slower for or-

thants in different groups, which do not benefit from this con-

vective mechanism. The resulting lack of global homogeneity

for tangles on S3 differs from the situation on T 3, where vor-

tex tangles remain homogeneous. As we will see shortly, the

reason may be the different anisotropy of tangles in the two

spaces.

The same presentation for higher driving velocities appears

in the bottom two frames of Figure 8. The same groupings

of orthants appear, since that depends solely on the geome-

try of S3. However, at each velocity different sets of orthants

have the largest and smallest line densities. As the velocity

increases, the tangle becomes more homogeneous, with vari-

ations in 〈L〉 decreasing in both relative and absolute terms.

At vns = 2 cm/s, three sets of orthants have indistinguishable

line densities, with the variations among orthants within a set

larger than any differences in line density between sets. The

fourth set of orthants has a smaller line density than the other

three, but only by about 5%.

In simulations on T 3, vortices have a slight tendency to

align perpendicular to the applied velocity field. We use the

anisotropy parameter [7]

I‖ =
1

VL

∫

[1− (ŝ′ · r̂‖)2]dξ

to quantify this effect. Here r̂‖ is a unit vector parallel to the

applied flow, VL is the total length of vortices, and the inte-

gral is taken over all vortex lines. If the vortices were entirely

aligned with the applied velocity field, then I‖ would vanish.

In the other extreme, with vortices always perpendicular to the

applied field, I‖ = 1. In a perfectly isotopic tangle I‖ =
2
3
. Our

previous calculations on T 3 give I‖ = 0.76 [18]. Other simu-

lations [7, 9, 13, 19] find similar values for I‖ at α = 0.1, with

a decrease towards 2/3 as α decreases. As shown in Figure 9,

the vortex orientation within the 3-sphere tangles is dramati-

cally different. I‖ lies between 0.1 and 0.25, depending on the

driving velocity. At sufficiently high velocity the anisotropy

levels off at about 0.23, implying a significant alignment of

vortices with the applied velocity.

1 2 3 4 5 6
v

ns

0.12

0.16

0.2

0.24

I

FIG. 9: Anisotropy parameter I‖ as a function of applied velocity.

For an isotropic tangle, I‖ = 2/3.

Alignment of vortices along flow lines limits the effec-

tiveness of convection at homogenizing a tangle. Vortices

move roughly parallel to their own direction, and the flow
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does not force them into interaction with other vortices. By

contrast, a vortex locally perpendicular to the velocity field

sweeps through a region of space, making vortex crossings

more likely. Such a vortex also drags its more distant portions

along with it, increasing communication among all parts of

the tangle.

The misalignment of the vortices remains large enough to

sustain vortex-vortex interactions. Thus polarized turbulence

arises naturally on S3 with a Hopf driving field. The structure

is entirely different from that of counterflow turbulence on T 3,

where the polarization is far less and is directed perpendicular

to the flow. Anisotropic turbulence in physical experiments

can arise from rotation [20], the geometry of the container

boundaries, or entrainment by normal fluid turbulence [21].

Boundaries and a turbulent normal fluid are both computation-

ally expensive, but simulations on S3 provide another method

of achieving highly polarized turbulence.

0 1 2 3 4 5 6
v

ns
 (cm/s)
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5 /c

m
2 )

FIG. 10: Line length density as a function of applied velocity. Solid

line is a two-parameter fit, yielding 1.19v1.28
ns , where only velocities

vns ≥ 2 are used for the fit.

One illustration of the difference between isotropic and

anisotropic turbulence is the dependence of the vortex line

density on the applied velocity field. Scaling arguments

[7, 22] give a clear prediction for isotropic homogeneous tan-

gles: β 〈L〉1/2 should be proportional to vns. This has been ob-

served in experiment [23] and simulations [7, 9, 13]. The scal-

ing breaks down when rotation introduces anisotropy [20, 24].

In these studies the anisotropy parameter changes with vns, ob-

scuring the dependence of 〈L〉 on vns. For our system, Figure

10 shows the line length after equilibration at each velocity,

along with a power-law fit. Rather than finding that 〈L〉 goes

roughly as v2
ns, we find an exponent of only 1.28. The reduced

exponent is not caused by the lack of global homogeneity. For

the fit shown in Figure 10 we use only those trials with veloc-

ity at least 2 cm/s, which are nearly homogeneous. Extrapolat-

ing the fit curve to lower velocities gives excellent agreement

with the line densities found at these low driving velocities,

and the fit itself changes little when these points are included.

Thus we attribute the change in exponent to the anisotropy of

the tangle; certainly anisotropy invalidates the scaling argu-

ments used to derive the quadratic dependence of line density

on vns in isotropic tangles. In fact a reduced exponent makes

intuitive sense. Vortices perfectly aligned with the driving ve-

locity cannot gain energy from the applied fields; the ŝ′× vns

part of the friction term vanishes. Line length increase can

only originate from non-aligned vortices, and since these are

underrepresented in our tangles, our line length is less than in

the isotropic case.

0 1 2
Time (s)

0
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N
/1
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12 12.5 13 13.5 14

ln (<L>)
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14
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16

ln
 (

dN
/d

t)

FIG. 11: Left: number of reconnections N as a function of time,

for several different velocities. Right: relation between reconnection

rate and line length density. Each point corresponds to one of the

curves in the left graph, with dN/dt obtained from a linear fit to the

long-time part of the N(t) curve. The solid line represents a power-

law fit, dN/dt = c〈L〉m, to the highest four points, selected because

the corresponding tangles have similar anisotropy. The resulting ex-

ponent is m = 1.98.

The rate of vortex reconnections can also depend on the

structure of the tangle. For isotropic homogeneous turbulence,

simple arguments [25, 26] show that the reconnection rate

is related to the vortex line density through dN/dt ∝ 〈L〉5/2,

which agrees with simulations [19, 25]. Polarization should

reduce the number of reconnections [27], since aligned vor-

tices encounter each other less often. Simulations show a re-

duction of about a factor of two in the number of reconnec-

tions in polarized turbulence [28]; here the polarization comes

from a normal fluid driving velocity taken from a snapshot of

classical turbulence. Polarization is also expected to decrease

the scaling exponent. In calculations of counterflow turbu-

lence before the vortex line length stabilized [10], increasing

vortex line length produced both an increase in polarization

and a decrease in the reconnection rate exponent. Tsubota

et al. also found a hint of a reduced exponent [29], albeit

without enough data to identify the exponent. In Figure 11

we fit reconnection rate vs. velocity, using only the points

corresponding to the four largest driving velocities, where the

anisotropy parameter is changing little. We find that the ex-

ponent is indeed reduced, to 1.98. The resulting fit does not

extrapolate well to the data from lower driving velocity, but

that is not surprising since the low-velocity tangles are much

more anisotropic, as seen in Figure 9.
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Both the average vortex line density and the tangle

anisotropy are independent of the initial configuration used.

For example, Figure 12 shows that line density for vns = 1.4
cm/s ultimately reaches the same stable level for three initial

conditions. The convergence to a common global line den-

sity happens despite the inhomogeneity among orthants. This

demonstrates that equilibration occurs even with weak direct

communication among different parts of the space.

0 0.5 1 1.5 2
Time (s)

0

1

2

3

4

<
L

>
 (

10
5 /c

m
2 )

FIG. 12: Line length density as a function of time, for vns = 1.4 cm/s

and non-local interactions over the entire volume, for three different

initial configurations.

IV. LOCAL INDUCTION APPROXIMATION

A calculational issue on the 3-torus has been the reliabil-

ity of the local induction approximation (LIA) that ignores

the non-local integral in the equation of motion. Without the

non-local term, the tangle can degenerate into an “open-orbit”

state, consisting of straight parallel vortex lines that do not

interact [7, 8]. Keeping the non-local term solves this prob-

lem [9], but given the extra computational demands of the full

integral even subsequent work has used LIA [30, 31], com-

pared results from LIA and the full integral [13, 32], or drawn

conclusions from prior LIA work [33]. Hence better under-

standing its limitations remains relevant.

The flow lines of the Hopf field on the 3-sphere do not

remain mutually perpendicular throughout the entire space,

so we observe nothing directly equivalent to the open-orbit

state on the torus. However, omitting the non-local interac-

tion causes a different problem: a collapse of vortex lines until

they all lie nearly atop each other. In most cases the vortices

in the collapsed state follow roughly along a Hopf fiber, lead-

ing to an extremely low anisotropy parameter. Figure 13 illus-

trates the collapse process at a driving velocity vns = 1.4 cm/s.

The first frame shows the anisotropy parameter which initially

varies between 0.1 and 0.2, then drops abruptly to about 0.01,

with little change thereafter. The remaining frames are Hopf

and stereographic projections at three times. The initial con-

figuration is a tangle equilibrated at the same driving velocity

but with non-local terms included. As seen from frames d)

and e), upon omitting the non-local contributions the vortex

line density becomes less uniform, even before any dramatic

change in the anisotropy appears. The final frames f) and g)

show the complete collapse. Since the Hopf projection sends

Hopf fibers to points, the small size of the ring in f) indicates

that the vortices stray little from a single Hopf fiber. In frames

f) and g) there are three distinct vortices present, which make

a combined total of seven circuits. Continuing the calculation

leads to trivial reconnections among these near-parallel vor-

tices, but no other interactions occur and the collapsed state

persists indefinitely.

(a)

0 2 4 6
Time (s)

0

0.1

0.2

I

(b) (c)

(d) (e)

(f) (g)

FIG. 13: Development of vortices for vns = 1.4 cm/s, with no non-

local contribution. Frame a shows the anisotropy density as a func-

tion of time. Frames b, d, and f are Hopf projections of the vortices

at t = 0, 0.5, and 1.6 s, all with the same scale. Frames c, e, and g are

stereographic projections at the same times, again all with the same

scale.

Low-velocity calculations without the non-local contribu-

tion routinely collapse to a set of nearly-overlapping loops,

composing one or more vortex rings. While the loops are usu-
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ally close to a Hopf fiber, with anisotropy parameter I‖ < 0.02,

that is not always the case. One of our collapsed configura-

tions had final anisotropy parameter an order of magnitude

larger, I‖ = 0.27. For our usual right-handed Hopf flow, the

vortex loop is roughly aligned with the flow. Starting with

what appears to be a stable configuration and inverting the di-

rection of all vortices causes immediate vortex motion, as the

loops rotate by π relative to the Hopf flow. Similarly, for a

left-handed Hopf flow stable vortices are anti-parallel to the

field. This direction change is exactly as expected since vor-

tices are axial vectors. Oddly, the persistence of such vortex

arrangements depends on having several loops; upon remov-

ing all but a single loop, that loop moves and distorts until

eventually additional loops are created. The requirement of

multiple loops is particularly strange given that the LIA cal-

culation does not include non-local interactions, so the loops

interact solely through reconnections. The collapsed state ap-

pears to be a numerical artifact specific to using the local ap-

proximation on S3, much as the open-orbit state is on T 3.

(a) (b)

FIG. 14: Hopf projections for tangles generated with no non-local

contributions (a) and with non-local contributions included out to a

distance dNL = 0.1πR (b). For both tangles vns = 2 cm/s and the

sphere radius is r = 0.005 cm. Vortex clustering appears in (a), as

indicated by the arrow, but is mostly eliminated in (b) by the short-

distance non-local contributions.

For sufficiently large driving velocity, a non-trivial vortex

tangle persists even without non-local contributions, as illus-

trated in Figure 14a. However, hints of the collapsed state re-

main, in the tendency of vortices to clump together. Without

the non-local term to separate them, portions of vortices that

become aligned will continue their time development together

until disrupted by reconnection with a non-aligned vortex. As

with the open-orbit state on T 3, adding non-local contribu-

tions out to a very limited distance disrupts the collapsed state.

The tangle of Figure 14b, which results from including contri-

butions out to a distance dNL = 0.1πR, shows little sign of the

clustering that results from the purely local calculation. Our

calculations suggest that with non-local terms included even

for such a small fraction of the sphere, the tangles can persist

indefinitely.
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FIG. 15: Equilibrated line length density as a function of the extent

of the non-local calculation, for several applied velocity fields. The

velocities, in cm/s, are indicated above each curve.

V. EFFECT OF NON-LOCAL TERM

0 0.2 0.4 0.6 0.8 1
d

NL
 (πR)

0.1

0.15

0.2

0.25

0.3

I

FIG. 16: Anisotropy parameter as a function of the extent of the

non-local calculation, for several applied velocities. The driving ve-

locities, in cm/s, are 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0, with I‖ strictly

increasing with drive at dNL = 1.

As with our previous simulations with the usual periodic

boundary conditions [18], we examine the effects of includ-

ing non-local terms only for vortices within a distance dNL.

Figure 15 shows the results. At very small dNL, the main ef-
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FIG. 17: Line length density (lower curves, left axes) and anisotropy (upper curves, right axes) on a torus, with vns = 12 cm/s. a) LIA only,

straight velocity field, b) LIA only, helical velocity field, c) full Biot-Savart law, straight velocity field. Arrows indicate the configurations

shown in Figure 18.

fect is to dissipate the clumping, since intervortex interactions

separate the vortex lines. Forcing the vortices apart also helps

to maintain a true tangle. Without the non-local interaction,

the vortices can collapse along a flow line, which prevents fur-

ther energy gain or loss in the tangle. The non-local term and

resulting reconnections ensures that some of the vortex loops

have segments perpendicular to the velocity field. These per-

pendicular segments exchange energy with the applied field,

allowing the line density to grow. As dNL increases further, the

line length density of the tangle decreases gradually. This is

analogous to our previous results for periodic boundary condi-

tions, where the non-local interaction reduces the line length

by favoring reconnections between anti-parallel vortices over

those between near-parallel vortices. However, with peri-

odic boundary conditions this decrease in 〈L〉 occurs mainly

when dNL is smaller than the typical vortex separation. At

larger dNL the line length is nearly constant. Effectively, only

“nearest-neighbor” vortices contribute significantly to the ve-

locity field. The much more gradual effect of non-local terms

in S3 may arise from the anisotropic nature of the tangles,

which means that distant non-local contributions are not di-

rected randomly and do not cancel as efficiently as they do

on the torus. Interestingly, the crossover between the low-

dNL reduction of clumping and the high-dNL reduction of line

length occurs when the non-local term is applied over a dis-

tance comparable to the vortex line spacing. In fact, the max-

imum line length density seems to move towards smaller dNL

as the applied velocity field increases, consistent with the re-

duced line spacing at higher velocities.

As shown in Figure 16, the tangles become slightly more

anisotropic as the driving velocity decreases, probably be-

cause at lower line density there are fewer reconnections.

The anisotropy is relatively constant at low dNL, but increases

as the interactions extend beyond one hemisphere. This in-

creased anisotropy is entirely different from the collapse ob-

served as dNL → 0, and much more subtle. The vortices re-

main intertwined, but with an incomplete tendency to align

with the velocity field. The increase in this alignment when

the interactions reach a full hemisphere suggests that the cou-

pling of distant regions through the full S3 Biot-Savart law

plays a significant role in the anisotropy. In fact, extending

the interactions from one hemisphere to the entire sphere af-

fects the anisotropy more than it does the line density. Fig-

ure 16 omits combinations of dNL and vns for which the tan-

gle collapses to a single trajectory of nearly overlapping vor-

tices. At the lowest dNL where the vortices do not com-

pletely collapse, I‖ relies heavily on a small number of vortex

loops and becomes erratic, for example at vns = 1.2 cm/s and

dNL = 0.07πR.

VI. POLARIZATION OF TANGLES

We now return to the significant difference in tangle

anisotropy between simulations on T 3 and S3. In the torus cal-

culations with periodic boundary conditions we find a slight

tendency of vortices to align perpendicular to the driving ve-

locity field. The Glaberson-Donnelly instability [34], which

has been observed by various groups both experimentally

[20, 35] and in computational work [24, 36], prevents par-

allel alignment. Essentially, for a straight vortex parallel to

an external velocity field, certain distortions of the vortex

away from straight tend to grow. With multiple vortices,

such growth ultimately leads to reconnections that alter the

vortex arrangement. The Glaberson-Donnelly instability also

impacts simulations using the local induction approximation,

where an “open-orbit” state appears with non-interacting vor-

tices aligned in a single direction. The vortex direction is al-

ways perpendicular to the driving velocity because of the in-

stability.

By contrast, on S3 the driving velocity field follows heli-

cal Hopf fibers. This means that no set of parallel vortices,

all perpendicular to the velocity field throughout the 3-sphere,

can exist. Another factor weakening the Glaberson-Donnelly
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instability is that, unlike on the torus, the longest-wavelength

distortion of a flow line is itself another flow line. This holds

only for a distortion with handedness matching that of the

Hopf flow, which is consistent with our observation that vor-

tex rings can only settle stably in one direction relative to the

Hopf flow. For LIA calculations we find near-perfect align-

ment with the Hopf field. The polarization drops once non-

local interactions are included, although the turbulence re-

mains anisotropic with a tendency towards parallel alignment.

This raises the question of whether a helical velocity field

on a torus would lead to some of the same behavior as the

Hopf flow on the 3-sphere. We carried out a few such sim-

ulations, using a helical field around the z-axis. The field

makes three rotations and has horizontal magnitude 10% of

the total. The helical field indeed prevents the full open-orbit

state from developing even when using the local induction

approximation. However, the vortex line density still dif-

fers from that of the full non-local calculation. Figure 17

shows the relatively stable line density from a full non-local

calculation, along with the perfectly stable line density from

LIA once the open orbit state has formed. The exact open-

orbit line density varies depending on the initial conditions;

in this case it is slightly lower than that of the non-local cal-

culation. The helical velocity field leads to entirely differ-

ent behavior. The tangle undergoes frequent excursions to-

wards the open-orbit state, with the anisotropy coefficient be-

coming very large; Figure 18c illustrates a configuration with

I‖ = 0.992 and 〈L〉 = 1.9× 106/cm2. Unlike in the complete

open-orbit state of Figure 18a, slight curvature and misalign-

ment remain. Remarkably, the helical velocity field enables

recovery even from such a well-aligned configuration. A short

time later, the vortices reach the configuration of Figure 18d,

with I‖ = 0.787 and 〈L〉= 3.4×106/cm2. The tangle remains

noticeably less homogeneous than that of Figure 18b, which

comes from a fully non-local calculation and has I‖ = 0.787

and 〈L〉 = 2.6× 106/cm2. Figure 17b shows repeated fluctu-

ations between these limits. The dependence on the helicity

of the applied velocity field is entirely an effect of LIA; a full

non-local calculation with helical applied velocity has density

and anisotropy unchanged form Figure 17c.

VII. CONCLUSIONS

We have carried out vortex simulations on a 3-sphere. Our

results show the potential importance of the global geometry

and topology used. The most basic features remain the same

as in standard torus-based calculations. Vortex tangles appear,

with the vortex line length stabilizing at a value that increases

with the driving velocity. However, the tangles are much less

isotropic than those generated on a torus. Exponents relating

the line length to the driving velocity and the reconnection rate

reflect this increased anisotropy. This suggests the intriguing

possibility of generating steady-state tangles with markedly

different properties by changing the underlying global struc-

ture. More broadly, computations throughout condensed mat-

ter are done on a torus, often without investigating what fea-

tures may stem from the topology itself.

(a) (b)

(c) (d)

FIG. 18: Vortex configurations for torus simulations, correspond-

ing to the points noted in Figure 17. a) LIA only, straight velocity

field, b) full Biot-Savart law, c) LIA only, helical velocity field, high

anisotropy, d) LIA only, helical velocity field, low anisotropy.

In calculations using the local induction approximation, the

influence of the manifold was even more striking. The partic-

ular failure mode on T 3, the open orbit state, did not appear,

but vortices instead collapsed to occupy a thin tube, all with

nearly parallel alignment. A helical driving velocity on T 3,

which shares some properties with the flow on S3, avoids the

full open orbit state under LIA but retains much of the same

character. This is further evidence of the role of the manifold

rather than the specific velocity field.
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APPENDIX

Stereographic Projection

In this case S3 is mapped onto R
3. Figure 19 shows the

analogous operation mapping S2 to the z = 0 plane. The pro-

jection point p is (0,0,R). A line is extended from p through a

point on the circle, and the intersection between that line and

the xy-plane gives the image point. Under this projection, the

equator maps to a circle of radius R. The lower hemisphere

goes to the inside of this circle, and the outer hemisphere to

the outside. The projection point itself does not have an image

within the plane, but maps to a point at infinity. In general, the

image of a point (x,y,z) in S2 has coordinates

(
x

1− z/R
,

y

1− z/R
)
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FIG. 19: Illustration of stereographic projection from the surface of

a three-dimensional ball to the xy plane. A point q maps to q′ in the

plane such that q, q′, and p are collinear.

in the plane. The generalization to a projection from S3 to,

say, the w = 0 space is straightforward.

The main disadvantage of stereographic projection is that

distances are not preserved. One half of S3 maps to the

inside of a finite sphere, while the other half maps to the

infinite outside. This can give a misleading impression of the

structure of a vortex tangle.

Hopf Fibration

A Hopf fibration maps S3 onto S2 in a way that preserves

distance, up to an overall scale factor. It is selected to match

our driving velocity field, v = v
R
(−y,x,−w,z); as we show

below, the corresponding Hopf fibration maps each flow line

to a single point. We take the Hopf fibration as the following

map to R
3:

h1 = 2(xz+ yw)
h2 = 2(yz− xw)

h3 = (x2 + y2)− (z2 +w2)

Explicit multiplication shows that for any point on a 3-sphere

of radius R, its image is at radius R2. Thus S3 in fact maps to

S2.

The flow lines of the velocity field are particular great cir-

cles on S3. To track them under the Hopf fibration, consider

the four-dimensional real space which contains S3 as a two-

dimensional complex space with coordinates q1 = x+ iy and

q2 = z+ iw. A complex line, q2 = kq1, intersects S3 in a great

circle of constant |q1| and |q2|, which is exactly a flow line of

this velocity field. In addition, writing the Hopf fibration in

terms of the complex coordinates and using q2 = kq1 gives

h1 = Re(2q1q∗2) = 2|q1|2Re(k)

h2 = Im(2q1q∗2) = 2|q1|2Im(k)
h3 = |q1|2 −|q2|2 = |q1|2(1−|k|2)

The image depends only on k and |q1|, both of which are con-

stant on any great circle corresponding to a flow line of the

velocity field. Hence this Hopf fibration maps a flow line on

S3 to a point on S2.

Any two Hopf fibers of the flow are great circles that twist

around each other. The distance between any point on one

fiber and the closest point on the other is constant, which gives

a sensible definition for the distance between the two fibers.

The Hopf fibration preserves this distance, up to an overall

scale factor. For example all fibers a fixed distance from a

given fiber A are mapped to a circle on S2 centered at the im-

age of A.
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