
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Holistic Algorithm and System Co-Optimization for Trustworthy and Platform-Aware Deep
Learning

Permalink
https://escholarship.org/uc/item/4vb1b6p2

Author
Javaheripi, Mojan

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vb1b6p2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Holistic Algorithm and System Co-Optimization for Trustworthy
and Platform-Aware Deep Learning

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Mojan Javaheripi

Committee in charge:

Professor Farinaz Koushanfar, Chair
Professor Tara Javidi
Professor Truong Nguyen
Professor Rose Yu

2023

Copyright

Mojan Javaheripi, 2023

All rights reserved.

The Dissertation of Mojan Javaheripi is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

This dissertation is dedicated to my parents and my beloved husband for their constant love and
support during my academic journey.

iv

EPIGRAPH

“Research is to see what everybody else has seen,
and to think what nobody else has thought.”

- Albert Szent-Györgyi

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . x

List of Tables . xix

Acknowledgements . xxii

Vita . xxv

Abstract of the Dissertation .xxviii

Chapter 1 Introduction . 1
1.1 Trustworthy and Robust Deep Learning . 2

1.1.1 Robustness to Runtime Attacks . 3
1.1.2 Robustness to Training Time Attacks . 4

1.2 Platform-aware Deep Learning on Massive Data . 5
1.2.1 Efficient Training . 5
1.2.2 Resource-Customized Inference . 6

1.3 Acknowledgements . 8

Chapter 2 Ensuring DL Robustness to Adversarial Attacks . 10
2.1 Background and Preliminaries . 13
2.2 Related Work . 15
2.3 Statistical Analysis of Adversarial Samples . 16
2.4 CuRTAIL Methodology . 17

2.4.1 Latent Defenders . 18
2.4.2 Input Defender . 23
2.4.3 Model Fusion . 25
2.4.4 Sensitivity Analysis . 27

2.5 CuRTAIL Hardware Implementation . 28
2.5.1 CuRTAIL Hardware Acceleration . 29
2.5.2 Automated Design Customization . 34
2.5.3 Computational Analysis and Scalability . 36

2.6 Evaluations . 37
2.6.1 Details of MRR Training . 38
2.6.2 Attack Analysis and Resiliency . 39

vi

2.6.3 Black-Box Attacks . 40
2.6.4 Adaptive White-Box Attack . 41
2.6.5 Performance Analysis . 43
2.6.6 Discussion on Transferability of Adversarial Samples 45

2.7 Conclusion . 46
2.8 Acknowledgements . 46

Chapter 3 Ensuring DL Robustness to Fault Injection Attacks . 48
3.1 Background and Prior Work . 51

3.1.1 Bit-Flip Attack . 51
3.1.2 Existing Defenses . 52

3.2 ACCHASHTAG Methodology . 53
3.2.1 Threat Model . 55

3.3 ACCHASHTAG Components . 56
3.3.1 Hash-based Signature Extraction . 56
3.3.2 Bounds on Detection Performance . 57
3.3.3 Per-layer Sensitivity Analysis . 60
3.3.4 Accelerating Hash Generation . 61

3.4 Experiments . 63
3.4.1 Experimental Setup . 63
3.4.2 Analysis of Design Choices . 65
3.4.3 ACCHASHTAG Performance . 68

3.5 Conclusion . 75
3.6 Acknowledgements . 76

Chapter 4 Ensuring DL Robustness to Backdoor Attacks . 77
4.1 Background on Trojan Attacks and Defenses . 79
4.2 CLEANN Methodology . 81

4.2.1 Defense Construction and Execution . 83
4.2.2 Threat Model . 83

4.3 CLEANN Components . 84
4.3.1 DCT extraction . 84
4.3.2 Sparse Recovery . 85
4.3.3 Detection . 88

4.4 CLEANN Hardware . 90
4.5 Experiments . 92

4.5.1 Attack Configuration . 92
4.5.2 Detection Performance . 93
4.5.3 Hardware performance . 95

4.6 Conclusion . 98
4.7 Acknowledgment . 99

Chapter 5 Improving Training Convergence via Architectural Modifications 100
5.1 Background on Small-World Networks . 102

vii

5.2 Related work . 103
5.3 SWANN: Small-World DNNs . 106

5.3.1 Metric for Small-Worldness . 106
5.3.2 Acquiring the Small-world Architecture . 107
5.3.3 SWANN Methodology . 110

5.4 Experiments . 113
5.4.1 Datasets . 113
5.4.2 Benchmarked Architectures . 114
5.4.3 Results on MNSIT . 114
5.4.4 Results on CIFAR . 115
5.4.5 Results on ImageNet . 118
5.4.6 Federated Learning . 120

5.5 Discussion on Long-range Connections . 122
5.6 Conclusion . 123
5.7 Acknowledgements . 124

Chapter 6 Improving Inference Performance via Neural Architecture Search 125
6.1 Related Work . 128
6.2 Lightweight Transformer Search . 129

6.2.1 Training-free Architecture Ranking . 132
6.3 Experiments . 133

6.3.1 Experimental Setup . 134
6.3.2 How do training-free proxies perform compared to training-based meth-

ods? . 136
6.3.3 How does variation in model topology affect decoder parameter count as

a proxy? . 139
6.3.4 How Good is the Decoder Parameters Proxy for Pareto-frontier Search? 141
6.3.5 Pareto-frontier models for various hardware platforms 143
6.3.6 Zero and one-shot performance comparison with OPT 147

6.4 Conclusion . 149
6.5 Acknowledgements . 149

Chapter 7 Automating Model Compression via Adaptive Non-uniform Sampling 150
7.1 Background and Related Work . 153
7.2 Problem Formulation . 155
7.3 AdaNS Overview . 156

7.3.1 Search-Space Definition . 157
7.3.2 Scoring Mechanism . 157
7.3.3 Boundary Characterization for Directed Search . 159
7.3.4 Optimization through Adaptive Sampling . 161

7.4 AdaNS Adaptive Sampling Routines . 163
7.4.1 AdaNS-Zoom Sampling Subroutine . 164
7.4.2 AdaNS-Genetic Sampling Subroutine . 166
7.4.3 AdaNS-Gaussian Sampling Subroutine . 169

viii

7.5 Reconstruction . 171
7.6 Experiments . 173

7.6.1 Effect of Sampling Strategy on Convergence . 174
7.6.2 Quantitative Results on CIFAR-10 . 176
7.6.3 Quantitative Results on ImageNet . 178
7.6.4 Compressing Compact Networks . 178
7.6.5 Search Overhead and Scalability . 179
7.6.6 Analysis and Discussion . 181
7.6.7 Ablation Study . 182

7.7 Conclusion . 184
7.8 Acknowledgements . 185

Bibliography . 186

ix

LIST OF FIGURES

Figure 1.1. Critical design objectives for autonomous DL-enabled systems. My re-
search provides holistic solutions that co-optimize DL algorithm and hard-
ware, thus jointly satisfying multiple design objectives, i.e., task evaluation
metrics, robustness, and hardware performance. 2

Figure 2.1. (a) Data points (green and blue squares) can be easily separated in one-
dimensional space. Extra dimensions add ambiguity in choosing the de-
cision boundaries: all shown boundaries (dashed lines) result in the same
classification accuracy but are not equally robust to noise. 11

Figure 2.2. An example of (a) input data, and (b) its corresponding adversarial sam-
ple. The added noise is imperceptible but can cause the victim model to
misclassify. 13

Figure 2.3. Histogram of the estimated PDF for adversarial (red) and legitimate (blue)
samples. Adversarial samples are generated using Deepfool for Lenet
architecture. The PDF is learned in the second-to-last layer of the network. 17

Figure 2.4. High-level block diagram of MRR methodology. Multiple defenders check-
point the input and intermediate features in parallel. The output of the
victim DNN (green neurons) is augmented with a confidence measure (red
neuron) determining the prediction legitimacy. 18

Figure 2.5. Block diagram of the training procedure for devising parallel redundancy
modules. Each latent defender is built by minimizing the entanglement of
intermediate data features in a Euclidean space at a particular checkpoint
location. 19

Figure 2.6. Defender module optimization objective. 20

Figure 2.7. (a) Distance of legitimate (blue) and adversarial (red) samples from the
corresponding centers Ci before, and (b) after realignment of data samples.
In this example, we consider the LeNet model [106] trained on MNIST. . . 20

Figure 2.8. Illustration of the effect of security parameter on the detection policy. A
high SP leads to a tight boundary which treats most samples as adversarial
examples. 21

Figure 2.9. Enforcing negative correlation between MRRs. 22

Figure 2.10. Training multiple negatively correlated defenders at each checkpoint layer. 22

x

Figure 2.11. An input defender module is devised based on robust dictionary learning
techniques to automatically filter out test samples that highly deviate from
the typical PSNR of data points within the corresponding predicted class. . 23

Figure 2.12. Adversarial detection rate of input and latent defenders as a function of
the perturbation level for various SP . Here, FGS is used to generate
adversarial samples and the perturbation is adjusted by changing attack
parameter ϵ. 25

Figure 2.13. CuRTAIL uses a score-based statistical method to aggregate MRR deci-
sions. 26

Figure 2.14. Per-layer sensitivity analysis for ResNet56 . 28

Figure 2.15. Complexity and reliability trade-off for the LeNet model on MNIST dataset
performed on an NVIDIA Geforce 980 GPU hosted by an Intel Core-i7
CPU. 29

Figure 2.16. Overview of CuRTAIL hardware acceleration stack. Based on the user-
provided constraints, we output the best defense layout that ensures maxi-
mum robustness and throughput. 30

Figure 2.17. Latent defender structure: the pertinent activations are acquired by prop-
agating the input sample through the defender. PCA is then applied to
reduce the dimensionality of the obtained activation. The L2 distance with
the corresponding GMM center determines the legitimacy of the input. . . . 31

Figure 2.18. Design space exploration for MNIST and SVHN benchmarks on Xilinx
Zynq-ZC702 FPGA. CuRTAIL finds the optimal configuration of PEs and
PUs to best fit the DL architecture and the available hardware resources. . . 32

Figure 2.19. Input defender: the OMP core iteratively reconstructs input vectors using a
learned dictionary. Here, the support set contains columns of the dictionary
that have been chosen so far in the routine. The final reconstruction error
is used to determine input legitimacy. 33

Figure 2.20. Tree-based vector reduction algorithm. 33

Figure 2.21. CuRTAIL provides customized defense by balancing the design-space
trade-offs. The goal of CuRTAIL is to maximize model robustness while
adhering to the underlying memory and runtime constraints. 34

Figure 2.22. Example legitimate samples in ImageNet benchmark. Samples are ran-
domly selected from the target classes. 38

xi

Figure 2.23. CuRTAIL security parameter controls the TP and FP rates. The number of
latent defenders in this experiment is 16. 39

Figure 2.24. Using more MRRs improves the detection performance for all datasets. . . 39

Figure 2.25. CuRTAIL throughput with samples from the MNIST dataset versus the
number of instantiated defenders (implemented on Xilinx Zync-ZC702
FPGA). 44

Figure 2.26. Performance-per-Watt comparison with embedded CPU (left) and CPU-
GPU (right) platforms. Reports are normalized by the performance-per-
Watt of TK1. 45

Figure 2.27. Example adversarial confusion matrix (a) without MRR defense mecha-
nism, and (b) with MRR defense and SP = 1%. (c) Example adversarial
samples for which accurate detection is hard due to the closeness of deci-
sion boundaries . 45

Figure 3.1. Global flow of ACCHASHTAG detection. During the pre-processing phase,
we first identify sensitive DNN layers that are most prone to fault-injection
attacks. We then generate a customized signature from the identified
sensitive layers. 55

Figure 3.2. Reordering parameters in an example convolution layer for generating the
hash input stream. The layer parameters are the convolution weight kernels
∈ Rk×k×Ci×Co where k, Ci, Co denote the kernel size, input channels, and
output channels, respectively. 57

Figure 3.3. Collision rate versus number of trial runs for hashing an input stream of
length 1000. Each trial randomly changes a subset k ∈ [2, 3, 6, 8, 12, 16]
of message elements. 59

Figure 3.4. Overview of ACCHASHTAG accelerated hash generation and verification
using a specialized FPGA compute kernel. 62

Figure 3.5. Percentage of sign changes occurring during multiple runs of the bit-flip
attack. The progressive bit-flip attack [154] changes the sign of the target
parameter with high probability. 65

Figure 3.6. Ranking DNN layers based on their vulnerability to bit-flips, defined as
the average sensitivity score assigned to their γ most vulnerable weights.
The most vulnerable layers (marked with green boxes), remain largely the
same, when γ ≤ 10. 67

xii

Figure 3.7. Maximum per-layer attack concentration, averaged across multiple runs for
ResNet20 and ResNet18 trained on CIFAR10 and ImageNet, respectively.
The progressive bit-flip attack [154] on average targets the weights in the
same layer no more than ∼ 5 times. 68

Figure 3.8. Ranking DNN layers based on their sensitivity, computed using a validation
dataset with n samples per class. 68

Figure 3.9. ACCHASHTAG detection rate versus number of checkpoint layers, shown
for various number of per-class samples (n) used in sensitivity calculation.
We omit the plot for ViT for brevity as it shows a similar trend as the
ResNet18 benchmark. 69

Figure 3.10. Per-layer sensitivity scores assigned by ACCHASHTAG versus the number
of per-layer bit-flips. All values are normalized and sum to 1. Results are
gathered across 50 runs of the bit-flip attack on the ResNet20 DNN trained
with CIFAR10 dataset. 69

Figure 3.11. ACCHASHTAG detection rate versus the number of checkpoint layers used
for signature extraction, evaluated on different victim CNNs. 70

Figure 3.12. ACCHASHTAG detection performance versus number of checkpoint layers.
Evaluated DNNs are derived from the Transformer backend with self-
attention layers. 71

Figure 3.13. Effect of victim DNN’s bitwidth on ACCHASHTAG detection rate. The
legend presents the utilized datasets along with the underlying bitwidths. . 71

Figure 3.14. System throughput as a function of the design parameter TILE, i.e., the
burst length for AXI reads. Higher TILE length facilitates larger over-
lap between CPU-FPGA communications and hash computation, thus
increasing throughput. 75

Figure 4.1. Example Trojans: (a) BadNets [58] with a sticky note and TrojanNN [121]
with (b) square and (c) watermark triggers. 78

Figure 4.2. High-level overview of CLEANN Trojan detection methodology. CLEANN
detects both digital and physical attacks using a pair of input and latent
feature analyzers. 81

Figure 4.3. Average magnitude of DCT components for Trojan samples, normalized by
benign data, shown in the three RGB channels. Trojans contain abnormally
larger amounts of high-frequency components (highlighted regions). 84

xiii

Figure 4.4. Illustration of sparse reconstruction for regular data (green circle) and
out-of-distribution samples (red circle). 87

Figure 4.5. (a) Example Trojan data with watermark and square triggers [121], (b)
reconstruction error heatmap, and (c) output mask from the outlier detection
module. 89

Figure 4.6. Schematic of CLEANN MVM core with its internal parallelization levels. . . 91

Figure 4.7. Analysis of CLEANN sensitivity to Trojan trigger size. 95

Figure 4.8. Latency breakdown of CLEANN components running on embedded and
high-end CPUs (left) and GPUs (right). 97

Figure 4.9. Cycle-count breakdown for running CLEANN components on FPGA. 97

Figure 4.10. (a) Performance-per-Watt and (b) throughput across hardware platforms.
Reported values for performance per-watt are normalized by TITAN Xp
and throughput values are normalized by ARM Cortex-A57. 98

Figure 5.1. Schematic representation of the connections within a small-world DNN. An
arbitrary neuron’s output is connected to selected neurons in the proceeding
layers via sparse connections (convolutions) denoted by S-CONV. 101

Figure 5.2. Transition of a regular graph to a completely random network. Intermediate
values of the random rewiring probability, p, generate SWNs, i.e., clustered
structures where any arbitrary node pair is connected by a few edges. 103

Figure 5.3. Information flow within a ResNet (top), DenseNet (middle), and SWANN
(bottom). Here, CONV, BN, ReLU denote a convolution kernel, batch
normalization, and non-linear activation, respectively, and our customized
sparse convolutions are shown as S-CONV. 105

Figure 5.4. Our proposed rewiring algorithm replaces edges to the subsequent layer
(red) with long-range edges (blue). 109

Figure 5.5. Clustering coefficient (C), small-world property (SG), and path length (L)
versus rewiring probability. The region where the graph transforms into a
small-world network is shown with the double-headed arrow. 109

Figure 5.6. Convergence to 99.0% test accuracy for a 5-layer DNN and its randomly
rewired counterparts trained on the MNIST dataset. Here, the relative
convergence rate is computed as

eb
er

. 110

xiv

Figure 5.7. Conversion of a CONV layer to its graph representation. Each k × k
convolution kernel is replaced by an edge in the corresponding graph
where the input and output filter channels are shown as two consecutive
rows of vertices with ch1 and ch2 nodes, respectively. 111

Figure 5.8. Coarse-grained sparse convolution between a layer with ch1 = 5 output
channels and a layer with ch2 = 3 output channels. Left: Sparse convolu-
tion weights. For each removed connection from the graph, we show the
corresponding filter in the sparse convolution weight by zero. 112

Figure 5.9. Comparison of a plain DNN’s training convergence with its small-world
equivalent. Here, the red and blue colors show SWANN and baseline,
respectively. The ⋆ markers denote the point of convergence to final test
accuracy for the models with the corresponding colors. 115

Figure 5.10. Test error and training loss versus iterations for a ConvNet-C model and
the rewired SWANN trained on (a) CIFAR10 and (b) CIFAR100 datasets.
Here, the red and blue colors show SWANN and baseline, respectively. . . . 116

Figure 5.11. Training loss and testing accuracy of the 40-layer (k=12) DenseNet [77]
with 1M parameters and our corresponding SWANN with less than 100K
parameters. 118

Figure 5.12. Training loss and testing accuracy of the baseline DNN and SWANN in the
federated learning scenario with a) IID and b) non-IID data distributions.
Here, the red and blue colors show SWANN and baseline, respectively. . . . 121

Figure 5.13. Visualization of average absolute value of trained weights within CONV
layers of SWANNs. Colors encode the connectivity strength between layers
with red being the strongest and white denoting no connection. The marked
rows with black box borders correspond to the input layer of the networks. 123

Figure 6.1. High-level overview of LTS. We propose a training-free zero-cost proxy
for evaluating the validation perplexity of candidate architectures. Pareto-
frontier search is powered by evolutionary algorithms which use the pro-
posed proxy along with real latency and memory measurements 127

Figure 6.2. Elastic parameters in LTS search space. 131

Figure 6.3. Our training-free zero-cost proxy based on decoder parameter count is
highly correlated with the (ground truth) validation perplexity after full
training. Each plot contains 200 architectures sampled randomly from the
search space of Transformer-XL or GPT-2 backbone. 133

xv

Figure 6.4. Comparison between partial training and our zero-cost proxy, i.e., decoder
parameter count, in terms of ranking performance and timing overhead.
Each subplot corresponds to a topk% of the randomly sampled models,
based on their validation perplexity after full training. 136

Figure 6.5. SRC between low-cost proxies and the ground truth ranking after full
training of randomly sampled Transformers with (a) heterogeneous and (b)
homogeneous decoder blocks. The decoder parameter count obtains the
best SRC with zero cost. 137

Figure 6.6. (a) Validation perplexity after full training versus total parameters for 200
randomly sampled architectures trained on WikiText-103. The downward
trend suggests a strong correlation between parameter count and perplexity. 138

Figure 6.7. Performance of parameter count proxies on 100 randomly sampled Trans-
formers with homogeneous decoder blocks, trained on WikiText-103. The
decoder parameter count provides a very accurate ranking proxy with an
SRC of 0.95 over all models. 139

Figure 6.8. Validation perplexity after full training versus the (a) width-to-depth aspect
ratio, (b) latency, and (c) peak memory utilization. Models are randomly
generated from the GPT-2 backbone and trained on WikiText-103. 140

Figure 6.9. Validation perplexity after full training versus (a) the width-to-depth aspect
ratio, (b) latency, and (c) peak memory utilization. Models are randomly
generated from the Transformer-XL backbone and trained on WikiText-103. 141

Figure 6.10. Perplexity versus latency Pareto obtained from full training of 1200 ar-
chitectures sampled during NAS on Transformer-XL backbone. Orange
points are the Pareto-frontier extracted using decoder parameter count
proxy, which lies close to the actual Pareto-frontier. 142

Figure 6.11. SRC between the decoder parameter count proxy and validation perplexity.
Results are gathered on 1200 models grouped into four bins based on their
decoder parameter count. Our proxy performs well even when exploring
within a small range of model sizes. 143

Figure 6.12. 2D visualization of perplexity versus latency and memory Pareto-frontier
found by LTS, versus the scaled backbone models with varying number of
layers, trained on LM1B. 144

Figure 6.13. 2D visualization of perplexity versus latency and memory Pareto-frontier
found by LTS versus layer-scaled backbone models. All models are trained
on WikiText-103. 145

xvi

Figure 6.14. Average zero and one-shot accuracy of LTS models (dots) and the baseline
OPT-350M (triangle) across 14 NLP tasks. Latency is measured on an
A6000 NVIDIA GPU. 148

Figure 7.1. Pareto curves of accuracy versus number of floating point operations for
pruning a pre-trained VGG network on CIFAR-10 benchmark. 151

Figure 7.2. Overview of AdaNS adaptive sampling for hyperparameter customization. 156

Figure 7.3. Vectorized representation of an example 4-layer DNN for Pruning and
Decomposition. Here, CONV and FC denote convolutional and fully-
connected layers, respectively. 157

Figure 7.4. AdaNS accuracy penalty function with Athr = 80% and A(M) = 93.5%. . 159

Figure 7.5. Search-space for pruning a 2-layer DNN. 160

Figure 7.6. Boundary characterization for pruning a VGG model on CIFAR-10 with
Athr = 80%. 160

Figure 7.7. AdaNS-Zoom algorithm. Here, the good and bad samples are shown with
blue circles and red crosses, respectively. 165

Figure 7.8. Overview of AdaNS-Genetic sampling subroutine. 166

Figure 7.9. 2D illustration of AdaNS-Gaussian sampling strategies. 169

Figure 7.10. Per-iteration analysis of AdaNS sampling. 173

Figure 7.11. Comparison between AdaNS sampling subroutines with the same sam-
ple count, for pruning a 2-layer DNN. AdaNS-Gaussian achieves better
exploration/exploitation tradeoff as it identifies the global maximum and
concentrates the sampling around it. 175

Figure 7.12. Convergence analysis of various sampling strategies across algorithm it-
erations. (left): mean score achieved by good samples. (right): Proximity
parameter value. 176

Figure 7.13. (a) Set of randomly initialized samples at the first iteration. (b) Set of good
samples Sg upon convergence. 182

Figure 7.14. Original per-layer FLOPs versus AdaNS pruning pattern. 182

xvii

Figure 7.15. Ablation studies for VGG on CIFAR-10:(a) Effect of initialization method.
(b) Effect of sample count. We show the trend lines as well as a fraction of
samples (black dots) across AdaNS iterations. (c) Effect of mutation and
cross-over probabilities for AdaNS-Genetic. 183

Figure 7.16. Convergence curves for various pair selection methods for Cross samples
(Section 7.4.3). Graphs are generated over 10 runs. 184

xviii

LIST OF TABLES

Table 2.1. Runtime and computational complexity of each custom layer in CuRTAIL
framework. 36

Table 2.2. Benchmarked DL models for evaluating CuRTAIL effectiveness. Conv lay-

ers are represented as ⟨input−channels⟩ ⟨kernel size⟩−−−−−−−→
stride

⟨output−channels⟩
and FC layers are denoted by ⟨output− elements⟩FC. 38

Table 2.3. Attack parameters. For CarliniL2 attack [22], “C” denotes the confidence,
“LR” is the learning rate, “steps” is the number of binary search steps, and
“iterations” stands for the maximum number of iterations. 40

Table 2.4. AUC obtained by 16 latent defenders checkpointing the second-to-last layer
of the victim model. For ImageNet, we only used 1 defender due to the high
computational complexity of the pertinent neural network and attacks. 41

Table 2.5. Evaluation of MRR methodology against adaptive white-box attack. We
compare our results with prior work including Magnet [135], Efficient
Defenses Against Adversarial Attacks [229], and APE-GAN [174]. 42

Table 3.1. High-level comparison of ACCHASHTAG with prior work. 53

Table 3.2. Resource utilization of ACCHASHTAG components, synthesized on a Xilinx
FPGA. 62

Table 3.3. Overview of the evaluated benchmarks. Here, CONV, FC, and ATTN rep-
resent convolution, fully-connected, and self-attention layers, respectively.
Note that each self-attention layer consists of four fully-connected layers. . 64

Table 3.4. Comparison with best prior works WED [119] and RADAR [111]. Runtime
is measured on an ARM CPU and normalized by the inference time of the
victim DNN. 73

Table 3.5. ACCHASHTAG overhead analysis. Here, # is the number of checkpoint
layers. 74

Table 4.1. Evaluated datasets and attack algorithms. 92

Table 4.2. Parameters of CLEANN modules for various datasets. P : DCT windows
size, l: feature size for sparse recovery, m : number of dictionary columns
for sparse recovery, λ: sparsity parameter in sparse recovery, ϵ2: distance
threshold for outlier detection. 93

xix

Table 4.3. Evaluation of CLEANN on various physical and digital attacks. Com-
parisons with state-of-the-art prior works, i.e., Neural Cleanse(NC) [200],
Deep Inspect (DI) [27], Februus [36], and SentiNet [29] are provided where
applicable. 94

Table 5.1. Benchmarked DNNs for evaluating SWANN effectiveness. CONV lay-
ers are represented as ⟨kernel size⟩Conv and FC layers are denoted by
⟨output elements⟩FC. BN and ReLU are not shown for brevity. 114

Table 5.2. Graph characteristics of SWANN models. 115

Table 5.3. Point-wise comparison of convergence speed-up for a SWANN and its
equivalent baseline network (ConvNet-C) on CIFAR benchmarks. 117

Table 5.4. Comparison of the computational complexity and model parameter space
between a 40-layer DenseNet with k=12 and the corresponding SWANN. . 118

Table 5.5. Performance of baseline AlexNet and its SWANN on ImageNet dataset. . . 119

Table 5.6. Point-wise convergence comparison of ResNet-18 and its SWANN equiva-
lent on ImageNet dataset. 120

Table 5.7. Point-wise convergence comparison of the 5-layer baseline DNN and its
corresponding SWANN in the federated learning scenario. 122

Table 6.1. LTS training hyperparameters for different backbones. Here, DO represents
dropout. 135

Table 6.2. Ranking abilities of full and partial training versus our proxy for 1200
models sampled during LTS search. Training time is reported for WikiText-
103 and NVIDIA V100 GPU. Decoder parameter count proxy obtains an
SRC of 0.98 using zero compute. 147

Table 7.1. Accuracy and FLOPs of the final compressed model using various sampling
methods. Sample size is b = 50 and the sampling algorithm runs for 100
iterations on a VGG model trained on CIFAR-10. Athr is set to 70% and the
reported accuracy is before fine-tuning. 176

Table 7.2. Comparison with contemporary compression methods. 177

Table 7.3. Pruning of MobileNetV1&V2 on ImageNet. 180

Table 7.4. Speedup of AdaNS compressed MobileNets on embedded CPU and GPU
after applying structured pruning on ImageNet benchmark. 180

xx

Table 7.5. Search runtime of AdaNS-Gaussian for pruning on various benchmarks.
Here, b denotes the number of samples per iteration and Niters is the number
of search iterations. 181

xxi

ACKNOWLEDGEMENTS

First and foremost, I would like to express my heartfelt gratitude to my Ph.D. advi-

sor professor Farinaz Koushanfar, for her unwavering support, guidance, and encouragement

throughout my PhD journey. Her wealth of knowledge and expertise has been invaluable in

shaping my research and helping me grow as a scholar. This dissertation would not have been

possible without her dedicated mentorship and I am forever grateful for their contributions to my

academic and personal growth.

I would also like to extend my deepest gratitude to professor Tara Javidi, whose academic

insights have been an invaluable asset in navigating the complexities of my research. Additionally,

her kindness and help have been a source of comfort and support during my academic pursuits.

I am deeply grateful to Professor Truong Nguyen and Professor Rose Yu for serving on

my Ph.D. committee and for their constructive feedback on my dissertation. I would also like to

sincerely thank my mentors Dr. Debadeepta Dey, Dr. Subhabrata Mukherjee, and Dr. Sebastien

Bubeck at Microsoft Research and Nilesh Karia, Dr. Hadi Pouransari, and Dr. Oncel Tuzel at

Apple. Working with them was an excellent opportunity for me to grow as a researcher and

expand the impact of my work to ground-breaking industry applications.

I was fortunate to meet and work with outstanding researchers during the course of my

Ph.D. I want to thank Dr. Mohammad Samragh, Dr. Siam Hussain, Dr. Zahra Ghodsi, Dr. Bita

Rouhani, Dr. Sadegh Riazi, Dr. Huili Chen, Dr. Mohsen Imani, Shehzeen Hussain, Jung-woo

Chang, Ruisi Zhang, Xinqiao Zhang, and Nojan Sheybani.

I was extremely blessed to go through the bumpy roads of Ph.D. side by side with my

husband, Soroush. He was there to support me every step of the way, from proofreading my

papers to staying up with me on deadline nights and giving me motivational speeches whenever

I felt disappointed. Your faith in me gave me the strength and motivation to overcome all

challenges. I am so proud of how much we have learned, grown, and achieved together.

I am deeply indebted to my beloved parents, Mehrdad and Fariba, who always encouraged

me to strive for the best. Their continuous encouragement and sacrifices have been immeasurable,

xxii

and I will forever be grateful for everything they have done for me.

I also want to thank my furry family member, Blue, whose presence and companionship

provided a much-needed break from the rigors of academic work.

The material in this dissertation is based on several published papers as outlined below.

Chapter 2 is a partial reprint of the material as it appears in: M. Javaheripi, M. Samragh,

B. Rouhani, T. Javidi, and F. Koushanfar, “Curtail: Characterizing and Thwarting Adversarial

Deep Learning”, in IEEE Transactions on Dependable and Secure Computing (TDSC), 2020.

The dissertation author was the primary investigator and author of this paper.

Chapter 3 is a reprint of the material as it appears in: M. Javaheripi, J. Chang, and

F. Koushanfar, “AccHashtag: Accelerated Hashing for Detecting Fault-Injection Attacks on

Embedded Neural Networks”, in ACM Journal on Emerging Technologies in Computing Systems

(JETC), 2022. The dissertation author was the primary investigator and author of this paper.

Chapter 4 is a partial reprint of the material as it appears in: M. Javaheripi, M. Samragh,

G. Fields, T. Javidi, and F. Koushanfar, “CleaNN: Accelerated Trojan Shield for Embedded

Neural Networks”, in IEEE/ACM International Conference On Computer Aided Design (ICCAD),

2020. The dissertation author and Mohammad Samragh made equal contributions to this work.

Chapter 5 is a reprint of the material as it appears in: M. Javaheripi, B. Rouhani, and F.

Koushanfar, “SWANN: Small-World Architecture for Fast Convergence of Neural Networks”, in

IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021. The dissertation

author was the primary investigator and author of this paper.

Chapter 6, in part, was published as: M. Javaheripi, G. de Rosa, S. Mukherjee, S.

Shah, T. Religa, C. Mendes, S. Bubeck, F. Koushanfar, and D. Dey, “LiteTransformerSearch:

Training-free Neural Architecture Search for Efficient Language Models”, in Advances in Neural

Information Processing Systems (NeurIPS), 2022. The dissertation author was the primary

investigator and author of this paper.

Chapter 7 is, in part, a reprint of the material as it appears in two publications: (1) M.

Javaheripi, M. Samragh, T. Javidi, and F. Koushanfar, “AdaNS: Adaptive Non-uniform Sam-

xxiii

pling for Automated Design of Compact DNNs”, in IEEE Journal of Selected Topics in Signal

Processing (JSTSP), 2020, and (2) M. Javaheripi, M. Samragh, T. Javidi, and F. Koushanfar,

“GeneCAI: Genetic Evolution for Acquiring Compact AI”, in Genetic and Evolutionary Compu-

tation Conference, 2020. The dissertation author was the primary investigator and author of both

published papers.

This dissertation was supported, in parts, by the Qualcomm Innovation Fellowship

(QIF2019-US), NSF Grants CCF-1719133 and CCF-1513883, NSF-CNS award number 2016737,

NSF TILOS AI institute award number 2112665, ARO (W911NF1910317), SRC-Auto (2019-

AU-2899), the Intel PrivateAI Collaborative Research Institute, and industrial partners of UCSD

Center for Machine Integrated Computing and Security (MICS).

xxiv

VITA

2017 Bachelor of Science in Electrical Engineering, Sharif University of Technology

2020 Master of Science in Electrical Engineering (Computer Engineering), University
of California San Diego

2023 Doctor of Philosophy in Electrical Engineering (Computer Engineering), Univer-
sity of California San Diego

PUBLICATIONS

R Zhang, M. Javaheripi, Z. Ghodsi, A. Bleiweiss, and F. Koushanfar. “AdaGL: Adaptive
Learning for Agile Distributed Training of Gigantic GNNs.” In Design Automation Conference
(DAC), 2023.

J. Chang, M. Javaheripi, and F. Koushanfar. “VideoFlip: Adversarial Bit-Flips for Reducing
Video Service Quality.” In Design Automation Conference (DAC), 2023.

J. Chang, M. Javaheripi, S. Hidano, and F. Koushanfar. “RoVISQ: Reduction of Video Service
Quality via Adversarial Attacks on Deep Learning-based Video Compression.” In Network and
Distributed System Security (NDSS) Symposium, 2023.

M. Javaheripi, G. de Rosa, S. Mukherjee, S. Shah, T. Religa, C. Mendes, S. Bubeck, F. Koushan-
far, and D. Dey. “LiteTransformerSearch: Training-free Neural Architecture Search for Efficient
Language Models.” In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Z. Ghodsi∗, M. Javaheripi∗, N. Sheybani∗, X. Zhang∗, K. Huang, and F. Koushanfar. “zPROBE:
Zero Peek Robustness Checks for Federated Learning.” In NeurIPS Workshop on Trustworthy
and Socially Responsible Machine Learning, 2022. (∗equal contribution)

M. Javaheripi, J. Chang, and F. Koushanfar. “AccHashtag: Accelerated Hashing for Detecting
Fault-Injection Attacks on Embedded Neural Networks.” In ACM Journal on Emerging Tech-
nologies in Computing Systems (JETC), 2022.

M. Javaheripi, B. Rouhani, and F. Koushanfar. “SWANN: Small-World Architecture for Fast
Convergence of Neural Networks.” In IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 2021.

M. Javaheripi, M. Samragh, and F. Koushanfar. “AutoRank: Automated Rank Selection for
Effective Neural Network Customization.” In IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 2021.

xxv

S. Hussain∗, M. Javaheripi∗, M. Samragh∗, and F. Koushanfar. “COINN: Crypto/ML Codesign
for Oblivious Inference via Neural Networks.” In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2021. (∗equal contribution)

M. Javaheripi, and F. Koushanfar. “HASHTAG: Hash Signatures for Online Detection of
Fault-Injection Attacks on Deep Neural Networks.” In IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 2021.

M. Javaheripi, M. Samragh, B. Rouhani, T. Javidi, and F. Koushanfar. “Hardware/Algorithm
Codesign for Adversarially Robust Deep Learning.” In IEEE Design and Test, 2021.

G. Fields, M. Samragh, M. Javaheripi, F. Koushanfar, and T. Javidi. “Trojan Signatures in DNN
Weights.” In IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, 2021.

H. Pouransari, M. Javaheripi, V. Sharma, and O. Tuzel. “Extracurricular Learning: Knowledge
Transfer Beyond Empirical Distribution.” In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2021.

M. Javaheripi, M. Samragh, G. Fields, T. Javidi, and F. Koushanfar. “CleaNN: Accelerated
Trojan Shield for Embedded Neural Networks.” In IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 2020.

M. Samragh, M. Javaheripi, and F. Koushanfar. “Encodeep: Realizing Bit-flexible Encoding for
Deep Neural Networks.” In ACM Transactions on Embedded Computing Systems (TECS), 2020.

M. Javaheripi, M. Samragh, B. Rouhani, T. Javidi, and F. Koushanfar. “Curtail: Characterizing
and Thwarting Adversarial Deep Learning.” In IEEE Transactions on Dependable and Secure
Computing (TDSC), 2020.

M. Javaheripi, H. Chen, and F. Koushanfar. “Unified Architectural Support for Secure and
Robust Deep Learning.” In ACM/IEEE Design Automation Conference (DAC), 2020.

M. Javaheripi, M. Samragh, T. Javidi, and F. Koushanfar. “AdaNS: Adaptive Non-uniform
Sampling for Automated Design of Compact DNNs.” In IEEE Journal of Selected Topics in
Signal Processing (JSTSP), 2020.

M. Javaheripi, M. Samragh, T. Javidi, and F. Koushanfar. “GeneCAI: Genetic Evolution for
Acquiring Compact AI.” In Genetic and Evolutionary Computation Conference, 2020.

M. Javaheripi, M. Samragh, and F. Koushanfar. “Peeking into the black box: A tutorial on
Automated Design Optimization and Parameter Search.” In IEEE Solid-State Circuits Magazine,
2019.

S. Hussain, M. Javaheripi, P. Neekhara, R. Kastner, and F. Koushanfar. “Fastwave: Acceler-

xxvi

ating Autoregressive Convolutional Neural Networks on FPGA.” In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2019.

M. Riazi, M. Javaheripi, S. Hussain, and F. Koushanfar. “MPCircuits: Optimized Circuit Gen-
eration for Secure Multi-party Computation.” In IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), 2019.

M. Imani, S. Bosch, M. Javaheripi, B. Rouhani, X. Wu, F. Koushanfar, and T. Rosing. “Semihd:
Semi-supervised Learning Using Hyperdimensional Computing.” In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2019.

B. Rouhani, M. Samragh, M. Javaheripi, T. Javidi, and F. Koushanfar. “Assured Deep Learning:
Practical Defense Against Adversarial Attacks.” In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2018.

B. Rouhani, M. Samragh, M. Javaheripi,T. Javidi, and F. Koushanfar. “Deepfense: Online Ac-
celerated Defense Against Adversarial Deep Learning.” In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2018.

xxvii

ABSTRACT OF THE DISSERTATION

Holistic Algorithm and System Co-Optimization for Trustworthy
and Platform-Aware Deep Learning

by

Mojan Javaheripi

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California San Diego, 2023

Professor Farinaz Koushanfar, Chair

Simultaneous growth in the volume of available data along with rapid advancements in

computing and hardware technology have paved the way for unprecedented breakthroughs in

the field of Artificial Intelligence (AI). In particular, a modern class of AI algorithms, dubbed

Deep Learning (DL), has shown great promise by achieving or even surpassing human-level

capabilities in many tasks. The rise of DL has brought forth a new industrial revolution by

taking over the modern landscape of smart applications, e.g., self-driving cars, virtual assistants,

drug discovery, and manufacturing. Nevertheless, to date, there exist quite a few challenges for

wide-scale adoption of DL in real-life scenarios.

xxviii

Firstly, confidence characterization and ensuring robustness of DL-enabled services is

imperative, particularly in safety-critical autonomous systems. Secondly, concerns over the

scalability and efficiency of DL hinder its training and deployment on diverse hardware platforms.

This dissertation addresses the above-mentioned challenges via a holistic customization of DL

algorithm and system from the standpoint of task-based metrics (e.g., accuracy), physical

constraints (e.g., memory and power budget), as well as new design metrics that facilitate DL

integration in safety-sensitive tasks.

The presented research in this dissertation interlinks theoretical fundamentals, domain-

specific architecture design, and automated tools that enable co-optimization of the DL algorithm

with the underlying platform while satisfying various constraints. The key contributions of this

dissertation are as follows:

• Devising CuRTAIL, the first end-to-end and automated framework that simultaneously

enables efficient and safe execution of DL models in face of adversarial attacks. CuRTAIL

formalizes the goal of thwarting adversarial attacks as an optimization problem and trains

parallel defense modules to minimize vulnerability. The proposed framework leverages

hardware/algorithm co-design and customized acceleration to enable just-in-time execution

in resource-constrained settings.

• Designing a novel framework, dubbed ACCHASHTAG, which identifies any faults occurring

during DL inference in real-time. I propose to summarize the ground-truth DL model as a

unique hash signature, which is used to verify the model’s integrity on the fly. Notably,

ACCHASHTAG, for the first time, provides guaranteed lower bounds on the detection rate

using a formal statistical analysis of hash collision.

• Proposing CLEANN, the first end-to-end framework that enables online mitigation of

backdoor, a.k.a. Trojan, attacks on DL. CLEANN uses sparse recovery and statistical

analysis to identify incoming Trojan samples and remove their effect on the victim model’s

xxix

prediction. I design the algorithmic solutions as well as customized hardware-accelerated

engines to enable real-time DL model decision verification via CLEANN.

• Innovating an approach for restructuring inter-layer connections in DL models, leading to

faster convergence to a desired accuracy during training. This is achieved by transforming

the DL model into a small-world network using principles from graph theory. The obtained

DL model, dubbed SWANN, is a highly-connected, small-world topology with enhanced

signal propagation characteristics and faster learning speed.

• Developing LTS, the first training-free, hardware-aware neural architecture search for

autoregressive Transformers. The proposed method delivers high-performance specialized

architectures for inference on a target hardware. The core of LTS is an ultra-low-cost proxy

that can estimate the performance of candidate architectures without any need for training.

Using this novel proxy, the search can be performed entirely on the target hardware,

allowing us to incorporate hardware measurements, e.g., peak memory utilization and

latency, within the architecture search loop.

• Automating DL model customization for various target hardware by formulating it as a

constrained optimization. The optimization goal is to compress a large model to satisfy

given accuracy and hardware performance constraints. I propose a highly-scalable black-

box optimizer, dubbed AdaNS, to solve the aforesaid optimization problem. AdaNS

leverages adaptive non-uniform sampling with carefully crafted probabilistic distributions

to locate and reconstruct the optimization objective function around its maximizers.

xxx

Chapter 1

Introduction

Recent advances in Deep Learning (DL) have revolutionized modern applications by

automating decision-making and outsourcing tasks to computerized agents. This has opened

up new possibilities and opportunities in areas such as speech recognition, computer vision,

natural language processing (NLP), and autonomous systems. Figure 1.1 demonstrates a Venn

diagram of the critical design objectives for DL-enabled autonomous systems. Among these

objectives, high evaluation performance on task-specific metrics such as accuracy has gained

tremendous attention from the research community. Several research efforts aim to advance state-

of-the-art evaluation performance, thus increasing the opportunities for incorporating automated

DL-powered agents in various domains. Nevertheless, task-specific evaluation performance is

insufficient to fuel the wide-scale adoption of DL in real-life applications.

Concerns are rising over the robustness of DL-enabled services, e.g., self-driving vehicles,

particularly in applications that are tightly coupled with clients’ safety. Thus, scalable and

effective model-assurance techniques are required to ensure the integrity of autonomous systems.

Another critical design objective for DL is the scalability and physical performance on various

platforms. Addressing this objective is specifically challenging due to the increasing complexity

of DL algorithms and the excessive variations in the tasks where DL is deployed. As such,

devising automated DL customization techniques that can adapt to the existing diversity in the

underlying applications, hardware platforms, and pertinent data is of utmost importance.

1

My research provides end-to-end frameworks that customize DL models to simultane-

ously optimize robustness, hardware performance, and task evaluation metrics, e.g., accuracy.

Towards this goal, I develop automated tools that enable a holistic co-optimization of the DL

algorithm and underlying system in various domains. Such a holistic approach is particularly

beneficial as it integrates various necessary criteria for a ready-to-use intelligent system into the

design process. This chapter summarizes the research contributions made by the author.

Figure 1.1. Critical design objectives for autonomous DL-enabled systems. My research
provides holistic solutions that co-optimize DL algorithm and hardware, thus jointly satisfying
multiple design objectives, i.e., task evaluation metrics, robustness, and hardware performance.

1.1 Trustworthy and Robust Deep Learning

While DL models have demonstrated superior capabilities for automated representation

learning, a line of research has revealed their vulnerability to various attacks. These attacks

target various life cycles of DL, i.e., training and inference, and pose a critical safety threat to

DL; they can divert the behavior of the model, leading to incorrect decisions in sensitive tasks.

My research proposes novel defenses that protect DL models against various security threats.

Particularly, I propose end-to-end defense schemes that are developed using algorithm/hardware

co-design, as outlined below. The proposed defenses enable efficient real-time DL decision

verification for real-world applications.

2

1.1.1 Robustness to Runtime Attacks

The research in this dissertation provides defenses against two classes of runtime attacks

on DL models, namely, adversarial attacks and hardware-induced faults. Adversarial samples

are generated by adding carefully crafted perturbations to the input data at inference time. These

perturbations, often human-imperceptible, misguide the DL model to output the wrong prediction

at inference. Hardware-based fault-injection attacks take advantage of a vulnerability in the

underlying platform to alter the execution flow of DL models, e.g., by altering the weights. This

can cause the model to behave in unexpected ways and generate incorrect predictions.

Mitigating Adversarial Attacks. I propose CuRTAIL, the pioneering work in codesign

of algorithm and hardware for defense against adversarial attacks. The proposed defense relies

on the critical observation that benign and adversarial samples behave differently in the feature

space of Deep Neural Networks (DNNs). Building upon this insight, CuRTAIL trains a set of

Modular Robust Redundancies (MRRs) to learn the probability density functions (PDF) of the

legitimate samples in each hidden layer. The MRRs are leveraged to checkpoint the DNN during

inference and raise alarm flags for out-of-distribution adversarial data. CuRTAIL’s unsupervised

statistical modeling allows it to withstand new unseen adversarial attacks.

A key distinguishing feature of CuRTAIL compared to prior defenses is the specialized

hardware modules, devised to accelerate the MRRs and enable detection in real-time. CuRTAIL

is further accompanied by an automated tool that customizes the defense configuration to

maximize robustness at a user-defined latency constraint while adhering to the underlying

platform constraints on memory and compute resources. Specifically, CuRTAIL optimizes the

trade-off between robustness and performance by determining the best number of MRRs along

with the underlying design hyperparameters for their FPGA-based compute kernels. Extensive

evaluations on various hardware platforms corroborate the robustness and efficiency of CuRTAIL

against all attacks known to date including the most challenging attack scenario in the real world,

i.e., the white-box attack.

3

Mitigating Fault-injection Attacks. I propose ACCHASHTAG, a holistic framework for

high-accuracy detection of fault-injection attacks on DNNs with provable bounds on detection

performance. Recent literature on fault-injection attacks shows the severe DNN accuracy

degradation caused by bit flips. In this scenario, the attacker changes a few DNN weight bits

during execution by injecting faults into the dynamic random-access memory (DRAM). To detect

bit flips, ACCHASHTAG extracts a unique signature from the benign DNN prior to deployment.

At runtime, new hashes are extracted from the DNN and compared against the ground-truth

signatures to validate the model’s integrity and verify the inference output on the fly. Notably,

ACCHASHTAG, for the first time, provides guaranteed lower bounds on the detection rate using

formal statistical analysis of hash collision in addition to delivering 0% false positive rate.

ACCHASHTAG balances the inherent trade-off between detection accuracy and defense

overhead by minimizing the number of DNN layers used for hash extraction. Specifically, due

to the high cost of fault-injection attacks, attackers are incentivized to target vulnerable layers

to maximize the accuracy reduction with the minimum number of bit alterations. I propose a

novel sensitivity analysis that quantifies the vulnerability of DNN layers to bit-level faults. By

identifying and curating the hash generation to the most vulnerable layers, ACCHASHTAG enjoys

a high detection rate while minimizing defense overhead. The proposed hash-based signature

generation is easily adaptable to any given DNN topology and requires only lightweight bit-

level operations that can be accommodated on various platforms with negligible overhead. I

further devise a specialized compute core for ACCHASHTAG on field-programmable gate arrays

(FPGAs) to facilitate online hash generation in parallel to DNN execution. Extensive evaluations

using the state-of-the-art bit-flip attack on various DNNs demonstrate the competitive advantage

of ACCHASHTAG defense in terms of both attack detection and execution overhead.

1.1.2 Robustness to Training Time Attacks

Model poisoning via backdoors, a.k.a Trojans, is a training time attack that compromises

the integrity and reliability of DL models. In this scenario, the attacker appends a Trojan

4

trigger to a subset of the training dataset and re-labels them into their desired target class(es).

By training on the poisoned dataset, a backdoor is inserted into the model. This backdoor

can be maliciously activated during inference by adding the Trojan trigger to the input data,

thus making the model predict the attacker’s target class. To mitigate this threat, I propose

CLEANN, the first end-to-end accelerated framework for online detection of Neural Trojans

in resource-constrained embedded applications. The proposed lightweight Trojan defense is

devised based on algorithm/hardware co-design; the algorithmic insights offer a highly accurate

and low-overhead Trojan detection method; the accompanying specialized hardware accelerator

enables low-latency and energy-efficient defense execution on embedded hardware.

What differentiates CLEANN from the prior work is its lightweight methodology which

recovers the ground-truth class of Trojan samples without the need for labeled data, model

retraining, or prior assumptions on the trigger or the attack. The proposed unsupervised defense

leverages key concepts from sparse approximation [37] and dictionary learning to characterize

the statistical behavior of benign data and identify outliers, i.e., Trojan triggers. Proof of concept

evaluations against the state-of-the-art Neural Trojan attacks on visual benchmarks demonstrate

CLEANN’s competitive advantage in terms of attack resiliency and execution overhead.

1.2 Platform-aware Deep Learning on Massive Data

Modern AI algorithms and in particular, DNNs, comprise millions of parameters that

render both the training and execution phases quite costly in terms of time, energy, and required

hardware resources. Without addressing the aforementioned cost issue, DNNs remain nonviable

in many real-world applications. In the following, I elaborate on aspects of my research that

target efficient training and execution for DL models.

1.2.1 Efficient Training

A standing challenge for the ubiquitous adoption of machine intelligence in various tasks

is the excessively high cost of training accurate DL models. These models require a large number

5

of computationally intensive training iterations to reach a high convergence accuracy. While the

design of high-accuracy DNNs has received wide attention from the DL research community, a

less-studied question yet remains: can the pertinent model architecture be modified to enhance

training speed and convergence, while simultaneously achieving state-of-the-art accuracy? To

answer this question, I propose a novel transformation that changes the topology of the DNN

to reach an optimal cross-layer connectivity. This, in turn, significantly reduces the number of

training iterations required for reaching a target accuracy.

The proposed transformation leverages the important observation that for a set level of

accuracy, convergence is fastest when network topology reaches the boundary of a Small-World

Network. Small-world graphs are known to possess a specific connectivity structure that enables

enhanced signal propagation among nodes. The derived small-world DNNs, called SWANNs,

provide several intriguing benefits: they facilitate data (gradient) flow within the network,

enable feature-map reuse by adding long-range connections and accommodate various network

architectures and datasets. The devised method for transforming a DNN to SWANN is fully

automated, incurs negligible overhead, and does not affect the pertinent model’s final accuracy.

Compared to densely connected networks (e.g., DenseNets [77]), SWANNs require a substantially

fewer number of training parameters while maintaining a similar level of classification accuracy.

Proof-of-concept experiments on various architectures and image classification benchmarks

demonstrate an average of ≈ 2.1× improvement in the convergence speed of SWANNs to a

desired accuracy, compared to the original DNNs.

1.2.2 Resource-Customized Inference

With the emerging swarm of intelligent applications, the number of possible variations

of data, application, and platform has grown exponentially. As a result of this continuous growth,

a one-size-fits-all solution for DL architectures fails to address the performance needs that are

specific to each usage scenario. In particular, the capability to locally learn and infer data is

undoubtedly critical. To make this possible, my research enables the optimized execution of

6

DNNs on various platforms. I have approached the problem from two different angles, namely,

Neural Architecture Search and post-training model customization as detailed below. The former

approach designs DL architectures, from scratch, that are particularly optimized for inference on

target hardware. The latter approach customizes existing, pre-trained, models to enhance their

performance on the underlying platform.

Neural Architecture Search. In the contemporary big data realm, DNNs are evolving

towards more complex architectures to achieve higher inference accuracy, particularly in the NLP

domain. The Transformer architecture is ubiquitously used as the building block of large-scale

autoregressive language models. However, finding architectures with the optimal trade-off

between task performance (perplexity) and hardware constraints like peak memory utilization

and latency is non-trivial. This is exacerbated by the proliferation of various hardware. I

leverage the somewhat surprising empirical observation that the number of decoder parameters

in autoregressive Transformers has a high rank correlation with task performance, irrespective of

the architecture topology. This observation organically induces a simple Neural Architecture

Search (NAS) algorithm that uses decoder parameters as a proxy for perplexity without need for

any model training.

The search phase of my training-free algorithm, dubbed Lightweight Transformer Search

(LTS), can be run directly on target devices since it does not require GPUs. Using on-target-device

measurements, LTS extracts the Pareto-frontier of perplexity versus any hardware performance

cost. LTS is evaluated on diverse devices from ARM CPUs to NVIDIA GPUs and two popular

autoregressive Transformer backbones: GPT-2 and Transformer-XL. Results show that the

perplexity of 16-layer GPT-2 and Transformer-XL can be achieved with up to 1.5×, 2.5× faster

runtime and 1.2×, 2.0× lower peak memory utilization. When evaluated in zero and one-shot

settings, LTS Pareto-frontier models achieve higher average accuracy compared to the 350M

parameter OPT across 14 tasks, with up to 1.6× lower latency. Notably, LTS extracts the Pareto-

frontier in under 3 hours while running on a commodity laptop. My proposed method effectively

removes the carbon footprint of hundreds of GPU hours of training during search, offering a

7

strong simple baseline for future NAS methods in autoregressive language modeling.

Post-training Model Customization. Various compression techniques can be leveraged

to efficiently deploy pre-trained, compute-intensive DNNs on resource-limited devices. Such

methods comprise various hyperparameters that require per-layer customization to ensure high

accuracy. Choosing the hyperparameters is cumbersome as the pertinent search space grows

exponentially with model layers. I propose AdaNS, a novel optimization algorithm that automati-

cally learns how to tune per-layer compression hyperparameters. The optimization objective is to

locate an optimal hyperparameter configuration that leads to the lowest model complexity while

satisfying a desired constraint on inference accuracy. I design a score function that evaluates the

aforementioned optimality. The optimization problem is then formulated as searching for the

maximizers of this score function.

I devise a non-uniform adaptive sampler that aims at reconstructing the band-limited

score function, particularly around its maximizers. The total number of required objective

function evaluations is reduced by realizing three targeted, adaptive sampling methodologies, i.e.,

AdaNS-Zoom, AdaNS-Genetic, and AdaNS-Gaussian, where new batches of samples are chosen

based on the history of previous evaluations. AdaNS starts sampling from a uniform distribution

over the entire search-space and iteratively adapts the sampling distribution to achieve the highest

density around the function maxima. This, in turn, allows for a low-error reconstruction of the

objective function around its maximizers. Extensive evaluations corroborate AdaNS effectiveness

by outperforming existing rule-based and Reinforcement Learning methods in terms of DNN

compression rate and/or inference accuracy.

1.3 Acknowledgements

This chapter is, in part, a reprint of the published material in 1) M. Javaheripi, M.

Samragh, B. Rouhani, T. Javidi, and F. Koushanfar, “Curtail: Characterizing and Thwarting

Adversarial Deep Learning”, in IEEE Transactions on Dependable and Secure Computing

8

(TDSC), 2020, 2) M. Javaheripi, J. Chang, and F. Koushanfar, “AccHashtag: Accelerated

Hashing for Detecting Fault-Injection Attacks on Embedded Neural Networks”, in ACM Journal

on Emerging Technologies in Computing Systems (JETC), 2022, 3) M. Javaheripi, M. Samragh, G.

Fields, T. Javidi, and F. Koushanfar, “CleaNN: Accelerated Trojan Shield for Embedded Neural

Networks”, in IEEE/ACM International Conference On Computer Aided Design (ICCAD), 2020,

4) M. Javaheripi, B. Rouhani, and F. Koushanfar, “SWANN: Small-World Architecture for Fast

Convergence of Neural Networks”, in IEEE Journal on Emerging and Selected Topics in Circuits

and Systems, 2021, 5) M. Javaheripi, G. de Rosa, S. Mukherjee, S. Shah, T. Religa, C. Mendes, S.

Bubeck, F. Koushanfar, and D. Dey, “LiteTransformerSearch: Training-free Neural Architecture

Search for Efficient Language Models”, in Advances in Neural Information Processing Systems

(NeurIPS), 2022, and 6) AdaNS: Adaptive Non-uniform Sampling for Automated Design of

Compact DNNs”, in IEEE Journal of Selected Topics in Signal Processing (JSTSP), 2020, and

7) M. Javaheripi, M. Samragh, T. Javidi, and F. Koushanfar, “GeneCAI: Genetic Evolution for

Acquiring Compact AI”, in Genetic and Evolutionary Computation Conference, 2020. The

dissertation author was the (co)primary investigator and author of these papers.

9

Chapter 2

Ensuring DL Robustness to Adversarial
Attacks

Security and safety consideration is a major obstacle to the wide-scale adoption of

emerging learning algorithms in sensitive scenarios, such as intelligent transportation, healthcare,

and video surveillance applications [31, 131]. While advanced learning techniques are essential

for enabling coordination between autonomous agents and the environment, a careful analysis of

their vulnerabilities and their reliability in face of adversarial attacks is still in its infancy.

Adversarial samples [22, 142, 148] are carefully crafted input instances which lead

machine learning algorithms into misclassifying while the input changes are imperceptible to the

human eye. For instance, in the case of traffic sign classifiers employed in self-driving cars, an

adversary can add a specific imperceptible perturbation to a legitimate “stop” sign sample and

fool the DL model to classify it as a “yield” sign, thus, jeopardizing the safety of the vehicle as

shown in [131]. Thereby, it is highly important to identify and reject risky samples to ensure the

integrity of DL models used in autonomous systems such as unmanned vehicles/drones.

This work provides an end-to-end solution (called CuRTAIL) to characterize and thwart

adversarial attacks for DL models in an online manner. Our proposed solution addresses three

main challenges regarding the adversarial attacks in the context of deep learning.

(i) Understanding the root cause of DL vulnerabilities to adversarial samples. Our hypothesis

is that the vulnerability of Deep Neural Networks (DNNs) to adversarial samples originates

10

from the existence of rarely explored sub-spaces in each feature map. This phenomenon is

particularly caused by the limited access to labeled data and/or inefficiency of regularization

algorithms [34, 199]. Figure 2.1 provides a simple illustration of the partially explored space in a

two-dimensional setup. We provide statistical analysis and empirically back up our hypothesis

by extensive evaluations on various DL benchmarks and attacks.

Figure 2.1. (a) Data points (green and blue squares) can be easily separated in one-dimensional
space. Extra dimensions add ambiguity in choosing the decision boundaries: all shown bound-
aries (dashed lines) result in the same classification accuracy but are not equally robust to noise.
(b) The rarely explored space leaves room for adversaries to manipulate the non-critical dimen-
sions (Z2 in this figure) and mislead the model by crossing the decision boundaries.

(ii) Characterizing and thwarting the adversarial subspace for model assurance. A line

of research has shown that there is a trade-off between the robustness of a model and its

accuracy [129, 149]. Taking this into account, instead of making a single model that is both

robust and accurate, we introduce a new defense mechanism called Modular Robust Redundancy

(MRR). In MRR methodology, the victim model is kept as is while separate defender modules

are trained to checkpoint the hidden features and assess the reliability of the victim’s prediction.

Each defender module characterizes the explored sub-space in the pertinent layer by learning

the probability density function (PDF) of legitimate data points and marking the complement

sub-spaces as rarely observed regions. Once such characterization is obtained, MRRs evaluate

the input sample in parallel with the victim model and raise alarm flags for data points that lie

within the rarely explored regions.

(iii) Just-in-time online defense against adversarial attacks. We propose CuRTAIL, the first

11

end-to-end hardware-accelerated framework that enables robust and just-in-time defense against

adversarial attacks on DNNs. CuRTAIL is devised based on algorithm/hardware co-design to

enable safe DL execution while customizing system performance in terms of latency, energy

consumption, and/or memory footprint based on the available resource. CuRTAIL leverages

field-programmable gate arrays (FPGAs) to provide fine-grained parallelism and just-in-time

response by our defender modules. The customized data path for memory access on FPGA

improves the system energy efficiency.

We study various state-of-the-art attack algorithms and threat models and validate the

robustness of our proposed approach for different DL benchmarks including MNIST, SVHN,

CIFAR, and a subset of ImageNet data. The explicit contributions of this work are as follows:

• Proposing CuRTAIL, the first algorithm/hardware co-design enabling online defense against

adversarial samples for DL models. Our methodology is unsupervised and robust against the

most challenging attack scenario to date.

• Introducing Modular Robust Redundancy as a viable countermeasure for adversarial attacks

on DL. CuRTAIL uses dictionary learning and probability density functions to statistically

detect abnormalities in the input data.

• Providing quantitative metrics to characterize the sensitivity of DL layers from a statistical

point of view. Based on the result of our analysis, we provide new insights on the reason

behind the existence of adversarial transferability.

• Implementing the first streaming-based DL defense using FPGAs. We design an automated cus-

tomization tool to adaptively maximize model robustness against adversaries while complying

with the underlying hardware resource constraints, i.e., runtime, energy, and memory.

• Performing extensive evaluations in both black-box and adaptive white-box settings against

various attack methodologies including Fast-Gradient-Sign [56], Jacobian Saliency Map

attack [148], Deepfool [142], Basic Iterative Method [104], and Carlini&WagnerL2 [21, 22].

12

Thorough performance comparison on various hardware platforms including CPUs, GPUs,

and FPGAs corroborates CuRTAIL’s algorithmic practicality and system efficiency.

2.1 Background and Preliminaries

Adversarial machine learning can be cast as a zero-sum Stackelberg game between the

machine learning oracle (victim) and the attacker. Let us denote a DL model by f(x, θ), where

x and θ represent the input and model parameters, respectively. In an adversarial setting, the

attacker aims to find a perturbed adversarial sample (xa) such that it incurs minimal distance

from the source sample (xs) while its corresponding output is sufficiently different to mislead

the victim. Figure 2.2 illustrates an example, where the image on the left is initially classified

correctly as a dog by the victim model while adding a small amount of perturbation to the

original image has misled the victim to infer it as a black swan (right image). Clearly, if the

source instance is already misclassified by the victim model (f(xs, θ) ̸= y∗), the adversarial

problem becomes trivial. Therefore, we particularly focus on instances xs that could have been

classified correctly by the oracle before adding structured adversarial noises (f(xs, θ) = y∗).

Figure 2.2. An example of (a) input data, and (b) its corresponding adversarial sample. The
added noise is imperceptible but can cause the victim model to misclassify.

Several attack mechanisms have been proposed in the literature to craft adversarial

samples. We evaluate CuRTAIL performance against a variety of attacks to empirically confirm

the generalizability of out unsupervised MRR methodology across a wide range of attacks. In

particular, we have evaluated CuRTAIL against (i) Fast Gradient Sign (FGS) [56], (ii) Jacobian

Saliency Map Attack (JSMA) [148], (iii) Deepfool [142], (iv) Basic Iterative Method (BIM) [104],

13

and (v) Carlini&WagnerL2 adaptive attacks [21, 22] . In the following, we provide a brief

explanation of the evaluated attack algorithms.

Fast-Gradient-Sign. FGS attack [56] crafts an adversarial sample as x′ = x + ϵ · Sign(∂C
∂x
),

where C is the cost function of the neural network, and Sign(·) outputs the sign of its operand.

The attack is parameterized by ϵ, which determines the amount of additive perturbation.

Basic Iterative Method. BIM [104] is an iterative version of FGS characterized by the number

of iterative updates, niters, and the per-iteration perturbation coefficient, ϵ.

Deepfool. This algorithm iteratively modifies the input image based on a specific update rule to

obtain an adversarial sample [142]. In each iteration, the perturbation vector ∂C
∂x

is normalized

and added to the sample. Deepfool is parameterized by the number of iterative updates niters.

Carlini&WagnerL21. This attack is formalized as a minimization problem where the objective

is the L2 norm of the perturbation vector. The adversary performs an iterative method for solving

this minimization objective. The detailed set of parameters for the attack is provided in [22].

Depending on the attacker’s knowledge, three different attack models are feasible:

• White-box attacks. The attacker knows everything about the victim model including the

learning algorithm, model topology and parameters, as well as the defense mechanism, the

corresponding defender parameters.

• Gray-box attacks. The attacker knows the learning algorithm, model topology, and defense

mechanism and has no access to the model/defender parameters.

• Black-box attacks. The attacker does not know anything about the pertinent machine learning

algorithm, ML model, or defense mechanism. This attacker can merely obtain the outputs of

the victim ML model by providing input samples. In this setting, the adversary can perform a

differential attack by observing the output changes with respect to input variations.

For a complete taxonomy of adversarial capabilities and goals refer to [11, 80, 148].

1For brevity we denote this attack as CarliniL2 in the remainder of the text.

14

2.2 Related Work

The threat of adversarial samples to the integrity of autonomous systems have been shown

in the literature for both shallow and deep models [7,13,14,47,56,80,148,184]. Related work ties

the existence of adversarial samples to several factors, including high feature dimensionality [56],

bias to texture [53], and inherent brittle features [85]. DL models trained on ImageNet are

shown to have bias towards texture rather than object shapes, resulting in low robustness against

distortions [53]. This can be tied directly with CuRTAIL hypothesis in the existence of rarely

explored regions in trained models. To address this, authors of [53] propose augmenting

the training data with strong textual cues, thus forcing the model to focus on shapes rather

than textures. Such augmentations effectively reduce the rarely explored regions and increase

robustness. Authors of [85] show that seemingly unrelated features, generally imperceptible

to humans, can inherently exist in visual datasets. Surprisingly, such brittle features contribute

significantly to the underlying model’s generalization capability during training. Authors also

connect adversarial samples to these brittle features. Building upon this connection, CuRTAIL

input defenders aim at identifying such redundant feature at test time.

In response to the various adversarial attacks proposed in the literature [22, 56, 142, 148],

several research attempts have been made to design DL strategies that are more robust in the

face of adversarial examples. Existing countermeasures can be classified into two categories:

(i) Supervised strategies which incorporate noisy inputs as training samples [57,95] and/or inject

adversarial examples into the training phase [56, 81, 171, 184]. Such defenses are tailored for

specific perturbation patterns and can only partially evade adversarial samples generated by other

attack scenarios [57].

(ii) Unsupervised approaches which aim to smoothen the underlying gradient space (decision

boundaries) by incorporating a regularization term in the loss function [22, 139] or compressing

the neural network [149]. These works are mainly oblivious to the pertinent data density as

they implicitly assume that adversarial samples originate from the piece-wise linear behavior

15

of decision boundaries. As such, their integrity can be jeopardized by crafting data points

with specific perturbations that pass the smoothened decision boundaries [19]. [135] proposes

manifold projection via auto-encoders to reform adversarial samples, which can be evaded by

adaptive gray-box attacks as shown in [21].

The above works generally aim at correcting the decision of the victim network in face

of adversaries. Alternatively, a line of research (including CuRTAIL) focuses on detection of

adversarial samples without decision correction. They speculate that adversarial samples are

not drawn from the same distribution as legitimate data. [128] proposes using Local Intrinsic

Dimensionality (LID) to characterize properties of adversarial examples. However, LID is

not able to detect high confidence adversarial examples [20]. [108] measures the uncertainty

in the victim model’s predictions using Mahalanobis distance-based scores. [160] attempts

to detect adversaries by measuring the changes in the victim model’s logits as the input is

randomly perturbed. Nevertheless, all aforementioned methods study the statistics of the victim

model’s features which cannot optimally identify the rarely explored regions. This is because the

victim model’s main task and objective is accurate classification of explored regions. CuRTAIL

alternatively focuses on altering the training objective of the MRRs to enable high-margin robust

classification, which is later used for PDF estimation.

CuRTAIL unsupervised defense does not assume any particular attack strategy and/or

perturbation pattern and is capable of withstanding all the existing attacks to date. Note that

we target detection of adversarial samples without decision correction. As such, a stand-alone

application of CuRTAIL remains vulnerable to denial of service attacks.

2.3 Statistical Analysis of Adversarial Samples

Let us denote the output of the ith layer of a DL model given an input sample x by fi(x).

One can construct a probabilistic density function PX(fi(x)) for each layer where X is a random

variable drawn from the model input space. Our conjecture is that adversarial samples cannot lie

in high-probability regions of the PDF function PX(.), which is learned using the samples drawn

16

from legitimate training data. More formally, the expected value of the probability corresponding

to legitimate samples is higher than that of adversarial samples:

E(PX(fi(x
s))) >> E(PX(fi(x

a))) (2.1)

where E(·) is the expectation and xs and xa are safe and adversarial input samples, respectively.

This difference between the expected values of the probability distribution can be lever-

aged to characterize and thwart adversarial attacks. To do so, CuRTAIL approximates the PDF of

each layer by training a set of defender modules, as will be explained in Section 2.4. Figure 2.3

empirically validates the criterion outlined in Equation (2.1). In this example, the PDF of benign

samples in the second-to-last layer (PX(fN−1(x)), where N is the number of model layers) of

the LeNet model is obtained by passing through legitimate MNIST data points and acquiring

the corresponding activations. Once the PDF is learned, we generate adversarial samples xa

and compute PX(fN−1(x
a)). Figure 2.3 depicts the probabilistic histogram of legitimate and

adversarial samples based on the learned PDF. As shown, the expected value of legitimate

samples is orders of magnitude greater than that of adversarial samples.

Figure 2.3. Histogram of the estimated PDF for adversarial (red) and legitimate (blue) samples.
Adversarial samples are generated using Deepfool for Lenet architecture. The PDF is learned in
the second-to-last layer of the network.

2.4 CuRTAIL Methodology

Figure 2.4 demonstrates the high-level block diagram of MRR methodology. In our

proposed countermeasure, a number of modular redundancies (checkpoints) are trained to

17

characterize the data density distribution in the space spanned by the victim model. The defender

modules are then used in parallel to checkpoint the reliability of the ultimate prediction and raise

an alarm flag for risky samples. We refer to MRR modules that checkpoint the intermediate DL

layers as “latent defenders”. Whereas, the redundancy modules operating on the input space are

referred to as the “input defenders”. We use the term checkpoints and modular redundancies

interchangeably throughout the text.

Figure 2.4. High-level block diagram of MRR methodology. Multiple defenders checkpoint
the input and intermediate features in parallel. The output of the victim DNN (green neurons) is
augmented with a confidence measure (red neuron) determining the prediction legitimacy.

2.4.1 Latent Defenders

The goal of each intermediate defender (checkpointing) module is to learn the PDF of

the explored sub-spaces in a particular DL feature map. The learned density function is then

used to identify the rarely observed regions. The latent defenders in CuRTAIL are DNNs with an

identical topology to the victim model. The MRRs, however, are finetuned with a specific loss

that condenses the latent features within each class, while enforcing separability between features

of different classes. By enforcing such separability, the feature space can be well-modeled as a

Gaussian mixture model (GMM)2 representing benign data in different classes. Benign samples

can then be effectively identified by measuring the distance to their corresponding class center.

Figure 2.5 shows the steps required to train the latent defenders in CuRTAIL. To train a

single latent defender that checkpoints the nth layer of the victim DNN, we first copy the victim
2If needed, the GMM distribution can be replaced with other probabilistic priors to better accommodate the

data geometry in new applications.

18

Figure 2.5. Block diagram of the training procedure for devising parallel redundancy modules.
Each latent defender is built by minimizing the entanglement of intermediate data features in a
Euclidean space at a particular checkpoint location. This goal is achieved through several rounds
of iterative realignment of data abstractions. The latent data space is then characterized as an
ensemble of lower dimensional sub-spaces to effectively learn the PDF of explored regions and
detect atypical samples based on a user-defined security parameter.

model, including all parameters. We then fine-tune the replicated neural network to disentangle

data features at the checkpoint location by adding the following loss, weighted by parameter γ,

to the conventional cross entropy loss:

γ [∥Cy∗ − f(x)∥2︸ ︷︷ ︸
loss1

− Σi ̸=y∗∥Ci − f(x)∥2︸ ︷︷ ︸
loss2

+ Σi(∥Ci∥ − 1)2︸ ︷︷ ︸
loss3

] (2.2)

where f(x) is the L2 normalized feature vector of input sample x at the checkpoint location, i.e.,

∥f(x)∥2 = 1. Here, Ci is the center value for all benign normalized feature vectors f(x) from

class i and y∗ is the ground-truth label for sample x. Both the center values Ci and intermediate

feature vectors f(x) are learned by fine-tuning the defender neural network.

Figure 2.6 illustrates the optimization goal of each defender module per Equation (2.2).

The first term (loss1) in Equation (2.2) condenses feature vectors that belong to the same class, to

achieve a high concentration Gaussian distribution per class. The second term (loss2) increases

the intra-class distance between different centers, thus reducing the overlap between neighboring

class distributions. Minimizing only the first two terms in Equation (2.2) can lead to all centers

Ci being pushed to±∞. Therefore, we add the third loss term loss3 to ensure that the centers lie

on a unit d-dimensional hyper-sphere and avoid divergence when training the latent defenders.

19

Figure 2.6. Defender module optimization objective.

Figures 2.7a and 2.7b demonstrate the distance of legitimate (blue) and adversarial (red)

samples from the corresponding centers Ci in a checkpoint module before and after retraining.

The centers Ci before fine-tuning the checkpoint (defender) module are equivalent to the mean

of the data points in each class. As shown, fine-tuning the defender module with proposed

objective function can effectively separate the distribution of legitimate samples from malicious

data points. Note that training the latent defender modules is carried out in an unsupervised

setting, meaning that no adversarial sample is included in the training phase.

Figure 2.7. (a) Distance of legitimate (blue) and adversarial (red) samples from the corresponding
centers Ci before, and (b) after realignment of data samples. In this example, we consider the
LeNet model [106] trained on MNIST. The checkpoint is inserted in the second-to-last layer and
adversarial samples are generated by FGS attack.

High dimensional real-world datasets can be represented as an ensemble of lower dimen-

sional sub-spaces [17, 161]. As discussed in [17], under a GMM distribution assumption, data

points belonging to each class can be characterized as a spherical density in two sub-spaces: (i)

The sub-space where the data actually lives and (ii) its orthogonal complementary space. We

use High Dimensional Discriminant Analysis (HDDA) [17] to learn the mean and conditional

covariance of each class as a composition of lower dimensional sub-spaces.

20

The learned PDF variables (i.e., mean and conditional covariance) are used to compute

the probability of a feature point f(x) coming from a specific class. In particular, for each

incoming test sample x, the probability p(f(x)|yi) is evaluated where yi is the predicted class

(output of the victim neural network) and f(x) is the corresponding data abstraction at the

checkpoint location. The acquired likelihood is then compared against a user-defined cut-off

threshold which we refer to as the security parameter. The Security Parameter (SP) is a constant

number in the range of [0% − 100%] that determines the hardness of the defender decision

boundaries as shown in Figure 2.8. In this example, we have depicted the latent features of one

category that are projected into the first two Principal Component Analysis (PCA) components

in the Euclidean space (each point corresponds to a single input image). The blue and black

contours correspond to security parameters of 10% and 20%, respectively. For example, 10% of

the legitimate training samples lie outside the contour specified with SP = 10%.

Figure 2.8. Illustration of the effect of security parameter on the detection policy. A high SP
leads to a tight boundary which treats most samples as adversarial examples.

Training Multiple Latent Defenders. In what follows, we explain our methodology for creating

multiple defender modules that are negatively correlated. Specifically, two MRRs are negatively

correlated if deceiving one of them raises a high suspicion in the other one and vice versa.

Consider the ith MRR that maps a legitimate input x to feature vector fi(x), where fi(x) is close

(in terms of Euclidean distance) to the ground-truth cluster center Cy∗

i . An adversary trying to

mislead this defender would generate a perturbed input x+ η such that fi(x+ η) is far from Cy∗

i .

Negative correlation means that for the subsequent MRR with feature vector fi+1(·), adding

perturbation η will bring fi+1(x+ η) closer to its ground-truth cluster center Cy∗

i+1. Figure 2.9

21

shows this effect where the colored cloud represents data points in each MRR’s latent feature

map and the decision boundary specified by the security parameter (SP) is shown with the oval.

Figure 2.9. Enforcing negative correlation between MRRs.

To mitigate such adaptive attacks, we propose to train a Markov chain of detector modules

as illustrated in Figure 2.10. To build this chain of MRRs, we first train a single defender module

as explained earlier in this section. We then generate a new set of training data from adversarial

samples x + η of the previous defender module. The perturbation η is chosen as η = ∂L1
∂x

,

where L1 is the loss1 term in Equation (2.2) corresponding to the nth defender. Given these new

perturbed samples, data points that deviate from the centers in the nth defender will be close to

the corresponding center in the (n+ 1)th defender. As such, deceiving all the defenders requires

a larger perturbation.

Figure 2.10. Training multiple negatively correlated defenders at each checkpoint layer.

An active adversary can find a structured noise that moves the data point from one cluster

to the center of the other clusters; thus fooling the defender modules (Figure 2.11a). The risk of

such an attack approach is significantly reduced in our proposed MRR countermeasure due to

three main reasons: (i) Increasing intra-class distances in each checkpointing module; The latent

defender modules are trained such that not only the inner-class diversity is decreased, but also

the distance between each pair of different classes is increased (see Equation (2.2)). (ii) Use of

parallel checkpointing modules as explained above; the attacker has to simultaneously deceive

22

(a) (b)

Figure 2.11. An input defender module is devised based on robust dictionary learning techniques
to automatically filter out test samples that highly deviate from the typical PSNR of data points
within the corresponding predicted class.

all the defender models in order to succeed. (iii) Learning a separate defender module in the

input space to validate the Peak Signal-to-Noise Ratio (PSNR) level of the incoming samples as

will be discussed in the next section.

2.4.2 Input Defender

We leverage dictionary learning and sparse signal recovery techniques to measure the

PSNR of each incoming sample and automatically filter out atypical samples in the input space.

Figure 2.11b illustrates the block diagram of an input defender module. An input checkpoint is

configured in two main steps: (i) dictionary learning, and (ii) characterizing the typical PSNR

per class after sparse recovery.

During the dictionary learning step, we solve the following optimization objective to learn

a dictionary matrix Di and the corresponding sparse matrix Vi such that DiV i best reconstructs

the benign data in class i, i.e., with minimum L2 error:

argmin
Di,V i

1

2
∥Zi −DiV i∥2 + β∥V i∥1 s.t. ∥Di[:, k]∥ = 1, 0 ≤ k ≤ Kmax (2.3)

Here Kmax is the number of dictionary columns and Zi is a matrix whose columns are constructed

by flattening patches of the benign input images. For example, considering 8×8 patches of pixels,

Zi would have columns of length 64 elements. The Lasso problem defined in Equation (2.3) is

23

solved using Least Angle Regression (LAR) method [39].

Once the per-class dictionaries are learned, they can be used to reconstruct incoming input

samples. Specifically, for a new input sample x with predicted class i, we leverage Orthogonal

Matching Pursuit (OMP) [193] to obtain the sparse matrix V using the dictionary Di and x as

outlined in Algorithm 1. As shown, Performing OMP requires iterative execution of three main

steps: (i) finding the best matching sample in the dictionary matrix D (Line 4 of Algorithm 1),

(ii) least-square (LS) optimization (Line 6 of Algorithm 1), and (iii) residual update (Line 7 of

Algorithm 1). In the provided pseudo code Dcol represents the colth column of the dictionary

matrix D, and Λi is the subset of dictionary columns that have been chosen so far in the routine.

OMP algorithm terminates when the number of non-zero elements in the output coefficient

vector (V) is more than the user-specified sparsity level k.

A benign sample belonging to class i should be well-reconstructed as DiV with a high

PSNR value, where V is the optimal solution obtained by OMP and PSNR is defined as:

PSNR = 20× log10(MAXI)− 10× log10(MSE) (2.4)

where MSE is the L2 difference between the input and reconstructed image using the dictionary,

i.e., ∥rk∥ in Algorithm 1. Here, MAXI is the maximum possible pixel value of the image (e.g.,

255). We obtain a suitable threshold on the PSNR such that it satisfies the user-defined security

parameter for benign data. Incoming samples with a lower PSNR than the derived threshold are

marked as adversarial.

Figure 2.12 shows the effect of adversarial perturbation level ϵ on CuRTAIL detection

rate for different values of the security parameter. In this experiment, we have considered the

FGS attack on LeNet model trained on MNIST dataset. Table 2.2 summarizes the DL model

topology used in each benchmark. The latent defender module (checkpoint) is inserted at the

second-to-last layers. As shown, the dictionaries learned by the input defender allow us to

detect high-perturbation adversarial samples (e.g., ϵ > 0.25) while the latent defender effectively

24

Algorithm 1. OMP algorithm

Inputs: Dictionary D, input sample x, maximum sparsity level k.
Output: Coefficient vector V .

1: r0 ← x
2: Λ0 ← ∅ ▷ empty dictionary subset
3: for i = 1, . . . , k do
4: j = argmaxcol| < ri−1, Dcol > |
5: Λi ← Λi−1 ∪D[:,j] ▷ update dictionary subset
6: V ← argmin ∥ri−1 − Λi · V ∥2 ▷ obtain sparse representation
7: ri ← ri−1 − Λi · V ▷ update residual error
8: return V

distinguishes malicious samples with very small perturbations. We extensively evaluate the

impact of the security parameter on system performance for various benchmarks in Section 2.6.

Figure 2.12. Adversarial detection rate of input and latent defenders as a function of the
perturbation level for various SP . Here, FGS is used to generate adversarial samples and the
perturbation is adjusted by changing attack parameter ϵ.

2.4.3 Model Fusion

Figure 2.13 depicts the configuration of the defender modules in the execution phase.

The kth defender outputs a binary decision dk ∈ {0, 1} per input sample where dk = 1 denotes

an adversarial sample. The probability of the sample being categorized as adversarial in the final

25

aggregated decision is thus:

P (a = 1|{d1, d2, . . . , dn}) = 1−
N∏

n=1

(1− Pn)
dn ,

Pk = P (a = 1|dk = 1)

(2.5)

In this formulation, each MRR is parameterized by Pk which shows the probability that it can

correctly categorize a sample as adversarial. We estimate Pk by evaluating the performance of

each defender module on synthetic adversarial samples generated from a subset of the benign

training data. In particular, for each legitimate sample x, we generate xa = x+ϵ ·∇x(L) where L

is the victim model’s cross-entropy loss. By using this generic form of adversary, we ensure that

the calculated Pk is attack-agnostic and works well with different adversaries. The probability

Pk is estimated as:

Pk =
STrue

SFalse + STrue

(2.6)

where STrue is the number of adversarial samples that are correctly detected by defender k and

SFalse denotes the number of legitimate samples that were mistaken for adversaries. In our

experiments, we raise alarm flags for samples with P (a = 1|{d1, d2, . . . , dn}) ≥ 0.5.

Figure 2.13. CuRTAIL uses a score-based statistical method to aggregate MRR decisions.

26

2.4.4 Sensitivity Analysis

The effectiveness of adversarial perturbations on DL classification can be quantified by

their induced variations on intermediate activations. To study this effect, we extract the cluster

centers corresponding to each hidden layer using a subset of (benign) training data. Let Xy∗

denote samples with label y∗. The corresponding cluster center Cy∗

l at layer l is calculated as:

Cy∗

l = Ex∼Xy∗ [Pl · fl(x)] (2.7)

where fl(x) is the layer activations. To reduce dimensionality, we perform PCA (Pl operator in

Equation (2.7)) on the activation vectors such that more than 99% of the energy is preserved.

The perturbation signal in adversarial samples can be modeled as an additive noise to the

input data. At each intermediate layer l, the added perturbation increases the distance between

the activation vectors and their ground-truth cluster centers. Given the pre-computed center Cy∗

l

and PCA matrix Pl, the distance is measured as:

gl(x) = ∥Pl · fl(x)− Cy∗∥2 (2.8)

For each layer l we define the instability as:

Sup
r ̸=0

gl(x+ r)− gl(x)

∥r∥
(2.9)

where Sup denotes supremum and r is the input noise. For small perturbations, Taylor series can

be leveraged to closely approximate the supremum by:

Sup
r ̸=0

< r,∇x(gl) >

∥r∥
(2.10)

The upper bound in Equation (2.10) is achieved if and only if the perturbation vector r is

27

aligned with the gradient:

r = ∥r∥ ∇x(gl)

∥∇x(gl)∥
(2.11)

Substituting this value in Equation (2.10), suggests that the instability of model layers is bounded

by the magnitude of the gradient ∥∇x(gl)∥. This measure allows for identification of most

sensitive intermediate layers; layers with larger ∥∇x(gl)∥ are better suited for MRR placement.

We observed that the last layer shows highest sensitivity towards input perturbations. Figure 2.14

shows an example analysis for ResNet56 trained on CIFAR-100. We thus place all latent

defenders at the output of the second-to-last layer in our experiments.

Figure 2.14. Per-layer sensitivity analysis for ResNet56

2.5 CuRTAIL Hardware Implementation

Motivation. There is an inherent trade-off between the computational complexity (e.g., runtime

overhead) of the modular redundancies and the reliability of the system. On the one hand, a high

number of validation checkpoints increases system reliability, but it also increases the computa-

tional load. On the other hand, a small number of checkpoints degrades the defense performance

by treating adversarial samples as legitimate ones. Let us consider a naı̈ve implementation of

MRRs on commodity hardware where the checkpoints are executed sequentially.

Figure 2.15 demonstrates the pertinent utility and reliability trade-off under such settings

28

for LeNet model on MNIST dataset. Here, runtime is normalized to the cost of one forward

propagation in the target neural network. As seen, the runtime in this setting increases linearly

with the number of checkpoints, which is not desirable. To address this, we design an FPGA-

based accelerator for optimized parallel execution of CuRTAIL MRRs. In the following, we

elaborate on various components of the CuRTAIL accelerator.

Figure 2.15. Complexity and reliability trade-off for the LeNet model on MNIST dataset
performed on an NVIDIA Geforce 980 GPU hosted by an Intel Core-i7 CPU.

2.5.1 CuRTAIL Hardware Acceleration

CuRTAIL hardware acceleration stack enables just-in-time online detection of adver-

sarial samples. Once the MRRs are trained, CuRTAIL automatically generates the hardware

implementation for the modules by performing two main phases as illustrated in Figure 2.16: (i)

offline pre-processing phase to obtain the MRR configurations, and (ii) online execution phase in

which the legitimacy of each incoming input data is validated on the fly.

Pre-processing phase. This phase consists of two main tasks, i.e., resource profiling and

design customization. During resource profiling, we estimate the FPGA resource utilization for

implementing the victim DNN and the MRRs. Using the outcome of resource profiling, the

design customization unit determines the best number of checkpoints according to the available

resources and the user-defined performance constraints, e.g., runtime, as will be discussed in

Section 2.5.2. This stage is performed only once and incurs negligible overhead.

29

Figure 2.16. Overview of CuRTAIL hardware acceleration stack. Based on the user-provided
constraints, we output the best defense layout that ensures maximum robustness and throughput.

Execution phase. Once the redundancy modules are customized per hardware and user-

defined constraints, the victim DNN and accompanying MRRs are deployed for online execution.

CuRTAIL performs three tasks in the execution phase.

1 Forward Propagation. The victim DNN predicts a label for each incoming sample, which

is then sent to the MRRs for validation.

2 Validation. CuRTAIL executes the learned MRRs (Section 2.4) on FPGA to validate the

legitimacy of the input data and its associated label. In particular, samples that do not lie in the

user-defined probability interval, i.e., SP, are discarded.

3 Model Fusion. The final decision regarding the legitimacy of the input data and its associated

inference label is made by aggregating the output of all MRRs as explained in Section 2.4.3.

In the following, we first discuss the hardware architecture of latent and input defenders

that enables high throughput and low energy realization of the recurring execution phase. We

then discuss resource profiling, automated design customization, and the scalability of CuRTAIL.

Latent Defenders

Figure 2.17 illustrates the high-level schematic of a latent defender accelerator module.

Recall from Section 2.4.1 that the latent defenders are DNNs with an identical architecture as the

30

Figure 2.17. Latent defender structure: the pertinent activations are acquired by propagating
the input sample through the defender. PCA is then applied to reduce the dimensionality of
the obtained activation. The L2 distance with the corresponding GMM center determines the
legitimacy of the input.

victim model. Accelerating latent defenders thus requires running the DNN kernel on FPGA,

which involves a high number of matrix multiplications. To efficiently execute these operations,

we map them to the FPGA DSP slices that are specialized for multiplication and accumulation

(MAC). Specifically, we leverage the methodology proposed in [172] to map the DNN kernel

computations into multiple parallel operations. In this setting, per-layer computations are

performed within several parallel-working processing units (PUs), each of which comprises a

number of parallel processing elements (PEs). The parallelism can be controlled by parameters

NPE and NPU which are static across all layers of the DNN. In order to achieve maximum

throughput, it is essential to fine-tune the parallelism parameters.

There are two possible mappings between DNN layer computations and the underlying

PUs. In the first scenario, multiple PUs work in parallel to compute the output of each DNN

layer, where each PU computes a subset of the layer outputs. In the second scenario, each PU

is responsible for computing the entire layer output, thus batches of inputs can be processed in

parallel where the batch size equals the number of available PUs. CuRTAIL performs a design-

space exploration to select the best execution scenario depending on the model architecture,

layer dimensionality, and/or available FPGA resources. Figure 2.18 shows an example of the

design space exploration for the two execution scenarios evaluated on the MNIST and SVHN

benchmarks. Note that the horizontal axis in the figure, i.e., the number of PEs per PU, uniquely

31

determines the NPU based on the available FPGA resources. As seen, determining a good balance

between NPE and NPU is essential for minimizing the execution runtime/cycles. Specifically,

increasing the number of parallel computation units will not always improve the throughput due

to the underlying data dimensionality and divisibility into parallel batches.

Once the latent feature maps are computed for incoming samples, their legitimacy is

determined by measuring the L2 distance with the corresponding inference label’s GMM center.

To ensure our implementation readily scales to various data cardinalities, we perform Principal

Component Analysis (PCA) prior to distance calculation. This operation effectively reduces

the data dimensionality, thus preventing memory shortage and reducing distance computation

complexity and latency. Executing PCA is equivalent to a vector-matrix multiplication P · f(x)

where P is a matrix whose rows are eigenvectors learned from the legitimate data features f(x).

Figure 2.18. Design space exploration for MNIST and SVHN benchmarks on Xilinx Zynq-ZC702
FPGA. CuRTAIL finds the optimal configuration of PEs and PUs to best fit the DL architecture
and the available hardware resources.

Input Defender

Figure 2.19 shows a schematic of CuRTAIL’s hardware kernels for the input defender.

The main component in our design is an accelerator for the OMP algorithm which reconstructs

the input at a given target sparsity using the pre-learned dictionaries. We boost the performance of

our OMP core by modifying the algorithm to maximally utilize the available on-chip resources.

Dot-product is a frequently observed operation in OMP execution that hinders efficiency

due to its sequential nature. We, therefore, implement dot-product using a tree-based reduction

32

Figure 2.19. Input defender: the OMP core iteratively reconstructs input vectors using a learned
dictionary. Here, the support set contains columns of the dictionary that have been chosen so far
in the routine. The final reconstruction error is used to determine input legitimacy.

scheme which gradually aggregates the output from multiple parallel processing units as shown

in Figure 2.20. Our tree-based reduction oscillates between two modes of operation to maximally

re-use the available memory blocks (a and temp in Figure 2.20).

Figure 2.20. Tree-based vector reduction algorithm.

Another computationally expensive operation observed in OMP execution is LS opti-

mization (Line 6 of Algorithm 1). We propose to use QR decomposition with the Gram-Schmidt

orthogonalization technique [55] to efficiently implement LS optimization in our hardware accel-

erator. This technique decomposes the dictionary matrix D by iteratively forming the orthogonal

matrix Q and a corresponding upper-triangular matrix R as shown in Algorithm 2. Using the

acquired decomposition of the dictionary, the computation of the residual update in OMP (Line 7

of Algorithm 1) can be greatly simplified as:

ri ← ri−1 −Qi(Qi)T ri−1 (2.12)

33

Algorithm 2. Incremental QR decomposition with modified Gram-Schmidt

Inputs: New column Dn, Qn−1, Rn−1.
Output: Qn, Rn.

1: Rn ←
[
Rn−1 0
0 0

]
, ϵn ← Dn

2: for j = 1,...,(n-1) do
3: Rn[j, n]← (Qn−1[:, n])T ϵn

4: ϵn ← ϵn −Rn[j, n]Qn−1[:, j]

5: Rn[n, n] = ∥ϵn∥
6: Qn = Qn−1ϵn/Rn[n, n]

2.5.2 Automated Design Customization

CuRTAIL provides an automated customization unit that maximizes DL model robustness

while adhering to the limitations dictated by the underlying hardware platform and application,

e.g., the available memory, computing resources, and system throughput. The input to the

customization unit is the DNN architecture along with the application-specific runtime constraint

and the available hardware resources. The output is the best combination of defender modules

that balances the trade-offs depicted in Figure 2.21.

Figure 2.21. CuRTAIL provides customized defense by balancing the design-space trade-offs.
The goal of CuRTAIL is to maximize model robustness while adhering to the underlying memory
and runtime constraints.

To characterize the design trade-offs, we thoroughly examine the performance and

resource utilization for different building blocks of a DL model. For FPGA platforms, the main

resource bottlenecks for DL model implementation are the Block RAM (BRAM) capacity and

34

the number of DSP units. The dictionary matrices used in the input defender as well as the

latent defender weights and biases are stored in the DRAM memory to be accessed during the

execution phase. Upon computation, data is moved from the DRAM to BRAM which enables

faster computation.

CuRTAIL sets the configuration of the defenders with regard to these two constraints,

i.e., number of DSP units and the available BRAM. In particular, CuRTAIL solves the following

optimization to find the best configuration for the number of defenders Ndef and the number of

processing units NPU per defender.

Maximize
NPU ,Ndef

(DLrobustness) s.t. :

Tmax
def ≤ Tu,

Ndef ×NPU ×DSPPU ≤ Ru,

NPU × [maxi(|W i|) +maxi(|X i|+ |X i+1|)] ≤Mu,

(2.13)

where Tu, Mu, and Ru are the constraints on system latency, BRAM budget, and available DSP

resources, respectively. Here, |W i| and |X i| denote the total number of parameters and the input

dimension for layer i. The DSPPU variable indicates the number of DSP slices used in one

processing unit and Tmax
def is the execution latency of the defender modules. CuRTAIL considers

both sequential and parallel execution of defenders based on the available resources and size

of the victim model. CuRTAIL performs an exhaustive search over the parameter NPU and

solves Equation (2.13) using the Karush-Kuhn-Tucker (KKT) method to calculate Ndef . Once

the optimization is solved for NPU , NPE is uniquely determined based on available resources.

We note that this constraint-driven optimization is non-recurring and incurs negligible overhead

(10− 100msec depending on the hardware platform.).

The OMP unit in CuRTAIL incurs a fixed memory footprint and latency for a given

application. Therefore, the optimization of Equation (2.13) does not include this constant

overhead. Instead, we deduct this overhead from the user-defined constraints and use the updated

35

upper bounds. The memory requirement for an OMP kernel is equivalent to (patchlen× (Dsize +

1) +D2
size) × 4 bytes, where patchlen is the total number of pixels within a patch of an input

sample (usually set to 64), and Dsize is the number of columns in the dictionary matrix. The

term patchlen × (Dsize + 1) corresponds to the storage space required for the dictionary matrix

as well as the input vector of a data patch. D2
size stands for the memory space required to store

the R matrix while performing Algorithm 2. Note that the Q matrix re-uses the space originally

dedicated to the dictionary to eliminate unnecessary use of memory resources. The required

OMP computational time per input patch is superposed by the computational latency of the latent

defenders that are executed in parallel with the input defender.

2.5.3 Computational Analysis and Scalability

Table 2.1 summarizes the computational complexity as well as the corresponding number

of clock-cycles required for execution of each custom layer in CuRTAIL. In all entries from

the third column of the table, β denotes a system-dependant constant that characterizes the

runtime requirement per unit of floating point operation. For an OMP kernel (employed in the

input defender), patchlen indicates the number of elements in an input data patch, Dsize is the

dictionary size, and k represents the sparsity level (usually set to 5). Runtime of the Convolution

layer is dependent on the input dimensionality (Win×Hin), convolution kernel size (kernelsize),

number of input and output filter channels (fin, fout), and the values of NPE and NPU acquired

from solving Equation (2.13). Same pattern holds for Dense layers where the input and output

dimensions are denoted by Nin and Nout. PCA can be cast as a Dense layer as discussed in

Section 2.5.1 with P and L representing the input and output dimensionalities, respectively.

Table 2.1. Runtime and computational complexity of each custom layer in CuRTAIL framework.

Runtime Computational Complexity
Input Defender OMP Kernel β × patchlen(kDsize + k2) O(patchlenD

2
size)

Latent Defender
Conv Layer β⌈ Win

NPE
⌉ ×Hin × fin × ⌈ fout

NPU
⌉ × kernel2size O(WoutHoutfinfoutkernel

2
size)

Dense Layer β⌈ Nin×Nout

NPE×NPU
⌉ O(NinNout)

PCA Layer β⌈ P×L
NPE×NPU

⌉ O(PL)

36

2.6 Evaluations

We evaluate CuRTAIL on five machine learning datasets: MNIST, SVHN, CIFAR-10,

CIFAR-100, and ImageNet.

MNIST Benchmark. The MNIST data is a 28 × 28 gray-scale images of handwritten digits

with 60, 000 train images and 10, 000 test samples. The images are normalized such that each

pixel takes a real value in the range of [0, 1]. For this dataset, we train and use the DL topology

proposed in [135] which is also available in Table 2.2.

SVHN Benchmark. This dataset consists of 32× 32 real-world color images of house numbers

in Google Street View images. We split the data into ∼ 60, 500 train images and 26, 000

test samples. The image pixels are normalized to the [0, 1] range. Table 2.2 encloses the DL

architecture used for this benchmark in our experiments.

CIFAR Benchmarks. We carry out our experiments on the two available CIFAR [100] datasets.

CIFAR-10 and CIFAR-100 benchmarks consist of colored (RGB) images with dimensionality

32× 32 that are categorized in 10 and 100 classes, respectively. We split the data samples into

a set of 50, 000 training data and a set of 10, 000 test data. The images are normalized using

per-channel mean and standard deviation such that each pixel takes a value in the [0− 1] range.

In our experiments, we train and use the state-of-the-art DL topology proposed in [135] for

CIFAR-10 and ResNet56-v2 [67] for CIFAR-100, as enclosed in Table 2.2.

ImageNet Benchmark. ImageNet is a large database consisting of over 15 million data samples.

Typically, a subset of images belonging to 1000 different categories is used by the research

community for learning evaluation of ImageNet data [102]. In our experiments, we train and use

a DL architecture inspired by the well-known AlexNet [102] topology for ImageNet classification.

Details about the trained model are available in Table 2.2. We down-sample ImageNet classes by

a factor of 100 for execution efficiency purposes. Figure 2.22 illustrates several samples from

each of the selected classes.

37

Figure 2.22. Example legitimate samples in ImageNet benchmark. Samples are randomly
selected from the target classes.

Table 2.2. Benchmarked DL models for evaluating CuRTAIL effectiveness. Conv layers are

represented as ⟨input−channels⟩ ⟨kernel size⟩−−−−−−−→
stride

⟨output−channels⟩ and FC layers are denoted

by ⟨output− elements⟩FC.

Conv+BN+ReLU MaxPool Conv+BN+ReLU MaxPool Conv+BN+ReLU Conv+BN+ReLU Conv+BN+ReLU MaxPool Classifier

MNIST 3
5×5−−−→

stride 1
20

2× 2
stride 2 20

5×5−−−→
stride 1

50
2× 2

stride 2 - - - -
500FC

10FC, softmax

SVHN 3
5×5−−−→

stride 1
20

2× 2
stride 2 20

5×5−−−→
stride 1

50
2× 2

stride 2 - - - -
1000FC
500FC

10FC, softmax

CIFAR-10 [3 3×3−−−→
stride 1

96] ×3 2× 2
stride 2 [96 3×3−−−→

stride 1
192] ×3 2× 2

stride 2 192
3×3−−−→

stride 1
192 192

1×1−−−→
stride 1

192 192
1×1−−−→

stride 1
10

8× 8
average pool 10FC, softmax

CIFAR-100
(ResNet56-v2 [67]) 3

3×3−−−→
stride 1

16 -

16
1×1−−→ 16

16
3×3−−→ 16

16
1×1−−→ 64

 ×6 -

64
1×1−−→ 64

64
3×3−−→ 64

64
1×1−−→ 128

 ×6
128

1×1−−→ 128

128
3×3−−→ 128

128
1×1−−→ 256

 ×6 -
8× 8

average pool 100FC, softmax

ImageNet

 3
11×11−−−→
stride 4

96

96
5×5−−−→

stride 1
256

 3× 3
stride 2 256

3×3−−−→
stride 1

128
3× 3

stride 2 128
3×3−−−→

stride 1
128 128

3×3−−−→
stride 1

128 -
3× 3

stride 2

1024FC
1024FC

10FC, softmax

2.6.1 Details of MRR Training

In the following, we enclose the details for training CuRTAIL defenders that are evaluated

in the experiments. Note that the MRR training phase is a one-time process and its cost will be

amortized among all future executions of CuRTAIL.

Training input dictionaries. We learn separate input dictionaries for each class in the bench-

marked dataset. For each image in the dataset, we randomly sub-sample 30 small patches and

create a new training set. Patch are set to 7× 7 for MNIST and SVHN, 8× 8 for CIFAR-10 and

CIFAR-100, and 16 × 16 for ImageNet. We set the number of columns in each dictionary to

225. Dictionaries are learned following the description in Section 2.4.2. Once the dictionaries

are learned, we execute OMP (Algorithm 1) to denoise input samples. The PSNRs are then

computed as in Equation (2.4), and compared against a cut-off threshold to raise alarms for high

distortion values. We set the cut-off threshold value of input defender such that all the training

data are considered legitimate samples.

38

Training Latent Defenders. For each application, we train a maximum of 16 latent defenders all

of which checkpoint the second-to-last layer of the victim model. For ImageNet benchmark we

only used 1 defender due to the high computational complexity of the pertinent neural network

and attacks. We initialize the weights of latent defenders using those of the victim model, then

retrain them by adding the extra term to the loss function with parameter γ set to 0.01 for all

applications (see Equation (2.2)). Each defender module is trained for the same number of

epochs as the original training of the victim model with the same optimizer. The learning rate is

set to 1
10

of that of the victim model as the model is already in a relatively good local minimum.

Figure 2.23. CuRTAIL security parameter controls the TP and FP rates. The number of latent
defenders in this experiment is 16.

Figure 2.24. Using more MRRs improves the detection performance for all datasets.

2.6.2 Attack Analysis and Resiliency

We leverage a wide range of attack methodologies (namely, FGS [56], BIM [104], Car-

liniL2 [22], and Deepfool [142]) with varying parameters to ensure CuRTAIL’s generalizability.

The perturbation levels are selected such that the adversarial noise is undetectable by a human

observer (Table 2.3 summarizes the pertinent attack parameters). We evaluate our defense

mechanism in two attack scenarios:

39

• The attacker has complete access to the parameters and the architecture of the victim

model but is not aware of the defense mechanism (a.k.a., black-box attack).

• The attacker has complete access to the parameters and the architecture of the victim

model as well as the defender modules (a.k.a., adaptive white-box attack).

Table 2.3. Attack parameters. For CarliniL2 attack [22], “C” denotes the confidence, “LR” is
the learning rate, “steps” is the number of binary search steps, and “iterations” stands for the
maximum number of iterations. Superscripts (m→ MNIST, s→ SVHN, c→ CIFAR, a→ all)
are used to indicate the benchmarks for which the parameters are used.

Attack Attack Parameters
FGS ϵ ∈ {0.01a, 0.05a, 0.1m,c, 0.2m}
Deepfool niters ∈ {2a, 5a, 10a, 20a, 50a, 100a}
BIM ϵ ∈ {0.001a, 0.002a}, niters ∈ {5a, 10a, 20a, 50m, 100m}

CarliniL2 C ∈ {0a, 10a, 20s,c, 30s,c, 40s,c, 50c, 60c, 70c}
LR = 0.1a, steps = 10a, iterations = 500a

To characterize the performance of the proposed defense methodology against adversarial

attacks, we evaluate CuRTAIL in terms of both the True Positive (TP) and False Positive (FP)

detection rates. In this context, TP refers to the ratio of adversarial samples correctly detected

by the system while FP denotes the ratio of legitimate samples that are mistakenly categorized

as being malicious. There is an inherent trade-off between the TP and FP detection rates that

can be controlled using the security parameter discussed in Section 2.4. The Area Under Curve

(AUC) for a TP versus FP plot fully encapsulates this trade-off and can be used as a measure to

quantify the quality of adversarial detection. A random decision has an AUC of 0.5 while an

ideal detector will have an AUC of 1.

2.6.3 Black-Box Attacks

In our first analysis, we study the relationship between detection success and the security

parameter. We present the transition of the FP and TP rates with SP in Figure 2.23. In this

experiment, we use the test data to generate a dataset of adversarial samples using all attack

algorithms/parameters of Table 2.3; we then evaluate the performance of our MRRs against these

40

diverse adversarial samples to obtain the TP curve (shown in orange). The FP curve (shown in

blue) is obtained by evaluating the defenders on the clean test data. An ideal defense would have

FP≈ 0 and TP≈ 1.

In our next analysis, we evaluate the effect of the number of defenders on CuRTAIL

detection. Figure 2.24 shows the AUC obtained by CuRTAIL for different attack configurations

where the adversary knows everything about the model but is not aware of the defenders. For a

given number of defenders, the AUC for MNIST is relatively higher compared to more complex

benchmarks (e.g., CIFAR-10). This is consistent with our hypothesis since the unexplored sub-

space is larger in higher-dimensional benchmarks. Note that using more defenders eventually

increases the AUC. We further summarize the performance of the CuRTAIL methodology against

each of the FGS, JSMA, Deepfool, BIM, and Carlini&WagnerL2 attacks in Table 2.4. We used

the open source library3 provided by [147], for implementation of the attack algorithms. The

JSMA attack was too slow on ImageNet, thus, we did not include the results in this study.

Table 2.4. AUC obtained by 16 latent defenders checkpointing the second-to-last layer of the
victim model. For ImageNet, we only used 1 defender due to the high computational complexity
of the pertinent neural network and attacks.

MNIST SVHN CIFAR-10 CIFAR-100 ImageNet
FGS 0.997 0.969 0.911 0.885 0.881
JSMA 0.995 0.995 0.966 0.961 -
Deepfool 0.996 0.974 0.960 0.850 0.908
CarliniL2 0.987 0.963 0.929 0.944 0.907
BIM 0.994 0.931 0.907 0.821 0.820

2.6.4 Adaptive White-Box Attack

To further corroborate the robustness of MRR methodology, we applied the state-of-

the-art Carlini&WagnerL2 attack in a white-box setting. A similar strategy was used in [21]

to break the state-of-the-art countermeasures including MagNet [135], APE-GAN [174], and

other recently proposed efficient defences methods (e.g., [229]). The attacks in [21] are gray-box

attacks, meaning that the attacker is aware of the defense mechanism but does not have access

3 https://github.com/tensorflow/cleverhans

41

https://github.com/tensorflow/cleverhans

Table 2.5. Evaluation of MRR methodology against adaptive white-box attack. We compare
our results with prior work including Magnet [135], Efficient Defenses Against Adversarial
Attacks [229], and APE-GAN [174]. For each evaluation, the L2 distortion is normalized to
that of the attack without the presence of any defense mechanism. Note that highly disturbed
images (with large L2 distortions) can be easily detected using the input defenders; however, for
fair comparison to prior work, we did not include our non-differentiable input defenders in this
experiment.

MRR Methodology (White-box Attack) Prior-Art Defenses (Gray-box Attack)
Security Parameter SP=1% SP=5% Magnet Efficient Defenses APE-GAN
Number of Defenders N=0 N=1 N=2 N=4 N=8 N=16 N=0 N=1 N=2 N=4 N=8 N=16 N=16 - -
Defense Success (TP Rate) - 43% 53% 64% 65% 66% - 46% 63% 69% 81% 84% 1% 0% 0%
Normalized Distortion (L2) 1.00 1.04 1.11 1.12 1.31 1.38 1.00 1.09 1.28 1.28 1.63 1.57 1.37 1.30 1.06
FP Rate - 2.9% 4.4% 6.1% 7.8% 8.4% - 6.9% 11.2% 16.2% 21.9% 27.6% - - -

to its parameters. We perform a more powerful attack against our defense where the attacker

also knows the parameter set of the defenders. Following the guidelines in [21], we modify the

objective function of the Carlini&WagnerL2 attack as follows:

minimize ∥x− xa∥2 + c · lc(xa) + d · ld(xa)

ld =
N∑

n=1

max(Dn(x
a)− τ in, 0),

(2.14)

where x is the original input, xa is the adversarial sample, lc(·) is a cost designed to mislead the

victim classifier, and ld(·) is a cost designed to deceive the defender models. Parameters c and d

are constants which are tuned using binary search. We followed the instructions of [21] to set

the loss function ld in order to incorporate the MRR specific defense parameters. In particular,

the value Dn(x
a) in Equation (2.14) is the L2 distance ∥f(xa)− Ci∥2 in the nth defender, i is

the target class for misclassification attack, and τ in is the cut-off threshold for class i in the nth

defender. We set the learning rate of the attack to 0.01, the confidence rate to 0, the maximum

number of iterations to 10000, and the number of binary searches to 20 as suggested in [21]. For

attack implementation, we used the library provided by the authors of the Carlini&WagnerL2

adaptive attack 4 and incorporated our defender specific loss into their algorithm.

Table 2.5 presents the success rate of the attack algorithm for different number of defender

4https://github.com/carlini/MagNet

42

modules and security parameters for the MNIST benchmark. As shown in Table 2.5, with a

single defender, the defense success rate (TP) is 43% and 46% for security parameters of SP=1%

and SP=5%, respectively. If we employ 16 defender modules in parallel, the TP rate increases

to 66% for SP=1% and 84% for SP=5%, at the cost of a small increase in FP rate. Higher

number of MRR modules in our defense mechanism also results in a larger perturbation in the

generated adversarial samples. Note that such high perturbations can be detected via CuRTAIL

input defenders; however, we did not include input defenders in this evaluation for comparison

fairness. Compared to the state-of-the-art defenses of Table 2.5, CuRTAIL achieves a better TP

rate. In addition, the attacker is required to inject a higher amount of perturbation (in terms of L2

norm) to mislead CuRTAIL defenders in a white-box setting.

2.6.5 Performance Analysis

We implement the customized defender modules on Xilinx Zynq-ZC702 and Xilinx

UltraScale-VCU108 FPGA platforms. All modules are synthesized using Xilinx Vivado v2017.2.

We integrate the synthesized modules into a system-level block diagram with required peripherals,

such as the DRAM, using Vivado IP Integrator. The frequency is set to 150 MHz and power

consumption is estimated using the synthesis tool. For comparison, we evaluate CuRTAIL

performance against a highly-optimized TensorFlow-based implementation on two low-power

embedded boards: (i) The Jetson TK1 development kit which contains an NVIDIA Kepler GPU

with 192 CUDA Cores as well as an ARM Cortex-A15 4-core CPU. (ii) A more powerful Jetson

TX2 board with an NVIDIA Pascal GPU with 256 cores and a 6-core ARM v8 CPU.

Robustness and throughput trade-off. Increasing the number of checkpoints improves the

reliability of model prediction in the presence of adversarial attacks (Section 2.6.2) at the cost of

reducing the effective throughput of the system. In applications with severe resource constraints,

it is crucial to optimize system performance to ensure maximum immunity while adhering to the

user-defined timing constraints. In scenarios with more flexible timing budget, the customization

tool automatically allocates more instances of the defender modules while under strict timing

43

constraints, the robustness is decreased in favor of the throughput.

Figure 2.25 demonstrates the throughput versus the number of defender modules for

MNIST benchmark on Zynq FPGA. CuRTAIL accelerator can reach a throughput of 1400 sam-

ples per second with 16 MRRs. For the SVHN benchmark, which has a similar DL architecture

to MNIST, the ARM v8 CPU can achieve a throughput of 1400 samples per second when only

one defender is executed. CuRTAIL implementation on UltraScale FPGA can run 8 defenders in

parallel the same throughput. This translates to an improvement in the AUC from 0.76 to 0.96.

Figure 2.25. CuRTAIL throughput with samples from the MNIST dataset versus the number of
instantiated defenders (implemented on Xilinx Zync-ZC702 FPGA).

Throughput and energy analysis. To corroborate the efficiency of CuRTAIL, we also evaluate

MRR performance on TK1 and TX2 boards operating in CPU-GPU and CPU-only modes. We

define the performance-per-Watt measure as the throughput over the total power consumed

by the system. This metric is an effective representation of the system performance since it

integrates two influential factors for real-world embedded applications. All evaluations in this

section are performed with only one input and latent defender. Figure 2.26 (left) illustrates

the performance-per-Watt for different hardware platforms. Numbers are normalized by the

performance-per-Watt of the TK1 platform in CPU mode. As shown, CuRTAIL implementation

on Zynq shows an average of 38× improvement over TK1 and 6.2× improvement over TX2 in

CPU mode. The more expensive UltraScale FPGA performs relatively better with an average

improvement of 193× and 31.7× over TK1 and TX2, respectively.

Figure 2.26 (right) shows the comparisons with GPU platforms. All values are normalized

by the TK1 performance-per-Watt in the CPU-GPU mode. Our evaluations show an average

44

Figure 2.26. Performance-per-Watt comparison with embedded CPU (left) and CPU-GPU (right)
platforms. Reports are normalized by the performance-per-Watt of TK1.

of 9× and 45.7× improvement over TK1 by the Zynq and UltraScale FPGAs, respectively.

Comparisons with TX2 demonstrate 2.74× and 41.5× improvement for the Zynq and UltraScale

implementations. Note that UltraScale performs noticeably better than Zynq which emphasizes

the effect of resource constraints on parallelism and throughput.

2.6.6 Discussion on Transferability of Adversarial Samples

Figure 2.27 demonstrates an example of the adversarial confusion matrices for victim

neural networks with and without using parallel checkpointing learners. In this example, we set

the security parameter to only 1%. As shown, the adversarial sample generated for the victim

model are not transferred to the checkpointing modules. In fact, the proposed approach can

effectively remove/detect adversarial samples by characterizing the rarely explored sub-spaces

and looking into the statistical density of data points in the pertinent space.

Figure 2.27. Example adversarial confusion matrix (a) without MRR defense mechanism, and
(b) with MRR defense and SP = 1%. (c) Example adversarial samples for which accurate
detection is hard due to the closeness of decision boundaries

45

Note that the remaining adversarial samples that are not detected in this experiment are

crafted from legitimate samples that are inherently hard to classify even by a human observer

due to the closeness of decision boundaries corresponding to such classes. For instance, in the

MNIST application, such adversarial samples mostly belong to class 5 that is misclassified to

class 3 or class 4 misclassified as 9. Such misclassifications are indeed the model approximation

error which is well-understood to the statistical nature of the models. As such, a more precise

definition of adversarial samples is extremely required to distinguish malicious samples form

those that simply lie near the decision boundaries.

2.7 Conclusion

This work proposes CuRTAIL, a novel end-to-end framework for online accelerated

defense against adversarial samples in the context of deep learning. We introduce modular

robust redundancy as a viable countermeasure to significantly reduce the risk of integrity attacks.

The proposed MRR methodology explicitly characterizes statistical properties of the features

within different layers of a neural network by learning the corresponding probability density

functions. Using a hardware/algorithm co-design approach, CuRTAIL automated customization

tool optimizes the defense layout to maximize model reliability (safety) while complying with

the hardware and/or user constraints. This, in turn, ensures applicability to various DL tasks and

hardware platforms. CuRTAIL robustness is evaluated against a wide range of attack models.

Proof-of-concept experiments on various data collections corroborate successful detection of

adversarial samples with relatively small probability of false alarm. Our evaluations on various

hardware platforms indicates the effectiveness and practicality of CuRTAIL.

2.8 Acknowledgements

Chapter 2 is a partial reprint of the material as it appears in: M. Javaheripi, M. Samragh,

B. Rouhani, T. Javidi, and F. Koushanfar, “Curtail: Characterizing and Thwarting Adversarial

46

Deep Learning”, in IEEE Transactions on Dependable and Secure Computing (TDSC), 2020.

The dissertation author was the primary investigator and author of this paper.

47

Chapter 3

Ensuring DL Robustness to Fault Injec-
tion Attacks

DNNs have enabled a transformative shift in various applications ranging from natural

language processing and computer vision to healthcare and autonomous driving. With the

deep integration of autonomous systems in safety-critical tasks, model assurance and decision

robustness have gained imminent importance [46, 88, 92, 162]. Although DNNs demonstrate

superb accuracy in controlled settings, it has been shown that they are particularly vulnerable

to fault-injection attacks. Recent work [72, 154] demonstrates how changing a few bits of the

victim DNN’s weights can reduce the classification accuracy to below random guess. These

malicious bit flips have been realized in DNN accelerators via rowhammer attacks on the DRAM

containing the model weights [219].

In response to bit-flip attacks, prior work suggests adding specific constraints on DNN

weights during training such as binarization [157], clustering [71], or block reconstruction [112].

Adding such constraints increases the number of bit-flips required to deplete the inference

accuracy, however, they do not entirely mitigate the threat. Additionally, the proposed constraints

often severely affect the underlying DNN’s test accuracy. Other work [113, 119] propose to use

machine learning (ML) based techniques where a simpler model is trained to detect faults in the

victim DNN. However, their detection rate and false positive rate are bound by the accuracy of

the ML-based detector. To ensure DNN robustness, it is crucial to augment autonomous systems

48

with an online fault detection strategy that delivers strict performance guarantees. To the best of

our knowledge, none of the earlier works provide the needed detection strategy.

We propose ACCHASHTAG, a highly accurate real-time fault detection methodology for

DNNs deployed in embedded applications. ACCHASHTAG is the first method to provide strict sta-

tistical bounds on fault detection performance and deliver 0% false positive rate. ACCHASHTAG

extracts a unique signature from the benign DNN prior to deployment. At runtime, the signature

is used to validate the integrity of the DNN and verify the inference output on the fly. We

propose to leverage a low-collision hashing scheme, called the Pearson hash, to extract an 8-bit

signature from the pertinent weights in each DNN layer. Our hash-based signature extraction

delivers several benefits: (1) hash-based integrity check enables accurate fault detection that is

robust to false alarms. (2) The hash algorithm is devised particularly for low-overhead execution

on commodity processors. We design a customized core for hash generation and verification

on field-programmable gate arrays (FPGAs) that works alongside the co-processor hosting the

target DNN. Concurrent with DNN execution, the weights are streamed to the FPGA core which

then generates the hash signature. We further optimize the streaming size to maximally overlap

the latency of hash generation core with the latency of communication through the underlying

advanced extensible interface (AXI) with the host CPU.

There exist an inherent trade-off between fault detection performance and the stor-

age/runtime overhead that is determined by the number of DNN layers used for signature

extraction. To balance this trade-off, we propose a novel sensitivity analysis scheme that iden-

tifies the most vulnerable layers within the DNN to be used for signature extraction. This, in

turn, leads to an extremely lightweight detection methodology that incurs negligible storage and

runtime, making it amenable for use in resource-constrained embedded environments. Notably,

our sensitivity analysis enables ACCHASHTAG to achieve a 100% detection rate using as few as

one layer for hash extraction.

Our detection strategy is compatible with the challenging threat model where the attacker

has full control over the DRAM to freely select the location and number of bit flips. In addition,

49

the attacker has full knowledge of the underlying detection algorithm, i.e., the hash function.

To calibrate ACCHASHTAG detection, the user does not require access to any labeled data,

fine-tuning, or model training. The user only chooses a secret reordering rule to generate the

input for the hash function from the DNN layer weights. Using the reordering rule, the hash

signatures can be robustly extracted from the DNN at runtime without the attacker’s interference.

We validate the effectiveness of ACCHASHTAG by performing extensive experiments

on various DNN architectures and visual datasets. The evaluated DNNs are injected with the

state-of-the-art progressive bit-flip attack [154]. We show that ACCHASHTAG achieves a 100%

detection rate with 0 false alarms while incurring < 1.3KB storage and < 1% runtime compared

to DNN inference on an embedded GPU. When using our customized hash computation core

on FPGA, the runtime can be further decreased by an average of 2.1×, thereby enabling online

signature generation and verification alongside DNN inference. Our proposed methodology

outperforms prior art across all benchmarks both in terms of attack detection and algorithm

execution overhead. Compared to best prior work, ACCHASHTAG shows orders of magnitude

faster execution and lower storage. In summary, ACCHASHTAG contributions are as follows:

• Introducing ACCHASHTAG, the first framework for online detection of DNN fault-injection

attacks with provable guarantees on performance.

• Constructing a novel signature generation scheme based on Pearson hash which enables

low-overhead and highly accurate fault detection.

• Providing lower bounds on attack detection rate using a statistical analysis of hash collision.

• Devising a sensitivity analysis to identify vulnerable layers within any given DNN archi-

tecture. ACCHASHTAG automatically finds DNN layers with a high probability for attack

and tailors the fault detection to those layers.

• Designing an FPGA core for hash generation which enables high-throughput DNN integrity

validation.

50

3.1 Background and Prior Work

3.1.1 Bit-Flip Attack

Recent work has developed various fault-injection techniques [97, 188, 196] that can be

utilized to alter bits stored in the DRAM memory. These techniques give rise to the plethora of

attacks that take advantage of the bit-flipping tools to induce adversarial behavior in deployed

DNNs. Researchers have demonstrated the vulnerability of DNNs to fault-injection attacks

that target model parameters. Perhaps the pioneer in this domain is [122] which alters a single

parameter throughout the DNN to change the classification result. Follow-up work [72] analyzes

the effect of targeted bit flips induced by the Row hammer attack on DNN accuracy. The authors

perform the bit flips in the floating-point representation and show that their injected bitwise

errors can lead to > 90% accuracy degradation when applied on certain DNN parameters.

Current state-of-the-art bit-flip attack [154] leverages a gradient-based progressive bit

search to strategically identify the vulnerable bits in the DNN. Their attack is applied on quantized

DNN parameters with the fixed-point representation. Other variants of the bit-flip attack exist

which leverage a similar adaptive method to find the vulnerable bits but differ in the attack

objective: rather than degrading the accuracy on all samples, authors of [155, 156] perform bit

flips to misclassify certain input examples as a target class. In this work, we direct our focus to

the generic untargeted bit-flip attack [154, 219] as it provides the most general attack objective.

We emphasize that ACCHASHTAG is applicable to other attack variants as our methodology

relies on signature extraction and verification. This, in turn, allows us to detect (adversarial)

changes in DNN parameters regardless of the underlying attack objective.

Attack Formulation. Let us denote by {Bl}Ll=1 the total bits from the Two’s complement

representation of per-layer DNN weights where l is the layer index. To maximally reduce the

DNN accuracy, the attacker iteratively identifies the bit with the highest gradient maxBl
|∇Bl
L|

in each layer of the DNN. Here, L denotes the DNN inference loss. Once the per-layer most

vulnerable bits are detected, the new loss will be measured for each candidate bit-flip. Finally,

51

the bit that results in the maximum loss is selected and flipped. The iterative process continues

until the DNN accuracy falls below the attacker’s desired value.

3.1.2 Existing Defenses

Prior art propose various techniques to increase robustness to fault-injection attacks that

occur during DNN training and execution. To thwart training-time attacks, authors of [54],

propose a trust-based framework as the fault detection mechanism. The performance of this

method is strongly dependent on the accuracy of the trust evaluation mechanism [190, 191]. We

direct our focus to fault injection attacks applied on the DNN’s internal parameters at inference

time. A high-level comparison of ACCHASHTAG with prior works is enclosed in Table 3.1.

Several prior defenses against inference-time fault injection attacks suggest adding

specific constraints to the model during training. Authors of [71] show that adding a piece-wise

clustering constraint to the training objective or performing binarized training can improve

resiliency. Follow-up work [112] proposes to locally reconstruct DNN weights during inference

to minimize or defuse the effect of the bitwise error caused by the bit flips. Such methods

increase the number of bit flips required to reduce the victim DNN’s classification accuracy.

However, they do not detect or prevent fault-injection attacks. Additionally, due to the added

constraints on the pertinent DNN, these methods reduce the inference accuracy of the victim

model. Compared to these methods, ACCHASHTAG does not affect the inference accuracy in

any way and is able to detect the occurrence of bit flips with 100% accuracy.

Other works suggest adding an ML-based attack detection mechanism. Authors of [113]

train a smaller, checker network to verify the classification results produced by the original

DNN. In case of a mismatch, the task is repeated and the output of the victim DNN is accepted,

which results in a low detection rate. Compared to ACCHASHTAG lightweight detection method,

the checker DNN incurs a higher computational/storage overhead and can itself be subject

to fault-injection attacks. Another work [119] uses the magnitude of the gradient to find

sensitive weights. The authors then train a binary classifier on the sensitive weights to find

52

bit flips. The ML-based detection techniques are bound by the classification accuracy of the

underlying detector model and thereby have lower true positive rate and higher false positive

rate compared to ACCHASHTAG. We provide a probabilistic lower bound on ACCHASHTAG

detection performance that outperforms prior work.

Most recently, authors of [111] employ checksums to detect bitwise errors in weight

groups. The detection performance of the proposed methodology relies on the choice of the

group size, i.e., the number of weights used to compute each checksum value. To obtain a good

trade-off between detection performance and the storage/runtime overhead, the authors suggested

using higher group sizes. From a probabilistic point-of-view, checksum on large groups has

higher false negative rate compared to our hash-based mechanism. This is because checksum

inherently overlooks specific even-numbered bit flips. As shown in our experiments, the best

reported results from [111] achieve lower detection accuracy compared to ACCHASHTAG while

requiring higher storage and runtime.

Table 3.1. High-level comparison of ACCHASHTAG with prior work.

100% TPR 0% FPR
Degrade

DNN Accuracy
Require

DNN Training
Low

Overhead
Customized
Hardware

Piece-wise Clustering [71] ✓ ✓
Weight Reconstruction [112] ✓ ✓
DeepDyve [113] ✓
Weight Encoding [119] ✓
RADAR [111] ✓ ✓
HASHTAG [86] ✓ ✓ ✓
ACCHASHTAG ✓ ✓ ✓ ✓

3.2 ACCHASHTAG Methodology

Figure 3.1 demonstrates the overview of ACCHASHTAG methodology for detecting fault-

injection attacks in DNN parameters, i.e., bit flips. The core idea in ACCHASHTAG is to generate

a compact (ground-truth) signature from the benign DNN. This is done by generating per-layer

hashes of DNN parameters prior to model deployment. The signature is then used to verify

the integrity of DNN parameters during execution to validate the inference result and mitigate

53

malicious behavior. Our methodology incurs minimal computation/storage overhead and is

devised based on lightweight solutions to enable efficient and real-time execution in embedded

systems. ACCHASHTAG comprises two phases to detect anomalies in DNN parameters:

Pre-processing Phase. ACCHASHTAG preprocessing is a one-time process in which the detec-

tion mechanism is calibrated for the underlying victim DNN. There exist an inherent tradeoff

between attack detection performance and the computation/storage requirement for extracting

layer signatures; On the one hand, hashing all layers ensures that the detection mechanism can

universally adapt to attacks in any subset of layers. On the other hand, hash computation and

storage are linear in the number of layers used for detection. We observe that various DNN layers

are not equally targeted by fault-injection attacks. Motivated by this, we devise a novel sensitivity

analysis scheme that models the vulnerability of DNN layers to bit-flip attacks. The top-k most

vulnerable layers, called checkpoint layers, are then used to extract the hashes. This, in turn,

allows ACCHASHTAG to maximize detection performance under any given computation/storage

budget. k is a tunable hyperparameter in ACCHASHTAG which can range from 1 to L where L

is the total number of linear layers in the victim DNN. If the user selects k = L, then hashes

will be generated for all layers. However, as we show in our experiments (see Section 3.4.3

Figure 3.11), for the wide variety of evaluated models our detection rate reaches 100% when

generating hashes for at most k = 5 layers. This is due to the ability of our sensitivity analysis to

accurately locate layers with the highest probability of fault injection.

Online Execution. This recurring phase is activated when the underlying DNN is queried.

During online execution, new hashes are extracted from checkpoint layers in parallel to the DNN

inference. The new hashes are then validated against the ground-truth hash values from the

pre-processing phase to verify the legitimacy of model parameters. Upon hash mismatch, an

alarm flag is raised to notify the user that the system is compromised. The user shall then evict

the deployed model and reload the ground-truth weights from the source. We accelerate the

operations performed in ACCHASHTAG’s online execution phase using a customized FPGA core

that interacts with the DNN’s host processor.

54

Figure 3.1. Global flow of ACCHASHTAG detection. During the pre-processing phase, we first
identify sensitive DNN layers that are most prone to fault-injection attacks. We then generate a
customized signature from the identified sensitive layers. During online execution, the signature
is used to validate the model’s integrity in real-time, parallel to conducting inference.

3.2.1 Threat Model

In this work, we direct our focus to fault-injection attacks that target DNN parameters,

i.e., the bit-flip attack. In this scenario, the attacker has full knowledge of the victim DNN

architecture and its parameters. They further know the physical address of the model parameters

and have access to a subset of the data used for training the DNN. The attacker uses the data to

progressively identify vulnerable weights and flip their value. This is done by performing a Row

Hammer Attack (RHA) [97] on DRAM locations where the model parameter are stored [72,219].

To keep the attack stealthy and reduce the high cost of RHA, we assume the attacker is motivated

to minimize the number of flipped bits as is observed in the state-of-the-art attacks [154, 155].

As such, we do not consider random bit flips since they are shown to be ineffective in reducing

DNN accuracy even with a high number of flipped weights [154, 219].

We evaluate our detection in the challenging white-box scenario where the attacker

knows which layers are used for detection. He is also fully aware of the hash algorithm used for

generating the per-layer signatures. However, he does not know the secret hash values and the

parameter ordering used for generating the hashes. Following prior work [111], we assume the

secret hashes are stored in the secure on-chip static random access memory (SRAM) which is

not accessible by the attacker. Note that even when SRAM storage is not available, our detection

secrets are still immune to RHA. This is due to their low memory footprint (less than 5 KB) that

55

makes them hard to target by RHA as shown in [72].

3.3 ACCHASHTAG Components

3.3.1 Hash-based Signature Extraction

Hash functions generate a constant-length code value which is independent of the size

of the corresponding hashed data. This property motivated us to leverage hashing as the

underlying mechanism for extracting DNN layer signatures. Among the available hash functions,

ACCHASHTAG incorporates the Pearson hash [151] which operates on input streams at Byte

granularity. Below we present the Pearson scheme for generating an 8-bit hash value.

Pearson Hash Formulation. The user generates a hash table T which contains a random

permutation of integer values in the range [0, 255], i.e., Z256. For an incoming vector of length

N containing Byte values {xi}Ni=1, the Pearson hash is defined recursively as follows:

h(x1, x2, . . . , xN) = T (h(x1, x2, . . . , xN−1)⊕ xN) (3.1)

where ⊕ represents the XOR operation. Since T is an arbitrary permutation of values in Z256,

there exists a total of (256)! hash variations for a fixed input stream. The Pearson hash can be

extended to generate hashes longer than 8 bits by repeating the above process several times

and concatenating the results. However, as shown in our experiments, the 8-bit Pearson hash

accurately detects the state-of-the-art bit-flip attack [154].

Our hashing scheme provides several desirable characteristics that makes it particularly

amenable for low-overhead detection of fault injection attacks: (1) The hash computation is

well-defined for execution in 8-bit processors and embedded CPUs [151]. (2) The hashing

scheme is applicable to input streams of varying lengths, thereby providing high customizability

for various DNN layer configurations. (3) Pearson hash accommodates input streams with

fixed-point representation which have been target to contemporary bit-flip attacks [154, 155].

Fixed-point parameter values are observed in quantized DNNs that are widely deployed in

56

embedded systems.

Signature Generation. To extract the ground-truth signature from a benign DNN layer, we first

generate a random hash table T . The pertinent layer parameters are then fed to Equation (3.1) as

the input stream x1, x2, . . . , xN to generate the secret hash of the layer. The hash input stream

is generated using a user-defined secret ordering. An example of such ordering is shown in

Figure 3.2. Here, the hash input stream is constructed by first traversing the layer’s weight kernel

in the output channel dimension. Ordering adds a zero-cost layer of complexity to ACCHASHTAG

signature generation which prevents the attacker from reproducing the per-layer secret hashes.

Note that the hash input ordering does not affect ACCHASHTAG detection performance. The

user can easily choose different secret orderings for various layers or change the ordering at any

time to reinforce system integrity.

Figure 3.2. Reordering parameters in an example convolution layer for generating the hash input
stream. The layer parameters are the convolution weight kernels ∈ Rk×k×Ci×Co where k, Ci, Co

denote the kernel size, input channels, and output channels, respectively.

3.3.2 Bounds on Detection Performance

In this section, we provide the worst-case performance bounds on our hash-based detec-

tion mechanism. Recall from the threat model (Section 3.2.1) that the attacker is not aware of the

secret ordering used to generate the hashes from layer parameters. As such, even if the attacker

gains full access to the Pearson hash tables, they will not be able to reproduce the ground-truth

hash values. The attacker, therefore, performs the bit-flip attack without taking extra measures to

57

preserve the ground-truth hashes. In this context, the lower bound on ACCHASHTAG detection

can be obtained by quantifying the probability of collision in our hashes. Collision occurs when

multiple input streams are mapped to the same output hash. We analyze hash collision in two

separate scenarios where the attacker alters 1) one or 2) more than one element of the parameter

tensor in the target layer.

Single-element Alteration

When the attacker alters only one element in the weight block where the hash is computed,

the user can detect the hash mismatch with 100% accuracy. This is due to an intrinsic collision

property for the Pearson hash: for two input streams with exactly one value difference, the

probability of collision is zero when the streams are Pearson hashed.

Let us denote the altered byte value inside DNN weights by x̃m. The Pearson hash

operation for the first m bytes can be written as:

hm = T (hm−1 ⊕ x̃m) (3.2)

where hi is the short notation for h(x1, x2, . . . , xi). Since the first m− 1 bytes are unaltered, the

value of hm−1 remains constant. By changing xm, the hash value hm changes due to the bijective

property of the hash table T . Since the remaining elements xi|Ni=m+1 are unaltered, the new hash

hm propagates through the rest of the input chain, resulting in a different final hash hN compared

to the original weight block.

Multi-element Alteration

In cases where the attacker changes more than one weight value in the hash block,

a possibility arises that the hash mismatch caused by the earlier perturbed elements is later

corrected by a subsequent perturbed weight element such that the overall hash value hN remains

unchanged. Without loss of generality let us assume only two elements are altered: x̃m and

x̃n (m < n). As shown previously, changing the mth element, results in a new hash value

58

that propagates through the input chain until the next changed element. Let us denote the hash

value of the first n − 1 elements in the original and altered weight blocks by hn−1 and h̃n−1,

respectively. To ensure the final hash value of the block remains the same, the new value of the

nth element x̃n needs to satisfy the following equation:

hn−1 ⊕ xn = h̃n−1 ⊕ x̃n (3.3)

The above equation limits the number of allowed values for x̃n to only one. As such, the overall

probability of obtaining the same hash after altering the bits in two elements is 1
256
∼ 0.004. This

probability quantifies the chance of collision occurring in our hashing scheme and remains the

same for any arbitrary number of elements altered bigger than one. As such, our (worst-case)

lower bound on hash mismatch detection for the DNN is
(

1
256

)la . Here, la denotes the number of

attacked layers where more than one weight element is flipped by the attacker.

We empirically evaluate our developed bound by performing multiple runs of hash

extraction on an arbitrary input stream of length 1000. We randomly change a subset of k values

within the input and measure the collision rate. As seen in Figure 3.3, by increasing the number

of experiments, the collision probability asymptotically reaches 0.004 in all settings, which is

compatible with the bound from our statistical analysis.

Figure 3.3. Collision rate versus number of trial runs for hashing an input stream of length 1000.
Each trial randomly changes a subset k ∈ [2, 3, 6, 8, 12, 16] of message elements.

59

3.3.3 Per-layer Sensitivity Analysis

State-of-the-art fault injection attacks leverage various techniques to identify weight

values that most affect the accuracy if altered. By targeting the attack towards such vulnerable

weights, the attacker requires very few bit flips to degrade the accuracy of the victim DNN

below random guess. Motivated by this, we devise a sensitivity analysis that accurately finds

the subset of layers inside the victim DNN that are most prone to fault injection. Our sensitivity

formulation is inspired by prior work in DNN pruning [140]. Specifically, we utilize Taylor

expansion to model the effect of per-layer weight change on DNN accuracy as an effective

measure of sensitivity.

Linear layers in DNNs comprise two key parameters, namely the weight and bias:

(W, b). Let us represent the entire parameter set for a given DNN with L layers by P =

{(W, b)1, (W, b)2, . . . (W, b)L} where the subscript denotes the layer index. Training the DNN is

equivalent to minimizing a loss functionL(D,P) over a corpus of data D = (x1, y1), . . . , (xd, yd)

where x and y correspond to input examples and their labels, respectively. To degrade a pretrained

DNN’s accuracy, the attacker’s goal is to maximize the loss over the given dataset. Let us denote

by P and P̃ , the DNN parameters before and after the attack. We model the attack objective as:

max
P̃

(L(D,P)− L(D, P̃))2 (3.4)

We, therefore, quantify the sensitivity of each DNN parameter by the increase in loss value

caused by changing it. Bit-flip attacks often alter the sign as it causes the most dramatic change

in the value of the underlying parameter, thereby greatly influencing the accuracy [154]. As such,

we model parameter sensitivity by altering the sign p̃ = −p and measuring the effect on loss.

Here the lower case p represents individual weight/bias elements in the DNN. The sensitivity

60

S(·) for the nth parameter pn can thus be measured as:

S(pn) = (L(D,P)− L(D, P̃ |p̃n=−pn))
2 (3.5)

Since individual computation of (3.5) for each weight element inside the DNN is compu-

tationally prohibitive, we leverage Taylor expansion to estimate S(·). For a given function f(x),

the first-order approximation using Taylor polynomials at point x = a is given by:

f(x) ≈ f(a) + (x− a)× ∂f

∂x

∣∣∣∣
x=a

(3.6)

By replacing f in the Taylor expansion formula with the loss function L, we rewrite (3.5) as:

L(D,P)− L(D, P̃ |p̃n=−pn) ≈ 2pn ×
∂L
∂pn

(3.7)

We thus measure the sensitivity of parameter pn as:

S(pn) ∝ (pn ×
∂L
∂pn

)2 (3.8)

Note that the formula shown in (3.8) can be easily computed using a simple backward

pass through the network to compute the first-order gradients. Once the sensitivity is obtained for

each weight element, we define the sensitivity of each layer as the average over top-5 sensitivity

values of its enclosing elements. We empirically explain our reason for choosing the top-5

weights by providing an analysis of the bit-flip attack in Section 3.4.2

3.3.4 Accelerating Hash Generation

To enable detection of faults in real time, we accelerate the hash computation on FPGA.

This, in turn, allows for a parallel verification of weights and DNN execution. The top-level

architecture of ACCHASHTAG FPGA accelerator is shown in Figure 3.4. Our FPGA design

61

communicates with the host CPU through AXI4 and AXI4-Lite interfaces. We leverage the

AXI4 interface to receive the target DNN’s weights in bursts. The burst reads are then fed to the

input first in, first out (FIFO) buffer through the AXI master interface. The Pearson hash core

interacts with the input FIFO buffer to receive the hash input stream sequentially and generate

the corresponding signatures. This systolic features have low global data transfer and high

clock frequency, which is suitable for large-scale parallel design, especially on FPGAs. We

utilize the simpler AXI4-Lite interface to interact with the control unit and send the appropriate

instructions for controlling the hash module and relevant memory transfers. ACCHASHTAG

control unit operates in three modes, namely, populating the hash table, querying the Pearson

hash module for signature generation, and sending the final hash value to the host CPU. Once

the hash computation concludes, the final hash value enters the output FIFO buffer and is sent

back to the host CPU through the AXI master interface. We provide a break down of the utilized

resources for all components in ACCHASHTAG accelerated hash generation in Table 3.2. Here,

the design is synthesized for a Xilinx VCU108 FPGA.

Figure 3.4. Overview of ACCHASHTAG accelerated hash generation and verification using a
specialized FPGA compute kernel.

Table 3.2. Resource utilization of ACCHASHTAG components, synthesized on a Xilinx FPGA.

Module BRAM FF LUT
Pearson Hash - 244 962
Hash Table 2 2306 238
FIFO - 512 580
Control Unit - - 1314
AXI Master - 106 168
AXI-Lite Slave - 144 232

62

We take several measures to increase the hash generation throughput. First, we design

the Pearson hash module as a specialized form of parallel computing with a deeply pipelined

processes inside the hash generation loop. Using pipeline forwarding, our design fetches new

data from the input FIFO buffer and calculates the hash signatures within the same pipeline stage,

thereby increasing end-to-end throughput. Secondly, we take advantage of the small footprint

of the hash tables to implement them entirely using 8-bit Flip-flop registers on the FPGA. This,

in turn, enables very low latency accesses to the table during hash computation. Finally, we

optimize the burst length for AXI reads to maximally overlap the latency of hash computation

with the input stream read latency from the AXI4 Master. An optimal burst length will result in a

nearly diminished cost for AXI reads, thereby increasing throughput to that of the hash Pearson

hash module, with negligible increase in FPGA resource utilization.

3.4 Experiments

In the following, we provide a comprehensive evaluation of ACCHASHTAG performance

along with various analyses and discussions. Section 3.4.1 encloses details of our benchmarked

models and datasets, attack setup and implementation, as well as definitions for the utilized

evaluation metrics. Section 3.4.2 provides an analysis of the attack profile to clarify various

design choices. Finally, in Section 3.4.3 we report the detection performance of ACCHASHTAG,

compare it with best prior art, and analyze the storage and computation requirements.

3.4.1 Experimental Setup

Benchmarks. We evaluate ACCHASHTAG on two image datasets, namely, CIFAR10 [101] and

ImageNet [164]. The datasets contain 10 and 1000 classes of RGB (red, green, and blue) images

of dimensionality 32× 32 and 224× 224, respectively. We separate 20 examples from each class

in the training data and create a small held-out validation dataset. This validation set is used to

perform sensitivity analysis in the pre-processing phase.

Table 3.3 encloses an overview of the DNN architectures evaluated on each dataset and

63

their baseline test accuracies with 8-bit quantization. We evaluate CIFAR10 on two DNNs,

namely, ResNet20 [66] and VGG11 [176]. For ImageNet, we perform experiments on four

DNNs, namely ResNet18 [66], ResNet34 [66], AlexNet [102], and MobileNetV2 [170]. We

further present the first systematic study of bit-flip attacks on Transformers by benchmarking

two contemporary models used in vision tasks, namely ViT [38] and DeiT [93]. We leverage the

open-source code in [226] to quantize pre-trained Transformer models. As shown in Table 3.3,

Transformers show, on average, higher robustness towards fault-injection which results in a

higher number of required bit flips for degrading their accuracy.

Table 3.3. Overview of the evaluated benchmarks. Here, CONV, FC, and ATTN represent
convolution, fully-connected, and self-attention layers, respectively. Note that each self-attention
layer consists of four fully-connected layers. The baseline top-1 accuracy and the average number
of bit flips are reported for 8-bit quantized DNNs.

Dataset Model Layers
Top-1

Acc (%) Bit Flips

CIFAR10
VGG11 8 CONV, 3 FC 89.3 89
ResNet20 19 CONV, 1 FC 91.9 18

ImageNet

AlexNet 5 CONV, 3 FC 55.5 21
ResNet18 20 CONV, 1 FC 68.8 8
ResNet34 36 CONV, 1 FC 72.8 10
MobileNet 52 CONV, 1 FC 70.3 3
ViT 1 CONV, 12 ATTN, 1 FC 80.6 203
DeiT 1 CONV, 12 ATTN, 1 FC 79.3 166

Attack Configuration. We leverage the open-source implementation1 of the state-of-the-art

bit-flip attack [154] to evaluate our detection. The attack batch size on convolutional neural

networks is set to 128 and 64 for CIFAR10 and ImageNet benchmarks, respectively. Throughout

the experiments, we repeat the attack 50 times with different initial random seeds for each of

our DNN benchmarks and report the average obtained results. Each attack round consists of

multiple iterations where one bit is flipped at each step. The iterations conclude once the DNN

test accuracy falls below the random guess threshold, i.e., 10% and 0.1% for CIFAR10 and

ImageNet, respectively. Due to the robustness of Transformer models to bit-flips, we consider

the attack successful once the accuracy of the model falls below 0.2%. Table 3.3 encloses the

1Available at https://github.com/elliothe/BFA

64

https://github.com/elliothe/BFA

average number of bit flips required for attacking the benchmarked 8-bit quantized DNNs.

Metrics. We use two evaluation metrics to quantify ACCHASHTAG detection. Firstly, we

define Detection Rate (DR) as the ratio of models under attack which are correctly detected by

ACCHASHTAG, as formulated in Equation (3.9).

DR =
of attacked models correctly detected

Total # of attack rounds
(3.9)

Secondly, we use the False Positive Rate (FPR) as the ratio of benign models mistaken

for being malicious, i.e., containing a bit-flip that results in a hash mismatch.

3.4.2 Analysis of Design Choices

In this section, we perform an ablation study to analyze the characteristics of the bit-

flip attack. We experiment with three victim DNNs with various types of (linear) layers, e.g.,

convolution, fully-connected, and self-attention. Specifically, we benchmark ResNet20 trained

on CIFAR10 and ResNet18 and ViT trained on ImageNet. The weights in each victim DNN are

quantized using a range of bitwidths. The minimum evaluated bitwidth is selected such that the

classification accuracy is within 1%, 2%, and 3% of the floating-point accuracy for ResNet20,

ResNet18, and ViT, respectively. For each configuration, we perform 50 runs of the bit-flip attack

with different random seeds to ensure we capture the variances in the outcome. We summarize

our findings below:

Figure 3.5. Percentage of sign changes occurring during multiple runs of the bit-flip attack. The
progressive bit-flip attack [154] changes the sign of the target parameter with high probability.

Sign Change. Figure 3.5 demonstrates the percentage of bit flips resulting in a sign change

65

across various attack configurations. The consistent pattern among all experiments indicates

that the attack significantly favors changing the sign of the target parameter. This is intuitive as

flipping the sign of the underlying weight parameter can induce a dramatic change in the output

of the layer. Commensurate with this finding, ACCHASHTAG sensitivity analysis models the

effect of attack as a change in the underlying parameter’s sign (See Equation (3.5)).

Sensitivity Computation. We quantify the per-layer vulnerability to bit-flips by averaging the

sensitivities of γ most vulnerable weights enclosed in each layer. Figure 3.6 shows the effect of

various γ values on ranking DNN layers in terms of their sensitivity. On the vertical axis, the

layers in each model are ordered based on their sensitivity, where a higher rank corresponds to

higher sensitivity. As highlighted with the green boxes, the ordering amongst most sensitive

layers remain largely the same when γ ≤ 10. This is intuitive as a higher γ includes weights in

the sensitivity analysis that are not prone to bit-flips, while a lower γ ensures a more targeted

sensitivity analysis only for the most vulnerable parameters. For the benchmarked Transformer

models, due to their inherent robustness to faults, the number of bit-flips required to reduce

the accuracy is extremely large (see Table 3.3). For convolution-based benchmarks, however,

accuracy can be downgraded with very few bit-flips. For such models, we observe that while the

attack could target different or same weights within a certain layer, on average, the same layer is

not targeted more than ∼ 5 times. To investigate the per-layer attack concentration, we count the

number of times each layer is targeted during one execution of the attack. Figure 3.7 shows the

maximum number of bit flips occurring per layer, averaged across different attack runs for two

representative convolutional neural networks. Using the insights from attack concentration and

the analysis in Figure 3.6, we quantify the sensitivity of each layer as the average over its γ = 5

most sensitive weights.

Dataset Size. We leverage a small held-out validation dataset to compute the sensitivity scores for

model weights. In this section, we investigate the effect of validation dataset size, controlled by

the number of held-out samples per class (n), on the sensitivity analysis. Figure 3.8 demonstrates

the ranking of model layers in terms of sensitivity, shown for different n, where a higher rank

66

Figure 3.6. Ranking DNN layers based on their vulnerability to bit-flips, defined as the average
sensitivity score assigned to their γ most vulnerable weights. The most vulnerable layers (marked
with green boxes), remain largely the same, when γ ≤ 10.

on the vertical axis corresponds to higher sensitivity. As shown, for ImageNet benchmarks,

the ranking variance is very small and the sensitivity analysis delivers consistent results even

in the extreme case of n = 1. For CIFAR10 dataset, the sensitivity analysis is more affected

by n. This is due to the small number of classes in this dataset, which results in a very small

validation dataset for small n. We show the detection rate of ACCHASHTAG versus various

number of checkpoints in Figure 3.9. As seen for the CIFAR10 benchmark and the extreme

case of n = 1, more checkpoints are needed to obtain 100% detection rate. However, for n ≥ 5,

hashing only the two most sensitive layers can achieve perfect detection. For the ImageNet

benchmark, n ≥ 2 can provide 100% detection with two checkpoints. Our analysis shows an

intrinsic trade-off between validation dataset size and number of checkpoint layers. When data

is scarce, the sensitivity analysis may be affected, thus more checkpoint layers are needed to

ensure detection.

67

Figure 3.7. Maximum per-layer attack concentration, averaged across multiple runs for ResNet20
and ResNet18 trained on CIFAR10 and ImageNet, respectively. The progressive bit-flip at-
tack [154] on average targets the weights in the same layer no more than ∼ 5 times.

Figure 3.8. Ranking DNN layers based on their sensitivity, computed using a validation dataset
with n samples per class.

3.4.3 ACCHASHTAG Performance

Sensitivity Analysis

In this section, we showcase the stand-alone performance of ACCHASHTAG sensitivity

analysis. We benchmark the ResNet20 model on CIFAR10 to evaluate the effectiveness of

our proposed method in finding the vulnerable layers within a DNN. Figure 3.10 demonstrates

the sensitivity score assigned to each layer of the model versus the number of per-layer bit

flips occurring across 50 runs of the attack. All values are normalized by the total summation.

68

Figure 3.9. ACCHASHTAG detection rate versus number of checkpoint layers, shown for various
number of per-class samples (n) used in sensitivity calculation. We omit the plot for ViT for
brevity as it shows a similar trend as the ResNet18 benchmark.

Figure 3.10. Per-layer sensitivity scores assigned by ACCHASHTAG versus the number of
per-layer bit-flips. All values are normalized and sum to 1. Results are gathered across 50 runs
of the bit-flip attack on the ResNet20 DNN trained with CIFAR10 dataset.

As seen, there exists a correlation between the sensitivity score and the number of times the

pertinent layer has been subject to attack; most attacks occur in layers 1, 7 which are also the

most sensitive layers found by ACCHASHTAG. Below, we provide a thorough evaluation of

end-to-end ACCHASHTAG execution.

Detection Performance

We leverage our sensitivity analysis to rank DNN layers in the order of their attack

vulnerability. The top-k most sensitive layers are then selected as checkpoints to extract hashes

during the pre-processing and online phases. During online execution, if there exists at least

one hash mismatch with the ground-truth signature among DNN layers, ACCHASHTAG marks

the model as malicious. Figures 3.11 and 3.12 demonstrates the detection performance of

69

ACCHASHTAG versus the number of checkpoint layers for various DNN benchmarks. For this

experiment, all evaluated models are quantized with 8-bit parameters.

ACCHASHTAG achieves a 100% attack detection rate with very few checkpoints. For the

CIFAR10 benchmarks, ACCHASHTAG detects faulty DNNs with only 1 and 2 checkpoints on

the VGG11 and ResNet20 architectures, respectively. For ImageNet, ACCHASHTAG achieves a

perfect detection rate on AlexNet with only 1 checkpoint. On the more complex architectures

ResNet18 and ResNet34, ACCHASHTAG achieves 100% detection with only 2 and 3 checkpoints.

For the most complex convolution neural network (CNN) benchmark, i.e., MobileNetV2 with

53 convolution and fully-connected layers, ACCHASHTAG achieves 96.2% detection rate with

3 checkpoints and reaches perfect accuracy with 5. We further show the effectiveness of

ACCHASHTAG fault detection for large-scale Transformer-based models in Figure 3.12. As

shown, ACCHASHTAG successfully locates the sensitive layers that are most prone to bit-flips

among more than 50 layers in the Transformer benchmarks. As such, our defense can detect

the occurrence of faults with 100% using only 1 and 2 checkpoint layers for the DeiT and ViT

models, respectively.

The results demonstrate ACCHASHTAG’s ability to correctly find the most vulnerable

DNN layers and detect fault-injections using hash signatures. Note that ACCHASHTAG has an

FPR=0.0%, i.e., it never mistakes benign layers for attacked ones. This is due to the fact that

the hash value is constant as long as the underlying layer parameters remain intact, i.e., in the

Figure 3.11. ACCHASHTAG detection rate versus the number of checkpoint layers used for
signature extraction, evaluated on different victim CNNs.

70

Figure 3.12. ACCHASHTAG detection performance versus number of checkpoint layers. Evalu-
ated DNNs are derived from the Transformer backend with self-attention layers.

absence of bit flips.

Effect of Bitwidth. We benchmark ResNet20 and ResNet18 trained on CIFAR10 and ImageNet,

respectively, and sweep the quantization bitwidth of the victim DNN. Figure 3.13 demonstrates

the effect of DNN bitwidth on ACCHASHTAG detection rate. While the bitwidth can affect

the detection rate with only one checkpoint, it can be observed that ACCHASHTAG becomes

agnostic to the underlying bitwidth with more than 2 checkpoints. For > 2 checkpoints, AC-

CHASHTAG consistently achieves a detection rate of 100%. The same trend can be observed for

the Transformer-based ViT benchmark trained on ImageNet, where ACCHASHTAG consistently

achieves 100% detection rate when more than 2 (sensitive) layers are checked. the ability to

maintain the detection rate in face of different quantization bitwidths allows ACCHASHTAG to

be globally applicable to various DNN configurations employed in embedded applications.

Figure 3.13. Effect of victim DNN’s bitwidth on ACCHASHTAG detection rate. The legend
presents the utilized datasets along with the underlying bitwidths.

71

Comparison with prior work

We compare ACCHASHTAG with the best prior work, i.e., WED [119] and RADAR [111]

in terms of detection performance and overhead. We baseline the best reported results in

the original papers, i.e., the WED(2) configuration from [119], and G = 8 and G = 512

with interleaving for ResNet20 and ResNet18 from [111]. We devise two configurations for

ACCHASHTAG to enable on-par comparison with each of the prior work as follows.

Similar to ACCHASHTAG, the proposed method in [119] checkpoints a subset of DNN

layers to detect malicious models. Therefore, for best comparison with this work, we evaluate

ACCHASHTAG with the number of checkpoints set to the minimum value required to obtain

100% detection rate (see Figure 3.11). We call this configuration Cfg-1. The method in [111],

however, checkpoints all layers within the DNN and reports the performance as the total number

of detected bit flips. Therefore, to compare with this work, we devise Cfg-2, where the number

of checkpoints is selected such that all bit flips are detected. For Cfg-2, we set the number of

checkpoints to 7 and 8 for ResNet18 and ResNet20, respectively.

The comparison results are summarized in Table 3.4. As seen, ACCHASHTAG provides

state-of-the-art detection performance at a fraction of the storage/computation cost compared

to best prior works. Compared to WED [119], ACCHASHTAG significantly reduces the false-

positive rate and achieves 100% detection rate with FPR = 0.0%. Additionally, ACCHASHTAG

incurs 20− 400× lower storage footprint. Compared to RADAR [111], ACCHASHTAG detects

all bit flips within the model with 100% accuracy while incurring 3− 4× lower storage cost. We

further compare ACCHASHTAG runtime with RADAR [111]. We measure our runtime on an

ARM Cortex-A57 embedded CPU. For a fair comparison, we report the normalized runtimes, i.e.,

relative to the inference time of the victim DNN on the target hardware. As seen, ACCHASHTAG

achieves 175− 183× faster runtime compared to [111].

We would like to emphasize that unlike [111], ACCHASHTAG detection does not rely

on the number of detected bit flips. Therefore, the setup in Cfg-2 is purely for comparison

72

purposes. The most representative metric for evaluating ACCHASHTAG is the detection rate

corresponding to Cfg-1, as explained in Section 3.4.1, Equation (3.9).

Table 3.4. Comparison with best prior works WED [119] and RADAR [111]. Runtime is
measured on an ARM CPU and normalized by the inference time of the victim DNN.

Benchmark Work
Detection

(%)
FPR
(%)

Detection Overhead
Storage (KB) Runtime (%)

ResNet20

WED 96 12 47 N/A
RADAR 97.5 0 8.2 5.27
Cfg-1 100 0 0.5 0.01
Cfg-2 100 0 2.1 0.03

ResNet18
RADAR 96.2 0 5.6 1.83
Cfg-2 100 0 1.8 0.01

ResNet34
WED 100 4 302 N/A
Cfg-1 100 0 0.8 < 0.01

MobileNet
WED 100 6 26 N/A
Cfg-1 100 0 1.3 < 0.01

Storage and Computation Overhead

Below we provide a more detailed analysis of the storage and runtime specifications of

ACCHASHTAG detection. ACCHASHTAG storage and computation are linear in the number of

checkpoint layers: we compute and store an 8-bit secret hash per checkpoint layer. In addition,

the per-layer Pearson Pearson hash tables each incur a storage cost of 256B. The Pearson hash

tables can be reused among layers, however, here we report the maximum required storage, i.e.,

when utilizing a unique hash table per checkpoint layer. For l checkpoint layers, the storage

overhead of ACCHASHTAG is, therefore, O(257× l)B.

To showcase the efficiency of ACCHASHTAG detection, we measure the runtime on both

an embedded Cortex-A57 CPU and an FPGA. We develop and optimize the 8-bit Pearson hash

in C, which is then invoked during DNN execution to detect bit flips. We further synthesize our

FPGA cores for ACCHASHTAG on the Xilinx VCU108 development board. We utilize Vivado

High-Level Synthesis to realize our FPGA design. The FPGA accelerator operates with a clock

cycle of 2ns. As a baseline, we report the inference time of the victim DNN. For our CNN-based

benchmarks, we report the runtimes on an embedded Jetson TX2 board which includes an ARM

73

Cortex-A57 CPU and an NVIDIA Pascal embedded GPU. For the large-scale Transformer-based

benchmarks, we report their runtime on a server-grade Intel Xeon E5-2609 CPU and the Nvidia

TITAN Xp GPU. The victim DNN is implemented and executed via PyTorch library.

Table 3.5 encloses the runtime and storage of ACCHASHTAG across different benchmarks.

We report ACCHASHTAG’s storage as the percentage of the memory (in Bytes) required by the

victim DNN’s weights. The number of checkpoints is set to the minimum value required for a

100% detection rate from Figure 3.11.

As evident from Table 3.5, ACCHASHTAG delivers perfect detection performance while

incurring a negligible storage and computation cost, making it suitable for real-time embedded

DNN applications. Additionally, by leveraging our accelerated hash core on FPGA, we relieve

the host CPU of hash computation. ACCHASHTAG FPGA modules checkpoint the sensitive

layers in parallel to DNN inference, enabling 1.5-2.6× faster hash generation compared to CPU.

Table 3.5. ACCHASHTAG overhead analysis. Here, # is the number of checkpoint layers.

Type Benchmark #
DNN Inference (ms) CPU Detection FPGA Detection

CPU GPU Storage (%) Time (ms) Time (ms)

CNN

VGG11 1 1698.4 110.7 3e-3 0.009 0.003
ResNet20 2 654.8 59.4 2e-2 0.012 0.005
AlexNet 1 7957.9 240.7 4e-4 0.928 0.614
ResNet18 2 20938.8 198.5 4e-3 0.066 0.035
ResNet34 3 40870.6 229.7 3e-3 1.889 1.059
MobileNet 5 2313.6 182.2 4e-2 0.020 0.007

Transformer
ViT 3 196.9 19.1 3e-3 4.692 3.127
DeiT 1 181.3 19.5 1e-3 1.768 1.179

As discussed in Section 3.3.4, the hash computation is overlapped with the read latency

of the hash input from AXI. To balance the latency bottleneck between these two stages, we

define a design hyperparameter dubbed TILE, which corresponds to the length of the burst

reads from AXI. Figure 3.14 demonstrates the relationship between design throughput (measured

in number of hash computations per seconds) and TILE length. Using a small TILE will cause

the memory reads to become the latency bottleneck in the design. By increasing the TILE value,

we increase the compute capacity to match the AXI read latency, thereby increasing the overall

74

system throughput. We empirically found TILE = 1024 to provide a suitable balance between

AXI reads and hash computation as shown in Figure 3.14.

Figure 3.14. System throughput as a function of the design parameter TILE, i.e., the burst
length for AXI reads. Higher TILE length facilitates larger overlap between CPU-FPGA
communications and hash computation, thus increasing throughput.

3.5 Conclusion

ACCHASHTAG is a highly accurate methodology for online detection of fault-injection

attacks in DNN parameters. The core idea in ACCHASHTAG is to extract a ground-truth sig-

nature from the benign model which is then used for verification at inference time. We extract

the signatures by encoding DNN layer weights using a low-collision hash function. To mini-

mize detection overhead, we only extract the hashes from a subset of DNN layers where the

probability of attack occurrence is high. Towards this goal, ACCHASHTAG is equipped with

a novel sensitivity analysis that quantifies the vulnerability of DNN layers to bit-flip attacks.

ACCHASHTAG detection strategy provides several benefits: (1) it delivers 100% detection rate

with 0 false alarms across a variety of benchmarks. (2) The proposed detection is backed up

by provable performance guarantees that provide a lower bound on the detection rate. (3) AC-

CHASHTAG incurs negligible storage and runtime overhead, enabling accurate fault detection on

resource-constrained embedded devices. Our lightweight method and realistic threat model make

ACCHASHTAG an attractive candidate for practical deployment. Our thorough evaluations show

ACCHASHTAG’s competitive advantage in terms of attack detection and execution overhead.

75

3.6 Acknowledgements

Chapter 3 is a reprint of the material as it appears in: M. Javaheripi, J. Chang, and

F. Koushanfar, “AccHashtag: Accelerated Hashing for Detecting Fault-Injection Attacks on

Embedded Neural Networks”, in ACM Journal on Emerging Technologies in Computing Systems

(JETC), 2022. The dissertation author was the primary investigator and author of this paper.

76

Chapter 4

Ensuring DL Robustness to Backdoor
Attacks

With the growing popularity of AI-powered autonomous systems, the demand for supe-

rior intelligence has led to increasingly more complex model development processes. Training

contemporary deep learning models requires massive datasets and high-end hardware plat-

forms [87, 130]. Amid this trend, clients rely on third party databases and/or major cloud

providers to build their models. Unfortunately, outsourcing of content or computations opens up

new challenges as it extends the potential attack surface to malicious third party entities [162].

This chapter focuses on Trojan attacks [58, 121], where the malicious third party provider inserts

a hidden Trojan trigger, also dubbed a “backdoor”, inside the model during training. During

inference, the attacker can hijack the model prediction by inserting the Trojan trigger inside the

input data. Figure 4.1 illustrates examples of Neural Trojans.

Identification and mitigation of Trojans is particularly challenging for the clients since

the compromised model performs as expected on their benign data, i.e., when the Trojan is not

activated. To tackle Trojan attacks, contemporary research proposes either reverse-engineering

the trigger pattern from the model [27, 60,120, 200] or identifying the presence of a trigger at the

input [29, 36, 52]. The former class of methods require time-consuming reverse-engineering and

retraining. The latter approaches induce a high overhead on DNN inference that hinders their

applicability to embedded systems. To ensure model robustness in safety-sensitive autonomous

77

Figure 4.1. Example Trojans: (a) BadNets [58] with a sticky note and TrojanNN [121] with
(b) square and (c) watermark triggers.

systems, it is crucial to augment the models with an online Trojan mitigation strategy. To the best

of our knowledge, none of the earlier works provide the needed lightweight defense strategy.

We propose CLEANN, the first end-to-end accelerated framework that enables real-time

Trojan shield for embedded DNN applications. CLEANN’s lightweight method is devised

based on algorithm/hardware co-design; our algorithmic insights offer a highly accurate and

low-overhead method in terms of both the offline defense establishment and online execution; our

hardware accelerator enables low-latency and energy-efficient defense execution on embedded

platforms. CLEANN harvests the irregular patterns caused by Trojan triggers in the input space

and/or the latent feature-maps of the victim DNN to detect adversaries. Our method leverages

key concepts and theoretical bounds from sparse approximation [37] to learn dictionaries that

absorb the distribution of the benign data. We then utilize the reconstruction error obtained from

the sparse approximation to characterize the benign space and identify the Trojans.

To ensure applicability to various attacks and trigger patterns, CLEANN sparse recovery

acts on both frequency and spatial domains. Our proposed defense is compatible with the

challenging threat model in which the attacker has full control over the geometry, location,

and content of the Trojan trigger. The contaminated model is shipped to the client, who is

unaware of the existence of the Trojan and does not have access to any labeled data. CLEANN

countermeasure is unsupervised, meaning that no labeled training data or contaminated Trojan

sample is required to establish the defense. Notably, CLEANN is the first defense to recover the

ground-truth labels of Trojan data without performing any model training and/or fine-tuning.

78

We validate the effectiveness of CLEANN by performing extensive experiments on

various state-of-the-art Trojan attacks reported to-date. CLEANN outperforms prior art both in

terms of Trojan resiliency and algorithm execution overhead. CLEANN brings down the attack

success rate to 0% for a variety of physical [58] and complex digital [121] attacks with minimal

drop in classification accuracy. Our customized accelerated defense shows orders of magnitude

higher throughput and performance-per-watt compared to commodity hardware. In brief, the

contributions of CLEANN are as follows:

• Introducing CLEANN, the first end-to-end accelerated framework for online detection of

Neural Trojans in embedded applications.

• Constructing a novel unsupervised Trojan detection scheme based on sparse recovery and

outlier detection. The proposed lightweight defense is, to our best knowledge, the first to

enable recovering the original label of Trojan samples without model fine-tuning/training.

• Providing bounds on detection false positive rate using the theoretical ground of sparse

approximation and outlier detection.

• Devising the first customized library of Trojan shields on field-programmable gate arrays

(FPGAs) which enables high-throughput and low-energy Trojan mitigation.

4.1 Background on Trojan Attacks and Defenses

Attacks. Contemporary Trojan attacks on DNN classifiers fall under two general categories, i.e.,

physical versus digital attacks, depending on the format for the Trojan trigger. BadNets [58] is

an example attack methodology that can be realized via physical Trojans. In this attack, a subset

of the training data is poisoned with the Trojan trigger and relabeled as the attack target class. A

trigger-activated backdoor is then embedded in the model after training on the poisoned dataset.

In this attack, the Trojan trigger can be arbitrarily chosen by the attacker. As such, real-world

physical objects can be leveraged as the Trojan trigger, e.g., a sticky note on a stop sign as

79

shown in Figure 4.1-a. Alternatively, if the attacker does not have access to the training data, the

backdoor can be embedded by maliciously altering the victim model’s weights. TrojanNN [121]

attack is conducted by targeting a few neurons in the victim model and reverse-engineering a

trigger such that the selected neurons are activated. The model is then trained to predict the

attacker’s desired class once the specific pattern of targeted neurons is activated. In TrojanNN, the

attacker cannot arbitrarily choose the trigger pattern, rather the pattern is automatically derived

in a digital format, e.g., the square and watermark noise patterns in Figure 4.1-c,d. Compared

to the BadNets physical attack, TrojanNN’s complex digital triggers are harder to mitigate as

shown in prior work [27, 123].

Defenses. Prior work proposes robust learning methods that can detect malicious samples during

training [23,116,192]. However, if a DNN has already been infected, the authors of [118] suggest

pruning to remove the Trojans, but at the cost of reducing the model’s accuracy. In contrast to

these works, CLEANN assumes the user does not have access to the training data and can not

perform extensive model retraining, which renders our defense more efficient. A number of other

techniques detect backdoor attacks in DNNs by reverse-engineering the trigger. For example,

Neural Cleanse [123] can uncover Trojan triggers without access to the training data. Subsequent

work improves the efficiency [27] and quality [60] of trigger reverse-engineering. However,

these methods can struggle when dealing with more complex triggers, such as those created by

TrojanNN [121]. Instead of reverse-engineering the trigger, CLEANN analyzes the statistics of

sparse representations derived from benign samples and detects any abnormal samples during

inference. This allows us to identify even complex Trojan triggers without prior knowledge of

the attack algorithm. Furthermore, our method is more efficient as it does not require costly

reverse-engineering and can be run in real-time on embedded hardware.

Another set of prior defenses examine input data to detect the presence of Trojan triggers.

For instance, authors of [25] cluster the latent features of the infected model to identify benign

versus Trojan data. Similarly, NIC [127] compares incoming samples to benign and Trojan

latent features to detect adversaries. However, these methods require access to the poisoned

80

training data and its labels, which may not be feasible in real-world scenarios. Sentinet [29]

uses gradient information to extract critical regions, including the Trojan trigger, from the input

data. Februus [36] uses a similar approach along with a generative adversarial network (GAN) to

inpaint Trojan triggers. However, this approach requires a large number of data samples for GAN

training. STRIP [52] runs the model multiple times on each image with intentionally injected

noise to detect Trojans. Although these works have high detection accuracy, the computational

cost of multiple forward and backward passes through the DNN makes them unsuitable for

real-time execution. CLEANN, on the other hand, offers better detection accuracy with low

computational complexity and requires only a small number of benign samples, making it

suitable for real-time deployment in embedded systems.

Victim DNN

(1-)

DCT Analyzer

D
C

T

ex
tr

ac
ti

o
n

S
p

ar
se

R

ec
o

ve
ry

Feature Analyzer

S
p

ar
se

R

ec
o

ve
ry

D
im

en
si

o
n

R
es

to
ri

n
g

O
u

tl
ie

r
D

et
ec

ti
o

n

D
im

en
si

o
n

R
ed

u
ct

io
n

Input Image

U
p

sa
m

p
lin

g

O
u

tl
ie

r
D

et
ec

ti
o

n

Figure 4.2. High-level overview of CLEANN Trojan detection methodology. CLEANN detects
both digital and physical attacks using a pair of input and latent feature analyzers.

4.2 CLEANN Methodology

Figure 4.2 illustrates the high-level flow of CLEANN methodology for Trojan detection.

CLEANN comprises two core modules, dubbed the DCT and feature analyzers, specializing

in the characterization of the DNN input space and latent representations, respectively. By

aggregating the decision of the two analyzers, CLEANN is able to thwart a wide range of

physical and digital Trojan attacks.

81

1 DCT Analyzer. The DCT analyzer acts as an image preprocessing step. This module

investigates all incoming samples in the frequency domain in search for suspicious frequency

components that are anomalous in clean data. Towards this goal, we design four components

for this module as shown in Figure 4.2. First, the Discrete Cosine Transform (DCT) extraction

module transforms the input image to the frequency domain. We then perform sparse recovery

on the extracted frequency components and reconstruct the signal using a sparse approximation.

The outlier detection module uses a concentration inequality to detect anomalous reconstruction

errors and generate a binary mask with non-zero values denoting the potential Trojan-carrying

regions. The anomalous regions in the input image are then suppressed by the binary mask before

entering the victim DNN. To ensure compatible dimensions between the input image and the

binary mask, a nearest neighbor upsampling component is also included inside the DCT analyzer.

Frequency analysis is particularly useful for detecting digital Trojans. However, physical attacks,

e.g., the sticky note in Figure 4.2, might evade frequency-domain detection.

2 Feature Analyzer. This module investigates patterns in the latent features extracted by the

victim DNN to find abnormal structures. The feature analyzer is placed at the penultimate layer

inside the victim DNN. This choice of location allows us to leverage all the visual information

extracted from the input image by the DNN for making the classification decision. The sparse

recovery module in the feature analyzer serves two purposes: (i) denoising input features for use

in the remaining layers of the victim DNN, (ii) anomaly detection on the reconstruction errors

for distinguishing Trojans. Notably, the first property allows CLEANN to recover the ground-

truth labels for Trojan samples by effective removal of Trojan triggers. To ensure scalability to

various output dimensions, we include a dimension reduction module that adaptively adjusts

the feature size while maximally preserving the informative content of the signals. To allow the

reconstructed output to flow in the remaining layers of the DNN, a twin dimension restoring layer

recovers the original tensor shape. The extracted distributions from latent layers successfully

detect attacks in the physical domain.

82

4.2.1 Defense Construction and Execution

CLEANN consists of two main phases to mitigate Trojan attacks:

▶ Offline Preprocessing. During this phase, we learn the parameters for dictionary-based

sparse recovery and outlier detection modules by leveraging a small set of unlabeled benign

samples. Our methodology is entirely unsupervised, meaning no Trojan data is involved in

defense construction. This, in turn, ensures applicability to a wide range of Trojan patterns and

attacks. CLEANN pre-processing phase is low-complexity as it does not involve any training

or fine-tuning of the victim DNN. We only perform this step once for each (model, dataset)

pair. The learned analyzer modules can then be transferred to a variety of attacks without any

fine-tuning overhead.

▶ Online Execution. CLEANN methodology is devised based on light-weight solutions to

enable efficient adoption in embedded systems. We provide a hardware-accelerated pipeline for

end-to-end execution of CLEANN where the analyzer modules are either integrated inside the

victim DNN or running in parallel with it. The DCT extraction and upsampling components are

implemented as an additional convolution layer at the input of the victim DNN. We devise a

customized library for implementing the sparse recovery, outlier detection, and dimensionality

reduction and restoring modules on FPGA. These FPGA-accelerated modules are executed

synchronously with the victim DNN to raise alarm flags for Trojans.

4.2.2 Threat Model

In our threat model, we assume the client has purchased the trained DNN model infected

with Trojans from a malicious party. Accordingly, we consider the following constraints on our

defense strategy: (1) The client has access to model weights but not the training data. (2) The

client has access to clean test data but they are unlabeled. (3) The client is not aware whether

or not the model is infected with Trojans. (4) No prior knowledge is available about possible

Trojan trigger shapes and/or patterns.

83

To construct the defense, we assume access to a small corpus of unlabeled data1. This is

a realistic assumption as access to small amounts of data is possible via online resources. For

instance, publicly available repositories enable data generation through generative networks

for Faces2. We consider the most generic and challenging form of Trojan attacks in which the

attacker can control the trigger size, shape, and content. CLEANN mitigation is made possible in

such scenario by constructing the defense using benign unlabeled data.

4.3 CLEANN Components

4.3.1 DCT extraction

In natural images, most of the energy is contained in low frequencies. However, this

property does not necessarily hold true for the Trojan triggers. Figure 4.3 shows the visualization

of the frequency components for a Trojan sample, normalized by the magnitude of frequency

components for benign data. Here, the magnitudes are averaged across 100, 000 image patches

and the Trojan samples contain a watermark trigger generated by [121]. As seen, Trojans have

much larger components in the high-frequency domain compared to benign samples.

DCT Component #

Figure 4.3. Average magnitude of DCT components for Trojan samples, normalized by benign
data, shown in the three RGB channels. Trojans contain abnormally larger amounts of high-
frequency components (highlighted regions).

To perform frequency analysis, we divide each input image into non-overlapping patches3

1less than 1% of the training set size across all of our evaluations
2http://www.whichfaceisreal.com/index.php
3We use P = 4 for small image benchmarks where input image dimensions are less than 32 pixels. For larger

input image sizes we use P = 8.

84

http://www.whichfaceisreal.com/index.php

of size P × P . We transform each image patch to another patch of same size in the frequency

domain using DCT. Equation (4.1) encloses the formula used to compute the DCT transformation

Fu,v of a P × P patch.

Fu,v = Cu,v

P−1∑
i=0

P−1∑
j=0

xi,j cos

[
u π

P

(
i+

1

2

)]
cos

[
v π

P

(
j +

1

2

)]
(4.1)

Here, xi,j is the input pixel located at the (i, j) coordinate and Cu,v is a scalar constant

that depends on the frequency coordinates. The extracted 2D DCT components Fu,v are then

sorted in decreasing order in terms of the information they carry following a zigzag pattern [167].

We represent the DCT transform as a group convolution with kernel size P and cin groups

where cin = 3 and 1 for RGB and gray-scale images, respectively. The kernel weights of the

convolution layer are initialized with the DCT basis coefficients which are pre-computed based

on Equation (4.1). The stride of the convolution is set to P to account for image patching. Such

representation allows for an efficient implementation of the DCT Analyzer, which can be easily

integrated into the architecture of the victim model as a pre-processing layer.

4.3.2 Sparse Recovery

Sparse coding is referred to learning methods where the goal is to efficiently represent the

data using sets of over-complete bases. Given a matrix of (n) data observations X ∈ Rl×n, sparse

coding extracts a dictionary of normalized basis vectors D ∈ Rl×m and the sparse representation

matrix V ∈ Rm×n. Formally, the sparse coding objective can be written as:

min
D,V

fD(X) = min
D,V
∥X −D.V ∥2 + γ∥V ∥0 (4.2)

where γ is a regularization coefficient that promotes sparsity in the coded representation V .

Dictionary learning algorithms provide solutions to the above optimization problem by find-

85

ing a dictionary D that minimizes Ex∼XfD(x), where X is the distribution over the inputs.

CLEANN extracts D by performing dictionary learning over legitimate (benign) data. The

out-of-distribution Trojan samples are thus expected to show a high reconstruction error, whereas

benign samples will be accurately reconstructed with small error.

Figure 4.4 illustrates this behavior in an example 2D space. The light-blue dots represent

the distribution of benign samples; the two solid arrows d⃗1 and d⃗2 are the dictionary atoms and

only one of them is used for sparse reconstruction ˜⃗x. As seen, the magnitude of the reconstruction

error on the outlier sample x⃗2 is larger than that of regular data x⃗1, i.e., ∥x⃗2−˜⃗x2∥F >> ∥x⃗1−˜⃗x1∥F

where ∥ · ∥F is the Frobenius norm.

While the above simple illustration shows the effectiveness of dictionary learning in 2

dimensions, a similar behavior is observed when generalizing sparse coding to higher dimensions.

For a dictionary trained on n samples x ∼ X , there exist theoretical bounds on the generalization

error for unseen samples drawn from the same distribution X . Let us denote the average

reconstruction error over the set of n observed samples by Eo. The generalization error of the

dictionary ED(·) on unseen samples xu ∼ X is bounded by ED(xu) ≤ Eo + δ. Vainsencher et

al. [195] prove that the generalization error δ for a λ-sparse representation is O(
√

ml ln(nλ)/n)

under some orthogonality assumptions for the dictionary. CLEANN dictionaries are devised to

minimize reconstruction error on benign samples. We therefore carefully tune the dictionary size

m and sparsity level λ to ensure a low reconstruction error on the data at hand (Eo) as well as a

low error bound δ.

▶ Data. We apply sparse recovery on two data subsets extracted from a small corpus of randomly

selected benign samples.

1. At the input of the neural network (Section 4.3.1), each column of matrix X is the DCT of a

single patch in the input image. For instance, for an 8× 8, DCT window, the dimensionality

would be l = 3× 64 (64 DCT coefficients per RGB channel).

2. At the latent space, each column of X represents a flattened feature-map with reduced

86

Figure 4.4. Illustration of sparse reconstruction for regular data (green circle) and out-of-
distribution samples (red circle).

dimensionality.

▶ Dictionary Learning. We use an adaptive sampling distribution based on the reconstruction

error of X , dubbed Column Selection-based Sparse Decomposition (CSSD) [138] for learning

the dicrionaries. This algorithm initializes D by a small random subset of X and then iteratively

adds columns to D; the probability of a data sample being appended at each step is proportional

to its reconstruction error with the current column set. Formally, the probability of the i-th

sample xi being selected at the (t+ 1)-th iteration is given by:

p(i) ∝ ∥DtD
+
t xi − xi∥2
∥xi∥2

(4.3)

where Dt corresponds to the columns of the dictionary selected up to the t-th iteration and

D+
t = (DT

t Dt)
−1DT

t is the pseudo inverse of Dt. The intuition behind Equation (4.3) is to give

a higher chance of selection to those elements of X with higher reconstruction errors. This

approach allows us to maximize the amount of embedded information from the data distribution

inside D. While more sophisticated algorithms can be used [3, 4, 43], our empirical evaluations

show that CSSD can sufficiently express the data distribution with minimal generalization error.

▶ Reconstruction Algorithm. We use Orthogonal Matching Pursuit (OMP) [33] for sparse

recovery as summarized in Algorithm 1 in Chapter 2. OMP iteratively finds non-zero elements

to construct the sparse representation V . The added non-zero element at each iteration is chosen

87

such that it minimizes the L2 norm of the remaining residual error ∥ri−1 − Λi · V ∥2 which can

be solved using Least-square (LS) optimization. The subset of dictionary columns (Λi) that

contribute to the sparse recovery is also expanded over iterations. Finally, the reconstruction can

be obtained as ˜⃗x = Λk · V where k is the sparsity level.

▶ Distribution Learning with Few Samples. An “over-complete” dictionary is necessary to

ensure representation sparsity [138] and effective separation of outlier and benign samples. The

term over-complete is used when the number of columns in the dictionary is higher than the

data dimensionality (m >> l). In real-world DNN applications, however, the number of data

samples (m) is often small while the feature-map dimensionality (l) is large. To tackle this, we

apply Singular Value Decomposition on the high-dimensional feature-maps to reduce l. Inverse

SVD can then be applied on the reconstructed output to recover the original dimensionality. We

choose the SVD rank such that more than 90% of the original energy is preserved.

4.3.3 Detection

Figure 4.5-a, b shows example Trojan data together and the corresponding reconstruction

error heat maps. As seen, areas of the image convered with the Trojan trigger have relatively

higher reconstruction error compared to the rest of the benign regions. Inspired by this observa-

tion, We use the multivariate extension of Chebyshev’s inequality [182] to capture the behavior

of benign data and mark outliers as Trojans. Let us denote by {x⃗i}Ni=1 the reconstruction errors

obtained from benign data using the sparse recovery in Section 4.3.2. Given the empirical mean

µ⃗ and the covariance Σ of the observed error values, the distance of new error values from the

(benign) distribution can be formulated as:

dist(x⃗) = (x⃗− µ⃗)Σ−1(x⃗− µ⃗)T (4.4)

88

The Chebyshev’s inequality provides an upper bound on the probability of the above distance

becoming greater than an arbitrary value ϵ as follows:

P(dist ≥ ϵ2) ≤ min

{
1,

d(N2 − 1 +Nϵ2)

N2ϵ2

}
(4.5)

Using the above inequality, we can deduce that samples with a large enough ϵ are out-

of-distribution, i.e., Trojan. Figure 4.5-c visualizes the binary output of the outlier detection

where zeros and ones denote in-distribution and outlier values of the reconstruction error,

respectively. As seen, parts of the input image that are covered with the Trojan trigger are

correctly distinguished from benign regions.

Figure 4.5. (a) Example Trojan data with watermark and square triggers [121], (b) reconstruction
error heatmap, and (c) output mask from the outlier detection module.

An incoming sample I ∈ Rd×K×K is labeled as Trojan if at least one of its enclosing

components Ik ∈ Rd is categorized as an outlier using Equation (4.5) and a given ϵ threshold.

The probability of a sample being categorized as Trojan is therefore:

PI(Trojan) = 1−
K×K∏
k=1

PIk(Benign) (4.6)

Using the Chebyshev’s inequality in Equation (4.5), the probability of a benign compo-

nent being correctly categorized as benign for a given ϵ tends to PIk(Benign|Ik ∈ Benign) ≥

1− d
ϵ2

as N →∞. The probability of the corresponding full sample I being wrongfully labeled

89

as Trojan, i.e., the false positive rate (FPR), is thus upper-bounded by:

FPR = PI(Trojan|I ∈ Benign) ≤ 1−
(
1− d

ϵ2

)K×K

(4.7)

We can therefore determine the parameter ϵ based on any target FPR:

sup
ϵ

FPR = 1−
(
1− d

ϵ2

)K×K

≤ FPRtarget (4.8)

⇒ d

ϵ2
≤ 1− K×K

√
1− FPRtarget (4.9)

4.4 CLEANN Hardware

In the following, we delineate the hardware architecture of CLEANN components that

enable a high throughput and low energy execution.

▶ Matrix-Vector Multiplication Core. Many of the fundamental operations performed in

CLEANN include matrix-vector multiplication (MVM). In particular, the outlier detection module

requires two MVMs to calculate the distance function shown in Equation (4.4). Additionally, the

dimensionality reduction and restoring components in the feature analyzer are realized using

MVMs with weight matrices W ∈ Rl×r and W ∈ Rr×l, respectively, where l is the dimensionality

of the input and r is the SVD rank. We devise an FPGA core for MVM and vector addition,

realized using DSP blocks with Multiplication Accumulation (MAC) functionality [84, 169].

Figure 4.6 presents the high-level schematic of CLEANN vector-matrix multiplication.

We provide two levels of parallelism in our design controlled by parameters P and SIMD

in figure (4.6). This approach allows our design to achieve maximum resource utilization and

throughput on various FPGA platforms. The weight matrix is divided into subsets of length P

and fed into parallel processing elements (PEs). These subsets are read from DRAM using a

Ping-Pong weight buffer to overlap memory reads with PE computations. At each cycle, PEs

perform partial dot-product on the fetched weight and input partitions of length SIMD; the

90

same input partition is shared across all PEs. We devise a tree-based reduction module and an

accumulator to enable summation of partial dot-product outputs.

Weight Matrix

Chunk 2

Chunk r/PE

Input Vector

A
ccu

m
u

lato
r

Tree A
d

d
er

PE core

PE #2

PE #P

PE #1
P

SIMD

SIMD

Figure 4.6. Schematic of CLEANN MVM core with its internal parallelization levels.

▶ Sparse Recovery Core. The sparse recovery module performs OMP to reconstruct input

signals. We provide a reconfigurable and scalable OMP core on FPGA to accelerate sparse

recovery. OMP relies on sequential execution of three steps: (1) The dictionary column with

the maximum dot-product with the current residual vector is selected. (2) An LS optimization

step generates the sparse representation of the current residual vector with the columns of the

dictionary selected so far. (3) The residual is updated based on the new sparse representation and

the selected dictionary columns.

We utilize CLEANN MVM core to implement the first step above. For the second step, we

implement the LS optimization using a QR factorization of the dictionary matrix. We leverage

the modified Gram Schmidt (MGS) method [55] to perform the factorization. Since the dictionary

matrix expands by one column each iteration, it is not necessary to recompute the Q and R

matrices very time. Instead, we iteratively form the Q and R matrices as outlined in Algorithm 2

of Chapter 2 and compute the residual update using Equation (2.12). Due to the low memory

footprint of CLEANN components, we store all required data in the available on-chip Block

RAMs. By eliminating the overhead of external memory access, CLEANN enjoys a low latency

and high power efficiency.

91

4.5 Experiments

We evaluate CLEANN on three visual classification datasets of varying size and com-

plexity, namely, MNIST [107] for handwritten digits, GTSRB [181] for road signs, and VG-

GFace [150] for face data. The number of classes for each dataset is 10, 43, and 2622, respectively.

We corroborate CLEANN effectiveness against variations of two available state-of-the-art Neural

Trojan attacks. In what follows, we provide detailed performance analysis and comparisons with

prior art. We further demonstrate CLEANN accelerated execution on embedded hardware.

4.5.1 Attack Configuration

Throughout the experiments, we consider input-agnostic Trojans where adding the

trigger to any image causes misclassification to the attack target class. Table 4.1 summarizes the

evaluated benchmarks along with their corresponding Trojan attacks and triggers.

▶ BadNets. We implement the BadNets [58] attack with various triggers as an example of a

realistic physical attacks. The injected Trojans include a white square and a Firefox logo placed

at the bottom right corner of the input image. We embed the backdoor by injecting ∼ 10%

poisoned data samples during training.

▶ TrojanNN. We evaluate CLEANN against TrojanNN [121] as a digital attack with complex

triggers. The attack is implemented using the open-source models shared by TrojanNN authors4.

We perform experiments with two variants of TrojanNN triggers, namely, square and watermark,

crafted for the VGGFace dataset.

Table 4.1. Evaluated datasets and attack algorithms.

Dataset Input Size Architecture Attack Trigger
MNIST 1x28x28 2CONV, 2MP, 2FC BadNets square

GTSRB 3x32x32 6CONV, 3MP, 2FC BadNets
square
Firefox

VGGFace 3x224x224 13CONV, 5MP, 3FC TrojanNN
square

watermark

4https://github.com/PurduePAML/TrojanNN

92

https://github.com/PurduePAML/TrojanNN

4.5.2 Detection Performance

We apply CLEANN Trojan mitigation at the input and latent space of infected DNNs. To

create the defense, we separate 500, 430, and 2622 clean samples from MNIST, GTSRB, and

VGGFace test sets, respectively. The aforementioned size for the benign dataset corresponds to

1% of the training data size for MNIST and GTSRB and 0.1% VGGFace training data. Such

low data size requirements provide a competitive advantage for CLEANN defense in real-world

scenarios. We summarize other defense parameters for our evaluated benchmarks in Table 4.2.

These parameters are selected to maintain a high classification accuracy over the benign data.

Table 4.2. Parameters of CLEANN modules for various datasets. P : DCT windows size, l:
feature size for sparse recovery, m : number of dictionary columns for sparse recovery, λ:
sparsity parameter in sparse recovery, ϵ2: distance threshold for outlier detection.

Dataset Trigger Input Analyzer Feature Analyzer
P l m λ ϵ2 l m λ ϵ2

MNIST Square 4 48 1000 5 5× 10−4 279 500 80 2× 10−3

GTSRB Square
4 48 1000 5 5× 10−4 85 420

80 3× 10−3

FireFox 50 1× 10−2

VGGFace Square
8 192 1000 5

5× 10−4

520 2622
80 1× 10−4

Watermark 8× 10−4 80 1× 10−4

We evaluate CLEANN Trojan resiliency on physical and digital attacks in Table 4.3.

Specifically, under “Defended Model”, we evaluate the drop in clean data accuracy (ACC↓), the

attack success rate (ASR), and Trojan ground-truth label recovery (TGR). In addition to our

results, we include prior art performance in terms of the above-mentioned criteria. On MNIST,

CLEANN achieves 0% ASR, with only 0.1% drop in clean data accuracy, outperforming the

prior art. For GTSRB, CLEANN achieves an ASR of 0% and a lower drop of accuracy compared

to all prior work, except for Deep Inspect, which suffers from a much higher ASR of 8.8%.

On digital attacks, CLEANN achieves 0.0% ASR with only 0.8% and 2.0% degradation

of accuracy for square and watermark shapes. The watermark trigger covers a large area of the

input image, obstructing the critical features. As such, while CLEANN detects the Trojan with

high success, it shows a lower TGR compared to our other triggers. Note that Neural Cleanse and

93

Deep Inspect perform DNN training on synthetic datasets achieved with model inversion [48].

As a result, their post-defense accuracy is not directly comparable with CLEANN, which does

not perform DNN retraining. We emphasize that while such retraining contributes to accuracy, it

may not be feasible in real-world applications.

Table 4.3. Evaluation of CLEANN on various physical and digital attacks. Comparisons with
state-of-the-art prior works, i.e., Neural Cleanse(NC) [200], Deep Inspect (DI) [27], Februus [36],
and SentiNet [29] are provided where applicable.

Dataset Trigger Work Retrain Infected Model Defended Model
ACC-C ASR ACC↓ ASR TGR

MNIST
(Physical
Attack)

Square
(4× 4)

NC yes 98.5 99.9 0.8 0.6 NA
DI yes 98.8 100.0 0.7 8.8 NA

CLEANN no 99.3 100.0 0.1 0.0 98.7

GTSRB
(Physical
Attack)

Square
(4× 4)

NC yes 96.5 97.4 3.6 0.1 NA
DI yes 96.1 98.9 -1.0 8.8 NA

Februus yes∗ 96.8 100 1.2 0.0 96.5
CLEANN no 96.5 99.4 0.0 0.0 94.7

Firefox
(6× 6)

CLEANN no 92.6 99.8 0.4 1.7 83.5

VGGFACE
(Digital
Attack)

Square
(59× 59)

NC yes 70.8 99.9 -8.4 3.7 NA
DI yes 70.8 99.9 0.7 9.7 NA

SentiNet‡ no NA 96.5 NA 0.8 NA
CLEANN no 74.9 93.52 0.8 0.0 70.1

Watermark
NC yes 71.4 97.60 -7.4 0.0 NA
DI yes 71.4 97.60 0.5 8.9 NA

CLEANN no 74.9 58.6 2.0 0.0 41.38

∗ Februus performs GAN training. † SentiNet only reports results on LFW [78] dataset.

▶ Sensitivity to Trigger Size. We perform experiments on the GTSRB dataset with a square

Trojan trigger and change the trigger size such that it covers between ∼ 0.4% to ∼ 14% of

the input image area. The size range is chosen to ensure that the corresponding triggers are

viable in real settings and provide a high ASR. We summarize the obtained results in Figure 4.7.

CLEANN significantly reduces the ASR while enabling recovery of ground-truth labels with

a high accuracy across all trigger sizes. This is expected since CLEANN does not rely on the

trigger size to construct the defense. For average sized Trojans, CLEANN successfully detects

the existence of triggers and reduces the ASR to less than 1%. For larger trigger sizes, the TGR

is relatively lower since the Trojan occludes the main objects in the image.

94

Figure 4.7. Analysis of CLEANN sensitivity to Trojan trigger size.

▶ Offline Preprocessing Overhead. The preparation of CLEANN defensive modules consists

of the following steps:

• DCT extraction and dictionary leaning on benign inputs.

• Computing µ⃗ and Σ for input outlier detection.

• Computing SVD and dictionary learning at latent feature maps.

• Computing µ⃗ and Σ for latent outlier detection.

In practice, the above computation incurs negligible runtime compared to DNN training. We

implement the above steps in PyTorch and measure the runtime on an NVIDIA TITAN Xp GPU.

For our GTSRB benchmark, the above operations require 0.06, 0.19, 10.47, and 0.1 seconds,

respectively. The defense construction time is therefore ∼ 11 seconds which is ∼ 1.8% of the

time required to train the victim DNN on this benchmark. For the more complex VGGFace

dataset, the above operations require 1.05, 0.54, 48.3, and 1.2 seconds, respectively, resulting in

a total of ∼ 51 seconds for defense preparation.

4.5.3 Hardware performance

We implement the proposed Trojan defense strategy on various hardware platforms and

compare the performance of CLEANN components. The evaluated platforms include server-

grade CPUs and GPUs, embedded CPUs and GPUs, and FPGA. We base our comparisons on

95

performance-per-Watt defined as the throughput over the total power consumed by the system.

This measure effectively encapsulates two major performance metrics for embedded applications.

Throughout this section, we will target our study on the GTSRB benchmark but similar trends

are observed for other datasets.

▶ Performance on General Purpose Hardware. We provide an optimized software library for

CLEANN defense components in Python. In order to benefit from highly optimized backend

compilers for tensor operations on CPU and GPU, our codes are developed on top of the PyTorch

deep learning library. Our provided software library can be readily instantiated within PyTorch

API to enable simultaneous DNN execution and Trojan defense. We implement our defense

pipeline on the Jetson TX2 embedded development board running in CPU-GPU and CPU-only

modes. We further run the defense on a server-grade Intel Xeon E5 CPU and an NVIDIA TITAN

Xp GPU. The overall achieved defense throughput with a batch size of 1 ranges from 11 fps on

the embedded CPU up to 28 fps on the server GPU.

Figure 4.8 illustrates the runtime breakdown for various components of CLEANN running

on each platform. Here, the sparse recovery and outlier detection modules are abbreviated as SR

and OLD and the prefixes D- and F- correspond to the DCT and feature analyzers, respectively.

The experiments are performed using a batch size of 1 to resemble real-world applications and

runtimes are averaged across 100 runs. For each platform, we normalize the runtime of each

component by the total defense execution time for one sample. As seen, the bulk of defense

runtime belongs to the sparse recovery module. This is due to the inherently sequential nature

of the OMP algorithm performed inside this module. CPU and GPU platforms are designed to

excel in massively parallel operations while this does not hold for OMP. This motivates us to

design specialized hardware to accelerate the execution of CLEANN components on FPGA.

▶ Performance on Customized Accelerator. We implement CLEANN components on FPGA

using the developed sparse recovery and MVM cores as the basic blocks. The design is developed

in Vivado High-Level Synthesis and synthesized in Vivado Design Suite for the Xilinx UltraScale

VCU108 board. Power consumption is estimated during synthesis with Vivado Design Suite.

96

Figure 4.8. Latency breakdown of CLEANN components running on embedded and high-end
CPUs (left) and GPUs (right).

Finally, a comprehensive timing and resource utilization analysis is performed. To maximize

throughput, we tuned the parallelism factors in the MVM modules to the highest value such that

the design fits within the available resources.

Figure 4.9 demonstrates the breakdown of execution cycles for CLEANN components.

As seen, the sequential execution of the sparse recovery core accounts for the majority of

computation cycles. Our FPGA-based sparse recovery core enjoys up to 10× and 18× faster

execution, respectively, compared to their CPU and GPU counterparts. This is enabled by

pipelined execution, fine-grained optimizations to data access patterns, and parallel computation.

Figure 4.9. Cycle-count breakdown for running CLEANN components on FPGA.

We compare the performance-per-Watt and throughput of CLEANN on different hard-

ware platforms in Figure 4.10. The performance-per-watt numbers are normalized by TITAN Xp

and the throughput numbers are normalized by ARM Cortex-A57. As seen, the power-efficient

implementation of CLEANN on FPGA not only enjoys a high throughput, but it also signifi-

97

cantly increases performance-per-watt compared to commodity hardware. Note that due to the

lightweight nature of CLEANN defense strategy, the server-grade GPU performs poorly in terms

of performance-per-watt compared to other platforms due to under-utilization and excessive

power consumption.

Figure 4.10. (a) Performance-per-Watt and (b) throughput across hardware platforms. Reported
values for performance per-watt are normalized by TITAN Xp and throughput values are normal-
ized by ARM Cortex-A57.

4.6 Conclusion

This chapter presents CLEANN, an end-to-end framework for online accelerated defense

against Neural Trojans. The proposed defense strategy offers several intriguing properties:

(1) The defense construction is entirely unsupervised and sample efficient, i.e., it does not

require any labeled data and is established using a small clean dataset. (2) It is the first work

to recover the original label of Trojan data without need for any fine-tuning or model training.

(3) CLEANN provides theoretical bounds on the false positive rate. (4) The framework is

devised based on algorithm/hardware co-design to enable accurate Trojan detection on resource-

constrained embedded devices. We consider a challenging threat model where the attacker can

use Trojan triggers with arbitrary shapes and patterns while no knowledge about the attack is

available to the client. CLEANN light-weight defense and realistic threat model makes it an

attractive candidate for practical deployment. Our extensive evaluations corroborate CLEANN’s

competitive advantage in terms of attack resiliency and execution overhead.

98

4.7 Acknowledgment

Chapter 4 is a partial reprint of the material as it appears in: M. Javaheripi, M. Samragh,

G. Fields, T. Javidi, and F. Koushanfar, “CleaNN: Accelerated Trojan Shield for Embedded

Neural Networks”, in IEEE/ACM International Conference On Computer Aided Design (ICCAD),

2020. The dissertation author and Mohammad Samragh made equal contributions to this work.

99

Chapter 5

Improving Training Convergence via Ar-
chitectural Modifications

DL models are increasingly popular for various automated learning tasks, particularly in

visual computing applications. Recently, there has been a shift to incorporate DL training and

execution on smart devices rather than offloading the computations to cloud-based servers. This

transition is motivated by the compelling properties of on-device computation, e.g., preserving

user data privacy and eliminating the need for continuous network connection. A standing

challenge for on-device intelligence is the limited resources available on embedded devices that

slow down DL execution compared to the cloud. The constraints of the embedded environment

are specially critical for lengthy DL training. Contemporary DL models require high number of

training iterations to converge, hindering their applicability to on-device learning. In this work,

we focus on reducing the required training iterations for convergence, thereby paving the way

for on-device learning applications such as federated learning and (local) personalization.

The literature in Neural Architecture Search (NAS) is primarily focused on generating

compact and accurate DNNs for inference. To increase the search flexibility and reach a higher

accuracy, a recent body of work in NAS explores the use of irregular wirings, aka bypass

connections [77, 209, 213, 222]. These bypasses connect (non-consecutive) layers in the DL

architecture that would otherwise be disconnected in a traditional DNN. While prior work in

NAS can reduce the computational complexity of DNN inference, there has been little focus on

100

the training cost of the obtained DNNs for reaching their target accuracy. To enable on-device

learning, we study irregular network wirings through the lens of DL training speed.

We propose a novel methodology that transforms the topology of conventional DNNs

such that they reach an optimal cross-layer connectivity. This, in turn, significantly reduces the

number of training iterations required for reaching a target accuracy. This transformation is

based on our observation that the pertinent connectivity pattern highly impacts training speed

and convergence. To ensure computational efficiency, our architectural modification takes place

prior to training. Thus, the incorporated connectivity measure must be independent of network

gradients/loss and training data. Towards this goal, we view DNNs as graphs and revisit Small-

World Networks (SWNs) [206] from graph theory to transform DNNs into highly-connected

small-world topologies. Watts-Strogatz SWNs [206] are widely used in the analysis of complex

graphs; Due to SWNs’ specific connection pattern, these structures provide theoretical guarantees

for considerably decreased consensus times [146, 185, 228].

Figure 5.1. Schematic representation of the connections within a small-world DNN. An arbitrary
neuron’s output is connected to selected neurons in the proceeding layers via sparse connections
(convolutions) denoted by S-CONV.

Our network modification algorithm takes as input a conventional DNN architecture and

enforces the small-world property on its topology to generate a new network, called SWANN. We

leverage a quantitative metric for small-worldness and devise a customized rewiring algorithm.

Our algorithm restructures the inter-layer connections in the input DNN to find a topology that

balances regularity and randomness, which is the key characteristic of SWNs [206]. Small-

world property in DNNs translates to an architecture where all layers are interlinked via sparse

101

connections, an example of which is shown in Figure 5.1.

SWANNs have similar quality of prediction and number of trainable parameters as their

baseline feed-forward architectures, but due to the added sparse links and the optimal SWN

connectivity, they warrant better data flow. In summary, our architecture modification has three

main properties: (i) It removes non-critical connections. (ii) It increases the degrees of freedom

during training, allowing faster convergence. (iii) It provides customized data paths in the model

for better cross-layer information propagation.

We conduct comprehensive experiments on various network architectures and showcase

SWANNs’ performance on popular image classification benchmarks including MNIST, CIFAR10,

CIFAR100, and ImageNet. Our small-world DNNs achieve an average of 2.1-fold reduction

in training iterations required to achieve comparable test accuracy as the baseline models. We

further compare SWANN with the DenseNet model and show that with 10× fewer parameters,

SWANNs demonstrate identical performance during training. Finally, as a popular application of

on-device learning, we benchmark SWANN in the federated learning scenario where multiple

embedded devices collaboratively train a global model on their local datasets. In the federated

scenario, SWANN reduces the number of (global) training iterations by 1.4× on average, thereby

reducing both the computation and communication in decentralized learning.

5.1 Background on Small-World Networks

Watts and Strogatz [206] observed that real-world complex networks, e.g., the anatomical

connections in the brain and the neural network of animals, cannot be modeled using existing

regular or random graph classes. As such, they introduced the new category of small-world

networks. Members of the small-world class have two main characteristics: 1) They have a

small average pairwise-distance between graph nodes. 2) Nodes within the graph exhibit a

relatively high (local) clustered structure. The first property is mainly associated with random

graphs while the second property is prominent in regular graphs. SWNs have shown significantly

102

enhanced signal propagation speed, consensus, synchronization, and computational capability

[10, 103, 105, 183, 228].

Randomness is introduced into a regular graph structure by iterative removal and addition

of edges with probability, p, in order to construct an SWN. Figure 5.2 demonstrates the transition

between a regular graph and the corresponding random graph as the rewiring probability increases

from 0 to 1. Intermediate values of p interpolate between complete regularity and randomness to

generate an SWN.

Figure 5.2. Transition of a regular graph to a completely random network. Intermediate values of
the random rewiring probability, p, generate SWNs, i.e., clustered structures where any arbitrary
node pair is connected by a few edges.

5.2 Related work

A line of research has focused on the addition of bypass connections to the DNN

architecture to enhance inter-layer information flow and enable feature reuse. Perhaps the pioneer

work is ResNet [66], which uses identity links (skip connections) to connect non-sequential

layers. ResNet’s skip connections follow a modular structure which results in redundancies

since not all identity links are necessary as shown by [79]. DenseNets [77] are another example

that use skip connections to connect each layer to all its preceding layers in a block. This is

done by concatenating previous layers’ feature-maps and using them as the input. Another

work [76] argues that such dense connectivity incurs redundancies since earlier features might

not be required in later layers. The authors of [76] prune the redundancies to generate a more

103

efficient architecture for the DNN inference phase.

Figure 5.3 illustrates the connection pattern in a ResNet, DenseNet, and SWANN archi-

tecture. In contrast to these two models, SWANN is not structured upon fixed building blocks

and therefore can adapt to any given network architecture. Different from DenseNets which only

accommodate fully dense connections, SWANNs leverage customized sparse convolutions. This

sparsity enables selective connectivity between pairs of layers that enhance convergence speed

while ensuring a low redundancy. Using sparse connections is explored in [99] where a trained

DNN is pruned in a post-processing phase to reduce parameter count and improve inference

performance. However, the pruning does not directly incorporate small-world characteristics

and there is no analysis to show that the pruned networks are small-world. Additionally, the

focus of [99] is on the inference phase and the pruning is performed after the DNN is trained.

Rather, our approach is performed prior to DNN training with the goal of improving convergence.

Finally, since the number of parameters is reduced in [99], the accuracy degrades compared to

the baseline DNN. SWANN keeps the total number of parameters constant when converting the

DNN to a small-world, thereby maintaining the accuracy.

Recent literature in NAS suggests exploration of irregularly wired DNN topologies [158,

186] and random connections [209, 213, 222] to obtain higher accuracies. Irregularly wired

DNNs deviate from the regular DNN topology where the output of each layer is only fed to its

immediately preceding layer. From the accuracy and computation perspective, the irregularly

wired models have been shown to outperform regular DNNs for inference. The accuracy gains of

random DNN connections has also been recently explored from a theoretical standpoint in [12].

Prior work also explores customized compilers and scheduling schemes for the irregularly wired

networks to boost their execution performance on edge devices [5].

Perhaps the first investigation of SWNs in the context of machine learning was performed

in [175], where small-scale Multilayer Perceptrons (MLPs) are transformed to a small-world

graph. The paper shows that the small-world graph achieve lower error after the same total

number of training iterations. Similarly, [44] transforms simple MLPs to small-world graphs and

104

Figure 5.3. Information flow within a ResNet (top), DenseNet (middle), and SWANN (bottom).
Here, CONV, BN, ReLU denote a convolution kernel, batch normalization, and non-linear
activation, respectively, and our customized sparse convolutions are shown as S-CONV. Normal
inter-layer connections are shown with bold lines and dotted lines are SWANNs’ selective links.

study the accuracy benefits for diagnosis of diabetes. SWANN substantially differs from these

works as our solution is applicable to contemporary convolutional neural networks containing

various linear kernels and irregular long/short-range connections. Additionally, [44, 175] use a

different mathematical model and metric for small-worldness. Authors of [211] randomly rewire

MLPs to improve their function approximation capabilities. While the models are generated

using random rewiring, there is no systematic choice of rewiring probability and no analysis of

small-world characteristics for the developed models. Follow-up work studied the properties

of randomly rewired DNNs [12, 213, 222] on classification accuracy, however, they did not

specifically focus on small-world characteristics.

In summary, prior work mainly focuses on accuracy gains of long-range connections

with little attention to the training process. To the best of our knowledge, SWANN is the first

work to intertwine the small-world property with DNNs and examine the acquired networks in

terms of both training convergence speed and accuracy.

105

5.3 SWANN: Small-World DNNs

We propose to restructure the inter-layer connections in a DL model such that its topology

falls into the small-world category while the total number of parameters in the network is held

constant. Throughout the text, we use the terms DL model and DNN interchangeably but

emphasize that our approach is easily applicable to models without convolution layers, e.g.,

Multi-Layer Perceptrons (MLPs).

In the following, we first elaborate on the small-world criteria and introduce methods

to distinguish SWNs from other topologies (Sec. 5.3.1). We then explain our conversion of an

arbitrary DNN into its equivalent SWANN (Sec. 5.3.2). Lastly, we delineate our implementation

and formalize the operations performed in an SWANN (Sec. 5.3.3).

5.3.1 Metric for Small-Worldness

To examine the small-world property for a given graph, we study two properties, namely,

the characteristic path length (L) and the global clustering coefficient (C). For a given graph, L

is calculated by taking the average of minimum path lengths over all node pairs. In this context,

the minimum path length is equal to the smallest number of edges one must traverse to get from

the first node to the second, or vice versa. The clustering coefficient C is a measure for the

connection density between neighbors of any node in the network and is formulated as follows:

C =
∑V

i=1Ci, where Ci =
Ei

1
2
Ni(Ni−1)

(5.1)

Here, Ci denotes the local clustering coefficient of the ith node (vi), Ei is the number of

edges between neighbors of vi, Ni is the number of neighbors of vi, and V is the total number of

nodes. As shown, the global clustering coefficient, C, is the mean of local coefficients. Regular

lattices are highly clustered (large C) but have a very high L which conflicts with our desire to

create bypass connections in the DNN. A completely random graph enjoys a small L but lacks

106

clustering. Small-world graphs strike a balance between randomness and regularity by having a

large C and small L.

By definition, a graph is small-world if it has a similar L but higher C compared to an

Erdös − Re′nyi (E − R) random graph [233] constructed using the same number of nodes

and edges. Let us denote the clustering coefficient and the characteristic path length of a given

graph (G) by CG and LG, respectively. In a similar fashion, we represent the corresponding

characteristics of the equivalent E − R random graph by Crand, Lrand. We use a quantitative

measure of the small-world property form [83] which categorizes a network as an SWN if SG > 1

where SG is calculated using Equation (5.2).

SG =
γG
λG

, γG =
CG

Crand

, λG =
LG

Lrand

(5.2)

5.3.2 Acquiring the Small-world Architecture

Graph Generation

In order to modify a given DNN architecture and generate the equivalent SWANN, we first

model all connections within the network as a graph representation. In this context, a connection

is defined as a linear operation performed between an input element and a trainable weight

(network parameter) found in Convolution (CONV) and Fully-Connected (FC) layers. For

CONV layers, each feature-map channel is represented by one node and each edge represents a

k × k kernel. For FC layers each neuron is assigned a separate node and the edges correspond

to weight matrix elements.

Architecture Search

After generating the graph that corresponds to the input DNN architecture, we proceed

to find the equivalent SWANN. To perform this task, the initial graph is randomly rewired with

different probabilities, p ∈ [0, 1], similar to Figure 5.2. For each rewired graph, we compute the

characteristic path length L and clustering coefficient C and use the captured pattern for each

107

criterion to detect the small-world topology using the small-worldness measure in Equation (5.2).

▶ Rewiring Policy. Let us denote an edge with e(vi, vj) where vi and vj are the start and end

nodes. To perform random rewiring with probability p, we visit all edges in the graph once. Each

edge is rewired with probability p or kept the same with probability 1− p. If the edge needs to be

rewired, a new second node vj′ is randomly sampled from the set of nodes that are non-neighbor

to the edge’s start node, vi. This second node is selected such that no self-loops or repeated

links exist in the rewired graph. Once the destination node is chosen, the initial edge, e(vi, vj) is

removed and replaced by e(vi, vj′). Algorithm 3 summarizes the rewiring procedure performed

on a baseline DNN to generate the rewired counterpart. Here, N is the total number of layers

in the network, Vl denotes the nodes in the lth layer, and El,l+1 is the set of edges connecting

neurons in layer l to its preceding layer (l + 1). Input layer is shown as l = 0.

Algorithm 3. Random Rewiring Procedure

Inputs: Input DNN’s graph G, rewiring probability p.
Output: Rewired network Grwd.

1: Grwd ← G
2: for l = 0 to (N − 2) do
3: for vi in Vl do
4: for vj in Vl+1 do
5: if |El,l+1| ≥ 1 and e(vi, vj) ∈ Grwd then
6: r ∼ U [0, 1]
7: if r ≤ p then
8: Grwd ← {Grwd − e(vi, vj)}
9: while e(vi, vj′) ∈ Grwd do

10: vj′ ∼ {Vl+2 ∪ · · · ∪ VN }
11: Grwd ← {Grwd + e(vi, vj′)}

Figure 5.4 demonstrates the removal/addition of edges in the DNN architecture during our

rewiring procedure. Note that our rewiring methodology does not alter the number of connections

in the DNN. As a result, the total number of trainable parameters in the final obtained SWANN

equals that of the original network.

▶ Network Profiling. Using the aforementioned rewiring policy, we generate various graphs by

108

Figure 5.4. Our proposed rewiring algorithm replaces edges to the subsequent layer (red) with
long-range edges (blue).

sweeping the rewiring probability in the [0,1] interval. Figure 5.5 demonstrates the correlation

between C and L as the rewiring probability is changed for a 14-layer DNN. For conventional

DNNs, the clustering coefficient is zero and the characteristic path length can be quite large

specifically for very deep networks (leftmost points on Figure 5.5). As such, DNNs are far from

networks with the small-world property. Random rewiring replaces short-range connections

between subsequent layers with longer-range connections. Consequently, L is reduced while

C increases as the network shifts towards its small-world equivalent. We select the topology

with the maximum value of small-world property, SG, as the SWANN. As a direct result of such

architectural modification, the new network enjoys enhanced connectivity in its dataflow graph

which results in better gradient propagation and training speedup.

Figure 5.5. Clustering coefficient (C), small-world property (SG), and path length (L) versus
rewiring probability. The region where the graph transforms into a small-world network is shown
with the double-headed arrow.

To compare the training convergence of SWANN with other configurations generated

during the probability sweep, we train several rewired networks on the MNIST dataset [107],

109

each of which is constructed from a 5-layer DNN. Figure 5.6 demonstrates the convergence rate

of these various architectures versus the rewiring probability p that is used to generate them from

the baseline DNN. Due to the addition of long-range connections, all models show convergence

improvements over the baseline. However, the perfect balance between node clustering and

average path length is achieved by the SWN which leads to the fastest training convergence.

Figure 5.6. Convergence to 99.0% test accuracy for a 5-layer DNN and its randomly rewired
counterparts trained on the MNIST dataset. Here, the relative convergence rate is computed as
eb
er

, where eb and er denote the number of training epochs required for the baseline and rewired

models to reach the target accuracy, respectively. The SWN is shown with a red star.

5.3.3 SWANN Methodology

▶ DNN Formulation. Conventional DNNs are comprised of subsequent layers where each layer,

l, in the network performs a combination of linear and nonlinear operations on its input, xl, to

generate the corresponding output, yl. We denote core linear operations (CONV and FC) in

a DNN by Wl(·) with the subscript representing the layer index. Other operations can take the

form of Batch Normalization (BN), ReLU activation, and Pooling. For each linear layer, we

bundle one or more of such operations together and show them as one composite function, Cl(.).

For an arbitrary layer l in a conventional DNN, the output is thus formalized as:

yl = Cl(Wl(xl)) (5.3)

Note that the cascaded nature of DNNs implies that the generated output from one layer serves

as the input to the immediately succeeding layer, i.e., xl+1 = yl.

110

▶ Sparse Connections in SWANNs. One major difference between SWANNs and conventional

DNNs is that SWANN layers can be interconnected regardless of their position in the network

hierarchy. More specifically, the output of each layer of a SWANN is connected to all its

succeeding layers via sparse weight tensors. These connections are implemented via convolution

kernels with coarse-grained sparsity patterns.

By definition, CONV layers sweep a k × k convolution kernel across an input tensor of

dimensionality Win × Hin × ch1 to generate an output feature map with dimensions Wout ×

Hout × ch2 where ch1 and ch2 denote the number of input and output channels, respectively. In

order to generate the graph-equivalent of such layer, we represent each k × k kernel by a single

edge in the graph as shown in Figure 5.7. To remove each connection from the graph, we mask

the corresponding k × k kernel to zero to generate a sparse weight tensor. Figure 5.8 shows the

convolution filters of an example sparse connection from a layer with 5 output channels to a

layer with 3 output channels and the corresponding small-world graph representation.

Figure 5.7. Conversion of a CONV layer to its graph representation. Each k × k convolution
kernel is replaced by an edge in the corresponding graph where the input and output filter
channels are shown as two consecutive rows of vertices with ch1 and ch2 nodes, respectively.

Let us denote sparse connections from layer l1 to layer l2 by W s
l1l2

(.). The output of the

l-th layer in SWANN can then be calculated as:

yl = Cl(W
s
l (xl) +

∑
l1<l−1

W s
l1 l(yl1)) (5.4)

Comparing the above formulation with Equation (5.3), we highlight the extra summation term

111

Figure 5.8. Coarse-grained sparse convolution between a layer with ch1 = 5 output channels
and a layer with ch2 = 3 output channels. Left: Sparse convolution weights. For each removed
connection from the graph, we show the corresponding filter in the sparse convolution weight by
zero. The colored channels represent trainable DNN weights which can take on any arbitrary
floating-point value. Right: Equivalent graph with nodes representing channels.

that accounts for the inter-layer connections. Note that in Equation (5.4), both W s
l and W s

l1 l are

sparse tensors. The inter-layer connectivity in SWANN enables enhanced data flow, both during

inference and training stages, while the sparse connections mitigate unnecessary parameter

utilization. Unlike the previously proposed feature concatenation methodology [77], we perform

summation over the feature-maps. This, in turn, mitigates the appearance of extremely high di-

mensional weight kernels that result from channel-wise feature-map concatenation. Furthermore,

the summation of feature-maps enables SWANN to be applicable to all network architectures

with various layer configurations. We gradually increase the stride in the long-range sparse

connections as a function of the distance between the inter-linked layers. This allows us to

reduce the dimensionality of the produced feature-maps as well as tune the impact of added

long-range connections. In addition to adjusting the convolution strides, we use zero-padding

where necessary to match the dimensionality of inter-layer connected feature-maps.

▶ Composite Non-linear Operation. Unlike DenseNets [77] and ResNets [66] where several

linear layers are concatenated before pooling is performed, SWANNs support pooling immedi-

ately after each CONV layer as seen in conventional DNN architectures. We experiment with

various configurations of the widely-used non-linear operations, i.e., BN , ReLU , and Maxpool

to investigate the effect of ordering on network convergence. Our experiments demonstrate that

SWANN convergence is enhanced when the composite non-linear function, Cl is implemented

112

as a ReLU , followed by Maxpooling and BN as shown in Figure 5.3.

5.4 Experiments

We conduct proof-of-concept experiments on different network architectures and image

classification benchmarks to empirically demonstrate the enhanced training convergence of

SWANNs compared to the baseline (conventional) DNNs. We leverage popular DL libraries

Keras and PyTorch for our implementations. All experiments are performed on a machine with

Nvidia Titan XP GPU and Intel Xeon CPU.

Our evaluations target both centralized and decentralized on-device learning scenarios.

Sec. 5.4.3, 5.4.4, 5.4.5 enclose our evaluations in the centralized training setup. This setup

directly simulates on-device learning applications where users train/finetune a model locally

on their personal data samples, e.g., personalization. Sec. 5.4.6 encloses the evaluation in the

decentralized (federated) learning setup where several users collaboratively train a global model

by performing multiple local updates and a global aggregation.

5.4.1 Datasets

▶ MNIST. This dataset consists of 10 classes of 28 × 28 gray-scale images from handwritten

digits with 60,000 train and 10,000 test images. We normalize the data using the per-channel

mean and variance prior to training and testing.

▶ CIFAR. We carry out our experiments on the two available CIFAR datasets. CIFAR10 (C10)

and CIFAR100 (C100) benchmarks consist of colored images with dimensionality 32× 32 that

are categorized in 10 and 100 classes, respectively. Each dataset contains 50,000 samples for

training and 10,000 samples for testing. We use standard data augmentation routines popular in

prior work [66, 79]: samples are normalized using per-channel mean and standard deviation. At

training time, random horizontal mirroring, shifting, and slight rotation are also applied.

▶ ImageNet. The ISLVRC-2012 dataset, widely known as the ImageNet, consists of 1000

113

Table 5.1. Benchmarked DNNs for evaluating SWANN effectiveness. CONV layers are
represented as ⟨kernel size⟩Conv and FC layers are denoted by ⟨output elements⟩FC. BN
and ReLU are not shown for brevity.

Convolution MaxPool Convolution MaxPool Convolution MaxPool Convolution MaxPool Convolution MaxPool Classifier

MNIST 5× 5 Conv
2× 2

stride 2 5× 5 Conv
2× 2

stride 2 5× 5 Conv
2× 2

stride 2 - - - -
84FC

10FC, softmax
ConvNet-C [176]∗
(C10, C100)

[3× 3 Conv]
×2

2× 2
stride 2

[3× 3 Conv]
×2

2× 2
stride 2

[3× 3 Conv]
×3

2× 2
stride 2

[3× 3 Conv]
×3

2× 2
stride 2

[3× 3 Conv]
×3

2× 2
stride 2

512FC
10FC, softmax

AlexNet [102]
(ImageNet)

11× 11 Conv
(stride 4)

2× 2
stride 2 5× 5 Conv

2× 2
stride 2 3× 3 Conv - 3× 3 Conv - 3× 3 Conv

2× 2
stride 2

4096FC
4096FC

1000FC, softmax
ResNet-18 [66]

(ImageNet)
7× 7 Conv
(stride 2)

3× 3
stride 2

[3× 3 Conv]
×4 -

[3× 3 Conv]
×4 -

[3× 3 Conv]
×4 -

[3× 3 Conv]
×4

7× 7
average pool 1000FC, softmax

∗ We modify the ConvNet-C fully-connected layers form [176] to comply with the CIFAR datasets.

Convolution Dense Block (1) Transition Block Dense Block (2) Transition Block Dense Block (3) Classifier
DenseNet-40 [77]

(C10) 3× 3 Conv [3× 3 Conv]×12
1× 1 Conv [3× 3 Conv]×12

1× 1 Conv [3× 3 Conv]×12
8× 8 average pool

2× 2 average pool 2× 2 average pool 10FC, softmax
∗ Conv denotes a BN , followed by a ReLU and a convolution layer.

different classes of colored images with 1.2 million samples for training and 50,000 samples for

validation. We use the augmentation scheme proposed in [67, 176] to preprocess input samples:

during training, we resize the images by randomly sampling the shorter edge from [256, 480].

A 224 × 224 crop is then randomly sampled from the image. We also perform per-channel

normalization as well as horizontal mirroring [102].

5.4.2 Benchmarked Architectures

Table 5.1 encloses our baseline DNN architectures. SWANNs maintain the same feed-

forward architecture as the baseline networks and are constructed by 1) replacing CONV layers

with sparse convolutions and 2) adding sparse convolutions between non-consecutive layers.

Table 5.2 encloses the relative clustering coefficient γG, relative average path length λG, small-

world property SG, and rewiring probability p to achieve the corresponding SWANN for each

baseline DNN. Here, γG, λG, and SG follow the definitions in Equation (5.2). As seen, all

SWANN models satisfy the small-world characteristic, i.e., SG > 1.

5.4.3 Results on MNSIT

We train the 5-layer architecture shown in Table 5.1 as our baseline. The small-world

equivalent of the baseline model is generated using a rewiring probability of 0.5. To prevent

114

Table 5.2. Graph characteristics of SWANN models.

model γG λG SG p
MNIST 1.09 0.99 1.09 0.45
ConvNet-C 1.20 1.01 1.19 0.85
AlexNet 1.48 1.00 1.48 0.80
ResNet-18 1.06 1.00 1.06 0.83
DenseNet-40 1.20 1.01 1.19 0.92

overfitting, a dropout layer with the rate of 0.5 is added between the two FC layers in both the

baseline DNN and SWANN. We train the models using Adadelta optimizer [230] with an initial

learning rate of 1 and a decay of 0.95. Batch size is set to 256 for both models.

▶ Convergence. Figure 5.9 compares the test error and training loss of the baseline DNN and

its small-world counterpart throughout training. Both models achieve a final test accuracy of

99.1% on the MNIST dataset. The plain baseline DNN converges to the aforesaid accuracy in 19

epochs (= 4864 iterations) while SWANN reaches the convergence accuracy in 9 epochs (= 2304

iterations) which shows 2.1× improvement over the baseline.

Figure 5.9. Comparison of a plain DNN’s training convergence with its small-world equivalent.
Here, the red and blue colors show SWANN and baseline, respectively. The ⋆ markers denote
the point of convergence to final test accuracy for the models with the corresponding colors.

5.4.4 Results on CIFAR

ConvNet-C

We train the ConvNet-C [176] model on C10 and C100 benchmarks with a batch size

of 128. To prevent overfitting, a dropout layer with a rate of 0.5 is added before the first FC

115

Figure 5.10. Test error and training loss versus iterations for a ConvNet-C model and the rewired
SWANN trained on (a) CIFAR10 and (b) CIFAR100 datasets. Here, the red and blue colors show
SWANN and baseline, respectively. The ⋆ markers denote the point of convergence to final test
accuracy for the models with the corresponding colors.

layer. The small-world model is constructed using the same configuration of layers as the

baseline, including the dropout layers. We use Stochastic-Gradient-Descent (SGD) optimizer

with Nesterov, 0.9 momentum, and a 5e− 4 weight decay. Models are trained for 2e4 and 3e4

iterations on C10 and C100, respectively. The initial learning rate is set to 0.01 for both datasets

and learning rate is decayed by 0.5 upon optimization plateau.

▶ Convergence. Figure 5.10-(a) illustrates the test error and training loss of the baseline and

SWANNs as two representatives of the convergence speed. Similarly, for C100 benchmark, the

corresponding convergence curve is presented in Figure 5.10-(b). While these figures qualitatively

demonstrate the effectiveness of our methodology, we provide a quantitative measure for a solid

comparison between SWANN and the baseline. We investigate several points corresponding to

various test accuracies and compare the two models’ convergence to these points.

Table 5.3 summarizes the per-accuracy speed-up of SWANN over the baseline model.

As seen, the speed-up varies for different accuracies, however, for all test accuracies, SWANN

requires a substantially fewer number of iterations for convergence. At the final saturation point

(marked by ⋆ on Figure 5.10), both models achieve comparable accuracies while SWANN enjoys

a 2.6× and 2.8× reduction in convergence time for C10 and C100 datasets, respectively.

116

Table 5.3. Point-wise comparison of convergence speed-up for a SWANN and its equivalent
baseline network (ConvNet-C) on CIFAR benchmarks.

C
IF

A
R

10 Baseline Test Error (%) 24.21 17.80 9.22 8.51 7.56
Iterations 1408 2560 8704 11008 18560

SWANN Test Error (%) 23.73 17.57 8.64 8.25 7.44
Iterations 896 1536 4992 5888 7040

Speed-up 1.57× 1.67× 1.74× 1.87× 2.64×
C

IF
A

R
10

0 Baseline Test Error (%) 77.08 52.3 41.54 31.14 29.52
Iterations 2944 6144 9472 16128 28928

SWANN Test Error (%) 76.67 50.57 40.18 31.15 29.26
Iterations 384 1408 3072 7808 10240

Speed-up 7.67× 4.36× 3.08× 2.1× 2.82×

DenseNet

DenseNets [77] achieve state-of-the-art accuracy by connecting all neurons from different

layers of a dense block with trainable (dense) parameters. Such dense connectivity pattern

results in high redundancy in the parameter space and extra training overhead. We show that a

SWANN with only sparse connections and much fewer parameters achieves similar results as

DenseNet. We train a DenseNet model with 40 layers and k = 12 (Table 5.1) on C10 dataset.

The equivalent SWANN is constructed by removing all long-range dense connection from the

architecture and rewiring the remaining (short) edges such that each dense block becomes small-

world. The SWANN maintains the same number of layers while the inter-layer connections are

implemented using sparse convolution kernels, thus incurring substantially fewer number of

trainable parameters.

We use the publicly available PyTorch implementation for DenseNets1 and replace

the model with our small-world network. Same training scheme as explained in the original

DenseNet paper [77] is used: models are trained for 19200 iterations with a batch size of 64.

Initial learning rate is 0.1 and decays by 10 at 1
2

and 3
4

of the total training iterations.

▶ Convergence. Figure 5.11 demonstrates the test accuracy of the models versus the number of

epochs. As can be seen, although SWANN has much fewer parameters, both models achieve

1https://github.com/andreasveit/densenet-pytorch

117

comparable validation accuracy while showing identical convergence speed. We report the

computational complexity (FLOPs) of the models as the total number of multiplications per-

formed during a forward propagation through the network. Table 5.4 compares the benchmarked

DenseNet and SWANN in terms of FLOPs and number of trainable weights in CONV and

FC layers. We highlight that SWANN achieves comparable test accuracy while having 10×

reduction in parameter space size.

Figure 5.11. Training loss and testing accuracy of the 40-layer (k=12) DenseNet [77] with 1M
parameters and our corresponding SWANN with less than 100K parameters.

Table 5.4. Comparison of the computational complexity and model parameter space between a
40-layer DenseNet with k=12 and the corresponding SWANN.

Model Depth Params FLOPs Test Error
DenseNet (k = 12) 40 910K 285.3M 0.071
SWANN 40 98K 85.5M 0.074

5.4.5 Results on ImageNet

AlexNet

We train the AlexNet [102] model on ImageNet dataset and follow the architecture

provided in the Caffe model zoo [1] (See Table 5.1). In order to mitigate overfitting, we add

dropout layers with probability 0.5 after the FC layers. Loss minimization is performed by

means of SGD with Nesterov [143] and a 0.9 momentum. We set the batch size to 64 for both

models and incorporate an exponential decay for the learning rate: initial learning rate is set to

118

2.5e−3 and the decay factor is 0.99999875 [177].

▶ Convergence. To fully examine the performance of our model, we report the speed-up of

SWANN over the baseline for several values of test error. Table 5.5 encloses the point-wise

comparison between the benchmarked models. As can be seen, for all values of test error,

the convergence of our small-world architecture is faster. SWANN converges to the final test

accuracy after 3776 iterations while the baseline model needs 5120 iterations, resulting in a 1.4×

overall speed-up.

Table 5.5. Performance of baseline AlexNet and its SWANN on ImageNet dataset.

A
le

xN
et Baseline Test Error (%) 51.72 46.29 44.21 42.31 42.01

Iterations 1088 2304 3264 4416 5120

SWANN Test Error (%) 51.97 46.49 44.25 42.31 41.55
Iterations 768 1664 2368 3520 3776

Speed-up 1.42× 1.38× 1.38× 1.25× 1.36×

ResNet

We adopt the training scheme in the original ResNet paper [66]. To build the SWANN,

we first remove all shortcut and bottleneck connections from the model. We then rewire the

connections in the acquired plain network such that it becomes small-world. No dropout is used

for the baseline and SWANN. Batch size is set to 128 and we use SGD with 0.9 momentum and

1e− 4 weight decay. Initial learning rate is 0.1 and decays by 0.1 when the accuracy plateaus.

We train the models for 9e5 iterations and report single-crop accuracies.

▶ Convergence. We enclose point-wise comparisons between the baseline ResNet and SWANN

for various iterations and test errors in Table 5.6. As seen, SWANN achieves faster convergence

throughout training and reaches the final test accuracy with 1.3× less iterations. This shows that

the systematic restructuring of long edges in SWANN allows for a better convergence behavior

compared to the replicated blocks in ResNet.

119

Table 5.6. Point-wise convergence comparison of ResNet-18 and its SWANN equivalent on
ImageNet dataset.

R
es

N
et

-1
8 BaseLine Test Error (%) 60.37 56.94 37.91 31.72

Iterations 1792 3456 7424 9344

SWANN Test Error (%) 59.63 56.76 37.86 31.68
Iterations 512 768 3584 7168

Speed-up 3.50× 4.50× 2.07× 1.31×

5.4.6 Federated Learning

In this section, we corroborate SWANN enhanced convergence in the federated learning

setting as a candidate application for on-device learning. In this setup, a server holds a global

model and users each have a unique (local) dataset. The users compute the weight updates for

the global model on their local datasets and communicate the updated weights to the server. The

server then aggregates the weights from all users and updates the global model. We implement

the popular FedAvg algorithm [132] for federated learning where each user performs several

local updates on the global model before sending the updated weights to the global server.

Following the original paper [132] we consider a pool of 100 users and randomly select

10 users at each iteration to send their updates to the server. We perform 5 local updates on each

user with a batch size of 10. This setting provides a good balance between the total number of

communication rounds for convergence and the required amount of computation per iteration for

each user [132]. Optimization is performed using SGD with learning rate of 0.01 for both the

baseline DNN and the SWANN. Our evaluations are performed on the MNIST dataset with the

baseline DNN architecture shown in Table 5.1.

We evaluate SWANN under two distributed data settings: 1) IID where the data is

distributed uniformly across all users, i.e., each user has instances of all classes. 2) Non-IID

where the entire data is sorted by their label, divided into 200 shards of size 300, and each user is

assigned 2 shards [132]; users on average only have instances from two classes. Figure 5.12-a,b

demonstrate the test accuracy and training loss versus number of local updates for the baseline

120

DNN and its corresponding SWANN in the IID and non-IID settings, respectively.

Figure 5.12. Training loss and testing accuracy of the baseline DNN and SWANN in the
federated learning scenario with a) IID and b) non-IID data distributions. Here, the red and blue
colors show SWANN and baseline, respectively. The ⋆ markers denote the point of convergence
to final test accuracy for the models with the corresponding colors.

▶ IID data. To reach the final test accuracy of 99.1%, the baseline DNN requires 450 local

updates while SWANN only requires 330, thereby showing a 1.4× reduction in the computation

performed on the user devices. In addition to the savings in computation, SWANN also reduces

the total number of required global aggregations by 1.4×, which directly translates to a reduced

communication cost between users and the server.

▶ non-IID data. In the non-IID setting, SWANN outperforms the baseline DNN both in terms of

the convergence rate and final test accuracy. The baseline DNN requires 1300 local updates to

converge to the final test accuracy of 98.7% while SWANN converges to 98.9% test accuracy

with 1020 local updates. As a result, SWANN achieves 1.3× reduction in the users’ computation

and communication during training. The higher accuracy of SWANN in the challenging non-IID

data setting further demonstrates the better stability of SWANN during training compared to non

small-world architectures.

For a more detailed comparison, we report convergence steps needed for various test

accuracies for the baseline DNN and SWANN in Table 5.7. SWANN reaches all target accura-

cies considerably faster than the baseline. On average, SWANN requires 1.5× and 1.6× less

121

computation and communication for user devices in the IID and non-IID settings, respectively.

Table 5.7. Point-wise convergence comparison of the 5-layer baseline DNN and its corresponding
SWANN in the federated learning scenario.

II
D

BaseLine Test Error (%) 98.16 98.65 98.90 99.07
Local Updates 85 200 355 450

SWANN Test Error (%) 98.14 98.65 98.89 99.07
Local Updates 60 130 220 330

Speed-up 1.42× 1.54× 1.61× 1.36×

no
n-

II
D BaseLine Test Error (%) 96.12 96.67 98.10 98.74

Local Updates 170 405 555 1300

SWANN Test Error (%) 96.14 97.63 98.16 98.72∗

Local Updates 100 230 325 900
Speed-up 1.70× 1.76× 1.71× 1.44×

∗SWANN reaches a final test accuracy of 98.90% after 1020 local updates.

5.5 Discussion on Long-range Connections

The selected small-world structure for a given DNN has two main characteristics, namely

high clustering of nodes and small average path length between neurons across layers. We

postulate that such qualities render the SWN desirable during training due to the enhanced

information flow paths existent in these efficiently-connected networks. To examine our hypothe-

sis, we visualize the weights connecting different layers of the trained SWANN for C10, C100

(ConvNet-C), and ImageNet (AlexNet) benchmarks. Figure 5.13 presents a heat map of the

average absolute values of weights connecting each pair of CONV layers.

Each square at position (l1, l2) of the heatmap represents the strength of the connections

between layers l1 and l2 where l0 denotes network input. Color shades of orange, red and maroon

indicate strong inter-layer dependency while the white color indicates that no connections are

present between the corresponding layers in SWANN. We summarize our observations based on

the heat map as the following:

1. Each layer has strong connections to its non-subsequent layers indicating that long-range

edges established in SWANN are crucial to performance.

122

Figure 5.13. Visualization of average absolute value of trained weights within CONV layers of
SWANNs. Colors encode the connectivity strength between layers with red being the strongest
and white denoting no connection. The marked rows with black box borders correspond to the
input layer of the networks.

2. The input layer has spread weights across all layers of the network which demonstrates the

importance of connections between earlier and deeper layers.

3. SWANN preserves the strong connections between one layer and the immediately proceed-

ing layer, thus, maintaining the conventional DNN data flow.

5.6 Conclusion

We propose a novel methodology that adaptively modifies conventional feed-forward

DL models to new architectures, called SWANN, that fall into the category of small-world

networks—a class of complex graphs used to study real-world models such as human brain and

the neural networks of animals. By leveraging the intriguing features of small-world networks,

e.g., enhanced signal propagation speed and synchronizability, SWANNs enjoy improved data

flow within the network, resulting in substantially faster convergence speed during training.

Our small-world models are implemented via sparse connections from each DNN layer to

all succeeding layers. Such sparse convolutions enable SWANNs to benefit from long-range

connections while mitigating the redundancy in the parameter space existent in prior art.

As our experiments demonstrate, SWANNs are able to achieve state-of-the-art accuracy

in ≈ 2.1× lower number of training iterations, on average. Furthermore, compared to a densely-

connected architecture, SWANNs achieve comparable accuracy while having 10× reduction in

123

the number of parameters. In summary, due to their optimal graph connectivity and fast response

to training, SWANNs can be advantageous for on-device learning in embedded applications.

5.7 Acknowledgements

Chapter 5 is a reprint of the material as it appears in: M. Javaheripi, B. Rouhani, and F.

Koushanfar, “SWANN: Small-World Architecture for Fast Convergence of Neural Networks”, in

IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021. The dissertation

author was the primary investigator and author of this paper.

124

Chapter 6

Improving Inference Performance via
Neural Architecture Search

The Transformer architecture [197] has been used as the de-facto building block of most

pre-trained language models like GPT [163]. A common problem arises when one tries to create

smaller versions of Transformer models for edge or real-time applications (e.g. text prediction)

with strict memory and latency constraints: it is not clear what the architectural hyperparameters

should be, e.g., number of attention heads, number of layers, embedding dimension, and the inner

dimension of the feed forward network, etc. This problem is exacerbated if each Transformer

layer is allowed the freedom to have different values for these settings. This results in a

combinatorial explosion of architectural hyperparameter choices and a large heterogeneous

search space. For instance, the search space considered in this work consists of over 1054

possible architectures.

NAS is an organic solution due to its ability to automatically search through candidate

models with multiple conflicting objectives like latency vs. task performance. The central

challenge in NAS is the prohibitively expensive function evaluation, i.e., evaluating each archi-

tecture requires training it on the dataset at hand. Thus it is often infeasible to evaluate more

than a handful of architectures during the search phase. Supernets [152] have emerged as a

dominant paradigm in NAS which combine all possible architectures into a single graph and

jointly train them using weight-sharing. Nevertheless, supernet training imposes constraints on

125

the expressiveness of the search space [144] and is often memory-hungry [18, 215, 216] as it

creates large networks during search. Additionally, training supernets is non-trivial as children

architectures may interfere with each other and the ranking between sub-architectures based on

task performance is not preserved [144]1.

We consider a different approach by proposing a training-free proxy that provides a

highly accurate ranking of candidate architectures during NAS without need for costly function

evaluation or supernets. Our scope is NAS for efficient autoregressive Transformers used in

language modeling. We design a lightweight search method that is target hardware-aware and

outputs a gallery of models on the Pareto-frontier of perplexity versus hardware metrics. We

term this method Lightweight Transformer Search (LTS). LTS relies on our somewhat surprising

observation: the decoder parameter count has a high rank correlation with the perplexity of fully

trained autoregressive Transformers.

Given a set of autoregressive Transformers, one can accurately rank them using decoder

parameter count as the proxy for perplexity. Our observations are also well-aligned with the

power laws in [96], shown for homogeneous autoregressive Transformers, i.e., when all decoder

layers have the same configuration. We provide extensive experiments that establish a high

rank correlation between perplexity and decoder parameter count for both homogeneous and

heterogeneous search spaces.

The above phenomenon coupled with the fact that a candidate architecture’s hardware

performance can be measured on the target device leads to a training-free search procedure: pick

one’s favorite discrete search algorithm (e.g. evolutionary search), sample candidate architec-

tures from the search space; count their decoder parameters as a proxy for task performance

(i.e., perplexity); measure their hardware performance (e.g., latency and memory) directly on

the target device; and progressively create a Pareto-frontier estimate. While we have chosen

a reasonable search algorithm in this work, one can plug and play any Pareto-frontier search

method such as those in [59].

1See [144] for a comprehensive treatment of the difficulties of training supernets.

126

Target Hardware

sample

Model 2

Model N

...

Pareto Ranking

Evolutionary Search

Search-space
Evaluation

Model 1

Validation Perplexity
Proxy

Latency and Memory
Measurement

Figure 6.1. High-level overview of LTS. We propose a training-free zero-cost proxy for eval-
uating the validation perplexity of candidate architectures. Pareto-frontier search is powered
by evolutionary algorithms which use the proposed proxy along with real latency and memory
measurements on the target hardware to evaluate sampled architectures.

Building upon these insights, Figure 6.1 shows a high-level overview of LTS. We design

the first training-free Transformer search that is performed entirely on the target (constrained)

platform. As such, LTS easily performs a multi-objective NAS where several underlying hardware

performance metrics, e.g., latency and peak memory utilization, are simultaneously optimized.

Using our training-free proxy, we extract the 3-dimensional Pareto-frontier of perplexity versus

latency and memory in a record-breaking time of < 3 hours on a commodity Intel Core i7 CPU.

Notably, LTS eliminates the carbon footprint from hundreds of GPU hours of training associated

with legacy NAS methods.

To corroborate the effectiveness of our proxy, we train over 2900 Transformers on

three large language modeling benchmark datasets, namely, WikiText-103 [136], One Billion

Word [24], and Pile [50]. We use LTS to search for Pareto-optimal architectural hyperparameters

in two popularly used autoregressive Transformer backbones, namely, Transformer-XL [32] and

GPT-2 [153]. We believe decoder parameter count should be regarded as a competitive baseline

for evaluating Transformer NAS, both in terms of ranking capabilities and easy computation. We

open-source our code along with tabular information of our trained models to foster future NAS

research on Transformers.

127

6.1 Related Work

Here, we discuss literature on automated search for Transformers in the language domain.

Please refer to extensive surveys on NAS [41, 208] for a broader overview of the field.

Decoder-only Architectures. Authors of [179] search over TensorFlow programs that imple-

ment an autoregressive language model via evolutionary search. Since most random sequences of

programs either have errors or underperform, the search has to be seeded with the regular Trans-

former architecture, termed “Primer”. As opposed to “Primer” which uses large computation to

search a general space, we aim to efficiently search the “backbone” of traditional decoder-only

Transformers. Additionally, the objective in “Primer” is to find models that train faster. Our

objective for NAS, however, is to deliver Pareto-frontiers for inference, with respect to perplexity

and hardware constraints.

Encoder-only Architectures. Relative to decoder-only autoregressive language models, encoder-

only architectures like BERT [35] have received much more recent attention from the NAS

community. NAS-BERT [214] trains a supernet to efficiently search for masked language models

(MLMs) which are compressed versions of the standard BERT, Such models can then be used in

downstream tasks as is standard practice. Similar to NAS-BERT, authors of [215] train a supernet

to conduct architecture search with the aim of finding more efficient BERT variants. They find

interesting empirical insights into supernet training issues like differing gradients at the same

node from different child architectures and different tensors as input and output at every node

in the supernet. The authors propose fixes that significantly improve supernet training. Several

other works [49,194,220] also conduct variants of supernet training with the aim of finding more

efficient BERT models.

Encoder-Decoder Related: Applying the well-known DARTS [117] approach to Transformer

search spaces leads to memory-hungry supernets. To mitigate this issue, [234] proposes a

multi-split reversible network and a memory-efficient backpropagation algorithm. One of the

earliest papers that applied discrete NAS to Transformer search spaces was [178], which uses

128

a modified form of evolutionary search. Due to the expense of directly performing discrete

search on the search space, this work incurs extremely large computation overhead. Follow-up

work by [203] uses the Once-For-All [18] approach to train a supernet for encoder-decoder

architectures used in machine translation. Search is performed on subsamples of the supernet

that inherit weights to estimate task accuracy. For each target device, the authors train a small

neural network regressor on thousands of architectures to estimate latency. As opposed to

using a latency estimator, LTS evaluates the latency of each candidate architecture on the target

hardware. Notably, by performing the search directly on the target platform, LTS can easily

incorporate various hardware performance metrics, e.g., peak memory utilization, for which

accurate estimators may not exist. To the best of our knowledge, such holistic integration of

multiple hardware metrics in Transformer NAS has not been explored previously.

6.2 Lightweight Transformer Search

We perform an evolutionary search over candidate architectures to extract models that

lie on the Pareto-frontier. In contrast to the vast majority of prior methods that deliver a single

architecture from the search space, our search is performed over the entire Pareto, generating

architectures with a wide range of latency, peak memory utilization, and perplexity with one

round of search. This alleviates the need to repeat the NAS algorithm for each hardware

performance constraint.

To evaluate candidate models during the search, LTS uses a training-free proxy for the

validation perplexity. By incorporating training-free evaluation metrics, LTS, for the first time,

performs the entire search directly on the target (constrained) hardware. Therefore, we can use

real measurements of hardware performance during the search. Algorithm 4 outlines the iterative

process performed in LTS 2 for finding candidate architectures in the search space (D), that

lie on the 3-dimensional Pareto-frontier (F) of perplexity versus latency and memory. At each

2The Pareto-frontier search method in Algorithm 4 is inspired by [40] and [74]. Other possibilities include
variations proposed in [59], evaluation of which is orthogonal to our contributions in this work.

129

iteration, a set of points (F′) are subsampled from the current Pareto-frontier. A new batch of

architectures (SN) are then sampled from F′ using evolutionary algorithms (EA(.)). The new

samples are evaluated in terms of latency (L), peak memory utilization (M), and validation

perplexity (P). Latency and memory are measured directly on the target hardware while the

perplexity is indirectly estimated using our accurate and training-free proxy methods. Finally,

the Pareto-frontier is recalibrated using the lower convex hull of all sampled architectures. In

the context of multi-objective NAS, Pareto-frontier points are those where no single metric

(e.g., perplexity, latency, and memory) can be improved without degrading at least one other

metric [59]. To satisfy application-specific needs, optional upper bounds can be placed on the

latency and/or memory of sampled architectures during search.

Algorithm 4. LTS’s training-free NAS

Inputs: Search space D, niter.
Output: Perplexity-latency-memory Pareto-frontier F.

1: L,M,P ,F← ∅, ∅, ∅, ∅
2: while N ≤ niter do
3: F′ ← Subsample(F)
4: SN ← EA(F′,D)
5: L ← L

⋃
Latency(SN) ▷ hardware profiling

6: M←M
⋃

Memory(SN) ▷ hardware profiling
7: P ← P

⋃
Proxy(SN) ▷ estimate perplexity

8: F← LowerConvexHull(P ,L,M) ▷ update the Pareto-frontier

Search Space. Figure 6.2 shows all elastic parameters in LTS search space, namely, number

of layers (nlayer), number of attention heads (nhead), decoder output dimension (dmodel), inner

dimension of the feed forward network (dinner), embedding dimension (dembed), and the division

factor (k) of adaptive embedding [9]. These architectural parameters are compatible with

popularly used autoregressive Transformer backbones, e.g., GPT. We adopt a heterogeneous

search space where the backbone parameters are decided on a per-layer basis. This is in contrast

to the homogeneous structure commonly used in Transformers [32, 163], which reuses the same

configuration for all layers. Compared to homogeneous models, the flexibility of heterogeneous

130

architectures enables them to obtain much better hardware performance under the same perplexity

budget (see Section 6.3.5).

Figure 6.2. Elastic parameters in LTS search space.

Heterogeneous search space was previously explored in [203]. However, due to the

underlying supernet structure, not all design parameters can change freely. As an example,

the dimensionality of the Q, K, V vectors inside the encoder and decoder layers is fixed to a

large value of 512 to accommodate inheritance from the supernet. Our search space, however,

allows exploration of all internal dimensions without constraints. By not relying on the supernet

structure, our search space easily encapsulates various Transformer backbones with different

configurations of the input/output embedding layers and elastic internal dimensions.

We use the notation {vmin,. . . , vmax—step size} to show the valid range of values. LTS

searches over the following values for the architectural parameters in our backbones: nlayer∈

{2, . . . , 16|1}, dmodel∈ {128, . . . , 1024|64}, dinner∈ {256, . . . , 4096|64}, and nhead∈ {2, 4, 8}.

Additionally we explore adaptive input embedding [9] with dembed∈ {128, 256, 512} and factor

k ∈ {1, 2, 4}. Once a dmodel is sampled, we adjust the lower bound of the above range for

dinner to 2×dmodel. Encoding this heuristic inside the search ensures that the acquired models

will not suffer from training collapse. Our heterogeneous search space encapsulates more than

1054 different architectures. Such high dimensionality further validates the critical need for

training-free NAS.

131

6.2.1 Training-free Architecture Ranking

▶ Low-cost Ranking Proxies. Recently, authors of [2] utilize the summation of pruning scores

over all model weights as the ranking proxy for Convolutional Neural Networks (CNNs), where

a higher score corresponds to higher architecture rank in the search space. White et al. [207]

analyze these and more recent proxies and find that no particular proxy performs consistently

well over various tasks and baselines, while parameter and floating point operations (FLOPS)

count proxies are quite competitive. However, they did not include Transformer-based search

spaces in their analysis. To the best of our knowledge, low-cost (pruning-based) proxies have

not been evaluated on Transformer search spaces in the language domain. Note that one cannot

naively apply these proxies to language models. Specifically, since the embedding layer in

Transformers is equivalent to a lookup operation, special care must be taken to omit this layer

from the proxy computation. Using this insight, we perform the first systematic study of low-cost

proxies for NAS on autoregressive Transformers for text prediction.

We leverage various pruning metrics, namely, grad norm , snip [109], grasp [201],

fisher [189], and synflow [187]. We also study jacob cov [133] and relu log det

[134] which are low-cost scoring mechanisms proposed for NAS on CNNs in vision tasks. While

these low-cost techniques do not perform model training, they require forward and backward

passes over the architecture to compute the proxy, which can be time-consuming on low-end

hardware. Additionally, the aforesaid pruning techniques, by definition, incorporate the final

softmax projection layer in their score assessment. Such an approach seems reasonable for CNNs

dealing with a few classification labels, however, it can skew the evaluation for autoregressive

Transformers dealing with a large output vocabulary space. To overcome these shortcomings,

we introduce a zero-cost architecture ranking strategy in the next section that outperforms the

proposed low-cost proxies in terms of ranking precision, is data free, and does not perform any

forward/backward propagation.

▶ Decoder Parameter Count as a Proxy. We empirically establish a strong correlation between

132

Figure 6.3. Our training-free zero-cost proxy based on decoder parameter count is highly
correlated with the (ground truth) validation perplexity after full training. Each plot contains 200
architectures sampled randomly from the search space of Transformer-XL or GPT-2 backbone.

the parameter count of decoder layers and final model performance in terms of validation

perplexity. We evaluate 200 architectures sampled uniformly at random from the search space

of two autoregressive Transformer backbones, namely, Transformer-XL and GPT-2. These

architectures are trained fully on WikiText-103 and One Billion Word (LM1B) datasets, which

consumes over 25000 GPU-hours on NVIDIA A100 and V100 nodes. We compare the ranking

obtained using decoder parameter count proxy and the ground truth ranking after full training in

Figure 6.3. On WikiText-103, zero-cost ranking using the decoder parameter count obtains a

Spearman’s Rank Correlation (SRC) of 0.97 with full training. SRC further increases to 0.99

for the more complex LM1B benchmark on both backbones. This validates that the decoder

parameter count is strongly correlated with final model performance, thereby providing a reliable

training-free proxy for NAS.

6.3 Experiments

We conduct experiments to seek answers to the following critical questions:

1 How well can training-free proxies perform compared to training-based methods for estimating

the performance of Transformer models?

2 How does model topology affect the performance of the proposed decoder parameter proxy?

3 Can our training-free decoder parameter count proxy be integrated inside a search algorithm

133

to estimate the Pareto-frontier? How accurate is such an estimation of the Pareto?

4 Which models are on the Pareto-frontier of perplexity, latency, and memory for different

hardware?

5 How well do LTS models perform in zero and one-shot settings compared to hand-designed

variants when evaluated on downstream tasks?

We empirically answer questions 1 , 2 , 3 , 4 , and 5 in Sections 6.3.2, 6.3.3, 6.3.4,

6.3.5, and 6.3.6 respectively.

6.3.1 Experimental Setup

Datasets. We conduct experiments on three datasets, namely, WikiText-103, LM1B, and the

Pile. The datasets are tokenized using word-level and byte-pair encoding for models with

Transformer-XL and GPT-2 backbones, respectively.

Training and Evaluation. We adopt the open-source code by [45] and [145] to implement the

GPT-2 and Transformer-XL backbones, respectively. We further use the source code provided

in [6] to implement the baseline OPT-350M and LTS models used in zero and one-shot evalu-

ations. Table 6.1 encloses the hyperparameters used for training. In this work, each model is

trained separately from scratch. In many scenarios, the user only needs to train one model from

the Pareto-frontier, which is selected based on their needs for perplexity, latency, and memory.

However, if the users are interested in multiple models, they can either train all models separately

or fuse them and train them simultaneously using weight sharing as in [203, 227].

Throughout the text, validation perplexity is measured over a sequence length of 192

and 32 tokens for WikiText-103 and LM1B datasets, respectively. For our zero and one-shot

evaluations, we adopt the open-source code by [51]. Inference latency and peak memory

utilization are measured on the target hardware for a sequence length of 192, averaged over 10

measurements. The sequence length is increased to 2048 for latency comparison with the OPT

baseline. We utilize PyTorch’s native benchmarking interface for measuring the latency and

memory utilization of candidate architectures.

134

Table 6.1. LTS training hyperparameters for different backbones. Here, DO represents dropout.

Backbone Dataset Tokenizer # Vocab Optim. # Steps Batch size LR Scheduler Warmup DO Attn DO

Transformer-XL
WT103 Word 267735 LAMB [223] 4e4 256 1e-2 Cosine 1e3 0.1 0.0
LM1B Word 267735 Adam 1e5 224 2.5e-4 Cosine 2e4 0.0 0.0

GPT-2
WT103 BPE 50264 LAMB [223] 4e4 256 1e-2 Cosine 1e3 0.1 0.1
LM1B BPE 50264 LAMB [223] 1e5 224 2.5e-4 Cosine 2e4 0.1 0.1
Pile BPE 50272 Adam 5.48e4 256 3e-5 Linear 715 0.1 0.0

Search Setup. Evolutionary search is performed for 30 iterations with a population size of 100;

the parent population hash 20 samples out of the total 100; 40 mutated samples are generated per

iteration from a mutation probability of 0.3, and 40 samples are created using crossover.

Backbones. We apply our search on two widely used autoregressive Transformer backbones,

namely, Transformer-XL [32] and GPT-2 [153] that are trained from scratch with varying

architectural hyperparameters. The internal structure of these backbones are quite similar,

containing decoder blocks with attention and feed-forward layers. The difference between

the backbones lies mainly in their dataflow structure; the Transformer-XL backbone adopts a

recurrence methodology over past states coupled with relative positional encoding which enables

modeling longer-term dependencies.

Performance Criteria. To evaluate the ranking performance of various proxies, we first establish

a ground truth ranking of candidate architectures by training them until full convergence. This

ground truth ranking is then utilized to compute two performance criteria as follows:

▶ Common Ratio (CR): We define CR as the percentage overlap between the ground truth

ranking of architectures versus the ranking obtained from the proxy. CR quantifies the ability of

the proxy to identify the topk% architectures with lowest validation perplexity after full training.

▶ Spearman’s Rank Correlation (SRC): We use this metric to measure the correlation between

the proxy ranking and the ground truth. Ideally, the proxy ranking should have high correlation

with the ground truth over the entire search space as well as high-performing candidate models.

135

Figure 6.4. Comparison between partial training and our zero-cost proxy, i.e., decoder parameter
count, in terms of ranking performance and timing overhead. Each subplot corresponds to a
topk% of the randomly sampled models, based on their validation perplexity after full training.

6.3.2 How do training-free proxies perform compared to training-based
methods?

In this section, we benchmark several proxy methods for estimating the rank of candidate

architectures. Specifically, we investigate three different ranking techniques, namely, partial

training, low-cost methods, and number of decoder parameters.

▶ Partial Training. We first analyze the relationship between validation perplexity after a

shortened training period versus that of full training for ranking candidate models. We stop the

training after τ ∈ [1.25%, 87.5%] of the total training iterations needed for model convergence.

Figure 6.4 demonstrates the SRC and CR of partial training with various τs, evaluated on 100

randomly selected models from the Transformer-XL backbone, trained on WikiText-103. The

horizontal axis denotes the average time required for τ iterations of training across all sampled

models. Intuitively, a higher number of training iterations results in a more accurate estimate

of final perplexity. Nevertheless, the increased wall-clock time prohibits training during search

and also imposes the need for GPUs. Interestingly, very few training iterations, i.e., 1.25%,

provide a good proxy for final performance with an SRC of > 0.9 on the entire population. Our

training-free proxy, i.e., decoder parameter count, shows a similar SRC as partial training.

▶ Low-cost Proxies. We evaluate various low-cost methods introduced in Section 6.2.1 on

200 randomly sampled architectures from the Transformer-XL backbone, trained on WikiText-

103. Figure 6.5a shows the SRC between low-cost proxies and ground truth ranking after

136

full training. We measure the cost of each proxy in terms of FLOPs. As seen, the evaluated

low-cost proxies have a strong correlation with the ground truth ranking (even the lowest

performing relu log det has > 0.8 SRC), validating the effectiveness of training-free NAS

on autoregressive Transformers. The lower performance of relu log det can be attributed to

the much higher frequency of ReLU activations in CNNs, for which the method was originally

developed, compared to Transformer-based architectures. Our analysis on 100 randomly selected

models with homogeneous structures also shows a strong correlation between the low-cost

proxies and validation perplexity, with decoder parameter count outperforming other proxies as

shown in Figure 6.5b. We omit the relu log det method from Figure 6.5b as it provides a

low SRC of 0.42 due to heavy reliance on ReLU activations.

(a) (b)

Figure 6.5. SRC between low-cost proxies and the ground truth ranking after full training of
randomly sampled Transformers with (a) heterogeneous and (b) homogeneous decoder blocks.
The decoder parameter count obtains the best SRC with zero cost.

▶ Parameter Count. Figure 6.6a demonstrates the final validation perplexity versus the

total number of model parameters for 200 randomly sampled architectures from GPT-2 and

Transformer-XL backbones. This figure contains two important observations: (1) the validation

perplexity has a downward trend as the number of parameters increases, (2) The discontinuity

is caused by the dominance of embedding parameters when moving to the small Transformer

regime. We highlight several example points in Figure 6.6a where the architectures are nearly

identical but the adaptive input embedding factor k is changed. Changing k ∈ {1, 2, 4} (shown

with different colors in Figure 6.6a) varies the total parameter count without much influence on

137

Figure 6.6. (a) Validation perplexity after full training versus total parameters for 200 randomly
sampled architectures trained on WikiText-103. The downward trend suggests a strong correlation
between parameter count and perplexity. (b), (c) Performance of parameter count proxies for
ranking the randomly sampled architectures with Transformer-XL and GPT-2 backbones.

the validation perplexity.

The above observations motivate us to evaluate two proxies, i.e., total number of pa-

rameters and decoder parameter count. Figures 6.6b and 6.6c demonstrate the CR and SRC

metrics evaluated on the 200 randomly sampled models divided into topk% bins based on their

validation perplexity. As shown, the total number of parameters generally has a lower SRC with

the validation perplexity, compared to decoder parameter count. This is due to the masking effect

of embedding parameters, particularly in the Transformer-XL backbone. The total number of

decoder parameters, however, provides a highly accurate, zero-cost proxy with an SRC of 0.97

with the perplexity over all models, after full training. We further show the high correlation be-

tween decoder parameter count and validation perplexity for 100 randomly sampled Transformer

architectures with homogeneous decoder blocks in Figure 6.7. As seen, the total parameter count

has a low SRC with the validation perplexity while the decoder parameter count provides an

accurate proxy with an SRC of 0.95 over all architectures.

138

Figure 6.7. Performance of parameter count proxies on 100 randomly sampled Transformers
with homogeneous decoder blocks, trained on WikiText-103. The decoder parameter count
provides a very accurate ranking proxy with an SRC of 0.95 over all models.

6.3.3 How does variation in model topology affect decoder parameter
count as a proxy?

The low-cost proxies introduced in Section 6.2.1, rely on forward and backward passes

through the network. As such, they automatically capture the topology of the underlying

architecture via the dataflow. The decoder parameter count proxy, however, is topology-agnostic.

In this section, we investigate the effect of topology on the performance of decoder parameter

count proxy. Specifically, we seek to answer whether for a given decoder parameter count budget,

the aspect ratio of the architecture, i.e., trading off the width versus the depth, can affect the final

validation perplexity.

We define the aspect ratio of the architecture as dmodel (=width), divided by nlayer (=depth).

This metric provides a sense of how skewed the topology is and has been used in prior works

which study scaling laws for language models [96]. For a given decoder parameter count

budget, we generate several random architectures from the GPT-2 backbone with a wide range

of the width-to-depth aspect ratios3. The generated models span wide, shallow topologies (e.g.,

dmodel=1256, nlayer=2) to narrow, deep topologies (e.g., dmodel=112, nlayer=100). Figure 6.8a shows

the validation perplexity of said architectures after full training on WikiText-103 versus their

3We control the aspect ratio by changing the width, i.e., dmodel while keeping dinner=2×dmodel and nhead=8. The
number of layers is then derived such that the total parameter count remains the same.

139

aspect ratio. The maximum deviation (from the median) of the validation perplexity is < 12.8%

for a given decoder parameter count, across a wide range of aspect ratios ∈ [1, 630]. Our findings

on the heterogeneous search space complement the empirical results by [96] where decoder

parameter count largely determines perplexity for homogeneous Transformer architectures,

irrespective of shape (see Figure 5 in [96]). The effect of topology on decoder parameter count

proxy for the Transformer-XL backbone is shown in Figure 6.9. Our results demonstrate less

than 7% deviation (from the median) in validation perplexity for different aspect ratios ∈ [8, 323].

(a) (b) (c)

Figure 6.8. Validation perplexity after full training versus the (a) width-to-depth aspect ratio,
(b) latency, and (c) peak memory utilization. Models are randomly generated from the GPT-2
backbone and trained on WikiText-103. For a given decoder parameter count, we observe
low variation in perplexity across different models, regardless of their topology. The topology,
however, significantly affects the latency (up to 2.8×) and peak memory utilization (up to 5.5×)
for models with the same perplexity.

We observe stable training when scaling models from the GPT-2 backbone up to 100

layers, with the perplexity increasing only when the aspect ratio nears 1. For deeper architectures

with the Transformer-XL backbone, i.e., more than 40 layers, we observe an increase in the

validation perplexity, which results in a deviation from the pattern in Figure 6.9a. This observation

is associated with the inherent difficulty in training deeper architectures, which can be mitigated

with the proposed techniques in the literature [202]. Nevertheless, such deep models have

a high latency, which makes them unsuitable for lightweight inference. For the purposes of

hardware-aware and efficient Transformer NAS, our search space contains architectures with less

than 16 layers. In this scenario, the decoder parameter count proxy holds a very high correlation

140

with validation perplexity, regardless of the architecture topology as shown in Figures 6.9a, 6.9a.

Note that while models with the same parameter count have very similar validation

perplexities, the topology in fact affects their hardware performance; on the GPT-2 backbone,

latency can vary by up to 2.8× and peak memory utilization by up to 5.5× as shown in Fig-

ures 6.8b and 6.8c. Similarly, for the Transformer-XL backbone, the latency and peak memory

utilization can increase across architectures by 1.3× and 2.0× as shown in Figures 6.9b and 6.9c.

This motivates the need for incorporating hardware metrics in NAS to find the best topology.

(a) (b) (c)

Figure 6.9. Validation perplexity after full training versus (a) the width-to-depth aspect ratio, (b)
latency, and (c) peak memory utilization. Models are randomly generated from the Transformer-
XL backbone and trained on WikiText-103. For a given decoder parameter count, we observe
low variation in perplexity across models, regardless of their topology. The topology, however,
significantly affects the latency and peak memory utilization for models with similar perplexity.

6.3.4 How Good is the Decoder Parameters Proxy for Pareto-frontier
Search?

In this Section, we validate whether the decoder parameter count proxy actually helps

find Pareto-frontier models which are close to the ground truth Pareto front. We first fully train all

1200 architectures sampled from the Transformer-XL backbone during the evolutionary search

(Algorithm 4). Using the validation perplexity obtained after full training, we rank all sampled

architectures and extract the ground truth Pareto-frontier of perplexity versus latency. We train

the models on the WikiText-103 dataset and benchmark Intel Xeon E5-2690 CPU as our target

hardware platform for latency measurement in this experiment.

141

Figure 6.10 represents a scatter plot of the validation perplexity (after full training) versus

latency for all sampled architectures during the search. The ground truth Pareto-frontier, by

definition, is the lower convex hull of the dark navy dots, corresponding to models with the lowest

validation perplexity for any given latency constraint. We mark the Pareto-frontier points found

by the training-free proxy with orange color. As shown, the architectures that were selected as the

Pareto-frontier by the proxy method are either on or very close to the ground truth Pareto-frontier.

Figure 6.10. Perplexity versus latency Pareto obtained from full training of 1200 architectures
sampled during NAS on Transformer-XL backbone. Orange points are the Pareto-frontier
extracted using decoder parameter count proxy, which lies close to the actual Pareto-frontier.
Decoder parameter count holds an SRC of 0.98 with the ground truth perplexity after full training.

We define the mean average perplexity difference as a metric to evaluate the distance

(davg) between the proxy and ground truth Pareto-frontier:

davg =
1

N

N∑
i=1

|pi − pgt,i|
pgt,i

(6.1)

Here, pi denotes the i-th point on the proxy Pareto front and pgt,i is the closest point, in terms

of latency, to pi on the ground truth Pareto front. The mean average perplexity difference for

Figure 6.10 is davg = 0.6%. This small difference validates the effectiveness of our zero-cost

proxy in correctly ranking the sampled architectures and estimating the true Pareto-frontier. In

addition to the small distance between the prxoy-estimated Pareto-frontier and the ground truth,

our zero-cost proxy holds a high SRC of 0.98 over all 1200 sampled architectures.

We further study the decoder parameter proxy in scenarios where the range of model

sizes provided for search is limited. We categorize the total 1200 sampled architectures into

142

different bins based on the decoder parameters. Figure 6.11 demonstrates the SRC between

the decoder parameter count proxy and the validation perplexity after full training for different

model sizes. The proposed proxy provides a highly accurate ranking of candidate architectures

even when exploring a small range of model sizes.

Figure 6.11. SRC between the decoder parameter count proxy and validation perplexity. Results
are gathered on 1200 models grouped into four bins based on their decoder parameter count. Our
proxy performs well even when exploring within a small range of model sizes.

6.3.5 Pareto-frontier models for various hardware platforms

We run LTS on different target hardware and obtain a range of Pareto-optimal archi-

tectures with various latency/memory/perplexity characteristics. During search, we fix the

adaptive input embedding factor to k = 4 to search models that are lightweight while ensur-

ing nearly on-par validation perplexity with non-adaptive input embedding. As the baseline

Pareto, we benchmark the Transformer-XL (base) and GPT-2 (small) models with homogeneous

layers ∈ [1, 16]. This is because the straightforward way to produce architectures of different

latency/memory is varying the number of layers (layer-scaling) [32, 197]. We compare our NAS-

generated architectures with layer-scaled backbones and achieve better validation perplexity

and/or lower latency and peak memory utilization. This is because our heterogeneous search

space allows us to find a better parameter distribution among decoder layers. All baseline4 and

NAS-generated models are trained using the same setup enclosed in Table 6.1.

LM1B Dataset. Figure 6.12 shows the Pareto-frontier architectures found by LTS versus the

4The best reported result in the literature for GPT-2 or Transformer-XL might be different based on the specific
training hyperparameters, which is orthogonal to our investigation.

143

Figure 6.12. 2D visualization of perplexity versus latency and memory Pareto-frontier found by
LTS, versus the scaled backbone models with varying number of layers, trained on LM1B.

layer-scaled baseline when trained on the LM1B dataset. Note that the Pareto-frontier search

is performed in a 3-dimensional space but for better visualization, in Figure 6.12 we plot 2-

dimensional slices of the Pareto-frontier with validation perplexity on the y-axis and one hardware

performance metric (either latency or memory) on the x-axis. As seen, in the low-latency regime,

LTS consistently finds models that have significantly lower perplexity compared to naive scaling

of the baseline Transformer-XL or GPT-2.

On the Transformer-XL backbone, LTS finds architectures with an average of 19.8% and

28.8% lower latency and memory, while achieving similar perplexity compared to the baseline

on ARM CPU. Specifically, the perplexity of the 16-layer Transformer-XL base can be replicated

on the ARM device with a lightweight model that is 1.6× faster and utilizes 1.9× less memory

during execution. On the Corei7 CPU, the Pareto-frontier models found by LTS are on average

25.8% faster and consume 30.0% less memory under the same validation perplexity constraint.

In this setting, LTS finds a model that replicates the perplexity of the 16-layer Transformer-XL

base while achieving 1.7× faster runtime and 1.9× less peak memory utilization. The savings are

even higher on the GPU device, where the NAS-generated models achieve the same perplexity

144

as the baseline with average 30.5% lower latency and 27.0% less memory. Specifically, an LTS

model with the same perplexity as the 16-layer Transformer-XL base has 2.5× lower latency

and consumes 2.0× less peak memory on TITAN Xp.

On the GPT-2 backbone, NAS-generated models consume on average 11.8% less memory

while achieving the same validation perplexity and latency on an ARM CPU. The benefits are

larger on Corei7 and TitanXP where the latency savings are 13.8% and 11.9%, respectively.

The peak memory utilization also decreases by 9.7% and 12.9%, on average, compared to the

baseline GPT-2s on Corei7 and TITAN Xp. Notably, NAS finds new architectures with the

same perplexity as the 16-layer GPT-2 with 1.3×, 1.5× faster runtime and 1.2× lower memory

utilization on Corei7 and TITAN Xp.

Figure 6.13. 2D visualization of perplexity versus latency and memory Pareto-frontier found by
LTS versus layer-scaled backbone models. All models are trained on WikiText-103.

WikiText-103 Dataset. We compare the Pareto-frontier architectures found by LTS with the

baseline after full training on the WikiText-103 dataset in Figure 6.13. Commensurate with the

findings on the LM1B dataset, the NAS-generated models outperform the baselines in at least

one of the three metrics, i.e., perplexity, latency, and peak memory utilization. We note that the

gap between the baseline models and those obtained from NAS is larger when training on the

145

LM1B dataset. This is due to the challenging nature of LM1B, which exceeds the WikiText-103

dataset size by ∼ 10×. Thus, it is harder for hand-crafted baseline models to compete with the

optimized LTS architectures on LM1B.

On the Transformer-XL backbone, the models on LTS Pareto-frontier for the ARM

CPU have, on average, 3.8% faster runtime and 20.7% less memory under the same validation

perplexity budget. On the Corei7, the runtime and memory savings increase to 13.2% and

19.6%, respectively, while matching the baseline perplexity. We achieve our highest benefits

on TITAN Xp GPU where LTS Pareto-frontier models have, on average, 31.8% lower latency

and 21.5% lower memory utilization. Notably, the validation perplexity of the baseline 16-layer

Transformer-XL base can be achieved with a lightweight model with 2.1× lower latency while

consuming 1.6× less memory at runtime.

On the GPT-2 backbone, LTS achieves 6.3− 11.2 lower perplexity in the low-latency-

and-memory regime. As we transition to larger models and higher latency, our results show that

the GPT-2 architecture is nearly optimal on WikiText-103 when performing inference on a CPU.

The benefits are more significant when targeting a GPU; For any given perplexity achieved by the

baseline, LTS Pareto-frontier on TITAN Xp delivers, on average, 9.0% lower latency and 4.5%

lower memory. Thus, the perplexity and memory of the baseline 16-layer GPT-2 is achieved by

a new model that runs 1.4× faster and consumes 1.2× less memory on TITAN Xp.

▶ Search Efficiency. The main component in LTS search time is the latency/peak memory

utilization measurement for candidate architectures since evaluating the model perplexity is

instant using the decoder parameter count. Therefore, our search finishes in a few hours on

commodity hardware, e.g., taking only 0.9, 2.6, and 17.2 hours on a TITAN Xp GPU, Corei7

CPU, and an ARM core, respectively. To provide more context into the timing analysis, full

training of even one 16-layer Transformer-XL base model on LM1B using a machine with 8×

NVIDIA V100 GPUs takes 15.8 hours. Once the Pareto-frontier models are found, the user can

pick a model based on their desired hardware constraints and fully train it on the target dataset.

LTS is an alternate paradigm to that of training large supernets; our search runs on the target

146

device and GPUs are only needed for training the final chosen Pareto-frontier model after search.

In Table 6.2 we study the ranking performance of partial training (500 steps) versus

the decoder parameter count proxy over 1200 architectures with the Transformer-XL backbone

during LTS search. Astonishingly the decoder parameter count proxy gets higher SRC compared

to partial training, while effectively removing training from the inner loop of search for NAS.

Table 6.2. Ranking abilities of full and partial training versus our proxy for 1200 models sampled
during LTS search. Training time is reported for WikiText-103 and NVIDIA V100 GPU. Decoder
parameter count proxy obtains an SRC of 0.98 using zero compute.

Train
Iter

GPU
Hours

CO2e
(lbs) SRC

Full Training 40,000 19,024 5433 1.0

Partial Training
500 231 66 0.92

5,000 2690 768 0.96
Decoder Params 0 0 ∼0 0.98

6.3.6 Zero and one-shot performance comparison with OPT

Zhang et al. [232] open-source a set of pre-trained decoder-only language models, called

OPT, which can be used for zero or few-shot inference on various NLP tasks. Below, we compare

the performance of LTS Pareto-frontier models with the hand-designed OPT architecture in

zero and one-shot settings. We use LTS to search for language models with a GPT-2 backbone

which have 300M to 500M total parameters to compare with the 350M parameter OPT. To cover

models with a similar parameter count budget as the OPT-350M model, we search over the follow-

ing values for the architectural parameters: nlayer∈ {3, . . . , 29|1}, dmodel∈ {512, . . . , 1472|64},

dinner∈ {512, . . . , 6080|64}, and nhead∈ {2, 4, 8, 16}. To directly compare with OPT, we use

a generic, non-adaptive embedding layer for our models. Therefore, the search space does

not include the k factor and dembed=dmodel. The search is conducted with latency as the target

hardware metric and decoder parameter count as a proxy for perplexity.

Once the search concludes, We train 20 models from the Pareto-frontier along with

OPT-350M on 28B tokens from the Pile [50]. The pretrained models are then evaluated on 14

147

downstream NLP tasks, namely, HellaSwag [231], PIQA [16], ARC (easy and challenge) [30],

OpenBookQA [137], WinoGrande [165], and SuperGLUE [198] benchmarks BoolQ, CB, COPA,

WIC, WSC, MultiRC, RTE, and ReCoRD. The training hyperparameters and the evaluation

setup are outlined in Section 6.3.1. Figure 6.14 shows the overall average accuracy obtained

across all 14 tasks versus the inference latency for LTS models and the baseline OPT. As shown,

NAS-generated models achieve a higher average accuracy with lower latency compared to the

hand-designed OPT-350M model.

Figure 6.14. Average zero and one-shot accuracy of LTS models (dots) and the baseline OPT-
350M (triangle) across 14 NLP tasks. Latency is measured on an A6000 NVIDIA GPU.

▶ Zero-shot Performance. Compared to the OPT-350M architecture, LTS finds models that

achieve higher accuracy and lower latency in the zero-shot setting on all evaluated downstream

tasks. Specifically, the maximum achievable accuracy of our NAS-generated models is 0.2−8.6%

higher than OPT-350M with an average speedup of 1.2×. If latency is prioritized, LTS delivers

models that are, on average, 1.5× faster and up to 4.6% more accurate than OPT-350M.

▶ One-shot Performance. Similar trends can be observed for one-shot evaluation as shown

for different tasks. LTS Pareto-frontier models improve the per-task accuracy of OPT-350M on

12 out of 14 tasks by 0.1 − 8.0%, while achieving an average speedup of 1.2×. On the same

tasks, LTS Pareto-frontier includes models that enjoy up to 1.6× speedup over OPT-350M with

an average 1.5% higher accuracy. On the RTE task, the best LTS model has 0.4% lower accuracy

but 1.6× faster runtime. On the WSC task, the best performing LTS model obtains a similar

one-shot accuracy as OPT-350M, but with 1.5× faster runtime.

148

6.4 Conclusion

We empirically establish a critical insight that there exists a strong correlation between

the number of decoder parameters and final model performance for autoregressive Transformers.

Building upon this finding, we develop an efficient on-device search algorithm (LTS) that outputs

models on the Pareto-frontier of perplexity versus various hardware metrics, e.g., latency and

peak memory utilization. LTS utilizes the decoder parameter count as a training-free and zero-

cost proxy for relative ranking of architectures during search. Our search can be performed

locally on the target (constrained) platform, where hardware performance metrics, e.g., latency,

are directly measured. We provide large-scale proof-of-concept experiments on the effectiveness

of decoder parameter count as a ranking proxy using 2900+ autoregressive Transformers of

varying size, backbones, and two large language datasets.

6.5 Acknowledgements

Chapter 6, in part, was published as: M. Javaheripi, G. de Rosa, S. Mukherjee, S.

Shah, T. Religa, C. Mendes, S. Bubeck, F. Koushanfar, and D. Dey, “LiteTransformerSearch:

Training-free Neural Architecture Search for Efficient Language Models”, in Advances in Neural

Information Processing Systems (NeurIPS), 2022. The dissertation author was the primary

investigator and author of this paper.

149

Chapter 7

Automating Model Compression via Adap-
tive Non-uniform Sampling

With the growing range of applications for Deep Neural Networks (DNNs), the demand

for higher accuracy has led to a continuous increase in the complexity of state-of-the-art models.

Such high execution cost hinders the deployment of DNNs in real-time applications on commod-

ity hardware. Fortunately, modern neural networks have been shown to incur high redundancies

that can be eliminated without compromising inference accuracy. Effective identification and

removal of such redundancies has fueled a myriad of research in two interlinked domains: (i) De-

veloping model compression techniques, e.g., pruning [68, 70, 94, 110, 114, 115, 126, 204, 210]

and coding [168]. (ii) Devising automated policies that learn how to configure compression

techniques to simultaneously achieve accuracy and compactness [42, 69, 90, 91, 168, 205]. In this

work, we focus on the latter.

The effectiveness of contemporary compression techniques relies on careful tuning of

several hyperparameters across DNN layers, e.g., pruning rates. These hyperparameters directly

control the trade-off between accuracy and execution cost on a constrained device. The question

to be answered is how to find an optimal hyperparameter configuration that results in a high

compression rate while minimally affecting inference accuracy. Figure 7.1 shows how an

intelligent hyperparameter selection policy can better estimate the geometry of the optimal Pareto

front for the same compression technique (Pruning). Existing research in automated compression

150

suggests the use of heuristic methods [68, 70, 94] or Reinforcement Learning (RL) [42, 69, 218].

To tackle the high-dimensionality of the search space, heuristics and RL-based algorithms specify

the hyperparameters one layer at a time. One downside of such approach is the need for many

learning episodes to enable identification of the inherent inter-layer correlations. This, in turn,

results in a rather slow convergence to the optimal hyperparameter solution.

Figure 7.1. Pareto curves of accuracy versus number of floating point operations for pruning a
pre-trained VGG network on CIFAR-10 benchmark.

We propose an alternative approach that simultaneously tunes the compression hyper-

parameters for all DNN layers by encapsulating them as one fixed-length vector x⃗ ∈ Rd. Each

hyperparameter vector translates to a unique compressed DNN by leveraging the transforma-

tions suggested in existing DNN compression techniques. The search for optimal compression

hyperparameters directly translates to optimizing an objective function f(x⃗) : Rd → R over x⃗

where f(·) is an arbitrary measure of quality. We suggest a unified formulation for f(·), called

the score, which assesses the quality of x⃗ by combining accuracy and a desired execution cost.

One major challenge in maximizing f(·) is that the underlying algebraic model that

relates compression hyperparameters to inference accuracy (and possibly the execution cost)

is not known. In other words, one can evaluate the pertinent objective function f(x⃗) for any

arbitrary input x⃗ but does not have access to other information such as the gradient ∂f
∂x

. Thus,

numerical optimization methods such as stochastic gradient descent are not directly applicable.

Since the vectorized search-space grows exponentially with number of DNN layers, brute-force

search is infeasible, and more intelligent approaches are needed to find the optimal solution.

151

We resort to empirical evaluations of f(·) and propose AdaNS, a non-uniform adaptive

sampling methodology that aims at reconstructing the opaque objective function f(.) around its

maxima. Different from classic sampling (which accurately reconstructs the function over the

entire input space), our sampler’s reconstruction objective focuses more on regions of interest,

i.e., the maximizers of f(.). To the best of our knowledge, this is the first time that designing

compact DNNs, a topic often viewed in the field of computer engineering, has been framed in

the context of adaptive sampling, an active area of research in signal processing.

To reduce the total number of required function evaluations while enabling a low-error

reconstruction around the maxima, we choose our samples following two incentives: (i) we

should sample from likely maximas to reach the optimization goal, and (ii) samples should be

drawn from unexplored regions where we have a high reconstruction error (uncertainty). We

satisfy the above two properties by realizing targeted sampling. Our proposed algorithm is an

iterative process, where a batch of samples (hyperparameter vectors) are obtained and evaluated

at each phase. The sampling distribution over the input space for each phase is then refined

adaptively based on prior observations before sampling the next batch of hyperparameter vectors.

AdaNS exploits parallelism to reduce optimization time by concurrent sample evaluations. We

devise three adaptive sampling subroutines, namely, AdaNS-Zoom, AdaNS-Genetic, and AdaNS-

Gaussian, each of which incorporates a different (posterior) sampling distribution.

We study the impact of the sampling strategy on the convergence rate and the maximal

returned value. Our empirical evaluations show that AdaNS-Gaussian achieves higher values

of f(·) with a lower number of function evaluations. To demonstrate AdaNS generalizability,

we apply it to optimization tasks of various complexity. Our experiments show that AdaNS

can learn near-optimal hyperparameters in very high-dimensional search-spaces; to the best of

knowledge, AdaNS is the only black-box optimization method shown to tackle search-space

sizes as high as 10132. We show the superiority of AdaNS over prior work in RL [69], Bayesian

optimization [26], expert-designed architectures [73, 170, 225], and heuristic methods [68, 70, 82,

94, 114, 115, 124, 126, 141, 166, 204, 210]. We unveil the full potential of AdaNS by learning to

152

effectively combine multiple methods: for VGG-16 on ImageNet, AdaNS pushes the state-of-the-

art floating-point operation count (FLOPs) reduction from 5× to 7.1× with higher accuracy. For

compact MobileNets, AdaNS obtains on average 1.2% higher top-1 accuracy than the MobileNet

Pareto curve. We further show that AdaNS is highly scalable and enjoys a linear search speedup

with number of distributed computing resources.

Main Contributions:

• We devise three adaptive sampling strategies, i.e., AdaNS-Zoom, AdaNS-Genetic, and AdaNS-

Gaussian, that search for the optimal hyperparameters x⃗ ∈ Rd for DNN compression. Each

strategy iteratively refines the sampling posterior distribution towards generating better sam-

ples.

• We suggest a unified formulation for the optimization objective f(x⃗) : Rd → R, i.e., the score.

Our customized f(·) simultaneously incorporates inference accuracy and execution cost to

quantitatively asses compressed DNNs.

• We propose a context-aware boundary characterization scheme that prevents sampling from

regions that are unlikely to contain the optimal solution.

• We connect AdaNS to function reconstruction and sampling theory. Specifically, we devise a

non-uniform reconstruction scheme and empirically show that AdaNS reduces the reconstruc-

tion error around the maxima.

7.1 Background and Related Work

Automated Policy Making. Designing automated methodologies for achieving compact and

accurate neural networks has been the focus of recent work [69, 84, 87, 168, 205]. In order

to achieve high-accuracy and low-complexity neural networks, genetic algorithms have been

applied to Neural Architecture Search (NAS) [82] and DNN compression [75]. Reinforcement

Learning (RL) [69, 205] is another promising tool for DNN compression. Although effective in

finding near-optimal solutions, RL relies on gradient-based training, which can lead to a high

153

computational burden as well as a slow convergence. Furthermore, RL is not scalable in large

continuous action-spaces [166, 217].

We develop a multi-objective optimization method based on an adaptive sampling strategy.

AdaNS is dimensionality-agnostic and can scale well to large search-spaces. This, in turn, allows

for simultaneous optimization of all layers’ hyperparameters. Our solution offers several benefits:

(1) it is inexpensive to implement since it does not involve gradient-based algorithms. (2) Unlike

RL algorithms that are inherently sequential, AdaNS is highly parallelizable and can offer

scalability in distributed settings. (3) AdaNS can support both continuous and sparse-valued

objective functions. (4) AdaNS is the only known method to-date that optimizes heterogeneous

parameters in search spaces as large as 10132. Prior work either constrain the search-space size,

e.g., [26, 69] or are designed specifically for one compression task, e.g., [225].

Sampling. Our approach to DNN compression is loosely related to three classical problems in

the literature: Bayesian empirical optimization [26,173,180], spectral methods [65], and adaptive

sampling theory [64]. Bayesian empirical optimization provides a method for hyperparameter

tuning by assuming a prior distribution for the score function and then updating this prior based

on new observations. However, this approach depends on the availability of reliable Bayesian

priors which, in some regimes, might not be realistic. AdaNS does not make any probabilistic

assumptions about the objective function and is compatible with arbitrary f(·). Furthermore,

Bandit methods such as Bayesian optimization are inherently serial and difficult to parallelize

while our batch implementation allows parallelism in distributed settings.

Spectral methods, when applied to empirical optimization, leverage the structure of the

score function together with known results from Fourier analysis and compressed sensing. The

main drawback of spectral approaches is their reliance on prior knowledge about the sparse

structure of the score function, which cannot be immediately assumed in the context of DNN

compression. Adaptive sampling methods are generally well-suited to scenarios where the

structure of the score function is unknown but has local features. In such scenarios, sample

spacing can be controlled by leveraging the observed values of the variable of interest. Although

154

adaptive sampling has been amenable to many fields of research, little is concretely known about

its optimal strategies.

7.2 Problem Formulation

DNN compression, in high-level, is a transformation T (M, x⃗) that converts a pretrained

model M to a compressed model M̂x⃗ with lower computational complexity. In this process,

the adjustable hyperparameter vector x⃗ ∈ Rd controls the complexity and accuracy of the

output model. A desirable compressed network satisfies two properties: (i) the generalization

capability of M̂x⃗ should resemble the original network and (ii) the execution cost of M̂x⃗ on the

target hardware platform should be as low as possible. We assume we have access to a scoring

oracle, f(·), that assesses x⃗ based on its corresponding compressed model’s accuracy A(M̂x⃗)

and complexity C(M̂x⃗). Our objective is to empirically optimize this customized score:

max
x⃗∈Rd

f(A(M̂x⃗), C(M̂x⃗)), (7.1)

For simplicity, we show f(A(M̂x⃗), C(M̂x⃗)) as f(x⃗) in the rest of the chapter. Since full

knowledge about f(·) and/or its first derivatives cannot be assumed, often empirical evaluations

and optimization is the only viable strategy. Brute-force empirical evaluation of f(·) over x⃗ ∈ Rd,

in general, is infeasible as the search-space grows exponentially with d. Instead, we propose an

empirical zeroth order optimization based on adaptive non-uniform sampling, dubbed AdaNS, to

find the maximum value in Equation (7.1), i.e., f ∗.

In the context of DNN compression, f(x⃗) can be viewed as a band-limited signal, i.e.,

the corresponding Fourier transform F (ω) is contained in a frequency interval [−B,B]. As

such, one can approximately solve the maximization problem in Equation (7.1) by sampling.

AdaNS iteratively samples the hyperparameter vector space to find an optimized compression

configuration x⃗∗. We consider an adaptive sampler generating S = S1∪S2∪ · · ·∪ST where each

St represents a fixed-sized set of b samples to be evaluated in iteration t. Let x⃗∗
S be the current

155

maximizer of f(·) on the entire set of observed (evaluated) samples S. Our objective is to select

S1, S2, . . . ,ST such that f(x⃗∗
S) is not too far from the actual function maximum f ∗. To this end,

AdaNS adopts a guided search such that samples generated at each iteration are more competent

than the previously observed samples, i.e., they result in better DNNs with higher f(x⃗).

7.3 AdaNS Overview

We provide a generic solution to effectively compress a pre-trained DNN while maximally

preserving model accuracy. AdaNS automation policy acts on a pool of hyperparameters and

explores the corresponding search-space using adaptive non-uniform sampling. An overview of

AdaNS optimization is shown in Figure 7.2 and summarized below:

I. First, a pre-processing step characterizes the search-space boundaries within which the

optimal solution can reside. These boundaries are specified based on task-enforced

constraints on inference accuracy. Using the boundaries, initial hyperparameter vectors

S1 = {x⃗1, . . . , x⃗b} are sampled (Section 7.3.3).

II. Each iteration, newly generated samples x⃗ ∈ St are translated to their compressed DNNs

M̂x⃗ (Section 7.3.1). The scores f(x⃗) are then evaluated in parallel (Section 7.3.2).

III. Based on the knowledge acquired by new evaluations and previously observed samples,

AdaNS adaptive sampling subroutine identifies a batch of more competent hyperparameter

vectors St+1. We propose three different subroutines that select the new set of samples,

namely, AdaNS-Zoom, AdaNS-Genetic, and AdaNS-Gaussian (Section 7.4).

Figure 7.2. Overview of AdaNS adaptive sampling for hyperparameter customization.

156

7.3.1 Search-Space Definition

An initial step for the application of AdaNS is defining the pertinent search-space for

black-box optimization. To this end, we propose a vectorized representation of the hyperpa-

rameters for various compression methods. The problem of compression optimization can then

be solved by performing a search over this vector-space. Throughout this chapter, we focus on

four compression tasks, namely, structured [70] and non-structured [62] Pruning, Singular Value

Decomposition (SVD) [235], and Tucker-2 approximation [98].

Figure 7.3 shows our vectorized compression hyperparameters for a 4-layer neural

network. For pruning, we allocate one continuous value p ∈ [0, 1], per layer, inside x⃗ to

represent the ratio of non-zero values. We apply SVD on the weights of fully-connected layers

(W ∈ Rc×f) and point-wise convolutions (W ∈ R1×1×c×f). To represent the integer-valued rank

∈ {1, . . . , R} for SVD, we allocate one continuous value rank ∈ [1
R
, 1] per decomposed layer

to form x⃗, where R = min(c, f). Tucker-2 is applied on four-way tensors W ∈ Rk×k×c×f in

convolution layers where the compression parameter is a tuple of ranks. To form x⃗, we assign

two normalized, real-valued hyperparameters rank1 ∈ [1
c
, 1] and rank2 ∈ [1

f
, 1] per convolution.

Figure 7.3. Vectorized representation of an example 4-layer DNN for Pruning and Decomposi-
tion. Here, CONV and FC denote convolutional and fully-connected layers, respectively.

7.3.2 Scoring Mechanism

We formalize a multi-objective score f(x⃗) which simultaneously reflects the compressed

DNN’s accuracy and computational complexity. This score can thus be leveraged to assess the

compression quality of each hyperparameter vector x⃗. To define f(·), let us first represent DNN

157

compression as a constrained optimization as follows:

max
x⃗∈Rd

∆C(M, x⃗) s.t. A(M̂x⃗) > Athr (7.2)

where ∆C (M, x⃗) represents the normalized difference in hardware cost, e.g., FLOPs, between

the uncompressed network, M , and the compressed model, M̂x⃗. Here, Athr is a task-enforced

threshold on the post-compression accuracy. Having an accuracy constraint is crucial since the

optimization algorithm will converge to a model size of zero otherwise. To solve the constrained

optimization problem in Equation (7.2), we propose to formulate it as the following primal

unconstrained optimization using penalty methods [8]:

max
x⃗∈Rd

∆C(M, x⃗)− log(PENA(x⃗))) (7.3)

where the term log(PENA(x⃗)) is the exterior penalty function [28] that enforces a constraint

on the compressed model’s accuracy, i.e., A(M̂x⃗) > Athr. The function PENA(x⃗) measures the

accuracy degradation as follows:

PENA(x⃗) =

∆A(M, x⃗) A(M̂x⃗) ≥ Athr

∆A(M, x⃗) + e[Athr−A(M̂x⃗)] A(M̂x⃗) < Athr

(7.4)

where ∆A(M, x⃗) = A(M)− A(M̂x⃗) and A(M) is the baseline accuracy of the uncompressed

model. Figure 7.4 visualizes the accuracy penalty. To prevent undesirable drop of accuracy, we

greatly diminish the score of individuals that cause lower accuracies than the set constraint, Athr.

The log penalty term is estimated as follows:

log(PENA(x⃗))) =

log(∆A(M, x⃗)) A(M̂x⃗) ≥ Athr

Athr − A(M̂x⃗) A(M̂x⃗) < Athr

(7.5)

For accuracy values satisfying the threshold, this term enforces the accuracy maximization

objective. Applying the logarithm smoothens the accuracy variations by damping sudden changes.

158

Figure 7.4. AdaNS accuracy penalty function with Athr = 80% and A(M) = 93.5%.

For accuracy values below Athr, a linear penalty is applied to stop further accuracy loss. To avoid

numerical instability, we define the exponential of the primal optimization in Equation (7.3) as

our score function:

f(x⃗) =
e∆C (M,x⃗)

PENA(x⃗)
(7.6)

Maximizing the score function of Equation (7.6) is equivalent to maximizing its logarithm

value in Equation (7.3). To ensure efficiency, inference accuracies are measured on a small

held-out portion of the training data, dubbed validation set. AdaNS score function successfully

models the goal of high compression with minimal accuracy loss; it is applicable to various

compression tasks and can reflect different hardware costs, e.g., power, memory, and runtime.

7.3.3 Boundary Characterization for Directed Search

A naı̈ve initialization of samples in the first iteration can result in slow and sub-optimal

convergence. We utilize boundary characterization as a pre-processing step to enable a targeted

initialization. This approach eliminates unnecessary exploration of outlier subspaces, i.e., regions

that are unlikely to contain the optimization solution. Inference accuracy for a compressed DNN

M̂x⃗ is coordinate-wise monotonic with respect to per-layer compression rates: as the compression

rates increase, the accuracy drops. As such, we can characterize the boundaries of x⃗[i] on a

per-layer basis, based on the accuracy threshold without performing any fine-tuning. Figure 7.5

visualizes the hyperparameter search-space and the outlier regions for pruning a two-layer model.

159

Figure 7.5. Search-space for pruning a 2-layer DNN.

The optimal solution to the search problem is a configuration with the highest score. The

outlier regions in Figure 7.5 are therefore the flat sectors of the space. We find a threshold vector

θ⃗ where each element constrains a single hyperparameter corresponding to the compressed DNN.

In Figure 7.5, θ⃗ has two elements, each presented by a dashed line. Below we describe how the

boundaries θ⃗[i] are obtained given an accuracy threshold Athr for each compression task.

Pruning. The threshold vector elements θ⃗[i] ∈ [0, 1) specify the maximum pruning rate for layer

i such that the compressed DNN’s accuracy does not violate Athr:

θ⃗[i] = max{p} s.t. x⃗[j] =

p j = i

0 j ̸= i

, A(M̂x⃗) > Athr

Figure 7.6. Boundary characterization for pruning a VGG model on CIFAR-10 with Athr = 80%.

Figure 7.6 demonstrates an example of boundary characterization for pruning a VGG

network on CIFAR-10. Each curve is obtained by varying the pruning rate for one layer while

no other layer is pruned. The collision between the dashed horizontal line, i.e., the accuracy

threshold, and the ith curve provides the threshold boundary θi.

160

Decomposition. For SVD and Tucker-2 decomposition, the threshold vector θ⃗ represents per-

layer minimum ranks θ⃗[i] ∈ (0, 1] satisfying Athr where a normalized rank of 1 corresponds to a

non-decomposed layer:

θ⃗[i] = min{rank} s.t. xj =

rank j = i

1 j ̸= i

, A(M̂x⃗) > Athr

Note that real-world models have many more layers and the pertinent search-space is

of much higher dimensionality than in Figure 7.5. For a d-dimensional space, the proposed

boundary characterization scheme reduces the effective (continuous) search volume from 1 to∏d
i=1 θ⃗[i] for pruning and

∏d
i=1(1− θ⃗[i]) for decomposition, therefore, significantly improving

search convergence and solution quality.

By filtering out the non-optimal regions, AdaNS sampling can find the near-optimal

solution within the found margins. After boundary characterization, we randomly draw the initial

samples from the space enclosed by the threshold vector θ⃗. For pruning, the ith element x⃗[i] in

each sample vector is drawn from N (θ⃗[i]/2, θ⃗[i]/2). For decomposition, the ith element x⃗[i] is

randomly selected from U [θ⃗[i], 1].

7.3.4 Optimization through Adaptive Sampling

In this section, we enclose the mathematical formulation of AdaNS adaptive sampling

and its connection to optimization. Let us consider a pool of samples S = {x⃗i}Ni=1 which are

generated iteratively and then evaluated via the scoring oracle. Also, let x⃗∗
S be the current

maximizer for the objective function f(·), found across the observed samples. To maximize the

probability of finding a near-optimal solution, we seek the following property on S:

max
S
P(f(x⃗∗

S) > αmaxf
∗), 0 < αmax < 1 (7.7)

where P(·) denotes probability and αmax is a constant value called the proximity parameter. As

αmax → 1, the sampled maxima get closer to the real function maximum: f(x⃗∗
S)→ f ∗. To reach

161

the objective of Equation (7.7), we devise an adaptive sampler to generate S based on two ideas:

• We choose our samples (S) in a sequential fashion: S1, S2, . . . , ST
1 such that f(S[1:t]) is

utilized2 in choosing St+1.

• We allow S1, . . . , ST to be random sets. That is, instead of choosing St+1 deterministically,

we devise a sampling distribution Gt+1(·) such that St+1 ∼ Gt+1(·). More precisely, St+1

is a random draw from the conditional distribution Gt+1|t(·|S[1:t]).

Algorithm 5 presents a high-level overview of one iteration in AdaNS sampling method-

ology. At each iteration t, the current estimate of the function maxima f̃ ∗ is obtained based on

the previous observations (Line 1). AdaNS uses a proximity parameter αt ∈ [0, 1] to extract the

set of good samples Sg from the history of previous observations S[1:t] where Sg is the set of

samples x⃗ ∈ S[1:t] with f(x⃗) > αtf̃
∗ (Lines 2 & 3). A large value for the proximity parameter

(≈ 1) is ideal since it allows for better identification of the function maximum. However, setting

the proximity parameter to a high initial value causes the underlying sampling to become biased

towards the initial good samples when the local maxima are not yet found. To mitigate this issue,

we adaptively tune αt throughout iterations, such that Sg has a diverse set of members, therefore

balancing exploration and exploitation in the sampling distributions. At each iteration, αt is set

to the maximum value within [0, αmax] that allows Sg to have at least b members (Line 2). In

practice, αt becomes close to zero in the initial search iterations and gradually increases towards

αmax ≈ 0.95 as the AdaNS search algorithm proceeds.

Once the set of good samples Sg is extracted, a sampling subroutine is applied to

generate a new set of samples, St+1. The sampling subroutine utilizes Sg to update the sampling

distribution Gt+1 from which the next batch of samples St+1 are drawn (Lines 5 & 6). The details

of AdaNS sampling subroutines are enclosed in Section 7.4. The newly generated samples are

1St is the set of samples from the tth iteration of AdaNS.
2We use the notation f(S) as follows: f(S) = {f(x⃗)|x⃗ ∈ S}

162

then evaluated and appended to the sample history. This process is repeated until convergence,

or up to a maximum number of iterations (T).

Algorithm 5. Overview of AdaNS Sampling

Inputs: Previous samples S[1:t], fitness oracle f(·), batch size b, proximity parameter αmax.
Outputs: S[1:t], f(S[1:t]).

1: f̃ ∗ = max f(S[1:t])

2: αt = max(α)
α∈[0,αmax]

s.t. |{x⃗ ∈ S[1:t]|f(x⃗) > αf̃ ∗}| ≥ b

3: Sg = {x⃗ ∈ S|f(x⃗) > αtf̃
∗}

4: procedure SAMPLING SUBROUTINE

5: Update sampling distribution Gt+1(·) based on Sg

6: Sample St+1 = {x⃗i}bi=1 ∼ Gt+1(·)
7: return St+1

8: S[1:t+1] = St+1 ∪ S[1:t]

9: f(S[1:t+1]) = f(St+1) ∪ f(S[1:t])

7.4 AdaNS Adaptive Sampling Routines

Recall that AdaNS iteratively establishes a set of evaluated samples, S[1:T] = S1∪· · ·∪ST ,

such that the samples generated at each iteration are more competent than the previously observed

samples. In other words:

max f(S[1:t+1]) ≥ max f(S[1:t]) (7.8)

This, in turn, ensures that the evaluated samples gradually move closer to the objective function

maximizer. The choice of new samples at each iteration in AdaNS is based on the adaptive

sampling distribution Gt+1(·) utilized in the sampling subroutine (see Algorithm 5). The choice

of Gt+1(·) directly affects optimization performance, i.e., the maximal returned value for the

objective function as well as the convergence time. To investigate such effects, we design

three different sampling subroutines for AdaNS, namely, AdaNS-Zoom, AdaNS-Genetic, and

163

AdaNS-Gaussian. While each subroutine incorporates a different prior for Gt+1(·), all of the

sampling distributions are developed based on the following key insights:

1 In the absence of prior knowledge, uniform sampling provides the most effective exploration

of the functional landscape of the optimization objective f(·).

2 Assuming mild regularity conditions on f(·), it is intuitive that increasing sampling rate

locally around “good samples” observed so far is more likely to result in additional (future)

high-score observations.

3 Assuming mild regularity conditions on f(·), it is intuitive that the line connecting two

good samples is likely to be aligned with the optimal (but unknown) gradient ascend.

In the following, we explain how the above insights are leveraged to design the sampling policy

for AdaNS subroutines.

7.4.1 AdaNS-Zoom Sampling Subroutine

Our first sampling subroutine, i.e., AdaNS-Zoom, establishes Gt+1(·) using a set of

uniform probability distributions as the prior. Uniform sampling requires a large number of

samples that maximally cover the optimization space, in order to locate the objective function

maximizers. This solution, however, is infeasible for the problem at hand as the number of

required samples and evaluations increases exponentially with the number of DNN layers. To

alleviate this high sample count, we propose an adaptive methodology that intelligently distributes

random samples across the search-space. AdaNS-Zoom iteratively (1) divides the space into

multiple sub-regions and (2) adaptively tunes the per-region sample density.

Division. This step determines the boundaries that divide up the search-space into the afore-

mentioned sub-regions. Our division algorithm gradually generates a hierarchy of sub-regions

based on the information acquired from previously observed samples. We start with the whole

search-space considered as one sub-region as shown in Figure 7.7- a . Our goal is to use samples

164

to accurately characterize sub-regions that are more likely to contain near-optimal solutions.

To increase sampling resolution in such good areas, AdaNS gradually zooms into high-quality

sub-regions by dividing them in half as shown in Figure 7.7- b and 7.7- d . We quantify the

quality of the ith sub-region by its share of good samples wi:

wi =
|Sg|i
|S[1:t]|i

(7.9)

where | · |i counts the total number of samples contained in sub-region i throughout all iterations.

We then choose the sub-region with maximum wi in each iteration to be divided in half along its

longest dimension.

Sampling. In the first iteration of the algorithm, we uniformly sample the entire search-space

since no prior knowledge is available. Throughout next iterations, after each division takes

place, new wis are computed to reflect the portion of good samples lying in the new sub-regions.

To generate a new sample, we randomly select a sub-region with wi representing the (relative)

chance of the ith region being selected. We then draw a sample from a uniform distribution over

the selected sub-region. By repeating this process b times, we obtain the next batch of samples

St+1 = {x⃗i}bi=1 in Algorithm 5, Line 6.

Figure 7.7. AdaNS-Zoom algorithm. Here, the good and bad samples are shown with blue circles
and red crosses, respectively.

165

Figure 7.8. Overview of AdaNS-Genetic sampling subroutine.

7.4.2 AdaNS-Genetic Sampling Subroutine

To generate higher quality samples based on previous observations, our second subroutine

utilizes a genetic algorithm. Genetic algorithms are metaheuristic approaches inspired by natural

evolution and the notion of “survival of the fittest”. These methods can be leveraged as powerful

tools to explore large search-spaces while enjoying high scalability and significantly low training

overhead [159, 166, 212].

At iteration t, the genetic algorithm evolves the previously evaluated good samples Sg

into a new, more competent batch of samples. This is achieved by performing a set of bio-inspired

operations, i.e., selection, crossover, and mutation, shown in Figure 7.8. Below we delineate the

details of each aforementioned operation.

Selection. The selection step chooses high-quality samples S̃t = {x̃1 . . . , x̃b} from Sg that will

be utilized in generating the next batch of samples. This is done by performing a non-uniform

sampling (without replacement) from Sg, where the probability of selecting each sample x⃗g
i is

proportional to its score fi = f(x⃗g
i). We normalize the scores as follows:

fi ←
fi − fmin∑K

i=1(fi − fmin)
, (7.10)

Here, fmin is the minimum score within f(Sg). Subtraction of the minimum score ensures

that the probability of selecting the lowest-quality sample is zero and it is always eliminated.

Such score-based selection is inherently random and allows for exploration. As the same time,

166

due to the score-proportionate selection, high-quality samples are more likely to appear in

the selection. This approach enables AdaNS-Genetic sampling to achieve a balance between

exploration/exploitation.

Crossover. We design a crossover operation that creates new samples by inheriting and combin-

ing hyperparameters from a pair of parent samples. The crossover is performed by randomly

swapping corresponding elements of parent hyperparameter vectors. Given the selected set

S̃t = {x̃1 . . . x̃b}, we sort the individuals in descending order based on their score. To form the

crossover pairs, we pick the best sample available as the first parent. We then choose the sample

which has the highest distance with the first parent as the second parent. Such a distance-based

selection of pairs is motivated by increasing diversity among the newly generated offspring and

promoting exploration. For two samples x̃1, x̃2 ∈ Rd, the distance is calculated as follows:

dist(x̃1, x̃2) =
1

d×K

√√√√ d∑
i=1

(x̃1[i]− x̃2[i])2 (7.11)

where K is a constant equal to the maximum allowed value for the corresponding hyperparameter.

We use two parameters to control the degree of crossover operation: pcross determines the

probability of applying crossover between two samples, and pswap is the per-element swapping

probability. The intuition behind crossover is to allow high-quality hyperparameter configurations

to exchange learned patterns and enable knowledge transfer across samples.

Mutation. Mutation randomly tweaks the elements in each sample vector in the crossover-ed

set Ŝt. Each element of a sample x̂i ∈ Rd is mutated by adding a random value drawn from

a zero-mean Normal distribution N (0, 0.2). We then clip the values to ensure they remain in

the valid range, i.e., [0, 1]. Similar to crossover, we define two control parameters: pmutate is

the probability that the sample gets mutated and ptweak determines the per-element tweaking

probability. Mutation allows for the exploration of neighborhoods around the selected points. To

maintain the balance between exploration and exploitation and avoid premature convergence, we

tune the mutation parameters based on the diversity of samples in Ŝt. We use the dispersion of

167

samples and define diversity as follows:

div(Ŝt) =
1

N

N∑
n=1

[
d∑

i=1

(x̂n[i]− µ⃗x̂[i])
2

]
(7.12)

where µ⃗x̂ ∈ Rd is the mean of all samples in Ŝt. As can be seen, the diversity function is closely

tied to the variance. The diversity can, therefore, be adjusted by controlling the per-element

variance of the samples in the crossovered set V ar[X̂i]. Let us denote an arbitrary individual

after crossover by x̂ ∈ Ŝt, which transforms to y⃗ ∈ St+1 after mutation. The ith element of y⃗ is

thus sampled from a random variable Yi with the following probability distribution:

P (Yi = y⃗[i]) =

pM y⃗[i] = x̂[i] + η

1− pM y⃗[i] = x̂[i]

(7.13)

where PM = Pmutate × Ptweak and η is the random perturbation applied during mutation. Note

that x̂ is also a random variable. The per-element variance of y⃗ is thus:

V ar[Yi] = V ar[X̂i] + pMσ2
η (7.14)

Here, σ2
η is the variance of the added perturbation. Summing up the vector values in Equa-

tion (7.14) provides the new population diversity:

div(St+1) = div(Ŝt) + d× PMσ2
η (7.15)

For a desired threshold on population diversity, we can, therefore, determine the mutation

parameters using Equation (7.15). Since tweaking multiple elements of the individual vector can

result in drastic changes in the corresponding compressed DNN’s architecture and accuracy, we

restrict Ptweak to a small value (Ptweak = 0.05) and merely adjust Pmutate for diversity control. In

our experiments, we set the diversity threshold to be half the diversity for the randomly initialized

population. Such adaptive tuning of mutation allows for a diversity-guided search and ensures a

fast and stable convergence.

168

7.4.3 AdaNS-Gaussian Sampling Subroutine

Our last sampling subroutine utilizes a combination of Gaussian and uniform distribu-

tions to model the adaptive sampling distribution G(·) based on the previously observed good

samples Sg. Specifically, we draw the new set of samples from a combination of three sampling

distributions that collectively form G(·) as illustrated in Figure 7.9; here, previously observed

good samples are shown in dark blue, red crosses denote observed low-score (bad) samples, and

the sampling density is marked with light blue. We design each of AdaNS-Gaussian sampling

distributions to address one of the insights mentioned at the beginning of Section 7.4:

1 We draw a portion of new samples uniformly from X ⊂ [0, 1]d (Figure 7.9a), dubbed

Uniform samples. This policy explores the whole space in the absence of prior knowledge.

2 We draw another portion of samples, dubbed Local, from the vicinity of good samples Sg

(Figure 7.9b). The underlying PDF is a mixture of Gaussians, with centers located at Sg.

3 We draw the last portion of samples, dubbed Cross, from a mixture of Gaussians centered

in the mid-points of good samples Sg (Figure 7.9c). This policy has a high sampling density

along the line connecting two good samples.

Figure 7.9. 2D illustration of AdaNS-Gaussian sampling strategies.

The intuitions behind AdaNS-Gaussian sampling strategy rest upon a line of work in

sampling theory [61,63,221] that prove Gaussian Kernels with adaptive variances can reconstruct

smooth non-linear functions. Inspired by that, we vary the Gaussian variance spatially according

to local information about the approximand [63]; the parameters of the Gaussian Mixture Models

169

(GMMs) are chosen to maximize the likelihood of previously successful samples. Below we

elaborate on the above sampling policies.

Uniform Samples. To allow AdaNS-Gaussian to explore unseen regions, we select a portion

of samples uniformly at random from the entire search-space. This prevents the search from

becoming too localized upon observing several good samples in a small region.

Local Samples. To effectively explore the vicinity of good samples, we use a GMM for

sampling [236]. Formally, the sampling PDF is:

P(x⃗) =
K∑
i=1

wi N (x⃗g
i ,Σ), x⃗g

i ∈ Sg (7.16)

where N (x⃗,Σ) is a multi-variate Gaussian distribution [125] with mean vector x⃗ ∈ Rd and

diagonal covariance matrix represented with Σ ∈ Rd × Rd. Here, wi is a weight parameter that

adjusts the probability of choosing the ith multi-variate Gaussian. We set the weights proportional

to the value of the objective function, i.e., wi ∝ f(x⃗i
g). The standard deviation Σ is determined

such that the Gaussians N (·, ·) cover the so-far observed span of Sg:
σ2
jj = (max

x⃗∈Sg
x⃗[j]−min

x⃗∈Sg
x⃗[j])2 ∀j ∈ {1 . . . d}

σ2
ij = 0 ∀j ̸= i

(7.17)

The above choices for weights and covariance matrix allow for an adaptive sampling

scheme. First, by incorporating the scores into the weights (wi ∝ f(x⃗i
g)), regions around

high-score samples are given a higher priority to be explored. Second, the standard deviation

in Equation (7.17) adaptively configures the sampling range in all dimensions: if members

of Sg agree on dimension j, the corresponding σ2
jj will be small and the generated samples

will be very similar in the jth dimension; conversely, if members of Sg disagree on dimension

j, the corresponding σ2
jj will be large and the generated samples will be scattered in the jth

dimension. This allows AdaNS-Gaussian to automatically tune the per-dimension exploration

170

and exploitation.

Cross Samples. The line connecting two good samples may represent the direction of gradient

ascent for the objective function f(·). To explore such regions, we draw a portion of samples

from the mid points of current good samples Sg. To generate one sample, we pick a pair of good

samples {x⃗1, x⃗2} ∈ Sg, and draw a sample from the multivariate Gaussian N (µ⃗1,2,Σ1,2). The

mean value is µ⃗1,2 =
x⃗1+x⃗2

2
and the diagonal covariance matrix is set as:

σ2
jj = (x⃗1[j]− x⃗2[j])

2/4 ∀j ∈ {1 . . . d}

σ2
ij = 0 ∀j ̸= i

(7.18)

This approach searches for samples in the confined space between pairs of good samples.

Multiple Cross samples are generated by repeating the above process. We explore several

strategies for selecting {x⃗1, x⃗2}:

1 Select both x⃗1 and x⃗2 randomly from Sg.

2 Sort all possible pairs {x⃗1, x⃗2} ∈ Sg based on their sum of scores f(x⃗1) + f(x⃗2) and select

pairs from the sorted list.

3 Sort individual members x⃗ ∈ Sg based on their scores f(x⃗), sequentially select x⃗1 from the

sorted list and x⃗2 as the sample with maximum Euclidean distance to x⃗1.

4 Choose x⃗1 as in case 3 but select x⃗2 randomly.

Our experiments show that the fourth strategy renders the best performance on average. Therefore

throughout the rest of the chapter, we use the latter method for pair selection.

7.5 Reconstruction

In this section, we provide an empirical analysis to verify the effectiveness of the designed

sampling distributions G(·) in finding near-optimal solutions. Towards this goal, we devise a

171

methodology that reconstructs the opaque objective function, based on previously evaluated

samples. Specifically, at each iteration t, we create an estimate f̃(·) for the hidden function f(·)

using f(S[1:t]). Upon obtaining the new batch of (unseen) samples St+1 and new measurements

f(St+1), we compute the (normalized) estimation errors as:

e(x⃗) =
f(x⃗)− f̃(x⃗)

f(x⃗)
, x⃗ ∈ St+1 (7.19)

We then compute the mean mean absolute error eavg over all samples. eavg measures how much

the obtained value of the objective function for new samples deviates from our estimation based

on reconstruction. A high error implies that the sampling subroutine is exploring the space rather

than using knowledge from S[1:t] to find better samples. Conversely, a small eavg shows that the

adaptive sampler is exploiting previous good samples to generate St+1. Figure 7.10 presents

the task of pruning a VGG network trained on CIFAR-10 with AdaNS-Gaussian. Below, we

summarize our observations:

1. The growth in the average score among good samples f(Sg) shows that AdaNS adaptive

sampler iteratively sample values closer to the function maximizer.

2. The growth in the proximity parameter αt together with property 1 suggests that the probability

of finding the near-optimal solution is increasing as desired in Equation (7.7).

3. The drop in average reconstruction error eavg together with property 1 demonstrates the ability

of AdaNS in reconstructing the objective function around its potential maximizers. Specifically,

the history of prior samples across AdaNS iterations are sufficient to estimate the value of the

objective function at the future (unseen) samples that are closer to the function maximizers.

Establishing f̃ . We consider a GMM prior for f̃(·):

f̃(x⃗) =
∑

x⃗i∈S[1:t]

wi N (x⃗− x⃗i,Σi) (7.20)

172

Figure 7.10. Per-iteration analysis of AdaNS sampling.

where wi are scalar weights, x⃗i ∈ S[1:t] are the centers of the GMM model located at all previously

evaluated samples, and Σi ∈ Rd×d are diagonal covariance matrices. For the ith component of

the GMM centered at x⃗i, we find the closest sample x⃗j with minimum Euclidean distance to x⃗i.

We use the element-wise absolute difference, ∆x⃗i = |x⃗i − x⃗j| to compute the covariance matrix:

Σi =

σ2
mm = β(∆x⃗i[m])2 ∀m ∈ {1 . . . d}

σ2
mn = 0 ∀m ̸= n

(7.21)

The scalar β = d
8log(2)

normalizes the diagonal elements such that the multivariate Gaussian

component is diminished by a factor of 2 in the mid-point of x⃗i, x⃗j . Given the Gaussian means x⃗i

and covariance matrices Σi, the weights wi can be determined by minimizing the error between

real function evaluations f(S[1:t]) and the estimates f̃(S[1:t]):

w1 . . . wK = argmin
w1...wK

∑
x∈S[1:t−1]

|f(x⃗)− f̃(x⃗)|2 (7.22)

which is solved by Least-Square Optimization [15].

7.6 Experiments

We provide extensive evaluations on CIFAR-10 and ImageNet benchmarks and compare

with prior works in RL, Bayesian Optimization, and several heuristics. The evaluated network

173

architectures include AlexNet, VGG, ResNet family, and MobileNets, implemented in PyTorch.

The networks are trained from scratch following the parameter setup and training schedule

adopted by the original papers [66, 73, 102, 170, 176]. For CIFAR-10, we use a VGG-variant as

used in [94]. The models are compressed using AdaNS and fine-tuned for 60 and 20 epochs on

CIFAR-10 and ImageNet, respectively. We randomly select 1, 000 images from the training data

to use as validation set for score computation. We optimize hyperparameters for non-structured

(Pn) and structured (Ps) pruning, SVD and Tucker decomposition (D), and combination of

multiple methods (D + Ps). In our experiments, sample portions in AdaNS-Gaussian are

assigned to be 45% Local, 45% Cross, and 10% Uniform. For AdaNS-Genetic, the crossover

and mutation parameters are set to pmutate = 0.2, ptweak = 0.05, pcross = 0.8, pswap = 0.2

following [89, 212].

7.6.1 Effect of Sampling Strategy on Convergence

In this section, we investigate the impact of the sampling strategy on convergence and

optimization end result. We first visualize the samples from our three subroutines for an example

2-layer network. Next, we move to pruning a real-world DNN benchmark and compare the

convergence behavior of AdaNS-Zoom, AdaNS-Genetic, and AdaNS-Gaussian.

2-layer Example Network. The hyperparameter space for this example is x⃗ ∈ [0, 1]2 where

each element of x⃗ represents the pruning rate for one layer. For this small example network, we

executed a brute-force grid search to extract the heatmap of the pertinent objective function f(x⃗)

as shown in Figure 7.11. Here, the blue and yellow colors denote minimum and maximum score

function values, respectively, and red dots represent the samples. As seen, the AdaNS-Zoom

subroutine (left) becomes concentrated on two of the local maxima regions (shown by black

circles) but misses the global maximum located at (0.4, 0.3). AdaNS-Genetic (middle) achieves

more diversity than AdaNS-Zoom, and finds the neighborhood of the actual maximum; however,

it does not achieve concentrated sampling. Finally, AdaNS-Gaussian (right) identifies the global

maximum and concentrates the sampling around it.

174

Figure 7.11. Comparison between AdaNS sampling subroutines with the same sample count, for
pruning a 2-layer DNN. AdaNS-Gaussian achieves better exploration/exploitation tradeoff as it
identifies the global maximum and concentrates the sampling around it.

VGG Benchmark. We use AdaNS for the task of structured pruning to compress a VGG network

on CIFAR-10 dataset. We also provide the performance of a naı̈ve method that uniformly

samples the entire search-space. Figure 7.12-(left) presents the evolution of averageed good

scores f(Sg) at each iteration, with Sg denoting the set of good samples. As seen, the naı̈ve

sampling fails to find the maxima in the high-dimensional optimization space at hand. This

means unless carefully designed, a given naı̈ve sampling strategy that arbitrarily changes the

underlying hyperparameters fails to sample from correct regions of the space. However, our

careful design of the sampling strategies can significantly change the performance by successfully

arriving at the optima. AdaNS-Gaussian shows the largest growth in score suggesting that it is

more successful in generating more competent samples based on prior observations. This is due

to the Gaussian kernels in AdaNS-Gaussian which enable maximal exploration of sub-regions

that potentially contain near-optimal solutions. AdaNS-Zoom and AdaNS-Genetic perform a

more localized search and thus demonstrate slower convergence.

Figure 7.12-(right) shows how the proximity parameter αt evolves over time. Initially, αt

is tuned to a small value to allow exploration of the entire search-space. As the search proceeds,

the value of αt is increased to direct the sampling towards the identified good samples. As seen,

αt rises quickly to αmax ≈ 0.9 for AdaNS-Gaussian and AdaNS-Genetic while it has a slower

growth in AdaNS-Zoom. This suggests that AdaNS-Gaussian and AdaNS-Genetic quickly learn

175

Figure 7.12. Convergence analysis of various sampling strategies across algorithm iterations.
(left): mean score achieved by good samples. (right): Proximity parameter value.

to generate samples that are equally good or better than previously seen samples.

We further dissect the maximal score function in terms of accuracy and FLOPs in

Table 7.1. The obtained accuracy and execution cost from each method confirms the importance

of the sampling strategy on the final optimization result.

Table 7.1. Accuracy and FLOPs of the final compressed model using various sampling methods.
Sample size is b = 50 and the sampling algorithm runs for 100 iterations on a VGG model
trained on CIFAR-10. Athr is set to 70% and the reported accuracy is before fine-tuning.

Sampling Strategy Accuracy (%) FLOPs (%)
Naı̈ve Uniform 73.5 40.1
AdaNS-Zoom 70.4 37.4
AdaNS-Genetic 70.6 35.3
AdaNS-Gaussian 73.5 34.3

7.6.2 Quantitative Results on CIFAR-10

We apply AdaNS-Gaussian and AdaNS-Genetic to pre-trained CIFAR-10 architectures

and compare our results with prior art in Table 7.2. We set the number of samples to 100 for

ResNet-56 and ResNet-50, 200 for ResNet-110, and 50 for VGG. Athr is set to 90% for ResNet-X

and 65% for VGG. For all networks, we let AdaNS sampling run for 50 iterations.

Non-structured Pruning (Pn in Table 7.2). We perform non-structured pruning on ResNet-50

and report the ratio of non-zero model parameters. Athr, is set to 93% and we do not perform

any fine-tuning on the compressed model. As shown, AdaNS-Gaussian and AdaNS-Genetic

achieve higher accuracy with 1.7× and 1.3× lower parameters compared to state-of-the-art

176

Table 7.2. Comparison with contemporary compression methods.

CIFAR-10

Model Policy
Top1
(%)

Cost
(%)

Baseline 93.7 100
AMC [69] 93.5 40.0
Rethinking [124] 93.4 20.0
Genetic (Pn) 93.6 30.0

R
es

N
et

-5
0

Gaussian (Pn) 94.0 23.1
Baseline 93.6 100
Rethinking [124] 93.1 72.4
CP [70] 91.8 50.0
AMC [69] 91.9 50.0
SFP [68] 93.3 47.4
PocketFlow [210] 92.8 40.0
Genetic (Ps) 93.2 44.0
Gaussian (Ps) 93.1 40.6
Gaussian (D) 93.5 59.1

R
es

N
et

-5
6

Gaussian (D + Ps) 93.2 36.9
Baseline 94.0 100
Rethinking [124] 93.6 61.4
Filter Pruning [110] 93.3 61.4
AMC [69] 93.8 59.2
Genetic (Ps) 93.6 41.2
Gaussian (Ps) 93.9 33.9
Gaussian (D) 93.9 55.3

R
es

N
et

-1
10

Gaussian (D + Ps) 92.6 21.9
Baseline 93.6 100
Rethinking [124] 93.7 65.8
ThiNet [126] 93.4 39.4
NRE [94] 93.4 32.4
Genetic (Ps) 93.3 32.8
Gaussian (Ps) 93.2 29.6
Gaussian (D) 93.5 25.5

V
G

G

Gaussian (D + Ps) 93.1 14.5

ImageNet

Model Policy
Top1
(%)

Top5
(%)

Cost
(%)

Baseline 60.7 80.0 100
CAC [26] 54.8 - 5.0
Genetic (Pn) 56.1 78.2 8.5

A
le

xN
et

Gaussian (Pn) 55.1 78.3 7.0
Baseline 75.1 93.0 100
SFP [68] 62.1 84.6 58.2
SSS [82] 71.8 90.8 57.0
Rethinking [124] 75.0 - 50.0
CP [70] - 90.8 50.0
GDP [115] 71.9 90.7 48.7
ThiNet [126] 71.0 90.0 44.0
Rethinking [124] 71.6 - 30.0
Genetic (Ps) 73.2 91.4 41.9
Gaussian (Ps) 72.6 91.1 29.1
Gaussian (D) 74.3 92.1 44.5

R
es

N
et

-5
0

Gaussian (D + Ps) 72.1 90.9 23.7
Baseline 71.1 90.0 100
GDP [115] 67.5 87.9 24.5
RNP [114] - 86.3 20.0
SPP [204] - 87.6 20.0
AMC [69] - 88.2 20.0
Rethinking [124] 71.0 - 20.0
Genetic (Ps) - 88.1 20.0
Gaussian (Ps) 68.8 88.3 19.6
Gaussian (D) 70.6 90.1 31.0

V
G

G
-1

6

Gaussian (D + Ps) 68.4 88.5 14.1

Reinforcement Learning method, AMC [69]. Note that the lower FLOPs and comparable

accuracy of [124] are due to training the model from scratch whereas AdaNS and [69] do not

include any fine-tuning.

Structured Pruning (Ps in Table 7.2). Comparisons are based on the number of operations per

inference, i.e., FLOPs, relative to the uncompressed baseline. With similar accuracy, AdaNS-

Gaussian compression achieves 1.5× lower FLOPs than prior art (on average).

Decomposition and Pruning (D + Ps in Table 7.2). To unveil the full optimization potential of

our adaptive sampling methodology, we allow AdaNS to learn and combine multiple compression

177

techniques, namely, structured pruning, SVD, and Tucker. The D+Ps experiments are conducted

by first decomposing the network and then applying pruning. As shown in Table 7.2, AdaNS

pushes the limits of compression by 2.4× on average with less than 1% drop in accuracy

compared to state-of-the-art works. We also report FLOPs reduction by the combination of SVD

and Tucker decomposition methods (shown by D in Table 7.2).

7.6.3 Quantitative Results on ImageNet

Table 7.2 summarizes AdaNS results on ImageNet. Number of samples is 20 for AlexNet,

100 for ResNet-50, and 50 for VGG-16. We run AdaNS for 50 iterations with Athr of 10% for all

models. The final accuracy is improved by fine-tuning.

Non-structured Pruning (Pn in Table 7.2). We perform non-structured pruning on AlexNet

and report the ratio of non-zero model parameters. As seen, AdaNS-Gaussian achieves higher ac-

curacy with 2% more parameters compared to a Bayesian Optimization approach, i.e., CAC [26].

Structured Pruning (Ps in Table 7.2). On ResNet-50, AdaNS-Genetic and AdaNS-Gaussian

compress the models to 1.2× and 1.6× less FLOPs on average while achieving higher top-5

accuracy compared to prior works. On VGG-16, AdaNS outperforms all heuristic methods and

gives competing results with [124] and [69]. Note that [124] does not propose a hyperparam-

eter optimization algorithm and merely focuses on training already-compressed DNNs. Their

approach is orthogonal to AdaNS and can be combined with it to further improve final accuracy.

Decomposition and Pruning (D + Ps in Table 7.2). Using a combination of decomposition

and structured pruning, AdaNS achieves 2.0× lower FLOPs than related work (on average) with

slightly higher accuracy on ResNet-50. On VGG-16, AdaNS pushes the state-of-the-art FLOPs

reduction from 5.0× to 7.1× with higher accuracy.

7.6.4 Compressing Compact Networks

To further demonstrate the effectiveness of AdaNS optimization, we apply compression to

MobileNet architectures trained on ImageNet dataset. These networks are specifically designed

178

for embedded applications with strict efficiency constraints. As such, MobileNets inherently

have very low complexity/redundancy which renders their compression quite challenging. We

apply pruning to MobileNetV1 and MobileNetV2 with a sample size of b = 50, and let the

adaptive sampling run for 100 iterations.

We compare the compression rate and accuracy achieved by AdaNS with the FLOPs-

accuracy Pareto curve of the original MobileNet architectures [73, 170]. We further compare

AdaNS with the state-of-the-art AutoML approaches [69, 218] and a compression-aware training

methodology, US-Nets [224, 225]. Table 7.3 encloses the results of applying structured pruning

to MobileNetV1 and MobileNetV2. We benchmark several target FLOPs and compare them

with prior work with similar computational complexities. On average, AdaNS achieves 1.2%

better accuracy than the MobileNetV1 Pareto curve. Compared to US-Nets, AdaNS achieves an

average of 1.0% higher accuracy. Under ∼ 50% FLOPs, AdaNS achieves 1.3% higher accuracy

than NetAdapt. Compared to AMC, AdaNS achieves lower FLOPs with comparable accuracy

(−0.1%). On MobileNetV2, for a 30% FLOPs reduction, AdaNS achieves lower FLOPs and

higher accuracy than US-Nets and higher accuracy with the same FLOPs compared to AMC and

the MobileNetV2 Pareto curve.

Measured Speedup. We present measured speedups of AdaNS compressed MobileNets on an

embedded CPU (ARM Cortex-A57) and GPU (NVIDIA Pascal) in Table 7.4. Measurements are

averaged on 100 runs using a batch size of 32. AdaNS successfully models the hardware cost to

achieve real speedups on par with theory.

7.6.5 Search Overhead and Scalability

The core computational load in AdaNS algorithm corresponds to the evaluation of a batch

of b samples. For each sample x⃗i in the batch, the evaluation phase comprises transforming the

sample to its corresponding compressed DNN M̂x⃗i
, measuring the inference accuracy on the

validation data, and emulating the execution cost. Since samples in a batch are independent,

the evaluation step can be well-parallelized on multiple GPU devices to achieve faster search

179

Table 7.3. Pruning of MobileNetV1&V2 on ImageNet.

Policy
Top1
(%)

Top5
(%) FLOPs

Baseline (1×) 70.6 89.5 569 M
MobileNetV1 (0.75×) [73] 68.4 88.2 325 M
US-Nets [224] 69.5 - 325 M
AdaNS-Gaussian 70.5 89.3 323 M
US-Nets [224] 68.8 - 287 M
AMC [69] 70.5 89.1 285 M
NetAdapt [218] 69.1 - 284 M
AdaNS-Gaussian 70.4 89.1 283 M
US-Nets [224] 66.8 - 217 M
AdaNS-Gaussian 67.9 88.1 210 M
MobileNetV1 (0.5×) [73] 63.7 - 149 M
US-Nets [224] 63.5 - 136 M

M
ob

ile
N

et
V

1

AdaNS-Gaussian 64.1 85.4 136 M
Baseline (1×) 71.6 90.3 313 M
MobileNetV2 (0.75×) [170] 69.8 88.3 220 M
US-Nets [224] 70.0 - 222 M
AMC [69] - 89.3 220 M

M
ob

ile
N

et
V

2

AdaNS-Gaussian 70.1 89.5 220 M

Table 7.4. Speedup of AdaNS compressed MobileNets on embedded CPU and GPU after
applying structured pruning on ImageNet benchmark.

Model
Theoretical

Speedup
Real Speedup

Cortex-A57 (CPU) Pascal (GPU)

MobileNetV1

1.7× 1.6× 1.3×
2× 1.7× 1.4×
2.7× 2.5× 1.7×
4× 3.4× 1.9×

MobileNetV2 1.4× 1.4× 1.4×

convergence. Aside from evaluation, each AdaNS iteration includes updating the sampling

strategy and generating a new batch of samples. These steps, however, are very lightweight and

incur negligible runtime compared to the evaluation stage.

Table 7.5 summarizes the runtime of AdaNS algorithm for several benchmarks and

datasets. Runtimes are measured on a machine with an Intel Xeon E5 CPU and four NVIDIA

Titan Xp GPUs. The results show high scalability: runtime drops almost linearly with the

number of GPUs. The state-of-the-art RL algorithm reports ∼ 1 hour to compress CIFAR-10

architectures [69]. For their most complex benchmark, i.e., ResNet-56, AdaNS achieves a search

180

time of only ∼ 12 minutes on a single GPU and ∼ 3 minutes on four GPUs.

Table 7.5. Search runtime of AdaNS-Gaussian for pruning on various benchmarks. Here, b
denotes the number of samples per iteration and Niters is the number of search iterations.

Dataset Arch. b Niters
Search Time (minutes)

1 GPU 2 GPU 3 GPU 4 GPU

Im
ag

eN
et

AlexNet 50 50 10 5 3 3
VGG-16 50 50 112 57 38 28
ResNet-50 100 50 145 73 49 36
MobileNetV1 50 100 97 48 32 24
MobileNetV2 50 100 116 57 38 25

C
IF

A
R

-1
0 VGG 50 50 3 2 1 1

ResNet-50 100 50 35 19 13 11
ResNet-56 100 50 12 7 5 3
ResNet-110 200 50 55 30 22 16

7.6.6 Analysis and Discussion

In this section, we look into AdaNS generated samples and provide discussions. For

brevity, we only focus on AdaNS-Gaussian subroutine that achieves superior results compared

to AdaNS-Zoom and AdaNS-Genetic. We consider the VGG architecture trained on CIFAR-10

and compress it with structured pruning for Athr = 60%. The initial samples obtained from our

directed initialization method are shown in Figure 7.13a, where each column corresponds to a

hyperparameter vector and each row represents a certain DNN layer. After applying AdaNS-

Gaussian for 50 iterations, the set of good samples in Figure 7.13b are learned; the columns

(members of Sg) strongly resemble one another and have similarly high scores upon convergence.

AdaNS successfully learns expert-designed rules: first and last layers of the network (first and

last rows in Figure 7.13b) are given high densities to maintain the inference accuracy.

AdaNS performs whole-network compression by encoding all DNN layers’ hyperparame-

ters in each sample. As such, our algorithm can learn which configuration of hyperparameters

least affects model accuracy and most reduces the overall FLOPs. To show this capability,

we present the per-layer FLOPs from one of the obtained good samples of Figure 7.13b in

Figure 7.14. For each layer, the bars show the percentage of total FLOPs in the original model;

181

Figure 7.13. (a) Set of randomly initialized samples at the first iteration. (b) Set of good samples
Sg upon convergence.

the curve shows the percentage of pruned FLOPs in the compressed network. As seen, the

optimal pruning rates (red curve) show arbitrary patterns that are very hard to identify for human

experts. AdaNS automatically extracts such patterns by an adaptive search.

Figure 7.14. Original per-layer FLOPs versus AdaNS pruning pattern.

7.6.7 Ablation Study

We study the effect of various AdaNS parameters on algorithm convergence. For brevity,

we only focus on structured pruning for VGG on CIFAR-10.

Effect of Initialization. Figure 7.15a shows the evolution of FLOPs ratio when running AdaNS-

Genetic algorithm with two initialization policies: one with uniformly random samples and one

with our proposed initialization scheme discussed in Section 7.3.3. As seen, naive initialization

harms the convergence rate and final FLOPs.

Effect of Sample Count. Figure 7.15b presents the effect of number of evaluated samples per

iteration of AdaNS-Genetic on convergence. A higher number of samples results in a smoother

convergence and lower final FLOPs, due to the higher capacity for exploration/exploitation. This

effect saturates for a large enough sample set. We further observed that the per-iteration sample

182

Figure 7.15. Ablation studies for VGG on CIFAR-10:(a) Effect of initialization method. (b)
Effect of sample count. We show the trend lines as well as a fraction of samples (black dots)
across AdaNS iterations. (c) Effect of mutation and cross-over probabilities for AdaNS-Genetic.
Here, grey samples have lower accuracy than Athr = 60% while black samples meet the accuracy
threshold. Red dots correspond to the highest-quality sample per iteration.

count should be proportional to the length of each individual.

Effect of Accuracy Threshold. The accuracy threshold Athr in Equation (7.4) determines model

accuracy after compression. In our experiments, we observed a monotonic correlation between

Athr and final accuracy after fine-tuning. This property eliminates the need for fine-tuning each

compressed DNN configuration in between algorithm iterations which significantly improves

AdaNS search efficiency and timing overhead. Note that a smaller Athr generally results in a

lower hardware cost.

Mutation and Crossover Parameters. These parameters affect AdaNS-Genetic sampling

convergence. We conduct two experiments, one with (Pmutate, Pcross) = (0.8, 0.2) and the

other with (Pmutate, Pcross) = (0.4, 0.1) and compare the convergence in Figure 7.15c. Higher

(Pmutate, Pcross) allows more exploring, leading to faster convergence while smaller probabilities

result in a more stable evolution. As seen, both settings converge to similar final FLOPs.

Effect of Pair Selection for Cross Samples. Figure 7.16 compares the convergence behavior of

the four proposed pair selection strategies for Cross samples (Section 7.4.3). As seen, strategy 4

achieves the highest final score with lowest variations (shown with the error bars). Strategy 2 has

a fast but premature convergence due to lack of exploration. In addition, strategy 2 has a high

variation. This is due to the high dependency of strategy 2 on the configuration of good samples,

which differs across runs. Strategy 1 and 3 offer a smooth convergence with low variance but

183

their final score is lower than strategy 4 .

Figure 7.16. Convergence curves for various pair selection methods for Cross samples (Section
7.4.3). Graphs are generated over 10 runs.

7.7 Conclusion

This chapter proposes AdaNS, and adaptive sampling methodology that can automatically

tune hyperparameters for DNN compression. We first formulate DNN compression as searching

a vector space that spans possible hyperparameters. Next, we define a generic score function to

quantify the “goodness” of each hyperparameter vector by combining inference accuracy and

execution cost. This approach allows us to address DNN compression as optimizing the unknown

score function by sampling from its input space. To find the maximizer of the score function,

we develop an iterative sampling strategy, along with three adaptive sampling subroutines:

AdaNS-Zoom, AdaNS-Genetic, and AdaNS-Gaussian. We evaluate these sampling strategies and

show that AdaNS-Gaussian can achieve superior search convergence. We examine AdaNS on

structured and non-structured pruning of deep neural networks and show that outperforms the

majority of human-designed state-of-the-art network pruning algorithms.

184

7.8 Acknowledgements

Chapter 7 is, in parts, a reprint of the material as it appears in two publications: (1)

M. Javaheripi, M. Samragh, T. Javidi, and F. Koushanfar, “AdaNS: Adaptive Non-uniform

Sampling for Automated Design of Compact DNNs”, in IEEE Journal of Selected Topics in

Signal Processing (JSTSP), 2020, and (2) M. Javaheripi, M. Samragh, T. Javidi, and F. Koushan-

far, “GeneCAI: Genetic Evolution for Acquiring Compact AI”, in Genetic and Evolutionary

Computation Conference, 2020. The dissertation author was the primary investigator and author

of both published papers.

185

Bibliography

[1] Bair/bvlc alexnet model. https://github.com/BVLC/caffe/tree/master/models/bvlc alexnet.

[2] M. S. Abdelfattah, A. Mehrotra, Ł. Dudziak, and N. D. Lane. Zero-cost proxies for
lightweight nas. In International Conference on Learning Representations, 2020.

[3] M. Aharon and M. Elad. Sparse and redundant modeling of image content using an
image-signature-dictionary. SIAM Journal on Imaging Sciences, 1(3):228–247, 2008.

[4] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Transactions on signal processing,
54(11):4311–4322, 2006.

[5] B. H. Ahn, J. Lee, J. M. Lin, H.-P. Cheng, J. Hou, and H. Esmaeilzadeh. Ordering
chaos: Memory-aware scheduling of irregularly wired neural networks for edge devices.
Proceedings of Machine Learning and Systems, 2:44–57, 2020.

[6] M. AI. Codebase for open pre-trained transformers. https://github.com/facebookresearch/
metaseq.

[7] A. Anjos and S. Marcel. Counter-measures to photo attacks in face recognition: a public
database and a baseline. In 2011 international joint conference on Biometrics (IJCB),
pages 1–7. IEEE, 2011.

[8] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of evolutionary computation. CRC
Press, 1997.

[9] A. Baevski and M. Auli. Adaptive input representations for neural language modeling. In
International Conference on Learning Representations, 2018.

[10] M. Barahona and L. M. Pecora. Synchronization in small-world systems. Physical review
letters, 89(5):054101, 2002.

[11] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar. Can machine learning
be secure? In ACM Symposium on Information, computer and communications security,
pages 16–25, 2006.

186

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
https://github.com/facebookresearch/metaseq
https://github.com/facebookresearch/metaseq

[12] K. Bhardwaj, G. Li, and R. Marculescu. How does topology influence gradient propagation
and model performance of deep networks with densenet-type skip connections? In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13498–13507,
2021.

[13] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli.
Evasion attacks against machine learning at test time. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, 2013.

[14] B. Biggio, G. Fumera, and F. Roli. Pattern recognition systems under attack: Design
issues and research challenges. International Journal of Pattern Recognition and Artificial
Intelligence, 28(07):1460002, 2014.

[15] R. T. Birge. The calculation of errors by the method of least squares. Physical Review,
40(2):207, 1932.

[16] Y. Bisk, R. Zellers, J. Gao, and Y. Choi. Piqa: Reasoning about physical commonsense
in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 7432–7439, 2020.

[17] C. Bouveyron, S. Girard, and C. Schmid. High-dimensional discriminant analysis. Com-
munications in Statistics—Theory and Methods, 36, 2007.

[18] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-all: Train one network
and specialize it for efficient deployment. In International Conference on Learning
Representations, 2019.

[19] N. Carlini and D. Wagner. Defensive distillation is not robust to adversarial examples.
arXiv:1607.04311, 2016.

[20] N. Carlini and D. Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In ACM Workshop on AISec, pages 3–14, 2017.

[21] N. Carlini and D. Wagner. Magnet and “efficient defenses against adversarial attacks” are
not robust to adversarial examples. arXiv:1711.08478, 2017.

[22] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In
Security and Privacy (SP), 2017 IEEE Symposium on, pages 39–57. IEEE, 2017.

[23] M. Charikar, J. Steinhardt, and G. Valiant. Learning from untrusted data. In 49th Annual
ACM SIGACT Symposium on Theory of Computing, pages 47–60, 2017.

[24] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson. One
billion word benchmark for measuring progress in statistical language modeling. arXiv
preprint arXiv:1312.3005, 2013.

[25] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee, I. Molloy, and
B. Srivastava. Detecting backdoor attacks on deep neural networks by activation clustering.
arXiv preprint arXiv:1811.03728, 2018.

187

[26] C. Chen, F. Tung, N. Vedula, and G. Mori. Constraint-aware deep neural network
compression. In European Conference on Computer Vision (ECCV), pages 400–415,
2018.

[27] H. Chen, C. Fu, J. Zhao, and F. Koushanfar. Deepinspect: A black-box trojan detection and
mitigation framework for deep neural networks. In 28th International Joint Conference
on Artificial Intelligence., pages 4658–4664, 2019.

[28] E. K. Chong and S. H. Zak. An introduction to optimization, volume 76. John Wiley &
Sons, 2013.

[29] E. Chou, F. Tramèr, G. Pellegrino, and D. Boneh. Sentinet: Detecting physical attacks
against deep learning systems. arXiv preprint arXiv:1812.00292, 2018.

[30] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord.
Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457, 2018.

[31] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu. Large-scale malware classification using
random projections and neural networks. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 3422–3426. IEEE, 2013.

[32] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. Le, and R. Salakhutdinov. Transformer-xl:
Attentive language models beyond a fixed-length context. In 57th Annual Meeting of the
Association for Computational Linguistics, pages 2978–2988, 2019.

[33] G. M. Davis, S. G. Mallat, and Z. Zhang. Adaptive time-frequency decompositions.
Optical engineering, 33(7):2183–2192, 1994.

[34] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas. Predicting parameters in
deep learning. Advances in neural information processing systems, 26, 2013.

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In NAACL-HLT (1), 2019.

[36] B. G. Doan, E. Abbasnejad, and D. C. Ranasinghe. Februus: Input purification defense
against trojan attacks on deep neural network systems. In Annual Computer Security
Applications Conference, pages 897–912, 2020.

[37] D. L. Donoho and M. Elad. Optimally sparse representation in general (nonorthogonal)
dictionaries via l1 minimization. Proceedings of the National Academy of Sciences,
100(5):2197–2202, 2003.

[38] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

188

[39] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals of
statistics, 32(2):407–499, 2004.

[40] T. Elsken, J. H. Metzen, and F. Hutter. Efficient multi-objective neural architecture search
via lamarckian evolution. In International Conference on Learning Representations, 2019.

[41] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. The Journal
of Machine Learning Research, 20(1):1997–2017, 2019.

[42] A. Elthakeb, P. Pilligundla, F. Mireshghallah, A. Yazdanbakhsh, S. Gao, and H. Es-
maeilzadeh. Releq: An automatic reinforcement learning approach for deep quantization
of neural networks. In NeurIPS ML for Systems workshop, 2018.

[43] K. Engan, S. O. Aase, and J. H. Husoy. Method of optimal directions for frame design.
In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing.
Proceedings. ICASSP99 (Cat. No. 99CH36258), volume 5, pages 2443–2446. IEEE, 1999.

[44] O. Erkaymaz, M. Ozer, and M. Perc. Performance of small-world feedforward neural
networks for the diagnosis of diabetes. Applied Mathematics and Computation, 311:22–28,
2017.

[45] H. Face. Openai gpt2 by hugging face. https://huggingface.co/docs/transformers/model
doc/gpt2.

[46] G. Fields, M. Samragh, M. Javaheripi, F. Koushanfar, and T. Javidi. Trojan signatures in
dnn weights. In IEEE/CVF International Conference on Computer Vision, pages 12–20,
2021.

[47] P. Fogla and W. Lee. Evading network anomaly detection systems: formal reasoning and
practical techniques. In 13th ACM conference on Computer and communications security,
2006.

[48] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 1322–1333, 2015.

[49] J. Gao, H. Xu, H. Shi, X. Ren, L. Philip, X. Liang, X. Jiang, and Z. Li. Autobert-zero:
Evolving bert backbone from scratch. In AAAI Conference on Artificial Intelligence,
volume 36, pages 10663–10671, 2022.

[50] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima, S. Presser, and C. Leahy. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

[51] L. Gao, J. Tow, S. Biderman, S. Black, A. DiPofi, C. Foster, L. Golding, J. Hsu,
K. McDonell, N. Muennighoff, J. Phang, L. Reynolds, E. Tang, A. Thite, B. Wang,
K. Wang, and A. Zou. A framework for few-shot language model evaluation. https:
//github.com/EleutherAI/lm-evaluation-harness, Sept. 2021.

189

https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/docs/transformers/model_doc/gpt2
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

[52] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal. Strip: A defence against
trojan attacks on deep neural networks. In 35th Annual Computer Security Applications
Conference, pages 113–125, 2019.

[53] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel.
Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy
and robustness. arXiv preprint arXiv:1811.12231, 2018.

[54] A. Gholami, N. Torkzaban, and J. S. Baras. On the importance of trust in next-generation
networked cps systems: An ai perspective. arXiv preprint arXiv:2104.07853, 2021.

[55] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. John Hopkins University
Press, 2012.

[56] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

[57] S. Gu and L. Rigazio. Towards deep neural network architectures robust to adversarial
examples. arXiv:1412.5068, 2014.

[58] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine
learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

[59] J. Guerrero-Viu, S. Hauns, S. Izquierdo, G. Miotto, S. Schrodi, A. Biedenkapp, T. Elsken,
D. Deng, M. Lindauer, and F. Hutter. Bag of baselines for multi-objective joint neural
architecture search and hyperparameter optimization. arXiv preprint arXiv:2105.01015,
2021.

[60] W. Guo, L. Wang, X. Xing, M. Du, and D. Song. Tabor: A highly accurate approach to
inspecting and restoring trojan backdoors in ai systems. arXiv preprint arXiv:1908.01763,
2019.

[61] K. Hamm. Nonuniform sampling and recovery of bandlimited functions in higher dimen-
sions. Journal of Mathematical Analysis and Applications, 450(2):1459–1478, 2017.

[62] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient
neural network. Advances in neural information processing systems, 28, 2015.

[63] T. Hangelbroek and A. Ron. Nonlinear approximation using gaussian kernels. Journal of
Functional Analysis, 259(1):203–219, 2010.

[64] J. Haupt, R. M. Castro, and R. Nowak. Distilled sensing: Adaptive sampling for sparse
detection and estimation. IEEE Transactions on Information Theory, 57:6222–6235,
2011.

[65] E. Hazan, A. Klivans, and Y. Yuan. Hyperparameter optimization: A spectral approach.
arXiv preprint arXiv:1706.00764, 2017.

190

[66] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[67] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In
European conference on computer vision, pages 630–645. Springer, 2016.

[68] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter pruning for accelerating
deep convolutional neural networks. In 27th International Joint Conference on Artificial
Intelligence, pages 2234–2240, 2018.

[69] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc: Automl for model compression
and acceleration on mobile devices. In European conference on computer vision (ECCV),
pages 784–800, 2018.

[70] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks.
In IEEE international conference on computer vision, pages 1389–1397, 2017.

[71] Z. He, A. S. Rakin, J. Li, C. Chakrabarti, and D. Fan. Defending and harnessing the
bit-flip based adversarial weight attack. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14095–14103, 2020.

[72] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, . Terminal brain damage:
Exposing the graceless degradation in deep neural networks under hardware fault attacks.
In 28th {USENIX} Security Symposium ({USENIX} Security 19), pages 497–514, 2019.

[73] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[74] H. Hu, J. Langford, R. Caruana, S. Mukherjee, E. J. Horvitz, and D. Dey. Efficient forward
architecture search. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[75] Y. Hu, S. Sun, J. Li, X. Wang, and Q. Gu. A novel channel pruning method for deep
neural network compression. arXiv preprint arXiv:1805.11394, 2018.

[76] G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger. Condensenet: An efficient
densenet using learned group convolutions. In IEEE conference on computer vision and
pattern recognition, pages 2752–2761, 2018.

[77] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In IEEE conference on computer vision and pattern recognition,
pages 4700–4708, 2017.

[78] G. Huang, M. Mattar, H. Lee, and E. Learned-Miller. Learning to align from scratch.
Advances in neural information processing systems, 25, 2012.

191

[79] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks with stochastic
depth. In European Conference on Computer Vision (ECCV), pages 646–661. Springer,
2016.

[80] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar. Adversarial machine
learning. In 4th ACM workshop on Security and artificial intelligence, pages 43–58, 2011.

[81] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári. Learning with a strong adversary.
arXiv:1511.03034, 2015.

[82] Z. Huang and N. Wang. Data-driven sparse structure selection for deep neural networks.
In European Conference on Computer Vision (ECCV), pages 304–320, 2018.

[83] M. D. Humphries and K. Gurney. Network ‘small-world-ness’: a quantitative method for
determining canonical network equivalence. PloS one, 3(4):e0002051, 2008.

[84] S. Hussain, M. Javaheripi, P. Neekhara, R. Kastner, and F. Koushanfar. Fastwave: Accel-
erating autoregressive convolutional neural networks on fpga. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2019.

[85] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry. Adversarial
examples are not bugs, they are features. Advances in neural information processing
systems, 32, 2019.

[86] M. Javaheripi and F. Koushanfar. Hashtag: Hash signatures for online detection of fault-
injection attacks on deep neural networks. In 2021 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pages 1–9. IEEE, 2021.

[87] M. Javaheripi, B. D. Rouhani, and F. Koushanfar. Swann: Small-world architecture for
fast convergence of neural networks. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 11(4):575–585, 2021.

[88] M. Javaheripi, M. Samragh, G. Fields, T. Javidi, and F. Koushanfar. Cleann: Accelerated
trojan shield for embedded neural networks. In IEEE/ACM International Conference On
Computer Aided Design (ICCAD), pages 1–9. IEEE, 2020.

[89] M. Javaheripi, M. Samragh, T. Javidi, and F. Koushanfar. Genecai: gene tic evolution
for acquiring c ompact ai. In Genetic and Evolutionary Computation Conference, pages
350–358, 2020.

[90] M. Javaheripi, M. Samragh, and F. Koushanfar. Peeking into the black box: A tutorial on
automated design optimization and parameter search. IEEE Solid-State Circuits Magazine,
11(4):23–28, 2019.

[91] M. Javaheripi, M. Samragh, and F. Koushanfar. Autorank: Automated rank selection for
effective neural network customization. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 11(4):611–619, 2021.

192

[92] M. Javaheripi, M. Samragh, B. D. Rouhani, T. Javidi, and F. Koushanfar. Curtail: Charac-
terizing and thwarting adversarial deep learning. IEEE Transactions on Dependable and
Secure Computing, 18(2):736–752, 2020.

[93] D. Jia, K. Han, Y. Wang, Y. Tang, J. Guo, C. Zhang, and D. Tao. Efficient vision
transformers via fine-grained manifold distillation. arXiv preprint arXiv:2107.01378,
2021.

[94] C. Jiang, G. Li, C. Qian, and K. Tang. Efficient dnn neuron pruning by minimizing
layer-wise nonlinear reconstruction error. In IJCAI, volume 2018, pages 2–2, 2018.

[95] J. Jin, A. Dundar, and E. Culurciello. Robust convolutional neural networks under
adversarial noise. arXiv:1511.06306, 2015.

[96] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361, 2020.

[97] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu.
Flipping bits in memory without accessing them: An experimental study of dram distur-
bance errors. ACM SIGARCH Computer Architecture News, 42(3):361–372, 2014.

[98] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression of deep
convolutional neural networks for fast and low power mobile applications. arXiv preprint
arXiv:1511.06530, 2015.

[99] G. Krishnan, Y. Ma, and Y. Cao. Small-world-based structural pruning for efficient fpga
inference of deep neural networks. In 2020 IEEE 15th International Conference on
Solid-State & Integrated Circuit Technology (ICSICT), pages 1–5. IEEE, 2020.

[100] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images.
2009.

[101] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for advanced research).
2009.

[102] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolu-
tional neural networks. pages 1097–1105, 2012.

[103] M. Kuperman and G. Abramson. Small world effect in an epidemiological model. Physical
review letters, 86(13):2909, 2001.

[104] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical world.
arXiv:1607.02533, 2016.

[105] V. Latora and M. Marchiori. Efficient behavior of small-world networks. Physical review
letters, 87(19):198701, 2001.

193

[106] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. IEEE Proceedings, 86(11):2278–2324, 1998.

[107] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database of handwritten digits, 1998.

[108] K. Lee, K. Lee, H. Lee, and J. Shin. A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. In Advances in Neural Information
Processing Systems, pages 7167–7177, 2018.

[109] N. Lee, T. Ajanthan, and P. Torr. SNIP: SINGLE-SHOT NETWORK PRUNING BASED
ON CONNECTION SENSITIVITY. In International Conference on Learning Represen-
tations, 2019.

[110] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710, 2016.

[111] J. Li, A. S. Rakin, Z. He, D. Fan, and C. Chakrabarti. Radar: Run-time adversarial weight
attack detection and accuracy recovery. arXiv preprint arXiv:2101.08254, 2021.

[112] J. Li, A. S. Rakin, Y. Xiong, L. Chang, Z. He, D. Fan, and C. Chakrabarti. Defending bit-
flip attack through dnn weight reconstruction. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2020.

[113] Y. Li, M. Li, B. Luo, Y. Tian, and Q. Xu. Deepdyve: Dynamic verification for deep neural
networks. In ACM SIGSAC Conference on Computer and Communications Security,
pages 101–112, 2020.

[114] J. Lin, Y. Rao, J. Lu, and J. Zhou. Runtime neural pruning. In Advances in Neural
Information Processing Systems, pages 2181–2191, 2017.

[115] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang. Accelerating convolutional networks
via global & dynamic filter pruning. In IJCAI, pages 2425–2432, 2018.

[116] C. Liu, B. Li, Y. Vorobeychik, and A. Oprea. Robust linear regression against training
data poisoning. In 10th ACM Workshop on Artificial Intelligence and Security, pages
91–102, 2017.

[117] H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

[118] K. Liu, B. Dolan-Gavitt, and S. Garg. Fine-pruning: Defending against backdooring
attacks on deep neural networks. In International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 273–294. Springer, 2018.

[119] Q. Liu, W. Wen, and Y. Wang. Concurrent weight encoding-based detection for bit-flip
attack on neural network accelerators. In 39th International Conference on Computer-
Aided Design, pages 1–8, 2020.

194

[120] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang. Abs: Scanning neural networks
for back-doors by artificial brain stimulation. In ACM SIGSAC Conference on Computer
and Communications Security, pages 1265–1282, 2019.

[121] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang. Trojaning attack on
neural networks. In 25th Annual Network and Distributed System Security Symposium,
NDSS. The Internet Society, 2018.

[122] Y. Liu, L. Wei, B. Luo, and Q. Xu. Fault injection attack on deep neural network. In
2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
131–138. IEEE, 2017.

[123] Y. Liu, Y. Xie, and A. Srivastava. Neural trojans. In 2017 IEEE International Conference
on Computer Design (ICCD), pages 45–48. IEEE, 2017.

[124] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network
pruning. In International Conference on Learning Representations, 2018.

[125] E. Lukacs. A characterization of the normal distribution. The Annals of Mathematical
Statistics, 13(1):91–93, 1942.

[126] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neural network
compression. In IEEE international conference on computer vision, pages 5058–5066,
2017.

[127] S. Ma and Y. Liu. Nic: Detecting adversarial samples with neural network invariant
checking. In 26th Network and Distributed System Security Symposium (NDSS 2019),
2019.

[128] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema, G. Schoenebeck, D. Song,
M. E. Houle, and J. Bailey. Characterizing adversarial subspaces using local intrinsic
dimensionality. arXiv preprint arXiv:1801.02613, 2018.

[129] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning
models resistant to adversarial attacks. arXiv:1706.06083, 2017.

[130] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. Patterson, H. Tang,
G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen, D. Dutta, U. Gupta, K. Hazelwood,
A. Hock, X. Huang, A. Ike, B. Jia, D. Kang, D. Kanter, N. Kumar, J. Liao, G. Ma,
D. Narayanan, T. Oguntebi, G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie, T. S.
John, T. Tabaru, C.-J. Wu, L. Xu, M. Yamazaki, C. Young, and M. Zaharia. Mlperf
training benchmark. arXiv preprint arXiv:1910.01500, 2019.

[131] P. McDaniel, N. Papernot, and Z. B. Celik. Machine learning in adversarial settings. IEEE
Security & Privacy, 14(3):68–72, 2016.

195

[132] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017.

[133] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley. Neural architecture search without
training. https://openreview.net/forum?id=g4E6SAAvACo, 2021.

[134] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley. Neural architecture search without
training. In International Conference on Machine Learning, pages 7588–7598. PMLR,
2021.

[135] D. Meng and H. Chen. Magnet: a two-pronged defense against adversarial examples.
arXiv:1705.09064, 2017.

[136] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. arXiv
preprint arXiv:1609.07843, 2016.

[137] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. arXiv preprint arXiv:1809.02789, 2018.

[138] A. Mirhoseini, E. L. Dyer, E. M. Songhori, R. Baraniuk, and F. Koushanfar. Rankmap:
A framework for distributed learning from dense data sets. IEEE transactions on neural
networks and learning systems, 29(7):2717–2730, 2017.

[139] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smoothing
with virtual adversarial training. arXiv:1507.00677, 2015.

[140] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz. Importance estimation for
neural network pruning. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11264–11272, 2019.

[141] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural
networks for resource efficient transfer learning. arXiv preprint:1611.06440, 3, 2016.

[142] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate
method to fool deep neural networks. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 2574–2582, 2016.

[143] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical
programming, 140(1):125–161, 2013.

[144] X. Ning, C. Tang, W. Li, Z. Zhou, S. Liang, H. Yang, and Y. Wang. Evaluating effi-
cient performance estimators of neural architectures. Advances in Neural Information
Processing Systems, 34, 2021.

[145] NVIDIA. Transformer-xl for pytorch. https://github.com/NVIDIA/
DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL.

196

https://openreview.net/forum?id=g4E6SAAvACo
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL

[146] R. Olfati-Saber. Ultrafast consensus in small-world networks. In American Control
Conference, pages 2371–2378. IEEE, 2005.

[147] N. Papernot, N. Carlini, I. Goodfellow, R. Feinman, F. Faghri, A. Matyasko, K. Ham-
bardzumyan, Y.-L. Juang, K. Alexey, R. Sheatsley, A. Garg, and L. Yen-Chen. CleverHans
v2.0.0: an adversarial machine learning library. arXiv:1610.00768, 2017.

[148] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The
limitations of deep learning in adversarial settings. In IEEE European symposium on
security and privacy (EuroS&P), pages 372–387. IEEE, 2016.

[149] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a defense to
adversarial perturbations against deep neural networks. In 2016 IEEE symposium on
security and privacy (SP), pages 582–597. IEEE, 2016.

[150] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In British Machine
Vision Conference (BMVC), pages 41.1–41.12. BMVA Press, 2015.

[151] P. K. Pearson. Fast hashing of variable-length text strings. Communications of the ACM,
33(6):677–680, 1990.

[152] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture search via
parameters sharing. In International Conference on Machine Learning, pages 4095–4104.
PMLR, 2018.

[153] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[154] A. S. Rakin, Z. He, and D. Fan. Bit-flip attack: Crushing neural network with progressive
bit search. In IEEE/CVF International Conference on Computer Vision, pages 1211–1220,
2019.

[155] A. S. Rakin, Z. He, and D. Fan. Tbt: Targeted neural network attack with bit trojan. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13198–13207,
2020.

[156] A. S. Rakin, Z. He, J. Li, F. Yao, C. Chakrabarti, and D. Fan. T-bfa: Targeted bit-flip
adversarial weight attack. arXiv preprint arXiv:2007.12336, 2020.

[157] A. S. Rakin, L. Yang, J. Li, F. Yao, C. Chakrabarti, Y. Cao, J.-s. Seo, and D. Fan. Ra-
bnn: Constructing robust & accurate binary neural network to simultaneously defend
adversarial bit-flip attack and improve accuracy. arXiv preprint arXiv:2103.13813, 2021.

[158] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier
architecture search. In AAAI conference on artificial intelligence, volume 33, pages
4780–4789, 2019.

197

[159] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin.
Large-scale evolution of image classifiers. In International Conference on Machine
Learning, pages 2902–2911. PMLR, 2017.

[160] K. Roth, Y. Kilcher, and T. Hofmann. The odds are odd: A statistical test for detecting
adversarial examples. In International Conference on Machine Learning, pages 5498–
5507, 2019.

[161] B. D. Rouhani, A. Mirhoseini, and F. Koushanfar. Deep3: Leveraging three levels of
parallelism for efficient deep learning. In Design Automation Conference, 2017.

[162] B. D. Rouhani, M. Samragh, M. Javaheripi, T. Javidi, and F. Koushanfar. Deepfense:
Online accelerated defense against adversarial deep learning. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[163] T. B. rown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei. Language models are few-shot learners. arXiv preprint arXiv:2005.14165,
2020.

[164] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual
recognition challenge. Int. J. Comput. Vision, 115(3):211–252, Dec. 2015.

[165] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

[166] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[167] D. Salomon. Data compression: the complete reference. Springer Science & Business
Media, 2004.

[168] M. Samragh, M. Javaheripi, and F. Koushanfar. Codex: Bit-flexible encoding for
streaming-based fpga acceleration of dnns. arXiv preprint arXiv:1901.05582, 2019.

[169] M. Samragh, M. Javaheripi, and F. Koushanfar. Encodeep: Realizing bit-flexible encoding
for deep neural networks. ACM Transactions on Embedded Computing Systems (TECS),
19(6):1–29, 2020.

[170] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In IEEE conference on computer vision and pattern
recognition, pages 4510–4520, 2018.

[171] U. Shaham, Y. Yamada, and S. Negahban. Understanding adversarial training: Increasing
local stability of neural nets through robust optimization. arXiv:1511.05432, 2015.

198

[172] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and H. Es-
maeilzadeh. From high-level deep neural models to fpgas. In IEEE/ACM International
Symposium on Microarchitecture, page 17. IEEE Press, 2016.

[173] S. Shekhar and T. Javidi. Gaussian process bandits with adaptive discretization. Electronic
Journal of Statistics, 12(2):3829–3874, 2018.

[174] S. Shen, G. Jin, K. Gao, and Y. Zhang. APE-GAN: Adversarial perturbation elimination
with GAN. ICLR Submission, available on OpenReview, 2017.

[175] D. Simard, L. Nadeau, and H. Kröger. Fastest learning in small-world neural networks.
Physics Letters A, 336(1):8–15, 2005.

[176] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[177] L. N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter
conference on applications of computer vision (WACV), pages 464–472. IEEE, 2017.

[178] D. So, Q. Le, and C. Liang. The evolved transformer. In International conference on
machine learning, pages 5877–5886. PMLR, 2019.

[179] D. So, W. Mańke, H. Liu, Z. Dai, N. Shazeer, and Q. V. Le. Searching for efficient
transformers for language modeling. Advances in Neural Information Processing Systems,
34:6010–6022, 2021.

[180] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. Information-theoretic regret
bounds for gaussian process optimization in the bandit setting. IEEE Transactions on
Information Theory, 58(5):3250–3265, 2012.

[181] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Benchmarking
machine learning algorithms for traffic sign recognition. Neural networks, 32:323–332,
2012.

[182] B. Stellato, B. P. Van Parys, and P. J. Goulart. Multivariate chebyshev inequality with
estimated mean and variance. The American Statistician, 71(2):123–127, 2017.

[183] S. H. Strogatz. Exploring complex networks. nature, 410(6825):268–276, 2001.

[184] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. arXiv:1312.6199, 2013.

[185] A. Tahbaz-Salehi and A. Jadbabaie. Small world phenomenon, rapidly mixing markov
chains, and average consensus algorithms. In 2007 46th IEEE Conference on Decision
and Control, pages 276–281. IEEE, 2007.

[186] M. Tan and Q. Le. Efficientnetv2: Smaller models and faster training. In International
Conference on Machine Learning, pages 10096–10106. PMLR, 2021.

199

[187] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli. Pruning neural networks without any
data by iteratively conserving synaptic flow. Advances in Neural Information Processing
Systems, 33, 2020.

[188] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and K. Razavi.
Throwhammer: Rowhammer attacks over the network and defenses. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18), pages 213–226, 2018.

[189] L. Theis, I. Korshunova, A. Tejani, and F. Huszár. Faster gaze prediction with dense
networks and fisher pruning. arXiv preprint arXiv:1801.05787, 2018.

[190] N. Torkzaban and J. S. Baras. Trust-aware service function chain embedding: A path-
based approach. In 2020 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), pages 31–36, 2020.

[191] N. Torkzaban, C. Papagianni, and J. S. Baras. Trust-aware service chain embedding. In
2019 Sixth International Conference on Software Defined Systems (SDS), pages 242–247,
2019.

[192] B. Tran, J. Li, and A. Madry. Spectral signatures in backdoor attacks. In Advances in
Neural Information Processing Systems, pages 8000–8010, 2018.

[193] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal
matching pursuit. IEEE Transactions on information theory, 53:4655–4666, 2007.

[194] H. Tsai, J. Ooi, C.-S. Ferng, H. W. Chung, and J. Riesa. Finding fast transform-
ers: One-shot neural architecture search by component composition. arXiv preprint
arXiv:2008.06808, 2020.

[195] D. Vainsencher, S. Mannor, and A. M. Bruckstein. The sample complexity of dictionary
learning. Journal of Machine Learning Research, 12(Nov):3259–3281, 2011.

[196] V. Van Der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna, H. Bos,
K. Razavi, and C. Giuffrida. Drammer: Deterministic rowhammer attacks on mobile
platforms. In ACM SIGSAC conference on computer and communications security, pages
1675–1689, 2016.

[197] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[198] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and
S. Bowman. Superglue: A stickier benchmark for general-purpose language understanding
systems. Advances in neural information processing systems, 32, 2019.

[199] B. Wang, J. Gao, and Y. Qi. A theoretical framework for robustness of (deep) classifiers
under adversarial noise. arXiv:1612.00334, 2016.

200

[200] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao. Neural cleanse:
Identifying and mitigating backdoor attacks in neural networks. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 707–723. IEEE, 2019.

[201] C. Wang, G. Zhang, and R. Grosse. Picking winning tickets before training by preserving
gradient flow. In International Conference on Learning Representations, 2020.

[202] H. Wang, S. Ma, L. Dong, S. Huang, D. Zhang, and F. Wei. Deepnet: Scaling transformers
to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022.

[203] H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han. Hat: Hardware-aware
transformers for efficient natural language processing. In 58th Annual Meeting of the
Association for Computational Linguistics, pages 7675–7688, 2020.

[204] H. Wang, Q. Zhang, Y. Wang, and H. Hu. Structured probabilistic pruning for convolu-
tional neural network acceleration. arXiv preprint arXiv:1709.06994, 2017.

[205] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. Haq: Hardware-aware automated quantization
with mixed precision. In IEEE conference on computer vision and pattern recognition,
pages 8612–8620, 2019.

[206] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440–442, 1998.

[207] C. White, M. Khodak, R. Tu, S. Shah, S. Bubeck, and D. Dey. A deeper look at
zero-cost proxies for lightweight nas. In ICLR Blog Track, 2022. https://iclr-blog-
track.github.io/2022/03/25/zero-cost-proxies/.

[208] M. Wistuba, A. Rawat, and T. Pedapati. A survey on neural architecture search. arXiv
preprint arXiv:1905.01392, 2019.

[209] M. Wortsman, A. Farhadi, and M. Rastegari. Discovering neural wirings. Advances in
Neural Information Processing Systems, 32, 2019.

[210] J. Wu, Y. Zhang, H. Bai, H. Zhong, J. Hou, W. Liu, W. Huang, and J. Huang. Pocketflow:
An automated framework for compressing and accelerating deep neural networks. Neurips
workshop on CDNNRIA, 2018.

[211] L. Xiaohu, L. Xiaoling, Z. Jinhua, Z. Yulin, and L. Maolin. A new multilayer feedfor-
ward small-world neural network with its performances on function approximation. In
2011 IEEE International Conference on Computer Science and Automation Engineering,
volume 3, pages 353–357. IEEE, 2011.

[212] L. Xie and A. Yuille. Genetic cnn. In IEEE international conference on computer vision,
pages 1379–1388, 2017.

[213] S. Xie, A. Kirillov, R. Girshick, and K. He. Exploring randomly wired neural networks
for image recognition. In IEEE/CVF International Conference on Computer Vision, pages
1284–1293, 2019.

201

[214] J. Xu, X. Tan, R. Luo, K. Song, J. Li, T. Qin, and T.-Y. Liu. Nas-bert. 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, Aug 2021.

[215] J. Xu, X. Tan, K. Song, R. Luo, Y. Leng, T. Qin, T.-Y. Liu, and J. Li. Analyzing and
mitigating interference in neural architecture search. In International Conference on
Machine Learning, pages 24646–24662. PMLR, 2022.

[216] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong. Pc-darts: Partial
channel connections for memory-efficient architecture search. In International Conference
on Learning Representations, 2019.

[217] L. F. Yang and M. Wang. Reinforcement leaning in feature space: Matrix bandit, kernels,
and regret bound. arXiv preprint arXiv:1905.10389, 2019.

[218] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze, and H. Adam.
Netadapt: Platform-aware neural network adaptation for mobile applications. In European
Conference on Computer Vision (ECCV), pages 285–300, 2018.

[219] F. Yao, A. S. Rakin, and D. Fan. Deephammer: Depleting the intelligence of deep neural
networks through targeted chain of bit flips. In 29th {USENIX} Security Symposium
({USENIX} Security 20), pages 1463–1480, 2020.

[220] Y. Yin, C. Chen, L. Shang, X. Jiang, X. Chen, and Q. Liu. Autotinybert: Automatic
hyper-parameter optimization for efficient pre-trained language models. arXiv preprint
arXiv:2107.13686, 2021.

[221] Y. Ying and D.-X. Zhou. Learnability of gaussians with flexible variances. Journal of
Machine Learning Research, 8(Feb):249–276, 2007.

[222] J. You, J. Leskovec, K. He, and S. Xie. Graph structure of neural networks. In International
Conference on Machine Learning, pages 10881–10891. PMLR, 2020.

[223] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel,
K. Keutzer, and C.-J. Hsieh. Large batch optimization for deep learning: Training
bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

[224] J. Yu and T. S. Huang. Universally slimmable networks and improved training techniques.
In IEEE International Conference on Computer Vision, pages 1803–1811, 2019.

[225] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang. Slimmable neural networks. In 7th
International Conference on Learning Representations, ICLR 2019, 2019.

[226] Z. Yuan, C. Xue, Y. Chen, Q. Wu, and G. Sun. Ptq4vit: Post-training quantization
framework for vision transformers. arXiv preprint arXiv:2111.12293, 2021.

[227] O. Zafrir, A. Larey, G. Boudoukh, H. Shen, and M. Wasserblat. Prune once for all: Sparse
pre-trained language models. arXiv preprint arXiv:2111.05754, 2021.

202

[228] D. H. Zanette. Dynamics of rumor propagation on small-world networks. Physical review
E, 65(4):041908, 2002.

[229] V. Zantedeschi, M.-I. Nicolae, and A. Rawat. Efficient defenses against adversarial attacks.
In 10th ACM Workshop on Artificial Intelligence and Security, 2017.

[230] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

[231] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[232] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li,
X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar,
T. Wang, and L. Zettlemoyer. Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

[233] X. Zhang, C. Moore, and M. E. Newman. Random graph models for dynamic networks.
The European Physical Journal B, 90(10):1–14, 2017.

[234] Y. Zhao, L. Dong, Y. Shen, Z. Zhang, F. Wei, and W. Chen. Memory-efficient differentiable
transformer architecture search. arXiv preprint arXiv:2105.14669, 2021.

[235] H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: Towards compact cnns. In European
Conference on Computer Vision (ECCV), pages 662–677. Springer, 2016.

[236] Z. Zivkovic. Improved adaptive gaussian mixture model for background subtraction. In
17th International Conference on Pattern Recognition, volume 2, pages 28–31. IEEE,
2004.

203

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Trustworthy and Robust Deep Learning
	Robustness to Runtime Attacks
	Robustness to Training Time Attacks

	Platform-aware Deep Learning on Massive Data
	Efficient Training
	Resource-Customized Inference

	Acknowledgements

	Ensuring DL Robustness to Adversarial Attacks
	Background and Preliminaries
	Related Work
	Statistical Analysis of Adversarial Samples
	CuRTAIL Methodology
	Latent Defenders
	Input Defender
	Model Fusion
	Sensitivity Analysis

	CuRTAIL Hardware Implementation
	CuRTAIL Hardware Acceleration
	Automated Design Customization
	Computational Analysis and Scalability

	Evaluations
	Details of MRR Training
	Attack Analysis and Resiliency
	Black-Box Attacks
	Adaptive White-Box Attack
	Performance Analysis
	Discussion on Transferability of Adversarial Samples

	Conclusion
	Acknowledgements

	Ensuring DL Robustness to Fault Injection Attacks
	Background and Prior Work
	Bit-Flip Attack
	Existing Defenses

	AccHashtag Methodology
	Threat Model

	AccHashtag Components
	Hash-based Signature Extraction
	Bounds on Detection Performance
	Per-layer Sensitivity Analysis
	Accelerating Hash Generation

	Experiments
	Experimental Setup
	Analysis of Design Choices
	AccHashtag Performance

	Conclusion
	Acknowledgements

	Ensuring DL Robustness to Backdoor Attacks
	Background on Trojan Attacks and Defenses
	CleaNN Methodology
	Defense Construction and Execution
	Threat Model

	CleaNN Components
	DCT extraction
	Sparse Recovery
	Detection

	CleaNN Hardware
	Experiments
	Attack Configuration
	Detection Performance
	Hardware performance

	Conclusion
	Acknowledgment

	Improving Training Convergence via Architectural Modifications
	Background on Small-World Networks
	Related work
	SWANN: Small-World DNNs
	Metric for Small-Worldness
	Acquiring the Small-world Architecture
	SWANN Methodology

	Experiments
	Datasets
	Benchmarked Architectures
	Results on MNSIT
	Results on CIFAR
	Results on ImageNet
	Federated Learning

	Discussion on Long-range Connections
	Conclusion
	Acknowledgements

	Improving Inference Performance via Neural Architecture Search
	Related Work
	Lightweight Transformer Search
	Training-free Architecture Ranking

	Experiments
	Experimental Setup
	How do training-free proxies perform compared to training-based methods?
	How does variation in model topology affect decoder parameter count as a proxy?
	How Good is the Decoder Parameters Proxy for Pareto-frontier Search?
	Pareto-frontier models for various hardware platforms
	Zero and one-shot performance comparison with OPT

	Conclusion
	Acknowledgements

	Automating Model Compression via Adaptive Non-uniform Sampling
	Background and Related Work
	Problem Formulation
	AdaNS Overview
	Search-Space Definition
	Scoring Mechanism
	Boundary Characterization for Directed Search
	Optimization through Adaptive Sampling

	AdaNS Adaptive Sampling Routines
	3 Sampling Subroutine
	AdaNS-Genetic Sampling Subroutine
	AdaNS-Gaussian Sampling Subroutine

	Reconstruction
	Experiments
	Effect of Sampling Strategy on Convergence
	Quantitative Results on CIFAR-10
	Quantitative Results on ImageNet
	Compressing Compact Networks
	Search Overhead and Scalability
	Analysis and Discussion
	Ablation Study

	Conclusion
	Acknowledgements

	Bibliography

