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ABSTRACT OF THE THESIS 

 

Mammals respond differently to human recreation 

 

by 

 

Madison Rachel Uetrecht 

 

Master of Science in Biology 

University of California, Los Angeles, 2021 

Professor Daniel T. Blumstein, Chair 

 

Outdoor recreation benefits local economies, environmental education, and public health and 

wellbeing, but it can also adversely affect local ecosystems. Human presence in natural areas 

alters feeding and reproductive behaviors, physiology, and population structure in many wildlife 

species, often resulting in cascading effects through entire ecological communities. As outdoor 

recreation gains popularity, existing trails are becoming overcrowded and new trails are being 

built to accommodate increasing use. Many recreation impact studies have investigated effects of 

the presence or absence of humans while few have investigated recreation effects on wildlife 

using a gradient of disturbance intensity. We used camera traps to quantify trail use by humans 

and mid- to large-sized mammals in an area of intense outdoor recreation--the Upper East River 

Valley, Colorado, USA. We selected five trails with different types and intensities of human use 

and deployed six cameras on each trail for five weeks during a COVID-enhanced 2020 summer 
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tourism season. We used occupancy models to estimate detectability and habitat use of the four 

most common mammal species in the study area and determined which human activities affect 

the habitat use patterns of each species. Human activities affected each species differently. Mule 

deer (Odocoileus hemionus) were common throughout the study site, and they changed their 

diurnal activity patterns to avoid hikers. Coyotes (Canis latrans) and red foxes (Vulpes vulpes) 

were most likely where their prey species were, and coyotes changed their diurnal activity 

patterns to avoid mountain bikers. Black bears (Ursus americanus) were likely where there were 

more hikers, and they changed their diurnal activity to avoid motorized vehicles such as cars. 

Humans and their recreational activities differentially influence different species. More 

generally, these results suggest that it is therefore unlikely that a single management policy is 

suitable for all species and management will likely have to be tailored for a given species. 
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INTRODUCTION 

An essential question for biodiversity conservation is the effectiveness of different types of 

protected areas for conserving biodiversity (Sutherland et al. 2009). As the human population 

grows and recreation in natural areas is becoming more popular, trails are getting overcrowded 

(Boue 2019) – for example, recreation visits increased by about 200 percent across Colorado in 

early 2020 (Kwak-Hefferan 2020) - and new trails are being built to accommodate for their 

increasing popularity (Bastone 2019).  

The majority of outdoor recreation activities have negative effects on wildlife across taxa 

(Larson et al. 2016). Human activities can change animal behaviors as well as the physical 

aspects of their habitats. These changes can impact the population and community dynamics of 

entire ecosystems (Caravaggi et al. 2017; Suraci et al. 2019a). 

Trails, in particular, physically modify the environment. Trampling by humans can alter 

the physical properties of soil, leading to changes in the development and diversity of vegetation 

(Cole and Landres 1995). Changes in habitat can alter community composition because some 

species are more resistant or resilient to change than others (Cole and Landres 1995). Habitat 

fragmentation can disrupt some animals’ dispersal behaviors (Caravaggi et al. 2017). 

Human presence on trails has an even greater effect than habitat modification on 

biodiversity (Botsch et al. 2018; Doherty et al. 2021). High human use on trails has been 

observed to deter some species, especially diurnal ones, and attract others that can become 

habituated to human presence (Erb et al. 2012). Off-trail travel and loud noises are two of the 

main causes of negative impacts on wildlife (Bastone 2019). Anthropogenic disturbance can 
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have negative effects on animal behavior, such as increased vigilance (Ciuti et al. 2012) or taking 

advantage of human activity to escape predators (Caravaggi et al. 2017). 

Fear of humans as predators alters animals’ feeding behaviors (Frid and Dill 2002), 

potentially leading to ecological cascades (Smith et al. 2017). Human presence and sounds create 

a “landscape of fear” in which prey animals perceive spatially varied risk across a landscape 

(Suraci et al. 2019a); large animals moved more cautiously and reduced their home range size in 

response to human sounds (Suraci et al. 2019a). Medium-sized mammals responded to human 

sounds by reducing their foraging time or increasing nocturnality, and small mammals increased 

their habitat use near human activity due to the new absence of larger mammals (Suraci et al. 

2019a). Gaynor et al. (2018) found that human activity increased nocturnality in mammal species 

across continents, trophic levels, and body sizes, and that nocturnality increased similarly in 

response to both lethal and non-lethal human activities.  

Just as foot traffic can disturb wildlife communities, so can mechanized recreation. There 

is substantial evidence that non-motorized vehicles, such as bicycles, have negative impacts on 

wildlife (Larson et al. 2016). Fast, quiet bikers can trigger startle responses or aggression in 

wildlife (Quinn and Chernoff 2010). New mountain bike technologies (fat tired bikes and e-

bikes) are expanding biking seasons and distances, and mountain bikers are responsible for a 

substantial amount of new legal as well as illegal trail construction (Quinn and Chernoff 2010). 

For example, between 2000 and 2019, over 3600 trail projects have received funding for new 

bike trail construction in the United States (US Department of Transportation 2019). The greatest 

impacts of mountain biking trails occur during the development and early use period of the trails 

(Quinn and Chernoff 2010). Many mountain bike organizations oppose designations of new 
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wilderness areas that restrict trail use or creation, and the “outlaw mentality” in mountain bike 

culture leads to many bikers going off trails even though they know it is not allowed (Wuerthner 

2019). Additionally, in terms of risk perception, animals may perceive mountain bikes to be 

more similar to motorized vehicles than to other forms of recreation due to their high velocity 

(Naidoo and Burton 2020). 

Motorized vehicles are an important means for people to access nature (Jones et al. 

2016), but they can also be a major disturbance to the ecosystems that people are traveling to see 

in the first place. Studies have found that compared to non-motorized recreation, motorized 

vehicles cause greater changes in species’ habitat use (Naidoo and Burton 2020) as well as elk 

(Cervus canadensis) behavior (Ciuti et al. 2012). An increase in daily vehicular traffic correlated 

with decrease in moose and bear sightings (Knight and Cole 1995). Yet the demand for outdoor 

recreation opportunities and access via motorized vehicles continues to grow (Jones et al. 2016). 

Previous investigations into the relationship between human presence and wildlife habitat 

use have compared animal responses at sites with and without tourism, but it is also important to 

study a gradient of recreation intensity (Larson et al. 2016; Dertien et al. 2021) and a variety of 

different impact regimes based on different management protocols (Blumstein et al. 2017). More 

research is needed to examine the effectiveness of different types of protected areas with 

different human activities for conserving wildlife (Sutherland et al. 2009). To date, research on 

recreation impacts more often quantifies individual-level responses, and population- and 

community-level responses are less studied. Studies of terrestrial recreation impacts often focus 

on hiking and running, while fewer studies investigate impacts of biking, dog walking, and 

equestrian activities (Larson et al. 2016). To manage wildlands more effectively, we need to 
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study many species to determine if they have similar or different responses to a variety of 

recreational activities and visitation rates. 

We studied wildlife habitat use on a set of trails with a variety of recreational activities 

and visitation rates. We focused on a network of trails in the Upper East River Valley in and 

around the Rocky Mountain Biological Laboratory (RMBL) in Colorado, a prominent outdoor 

recreation site for hikers and mountain bikers.  

Here we use single-species, single-season occupancy models to identify recreational and 

environmental factors that influence the habitat use of four common mammal species: mule deer 

(Odocoileus hemionus), coyotes (Canis latrans), red foxes (Vulpes vulpes), and American black 

bears (Ursus americanus). We tested effects of recreation on both occupancy and detectability 

for each species. We used three separate variables representing different types of recreation 

(hiking, mountain biking, and motorized vehicle densities) to compare impacts of different 

human activities. 

Given the evidence that animals perceive risk from human presence in natural areas (Frid 

and Dill 2002; Suraci et al. 2019a) and many wildlife species are known to avoid humans either 

temporally (Gaynor et al. 2018; Naidoo and Burton 2020) or spatially (Suraci et al. 2019a), we 

predicted that wildlife detectability (visibility/activity) and occupancy (site presence) would be 

lower in areas with more recreational activity. We also predicted that mechanized and motorized 

recreation, including mountain biking and driving larger vehicles such as cars, would have 

greater impacts relative to hiking because the higher speed and noise levels of these vehicles are 

thought to cause greater disturbances to wildlife than foot traffic (Quinn and Chernoff 2010; 

Naidoo and Burton 2020). 
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METHODS 

We studied human and wildlife activity in and around the Rocky Mountain Biological 

Laboratory (RMBL; N 38.9585336, W 106.9899337) over a five-week period in June-August 

2020. This data collection period captured the start of peak tourism season to examine varying 

levels of human visitation. We surveyed mammalian activity near hiking and biking trails by 

placing camera traps along trails. We quantified how humans influenced the habitat use of mid-

sized and large mammals as a function of human visitation rate and activity type with occupancy 

models to estimate species occupancy while correcting for imperfect detection (Mackenzie et al. 

2002; Bailey and Adams 2005). 

 We included five hiking and biking trails in this study: Deer Creek (N 38.945534, W 

106.981061), Trail 401 (N 38.964142, W 106.988587), Trail 403 (N 38.982264, W 107.007438), 

Kettle Ponds Road (N 38.953452, W 106.988142), and Avery Mountain (N 38.966412, W 

106.993313). This set includes trails that are frequently used for all activities, trails that are off 

limits to bikers, trails that are infrequently visited and only by hikers, and wide trails with 

motorized vehicle access. This site presents an excellent opportunity to study wildlife habitat use 

near trails with varying activities and heterogeneous impact intensities. The shortest trail, Kettle 

Ponds Road, is approximately 1500 m long, so we placed cameras along the first 1500 m of each 

trail to standardize the camera spacing among all the trails.  

We used a total of 30 cameras, placing six cameras on each of the five trails using a 

stratified random design to ensure every portion of each trail was studied throughout the study 

period (Fig. 1). Each 1500 m trail segment was divided into six zones, each of which contained 
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one camera. Each zone was divided into six subsections, and every week one subsection was 

randomly selected in each zone for the camera to be deployed for seven days. At the end of a 

seven-day deployment period, each camera was moved to a new, randomly selected subsection 

within its original zone for the next deployment. Each subsection was used only once during the 

entire study period. 

We used digital camera traps (Browning Strike Force Model BTC-5HDPX, Prometheus 

Group, LLC, Birmingham, Alabama, USA) to record human and wildlife activity on the trails in 

the study area. The motion-triggered cameras captured still images when a human, animal, or 

vehicle moved in front of them, with a delay of one second between photos. The cameras also 

recorded the date and time that each photo was taken, and this information was later used to 

create species detection histories. For each deployment we recorded the height of the tallest 

vegetation between the camera and the trail in its view to account for the potential for tall 

vegetation to obscure small animals from the camera’s view. Cameras were considered non-

operational if the batteries died, the SD card became too full to store any additional photos, or 

the camera fell and was no longer facing the trail. We also discarded the camera-days where 

cattle were present as the impacts of cattle ranching on wildlife was beyond the scope of this 

study. 

The short delay of one second between photos allowed for the collection of detailed 

photo sequences, often with multiple photos representing a single visit. We processed the 

resulting image dataset by saving one image to represent each “capture,” or one individual 

person, animal, or vehicle at one time. A capture starts when an individual enters the camera’s 

view, and it ends when that individual leaves the camera’s view and is absent from the next 

photo. Each sequence of photos was examined to determine the number of captures in the 
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sequence. The number of captures of each species denotes the number of times the cameras were 

triggered by activity. This method counts individuals each separate time they pass in front of the 

camera, which represents the amount of activity at the site rather than the number of unique 

individuals. All wildlife sightings were identified to species using all available clues within the 

photo sequences, including body size, body features, color patterns, and fur textures. 

Four wildlife species were sufficiently common to create occupancy models: mule deer 

(Odocoileus hemionus), coyotes (Canis latrans), red foxes (Vulpes vulpes), and black bears 

(Ursus americanus). The metadata of the scored photos was used to create presence-absence 

detection histories for each of the four focal species in the R programming language v4.1.0 (R 

Core Team 2021) using the package camtrapR (Niedballa et al. 2016). The detection histories 

were then used to run single-species, single-season occupancy models for each of the four focal 

species (Mackenzie et al. 2006). We fitted occupancy models in the R package unmarked (Fiske 

and Chandler 2011).  

The primary period, or “season,” (Mackenzie et al. 2006) for the occupancy framework 

was seven days long as each camera was deployed for seven days before being moved to start a 

new deployment. The secondary period, or “survey,” (Mackenzie et al. 2006) was one day, 

meaning the presence or absence of a species or activity was measured on a daily basis. 

Detectability is represented on a daily scale and occupancy is represented on a seasonal scale. 

We calculated the number of captures of each human activity per day and used these 

daily captures as predictor variables in the detection formulas of the models. We replaced 

missing values with deployment mean values wherever predictor variables were missing values 

due to camera operability problems. We then calculated the seven-day averages of daily captures 
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of each activity at each site to use as seasonal predictor variables in the occupancy formulas of 

the models. We standardized all continuous predictor variables, which included survey-level 

covariates: pedestrians (ped), bikers (biker), and motorized vehicles (vehicle); seasonal 

covariates: site-averaged pedestrians (avg.ped), site-averaged bikers (avg.biker), and site-

averaged motorized vehicles (avg.vehicle); as well as distance from the trailhead (scale.distance), 

understory vegetation height (scale.veg), and Julian day of the start of each deployment 

(start.jday.scale).  

We tested for multicollinearity among the human predictor variables and found that 

pedestrians and dogs were highly correlated (r > 0.9). Therefore we excluded dog data from the 

models. There were very few horseback riders in the data set, and since we did not expect them 

to be a major driver of habitat use patterns in this system, we excluded equestrian data to avoid 

over-fitting the models.  

We included human activities as covariates in both the detectability formulas and the 

occupancy formulas in accordance with our hypotheses. The occupancy formula tests whether 

the covariate has an effect on the presence or absence of the species. The detectability formula 

tests whether a covariate causes the species to be easier or harder to detect. We included human 

covariates in the detectability formula to test whether the focal species were more visible or 

secretive at higher levels of human activity. We used daily count data for the detectability 

covariates and seasonal averages of the count data for the occupancy covariates.  

We hypothesized that trailheads have more human activity than farther along the trails, 

and we expected that proximity to the trailhead could affect species occupancy. Therefore we 

included a variable accounting for the distance from the trailhead in the occupancy formula. 
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We expected that focal species’ predators or prey could affect occupancy. We therefore 

included predators (coyotes, black bears, and mountain lions) in the deer model (avg.pred) and 

prey in the coyote, fox, and bear models. For bears and coyotes, the “avg.prey” variable included 

all detections of deer, elk, marmots, and hares combined. For foxes, the “avg.prey.fox” variable 

included only marmots and hares. We recognize that both coyotes and foxes eat smaller 

mammals as well as birds at our study site. 

We included the understory vegetation height variable in the detectability formula for its 

potential to decrease probability of detection, especially for smaller animals. We also included 

the Julian day variable, which represents the first Julian day of each deployment, because 

animals may change their activity patterns throughout the year. 

We included trail as a random effect in the occupancy formula to account for potential 

differences among the five trails studied. We included this random effect in every model we 

tested. We tested random effects in the occupancy models using the R package TMB (Kristensen 

et al. 2016).  

We used the following full model for the model selection process: 

p ~ ped + biker + vehicle + scale.veg + start.jday.scale 

Ψ ~ avg.ped + avg.biker + avg.vehicle + scale.distance + [avg.pred or avg.prey or 

avg.prey.fox] + (1 | Trail) 

We used a two-step model selection approach (Mackenzie et al. 2006): we first tested all 

possible combinations of covariates in the detectability formula using full occupancy formulas 

and found the model with the lowest Akaike Information Criterion (AIC). Then we used the 

lowest AIC detectability formula to test all combinations of covariates in the occupancy formula. 
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This approach involved testing a total of 64 models for each species (listed in supplementary 

materials). The lowest AIC model resulting from the second step was considered the “best” 

model for a given species.  

For the black bear models, seven models in step two did not converge. We provided these 

models with starting values, and one of them converged while the other six still did not converge. 

We discarded the six models that did not converge after being given starting values.  

Site occupancy of unmarked species can be estimated with an occupancy model 

framework, but the model assumptions are often violated in camera trap studies (Mackenzie et al. 

2006). In this study, the model assumption that sites are “closed” (site occupancy does not 

change during the survey period) is violated because the home ranges of the species in this study 

are likely larger than the distance between the cameras. Therefore, the model output is 

interpreted as habitat use, the probability that a site is used by a species, rather than the 

probability of occupancy (Mackenzie et al. 2006; Burton et al. 2015; Gould et al. 2019). All 

cameras were deployed along trails; therefore the resulting models can be used to make 

inferences about habitat use and detectability around these trails. 

 

RESULTS 

The models with the most support, with AIC differences of less than 2 (Mackenzie et al. 

2006), are listed in Table 1. The lowest AIC models resulting from the model selection process 

show that the three types of recreation activities we studied affect each species differently.  
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Mule deer were the most commonly detected species in our dataset, with a total of 777 

detections. The final model for mule deer included pedestrians and Julian day in the detectability 

formula (Table 1). Mule deer were common throughout the study site and their weekly habitat 

use patterns were not affected by recreation. However, at a finer scale, they changed their diurnal 

activity patterns to avoid hikers (Fig. 2).  

The final model for coyotes included bikers in the detectability formula and prey in the 

occupancy formula (Table 1). Coyotes were most likely to use areas where their prey animals 

were also found. Their weekly habitat use patterns were not affected by recreation, but they 

changed their diurnal activity patterns to avoid mountain bikers (Fig. 2). 

The final model for foxes included vegetation height and Julian day in the detectability 

formula and fox prey in the occupancy formula (Table 1). Foxes were most likely to use areas 

where their prey animals were also found. They had lower detectability in taller vegetation (Fig. 

2). We did not find evidence of recreation impacts in this species. 

The final model for bears included motorized vehicles in the detectability formula and 

pedestrians in the occupancy formula (Table 1). Bears were likely to use areas where there were 

more hikers on a weekly scale, and on a finer scale, they changed their diurnal activity to avoid 

motorized vehicles (Fig. 2). 

 

DISCUSSION 

We used occupancy models to examine four species’ habitat use patterns near trails in a popular 

outdoor recreation area. We observed species-specific responses to the range of human 
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recreation that occurs in the Upper East River Valley, Colorado during the summer tourist 

season. We predicted that because wildlife perceive risk from human presence (Frid and Dill 

2002; Suraci et al. 2019a), we would find lower wildlife detectability and occupancy in areas 

with more recreational activity. This prediction is partially supported by our results; three out of 

four species exhibited short-term temporal avoidance of at least one human activity. We also 

predicted that mountain biking and motorized vehicles would have a greater impact than hiking 

due to the speed and noise of these activities (Quinn and Chernoff 2010; Naidoo and Burton 

2020). We found evidence supporting this prediction in two out of four focal species: coyotes 

temporally avoided bikers, and black bears temporally avoided motorized vehicles. 

Mule deer were common throughout the study site and temporally avoided areas with 

high levels of hiking. Mule deer are known to temporally avoid hikers and high use trails; they 

have been observed to have low same-day occurrence with humans (Patten and Burger 2018). 

Taylor and Knight (2003) found that mule deer avoided recreationists and had greater responses 

to off-trail than on-trail recreationists. In a study by Townsend et al. (2020), deer decreased trail 

use when a park opened to the public, but abundance in the surrounding area stayed the same. 

These deer exhibited latent habituation by returning to pre-opening trail use levels several 

months after the park opened (Townsend et al. 2020). Mule deer often use surrounding cover to 

hide from predators and have been observed to flee from humans to the nearest cover and stop 

there (Taylor and Knight 2003). This cover-seeking behavior may explain our result of lower 

detectability in areas with more hikers while overall habitat use remains unaffected by recreation. 

We found that coyotes temporally avoided mountain bikers on a daily scale. Previous 

studies have shown mixed results regarding coyotes’ tolerance of human disturbance. Several 

studies show that coyotes exhibit low same-day occurrence with humans (Patten and Burger 
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2018) and decrease habitat use near human disturbance (George and Crooks 2006; Larson et al. 

2020). Other studies show that human trail use does not affect coyote habitat use (Townsend et 

al. 2020). While they may be sensitive to recreation impacts, coyotes are known to be very 

adaptable and somewhat tolerant of human presence (Larson et al. 2020). Our results suggest that 

coyotes may be more sensitive to mountain biking than other forms of recreation, possibly 

because bikers travel faster than hikers and can cause greater levels of disturbance (Naidoo and 

Burton 2020). 

We did not find evidence of recreation effects for red foxes. A possible explanation for 

this result is that red foxes are generally either nocturnal or crepuscular, and nocturnal species 

are less likely to be affected by recreation than diurnal species (Erb et al. 2012). Additionally, 

red foxes were positively associated with high trail use areas in a study by Erb et al. (2012), 

exemplifying their adaptability and tolerance of human disturbance.  

We found that black bears avoided motorized vehicles during the day. Bears have been 

observed to avoid high use trail areas in previous studies (Erb et al. 2012), and motorized 

vehicles can cause greater temporal avoidance in mammal species than hiking (Naidoo and 

Burton 2020). It is also possible that black bears were more likely to use habitat where there 

were more hikers due to ease of locomotion on trails. Carnivores have been observed using 

human roads and trails to move through forest habitats in a variety of other studies (Colorado 

State Parks Trails and Wildlife Task Force 1998; Frey and Conover 2006; Andersen et al. 2017; 

Dickie et al. 2020). There is very little food or trash left behind on the trails in the study area; 

thus, food availability is an unlikely explanation for this pattern. 
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Generally, wildlife species perceive a much greater threat from humans than from non-

human predators (Clinchy et al. 2016), including domestic dogs (Suraci et al. 2019b). However, 

humans and dogs together can have a greater impact on wildlife than humans or dogs separately 

(Banks and Bryant 2007; Lenth et al. 2008, Parsons et al. 2016). Hikers in the study area often 

bring their dogs with them, which could increase their potential impact. However, the dog data 

were excluded from the analyses due to high correlation with the hiker data; therefore our results 

may somewhat underestimate the impact of hiking on wildlife. 

We grouped the captures of potential prey species, including mule deer, elk, marmots, 

and hares, to test whether prey species density influenced predator species habitat use. However, 

we acknowledge that the predator species in this study may also prey on other species (mice, 

voles, ground squirrels and chipmunks, and birds) for which we did not have data. Our results 

show a general relationship between prey density and predator habitat use, but further research 

should study prey effects further, including smaller mammals and birds, to increase the precision 

of the estimate of this relationship. 

We studied four common species found at the study site, but this area is home to many 

more species, including other large mammals such as mountain lions and elk. However, we were 

unable to fit occupancy models for the other species found at our sites due to insufficient 

detection data. This is not to say that humans have no impact on their distribution and abundance 

as shown in studies by Suraci et al. (2019a), Suraci et al. (2019b), Naylor et al. (2009), and Ciuti 

et al. (2012). Future studies could use more survey sites (Mackenzie et al. 2006) and an extended 

data collection period to capture more detections and create models for rare species. 
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Of the four recreation impacts we found, three were impacting species detectability rather 

than occupancy, which suggests that human recreation in the study area causes secretive 

behavior and reduced activity more than spatial displacement. Importantly, these results show 

that wildlife species are differentially affected by human recreation activities. These findings 

lend support to sustainable ecotourism recommendations founded on the knowledge that wildlife 

species each have unique sensitivities and management needs (Samia et al. 2017). Therefore 

management plans should be tailored to the species of interest; single interventions will likely 

have different impacts on different species. 
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Tables 

Table 1. Negative log likelihood (-LogLike), number of parameters (K), AIC, and AIC weight for the top models (ΔAIC < 2) of each 

species. 

Model, by species -LogLike K AIC AIC weight 

Mule deer     

 Ψ( (1 | Trail) ) p( ped + start.jday.scale ) 711.3918 4 1432.7836 0.1179 

 Ψ( (1 | Trail) + scale.distance ) p( ped + start.jday.scale ) 710.6919 5 1433.3838 0.0873 

 Ψ( (1 | Trail) + avg.biker ) p( ped + start.jday.scale ) 710.8548 5 1433.7096 0.0742 

 Ψ( (1 | Trail) + avg.biker + scale.distance ) p( ped + start.jday.scale ) 709.9278 6 1433.8557 0.0690 

 Ψ( (1 | Trail) + avg.ped ) p( ped + start.jday.scale ) 711.0871 5 1434.1742 0.0588 

 Ψ( (1 | Trail) + avg.ped + scale.distance ) p( ped + start.jday.scale ) 710.3146 6 1434.6291 0.0468 

 Ψ( (1 | Trail) + avg.vehicle ) p( ped + start.jday.scale ) 711.3578 5 1434.7156 0.0449 

 Ψ( (1 | Trail) + avg.pred ) p( ped + start.jday.scale ) 711.3887 5 1434.7774 0.0435 

      

Coyote     

 Ψ( (1 | Trail) + avg.prey ) p( biker ) 128.5143 4 267.0286 0.2184 

 Ψ( (1 | Trail) + avg.biker + avg.prey ) p( biker ) 127.9310 5 267.8620 0.1440 

 Ψ( (1 | Trail) + avg.vehicle + avg.prey ) p( biker ) 128.3681 5 268.7362 0.0930 

 Ψ( (1 | Trail) + avg.ped + avg.prey ) p( biker ) 128.4781 5 268.9563 0.0833 

 Ψ( (1 | Trail) + scale.distance + avg.prey ) p( biker ) 128.4967 5 268.9935 0.0818 

      

Red fox     

 Ψ( (1 | Trail) + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.5751 5 599.1503 0.2273 

 Ψ( (1 | Trail) + avg.ped + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.1391 6 600.2783 0.1293 

 Ψ( (1 | Trail) + scale.distance + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.5106 6 601.0213 0.0892 

 Ψ( (1 | Trail) + avg.vehicle + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.5360 6 601.0721 0.0870 

 Ψ( (1 | Trail) + avg.biker + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.5697 6 601.1394 0.0841 
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Black bear     

  Ψ( (1 | Trail) + avg.ped ) p( vehicle ) 77.4412 4 164.8824 0.6122 
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Figures 

 

Figure 1. Camera placement schematic representing a 1500 m trail segment to be sampled, 

starting at the trailhead (TH), and divided into six zones with 6 subsections each. Each red X 

represents one camera. 
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Figure 2. Predictor variable response curves for detection probability (left) and occupancy 

probability (right) of mule deer, coyotes, red foxes, and black bears. 
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Supplementary Materials 

Table S1. Negative log likelihood (-LogLike), number of parameters (K), AIC, and AIC weight for all mule deer models. 

Model -LogLike K AIC AIC weight 

Detectability     

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + start.jday.scale ) 709.4952 9 1438.9905 0.0914 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( vehicle + start.jday.scale ) 709.7410 9 1439.4821 0.0714 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( start.jday.scale ) 710.7735 8 1439.5470 0.0692 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( vehicle ) 710.8964 8 1439.7927 0.0612 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped ) 710.9807 8 1439.9614 0.0562 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + vehicle + start.jday.scale ) 709.0123 10 1440.0247 0.0545 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + vehicle ) 710.0429 9 1440.0857 0.0528 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + biker + start.jday.scale ) 709.3283 10 1440.6566 0.0397 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + scale.veg + start.jday.scale ) 709.4743 10 1440.9486 0.0343 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( biker + vehicle ) 710.4979 9 1440.9959 0.0335 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( biker + vehicle + start.jday.scale ) 709.5290 10 1441.0580 0.0325 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( vehicle + scale.veg ) 710.6378 9 1441.2757 0.0291 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( vehicle + scale.veg + start.jday.scale ) 709.6486 10 1441.2971 0.0288 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( 1) 712.6506 7 1441.3012 0.0288 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + biker ) 710.6513 9 1441.3026 0.0288 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( biker + start.jday.scale ) 710.6817 9 1441.3634 0.0279 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + biker + vehicle ) 709.6825 10 1441.3650 0.0279 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( scale.veg + start.jday.scale ) 710.7719 9 1441.5438 0.0255 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + biker + vehicle + start.jday.scale ) 708.8086 11 1441.6172 0.0246 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + vehicle + scale.veg ) 709.9226 10 1441.8452 0.0219 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + scale.veg ) 710.9458 9 1441.8916 0.0214 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + vehicle + scale.veg + start.jday.scale ) 708.9780 11 1441.9559 0.0207 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( biker + vehicle + scale.veg ) 710.2094 10 1442.4189 0.0165 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + biker + scale.veg + start.jday.scale ) 709.3130 11 1442.6259 0.0148 
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 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( biker ) 712.4062 8 1442.8124 0.0135 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( biker + vehicle + scale.veg + start.jday.scale ) 709.4139 11 1442.8278 0.0134 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + biker + vehicle + scale.veg ) 709.5421 11 1443.0842 0.0118 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( scale.veg ) 712.5460 8 1443.0920 0.0118 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + biker + scale.veg ) 710.6287 10 1443.2574 0.0108 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( biker + scale.veg + start.jday.scale ) 710.6775 10 1443.3549 0.0103 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( ped + biker + vehicle + scale.veg + start.jday.scale ) 708.7663 12 1443.5326 0.0094 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred + (1 | Trail) ) p( biker + scale.veg ) 712.2904 9 1444.5808 0.0056 

      

Occupancy     

 Ψ( (1 | Trail) ) p( ped + start.jday.scale ) 711.3918 4 1432.7836 0.1179 

 Ψ( (1 | Trail) + scale.distance ) p( ped + start.jday.scale ) 710.6919 5 1433.3838 0.0873 

 Ψ( (1 | Trail) + avg.biker ) p( ped + start.jday.scale ) 710.8548 5 1433.7096 0.0742 

 Ψ( (1 | Trail) + avg.biker + scale.distance ) p( ped + start.jday.scale ) 709.9278 6 1433.8557 0.0690 

 Ψ( (1 | Trail) + avg.ped ) p( ped + start.jday.scale ) 711.0871 5 1434.1742 0.0588 

 Ψ( (1 | Trail) + avg.ped + scale.distance ) p( ped + start.jday.scale ) 710.3146 6 1434.6291 0.0468 

 Ψ( (1 | Trail) + avg.vehicle ) p( ped + start.jday.scale ) 711.3578 5 1434.7156 0.0449 

 Ψ( (1 | Trail) + avg.pred ) p( ped + start.jday.scale ) 711.3887 5 1434.7774 0.0435 

 Ψ( (1 | Trail) + avg.vehicle + scale.distance ) p( ped + start.jday.scale ) 710.4265 6 1434.8530 0.0419 

 Ψ( (1 | Trail) + avg.ped + avg.biker ) p( ped + start.jday.scale ) 710.5529 6 1435.1059 0.0369 

 Ψ( (1 | Trail) + avg.ped + avg.biker + scale.distance ) p( ped + start.jday.scale ) 709.5787 7 1435.1574 0.0360 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle + scale.distance ) p( ped + start.jday.scale ) 709.7344 7 1435.4687 0.0308 

 Ψ( (1 | Trail) + avg.biker + avg.pred ) p( ped + start.jday.scale ) 710.8439 6 1435.6878 0.0276 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle ) p( ped + start.jday.scale ) 710.8516 6 1435.7033 0.0274 

 Ψ( (1 | Trail) + avg.biker + scale.distance + avg.pred ) p( ped + start.jday.scale ) 709.9211 7 1435.8422 0.0255 

 Ψ( (1 | Trail) + avg.ped + avg.pred ) p( ped + start.jday.scale ) 711.0823 6 1436.1647 0.0217 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle ) p( ped + start.jday.scale ) 711.0844 6 1436.1688 0.0217 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle + scale.distance ) p( ped + start.jday.scale ) 710.2373 7 1436.4747 0.0186 

 Ψ( (1 | Trail) + scale.distance + avg.pred ) p( ped + start.jday.scale ) 711.2572 6 1436.5143 0.0183 

 Ψ( (1 | Trail) + avg.ped + scale.distance + avg.pred ) p( ped + start.jday.scale ) 710.3121 7 1436.6242 0.0173 
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 Ψ( (1 | Trail) + avg.vehicle + avg.pred ) p( ped + start.jday.scale ) 711.3546 6 1436.7093 0.0166 

 Ψ( (1 | Trail) + avg.vehicle + scale.distance + avg.pred ) p( ped + start.jday.scale ) 710.4246 7 1436.8492 0.0154 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle + scale.distance ) p( ped + start.jday.scale ) 709.5107 8 1437.0214 0.0142 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.pred ) p( ped + start.jday.scale ) 710.5371 7 1437.0743 0.0138 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle ) p( ped + start.jday.scale ) 710.5376 7 1437.0751 0.0138 

 Ψ( (1 | Trail) + avg.ped + avg.biker + scale.distance + avg.pred ) p( ped + start.jday.scale ) 709.5670 8 1437.1339 0.0134 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle + scale.distance + avg.pred ) p( ped + start.jday.scale ) 709.7264 8 1437.4527 0.0114 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle + avg.pred ) p( ped + start.jday.scale ) 710.8409 7 1437.6818 0.0102 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle + avg.pred ) p( ped + start.jday.scale ) 711.0799 7 1438.1598 0.0080 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle + scale.distance + avg.pred ) p( ped + start.jday.scale ) 710.2332 8 1438.4665 0.0069 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle + scale.distance + avg.pred ) p( ped + start.jday.scale ) 709.4952 9 1438.9905 0.0053 

  Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle + avg.pred ) p( ped + start.jday.scale ) 710.5226 8 1439.0451 0.0051 

 

Table S2. Negative log likelihood (-LogLike), number of parameters (K), AIC, and AIC weight for all coyote models. 

Model -LogLike K AIC AIC weight 

Detectability     

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( biker ) 127.6882 8 273.3764 0.2360 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( biker + scale.veg ) 127.5344 9 275.0689 0.1012 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + biker ) 127.6463 9 275.2927 0.0905 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( biker + start.jday.scale ) 127.6721 9 275.3443 0.0882 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( biker + vehicle ) 127.6817 9 275.3634 0.0874 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + biker + scale.veg ) 127.4632 10 276.9263 0.0400 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + biker + vehicle ) 127.4727 10 276.9455 0.0396 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( biker + scale.veg + start.jday.scale ) 127.5213 10 277.0427 0.0377 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( biker + vehicle + scale.veg ) 127.5263 10 277.0527 0.0375 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + biker + start.jday.scale ) 127.6431 10 277.2861 0.0334 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( biker + vehicle + start.jday.scale ) 127.6613 10 277.3227 0.0328 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( 1) 130.8806 7 277.7612 0.0263 
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 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + biker + vehicle + scale.veg ) 127.2749 11 278.5499 0.0178 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + biker + vehicle + start.jday.scale ) 127.4307 11 278.8614 0.0152 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + biker + scale.veg + start.jday.scale ) 127.4599 11 278.9199 0.0148 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( biker + vehicle + scale.veg + start.jday.scale ) 127.5068 11 279.0137 0.0141 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( scale.veg ) 130.5843 8 279.1685 0.0130 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped ) 130.7743 8 279.5485 0.0108 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( start.jday.scale ) 130.7907 8 279.5813 0.0106 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( vehicle ) 130.8523 8 279.7047 0.0100 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + biker + vehicle + scale.veg + start.jday.scale ) 127.2354 12 280.4707 0.0068 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( scale.veg + start.jday.scale ) 130.4955 9 280.9911 0.0052 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + scale.veg ) 130.5035 9 281.0071 0.0052 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( vehicle + scale.veg ) 130.5569 9 281.1138 0.0049 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + start.jday.scale ) 130.6690 9 281.3381 0.0044 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( vehicle + start.jday.scale ) 130.7476 9 281.4951 0.0041 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + vehicle ) 130.7742 9 281.5484 0.0040 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + scale.veg + start.jday.scale ) 130.4049 10 282.8097 0.0021 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( vehicle + scale.veg + start.jday.scale ) 130.4599 10 282.9197 0.0020 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + vehicle + scale.veg ) 130.5033 10 283.0066 0.0019 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + vehicle + start.jday.scale ) 130.6689 10 283.3378 0.0016 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey + (1 | Trail) ) p( ped + vehicle + scale.veg + start.jday.scale ) 130.4048 11 284.8096 0.0008 

      

Occupancy     

 Ψ( (1 | Trail) + avg.prey ) p( biker ) 128.5143 4 267.0286 0.2184 

 Ψ( (1 | Trail) + avg.biker + avg.prey ) p( biker ) 127.9310 5 267.8620 0.1440 

 Ψ( (1 | Trail) + avg.vehicle + avg.prey ) p( biker ) 128.3681 5 268.7362 0.0930 

 Ψ( (1 | Trail) + avg.ped + avg.prey ) p( biker ) 128.4781 5 268.9563 0.0833 

 Ψ( (1 | Trail) + scale.distance + avg.prey ) p( biker ) 128.4967 5 268.9935 0.0818 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.prey ) p( biker ) 127.7585 6 269.5170 0.0629 

 Ψ( (1 | Trail) + avg.biker + scale.distance + avg.prey ) p( biker ) 127.9108 6 269.8216 0.0540 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle + avg.prey ) p( biker ) 127.9291 6 269.8581 0.0531 
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 Ψ( (1 | Trail) + avg.ped + avg.vehicle + avg.prey ) p( biker ) 128.3545 6 270.7090 0.0347 

 Ψ( (1 | Trail) + avg.vehicle + scale.distance + avg.prey ) p( biker ) 128.3637 6 270.7274 0.0344 

 Ψ( (1 | Trail) + avg.ped + scale.distance + avg.prey ) p( biker ) 128.4644 6 270.9288 0.0311 

 Ψ( (1 | Trail) + avg.ped + avg.biker + scale.distance + avg.prey ) p( biker ) 127.6876 7 271.3752 0.0249 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle + avg.prey ) p( biker ) 127.7394 7 271.4789 0.0236 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle + scale.distance + avg.prey ) p( biker ) 127.9105 7 271.8209 0.0199 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle + scale.distance + avg.prey ) p( biker ) 128.3503 7 272.7007 0.0128 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey ) p( biker ) 127.6882 8 273.3764 0.0091 

 Ψ( (1 | Trail) ) p( biker ) 133.6773 3 275.3547 0.0034 

 Ψ( (1 | Trail) + avg.biker ) p( biker ) 132.7606 4 275.5212 0.0031 

 Ψ( (1 | Trail) + avg.biker + scale.distance ) p( biker ) 132.3917 5 276.7835 0.0017 

 Ψ( (1 | Trail) + avg.vehicle ) p( biker ) 133.5123 4 277.0247 0.0015 

 Ψ( (1 | Trail) + scale.distance ) p( biker ) 133.5963 4 277.1926 0.0014 

 Ψ( (1 | Trail) + avg.ped + avg.biker ) p( biker ) 132.6332 5 277.2665 0.0013 

 Ψ( (1 | Trail) + avg.ped ) p( biker ) 133.6513 4 277.3027 0.0013 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle ) p( biker ) 132.7606 5 277.5211 0.0012 

 Ψ( (1 | Trail) + avg.vehicle + scale.distance ) p( biker ) 133.1713 5 278.3426 0.0008 

 Ψ( (1 | Trail) + avg.ped + avg.biker + scale.distance ) p( biker ) 132.1929 6 278.3857 0.0007 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle + scale.distance ) p( biker ) 132.2785 6 278.5570 0.0007 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle ) p( biker ) 133.5028 5 279.0057 0.0005 

 Ψ( (1 | Trail) + avg.ped + scale.distance ) p( biker ) 133.5616 5 279.1232 0.0005 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle ) p( biker ) 132.6322 6 279.2644 0.0005 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle + scale.distance ) p( biker ) 132.0922 7 280.1844 0.0003 

  Ψ( (1 | Trail) + avg.ped + avg.vehicle + scale.distance ) p( biker ) 133.1588 6 280.3176 0.0003 

  

Table S3. Negative log likelihood (-LogLike), number of parameters (K), AIC, and AIC weight for all red fox models. 

Model -LogLike K AIC AIC weight 

Detectability     
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 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( scale.veg + start.jday.scale ) 293.0785 9 606.1569 0.1129 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( vehicle + scale.veg + start.jday.scale ) 292.1385 10 606.2769 0.1063 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( biker + vehicle + scale.veg + start.jday.scale ) 291.3789 11 606.7577 0.0836 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( vehicle + scale.veg ) 293.4248 9 606.8496 0.0799 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( biker + vehicle + scale.veg ) 292.5187 10 607.0373 0.0727 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + vehicle + scale.veg + start.jday.scale ) 291.7000 11 607.4000 0.0607 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( scale.veg ) 294.7890 8 607.5780 0.0555 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( biker + scale.veg + start.jday.scale ) 293.0281 10 608.0561 0.0437 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + vehicle + scale.veg ) 293.0357 10 608.0714 0.0434 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + scale.veg + start.jday.scale ) 293.0500 10 608.1001 0.0427 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + biker + vehicle + scale.veg + start.jday.scale ) 291.0974 12 608.1948 0.0408 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + biker + vehicle + scale.veg ) 292.3302 11 608.6605 0.0323 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + biker + vehicle + start.jday.scale ) 292.6338 11 609.2676 0.0238 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( biker + vehicle + start.jday.scale ) 293.6989 10 609.3979 0.0223 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( biker + scale.veg ) 294.7643 9 609.5286 0.0209 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + vehicle + start.jday.scale ) 293.7753 10 609.5506 0.0207 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + scale.veg ) 294.7884 9 609.5767 0.0204 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( biker + vehicle ) 294.9878 9 609.9755 0.0167 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + biker + scale.veg + start.jday.scale ) 293.0103 11 610.0206 0.0164 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + biker + vehicle ) 294.1179 10 610.2359 0.0147 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( start.jday.scale ) 296.3741 8 610.7483 0.0114 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + vehicle ) 295.4053 9 610.8105 0.0110 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + start.jday.scale ) 295.6985 9 611.3971 0.0082 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( vehicle + start.jday.scale ) 295.7384 9 611.4769 0.0079 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + biker + scale.veg ) 294.7643 10 611.5285 0.0077 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( biker + start.jday.scale ) 295.9123 9 611.8246 0.0066 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( vehicle ) 297.4157 8 612.8314 0.0040 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( 1) 298.4741 7 612.9483 0.0038 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + biker + start.jday.scale ) 295.4783 10 612.9566 0.0038 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped ) 298.0293 8 614.0586 0.0022 
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 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( biker ) 298.1143 8 614.2287 0.0020 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox + (1 | Trail) ) p( ped + biker ) 297.8469 9 615.6937 0.0010 

      

Occupancy     

 Ψ( (1 | Trail) + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.5751 5 599.1503 0.2273 

 Ψ( (1 | Trail) + avg.ped + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.1391 6 600.2783 0.1293 

 Ψ( (1 | Trail) + scale.distance + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.5106 6 601.0213 0.0892 

 Ψ( (1 | Trail) + avg.vehicle + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.5360 6 601.0721 0.0870 

 Ψ( (1 | Trail) + avg.biker + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.5697 6 601.1394 0.0841 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.1094 7 602.2188 0.0490 

 Ψ( (1 | Trail) + avg.ped + scale.distance + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.1220 7 602.2439 0.0484 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.1366 7 602.2731 0.0477 

 Ψ( (1 | Trail) + avg.vehicle + scale.distance + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.5041 7 603.0082 0.0330 

 Ψ( (1 | Trail) + avg.biker + scale.distance + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.5106 7 603.0213 0.0328 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.5305 7 603.0610 0.0322 

 Ψ( (1 | Trail) + avg.ped + avg.biker + scale.distance + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.0787 8 604.1575 0.0186 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.1060 8 604.2120 0.0181 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle + scale.distance + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.1067 8 604.2135 0.0181 

 Ψ( (1 | Trail) ) p( scale.veg + start.jday.scale ) 297.2281 4 604.4562 0.0160 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle + scale.distance + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.5000 8 605.0001 0.0122 

 Ψ( (1 | Trail) + avg.ped ) p( scale.veg + start.jday.scale ) 296.7857 5 605.5714 0.0092 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle + scale.distance + avg.prey.fox ) p( scale.veg + start.jday.scale ) 293.0785 9 606.1569 0.0068 

 Ψ( (1 | Trail) + avg.biker ) p( scale.veg + start.jday.scale ) 297.1569 5 606.3139 0.0063 

 Ψ( (1 | Trail) + avg.vehicle ) p( scale.veg + start.jday.scale ) 297.1685 5 606.3370 0.0063 

 Ψ( (1 | Trail) + scale.distance ) p( scale.veg + start.jday.scale ) 297.1923 5 606.3846 0.0061 

 Ψ( (1 | Trail) + avg.ped + scale.distance ) p( scale.veg + start.jday.scale ) 296.7801 6 607.5601 0.0034 

 Ψ( (1 | Trail) + avg.ped + avg.biker ) p( scale.veg + start.jday.scale ) 296.7837 6 607.5674 0.0034 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle ) p( scale.veg + start.jday.scale ) 296.7857 6 607.5713 0.0034 

 Ψ( (1 | Trail) + avg.biker + scale.distance ) p( scale.veg + start.jday.scale ) 297.1402 6 608.2803 0.0024 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle ) p( scale.veg + start.jday.scale ) 297.1474 6 608.2948 0.0023 
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 Ψ( (1 | Trail) + avg.vehicle + scale.distance ) p( scale.veg + start.jday.scale ) 297.1619 6 608.3237 0.0023 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle + scale.distance ) p( scale.veg + start.jday.scale ) 296.7782 7 609.5564 0.0013 

 Ψ( (1 | Trail) + avg.ped + avg.biker + scale.distance ) p( scale.veg + start.jday.scale ) 296.7791 7 609.5582 0.0012 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle ) p( scale.veg + start.jday.scale ) 296.7826 7 609.5652 0.0012 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle + scale.distance ) p( scale.veg + start.jday.scale ) 297.1381 7 610.2763 0.0009 

  Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle + scale.distance ) p( scale.veg + start.jday.scale ) 296.7743 8 611.5487 0.0005 

 

Table S4. Negative log likelihood (-LogLike), number of parameters (K), AIC, and AIC weight for all black bear models. 

Model -LogLike K AIC AIC weight 

Detectability     

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( vehicle ) 77.6859 7 171.3718 0.0910 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( biker + vehicle ) 76.7918 8 171.5835 0.0819 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped ) 77.8917 7 171.7834 0.0741 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( 1) 78.9495 6 171.8990 0.0699 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + biker + vehicle ) 76.1864 9 172.3727 0.0552 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + biker ) 77.3142 8 172.6284 0.0486 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + vehicle ) 77.3360 8 172.6720 0.0475 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( vehicle + scale.veg ) 77.5656 8 173.1313 0.0378 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + scale.veg ) 77.5925 8 173.1851 0.0368 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( biker + vehicle + scale.veg ) 76.6562 9 173.3124 0.0345 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( vehicle + start.jday.scale ) 77.6845 8 173.3690 0.0335 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( biker ) 78.6933 7 173.3866 0.0332 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( biker + vehicle + start.jday.scale ) 76.7831 9 173.5662 0.0304 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( start.jday.scale ) 78.8390 7 173.6779 0.0287 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( scale.veg ) 78.8743 7 173.7487 0.0277 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + start.jday.scale ) 77.8878 8 173.7756 0.0274 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + biker + scale.veg ) 76.9303 9 173.8607 0.0262 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + biker + vehicle + scale.veg ) 76.0051 10 174.0102 0.0243 
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 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + vehicle + scale.veg ) 77.1614 9 174.3228 0.0208 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + biker + vehicle + start.jday.scale ) 76.1854 10 174.3708 0.0203 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + biker + start.jday.scale ) 77.3135 9 174.6271 0.0179 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + vehicle + start.jday.scale ) 77.3210 9 174.6420 0.0177 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( biker + start.jday.scale ) 78.4267 8 174.8534 0.0160 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( vehicle + scale.veg + start.jday.scale ) 77.5615 9 175.1230 0.0139 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( biker + scale.veg ) 78.5841 8 175.1681 0.0136 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + scale.veg + start.jday.scale ) 77.5903 9 175.1806 0.0136 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( biker + vehicle + scale.veg + start.jday.scale ) 76.6425 10 175.2849 0.0129 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( scale.veg + start.jday.scale ) 78.7545 8 175.5091 0.0115 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + biker + scale.veg + start.jday.scale ) 76.9279 10 175.8558 0.0097 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + biker + vehicle + scale.veg + start.jday.scale ) 76.0051 11 176.0101 0.0090 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( ped + vehicle + scale.veg + start.jday.scale ) 77.1517 10 176.3035 0.0077 

 Ψ( avg.ped + avg.biker + avg.vehicle + scale.distance + (1 | Trail) ) p( biker + scale.veg + start.jday.scale ) 78.2783 9 176.5566 0.0068 

      

Occupancy     

 Ψ( (1 | Trail) + avg.ped ) p( vehicle ) 77.4412 4 164.8824 0.6122 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle + scale.distance + avg.prey ) p( vehicle ) 76.2171 7 168.4341 0.1037 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle ) p( vehicle ) 78.3851 5 168.7702 0.0876 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle ) p( vehicle ) 78.2393 6 170.4787 0.0373 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle + scale.distance ) p( vehicle ) 77.6859 7 171.3718 0.0239 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle ) p( vehicle ) 79.7886 5 171.5771 0.0215 

 Ψ( (1 | Trail) + avg.ped + avg.biker ) p( vehicle ) 80.1142 5 172.2285 0.0155 

 Ψ( (1 | Trail) + avg.biker ) p( vehicle ) 81.2093 4 172.4186 0.0141 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.vehicle + avg.prey ) p( vehicle ) 78.2098 7 172.4196 0.0141 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle + scale.distance ) p( vehicle ) 79.4320 6 172.8641 0.0113 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle + avg.prey ) p( vehicle ) 79.7757 6 173.5514 0.0080 

 Ψ( (1 | Trail) + avg.ped + avg.biker + scale.distance ) p( vehicle ) 80.0771 6 174.1542 0.0059 

 Ψ( (1 | Trail) + avg.ped + avg.biker + avg.prey ) p( vehicle ) 80.1079 6 174.2159 0.0058 

 Ψ( (1 | Trail) + avg.biker + avg.prey ) p( vehicle ) 81.1760 5 174.3519 0.0054 
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 Ψ( (1 | Trail) + avg.biker + scale.distance ) p( vehicle ) 81.2057 5 174.4113 0.0052 

 Ψ( (1 | Trail) + avg.vehicle ) p( vehicle ) 82.2959 4 174.5919 0.0048 

 Ψ( (1 | Trail) + avg.biker + avg.vehicle + scale.distance + avg.prey ) p( vehicle ) 79.3684 7 174.7367 0.0044 

 Ψ( (1 | Trail) + avg.ped + avg.prey ) p( vehicle ) 81.7176 5 175.4353 0.0031 

 Ψ( (1 | Trail) + avg.vehicle + avg.prey ) p( vehicle ) 81.9578 5 175.9157 0.0025 

 Ψ( (1 | Trail) + avg.ped + avg.vehicle + avg.prey ) p( vehicle ) 80.9729 6 175.9459 0.0024 

 Ψ( (1 | Trail) + avg.vehicle + scale.distance ) p( vehicle ) 82.0191 5 176.0382 0.0023 

 Ψ( (1 | Trail) + avg.ped + avg.biker + scale.distance + avg.prey ) p( vehicle ) 80.0770 7 176.1539 0.0022 

 Ψ( (1 | Trail) + avg.prey ) p( vehicle ) 83.1403 4 176.2806 0.0021 

 Ψ( (1 | Trail) + avg.biker + scale.distance + avg.prey ) p( vehicle ) 81.1750 6 176.3499 0.0020 

 Ψ( (1 | Trail) ) p( vehicle ) 84.3985 3 176.7970 0.0016 

  Ψ( (1 | Trail) + scale.distance ) p( vehicle ) 83.8565 4 177.7129 0.0010 
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