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ABSTRACT 
The dynamics and statistical mechanics of the quark-hadron phase transition are explored using the bag 

model and the known spectrum of hadronic states. We compute the maximum amplitude for isothermal 
baryon number density fluctuations to emerge from this phase transition and their effects on primordial 
nucleosynthesis, as a function of the coexistence temperature (or bag constant) and the fractional volume of 
the universe which will remain in quark-gluon plasma when the release of latent heat no longer compensates 
the cooling due to expansion. For values of the bag constant, B < (260 MeV)4, it is possible to find a pressure, 
temperature, and baryon-chemical-potential equilibrium between the quark-gluon phase and the hadron 
phase. We calculate the difference in baryon number concentration between these phases. This difference in 
baryon number concentration may lead to isothermal baryon density fluctuations. For B > (260 MeV)4 phase 
equilibrium is not possible for temperatures below 300 MeV. Thus any differences in baryon concentration are 
small. In the extreme but interesting case of a Hagedorn limiting hadronic temperature and large bag constant 
we even find that the QCD vacuum energy can produce a mini-inflationary epoch. We discuss computations 
of the primordial nucleosynthesis yields corresponding to our estimates of the maximum baryon density fluc- 
tuations in a universe with Q = 1 in baryons. We find that 4He, 3He, and deuterium are within observed 
constraints for a large part of the parameter space. However, 7Li is overproduced. Within the parameter space 
for an Q = 1 universe we'find only a very small abundance of elements heavier than mass 11 (total mass 
fraction X < 10“8). 
Subject headings: cosmology — elementary particles — nucleosynthesis 

I. INTRODUCTION 

There has been a great deal of interest recently (Applegate, 
Hogan, and Scherrer 1987, hereafter AHS; Sale and Mathews 
1986) in the possibility that the quark-hadron phase transition 
may have been a production site for primordial isothermal 
baryon number fluctuations. Such fluctuations could substan- 
tially change the predicted abundances from big bang nucleo- 
synthesis and influence ideas on the formation and nature of 
the dark matter component. For example, it may be possible to 
have Q = 1 in baryons (Sale and Mathews 1986; AHS) and yet 
still have acceptable big bang nucleosynthesis. 

In the scenario discussed by Witten (1984), and Applegate 
and Hogan (1985), the phase transition from the quark-gluon 
plasma (i.e., unconfined color charges) to the hadronic (i.e., 
confined) phase should take place through the following 
process (assuming that the phase transition is first order as 
suggested by lattice QCD with fermions, cf. Kogut 1986). As 
the universe expands the temperature drops through Tc, the 
critical temperature, where phase separation and coexistence is 
possible. Supercooling occurs until the probability to nucleate 
bubbles of the hadronic phase is high. The initially nucleated 
bubbles of hadron phase release latent heat from the QCD 
vacuum energy and reheat the universe to Tc9 where further 
nucléation of the confined phase is inhibited. The confined and 
unconfined phases now coexist in pressure and baryon- 
chemical-potential equilibrium. As the universe expands the 
temperature is kept at Tc by the growth of the confined phase 
at the expense of the unconfined phase. This constant tem- 
perature evolution may continue until all of the universe has 
been converted to confined phase (cf. Kajantie and Kurki- 
Suonio 1986). 

However, the universe may not remain at Tc until all of the 

quark-gluon plasma has been converted into hadrons. At some 
point the release of latent heat may not be rapid enough to 
compensate the cooling due to expansion (Witten 1984). This 
would lead to decoupled regions of quark-gluon plasma which 
nucleate at a later time and thus could produce nearly isother- 
mal baryon number density fluctuations. Witten (1984) also 
pointed out that it may be possible for the shrinking bubbles of 
quark-gluon plasma to cool and stabilize, leading to quark 
nugget formation. Whether of not such nuggets are absolutely 
stable will not be discussed here, but Alcock and Farhi (1985) 
have shown that all nuggets smaller than 1052 baryons will 
evaporate on a time scale of milliseconds also leaving behind 
local, nearly isothermal, baryon number density enhance- 
ments. For our purposes we do not require formation of 
Witten nuggets, but only the more general scenario of decou- 
pled regions of quark-gluon plasma before the phase transition 
has run to completion. 

We have employed the bag model to give the bulk volume 
energy of the quark-gluon plasma in a manner to be described 
in § II. The uncertainties inherent in bag models fall into two 
main categories: the treatment of surface effects in nucleons 
and other hadrons; and the value of the bag constant itself. The 
first uncertainty is relatively unimportant for our purposes 
because we are interested in macroscopic regions of quark- 
gluon plasma where bulk, or volume, energy dominates any 
surface terms. The bag constant, which gives this volume 
energy, is uncertain itself, especially at the high temperatures 
inherent in the cosmological phase transition we consider (cf. 
the review of bag models in Thomas 1984). For this reason we 
consider a range of bag constants, B. In our model, the bag 
constant helps to determine the coexistence temperature, Tc 
which, as we will see, sets the amplitude of the isothermal 
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baryon number fluctuations. This will be shown with a very 
simple statistical argument. 

We show that for B < (260 MeV)4 the above picture of 
constant-temperature coexistence, coalescence, and baryon 
number fluctuation can occur. However, if £ > (260 MeV)4 no 
coexistence is possible (below kT ~ 300 MeV) because the 
pressure from the known baryonic resonances always exceeds 
the pressure in the quark-gluon plasma. Therefore, if bubbles 
of hadronic phase are nucleated they will grow explosively into 
the quark-gluon plasma, and the liberation of latent heat will 
not be sufficient to achieve coexistence of phases and phase 
separation. In the most extreme version of this scenario, the 
QCD vacuum energy will come to dominate the pressure of the 
universe and a de Sitter exponential expansion can ensue for a 
short time. This mini-inflation results in only a 15% increase in 
the scale factor. The important point is that the nucléation 
properties of the hadronic phase are much different; i.e., the 
nucléation rate is very rapid and is not arrested by release of 
latent heat. A high nucléation rate suppresses the large-scale 
separation of phases needed to form isothermal baryon 
number fluctuations. Even if coexistence of phases occurs at 
higher temperatures, the difference in baryon number concen- 
tration between the phases is small and, again, isothermal 
baryon number fluctuations will be negligible. 

II. QUARK-HADRON PHASE TRANSITION DYNAMICS 

Using the bag model, the thermodynamic potential, Q, for 
the quark-gluon plasma in the limit of vanishing quark masses 
is 

Q = 
-NcNfV [in2 /IrT_ 2/Irrn2 

(thcf [üo lkT’ + "• lkT’ + i"'4] 

45(ftc)* 
■Ng F(/cT)4 + £F , (1) 

where Nc is the number of colors (3), Nf is the number of 
relativistic quark flavors (2 corresponding to u and d quarks at 
lower T, and 3 at higher T where the s quark is also 
important), k is the Boltzmann constant, and B is the bag 
constant. The quark chemical potential is ^ = jub/3, where fib is 
the baryon chemical potential. The system volume is V. The 
expression in equation (1) includes both quarks and antiquarks 
and is exact for any ¡j,q and T so long as the quarks are rela- 
tivistic. The quantity Ng = S is the number of gluons. The 
thermodynamic variables corresponding to Q are then 

P = 

n = 
]_ 
V 

E= -PV + ST + unV , 

(2a) 

(2b) 

(2c) 

(2d) 

where P, n. S, E are respectively pressure, baryon number 
density, entropy, and energy. We note that the pressure from 
the bag (QCD vacuum) is negative. Therefore, the larger the 
bag constant the smaller the size of bound color singlets. We 
discuss here the pressure and energy density for the strongly 
interacting component only, i.e., quarks, gluons, baryons, and 

mesons. Of course, the contributions to the total pressure and 
energy density from the background photons, leptons, and 
antileptons are the same in both phases. These relativistic par- 
ticles contribute a pressure 

P = 2.04 x 10"7 MeV fm"3(/cT/MeV)4 (2e) 

to each phase (including photons, three flavors of neutrino, and 
relativistic electrons and muons). 

For bound hadrons in the confined phase we compute Q 
separately for baryons and mesons. For small n (¡i = 0 for 
mesons) we follow the notation of Fowler and Hoyle (1964) 
and derive for mesons 

Q = 
gV(kT)4 

n2(hc)3 

from which the mesonic pressure is 

(3a) 

P n 
3(fcT)4 ” 
n2(hc)3 h 

(3b) 

where K2 is related to the modified Bessel function of the 
second order, 

K2(x) = (2/x2)K2(x) , (3c) 

and we note that 

lim K2(x) = 1 . 
x-*0 

The dominant source of pressure in the hadronic phase is 
contributed by the most relativistic particle, the pion. 
However, in what follows we sum the pressure contribution 
from all known hadronic states. Masses, spins, and isospins of 
these particles are taken from the particle data group summary 
(Aguilar-Benitez et al 1986). 

For baryons we obtain for small n(\fi\ < me2) 

2g(kT)4V ™ (~l)n+ 

2{hcf nh n4 (4a) 

nh = 
2g(kT)3 

n2(hc)3 
(-IT 

sinh|j|)*2 
me" 
~kf 

(4b) 

where the notation is as above, with g = (2J + 1)(2/ + 1), J the 
spin, / the isospin, and nb the baryon number density. Note 
that since g/kT ~ 10~8 the small g limit is justified. 

In addition to summing the contribution to Q in equations 
(3a) and (4a) over the 128 known hadronic resonances, we have 
performed another calculation in which we integrate the ther- 
modynamic potential over an exponentially increasing 
(Hagedorn 1973) spectrum of hadron masses. The pressure- 
temperature curves (for a fixed baryon chemical potential, 
g me2) for the quark-gluon and hadronic phases are shown 
in Figure la9 b, c. 

Figure la gives the pressure-tempera ture curves for a low 
bag constant corresponding to the MIT bag model, 
£ = (145 MeV)4. The hadronic curve is calculated using the 
spectrum of known hadronic states. Equilibrium phase 
coexistence is possible where the two curves cross. 

Figure lb shows the pressure-temperature curves for a high 
bag constant corresponding to £ = (278 MeV)4. Phase equi- 
librium is not possible over the temperature range plotted. 
Figure lb also shows the P-T curve if the hadronic phase is 
characterized by a Hagedorn spectrum of masses. For this 
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extreme calculation we used the Hagedorn (1973) mass spec- 
trum with a limiting temperature of THag= 140 MeV. It is 
known that finite hadron size effects will truncate the Hage- 
dorn spectrum at some point so that the limiting temperature 
effect is never achieved (cf. Suhonen [1982] and references 
therein). Olive (1981) has considered this effect and has shown 
that the actual hadronic P-T curve should lie between the two 
extremes plotted in Figure lb. Nevertheless, the physical 
behavior is clear. For large values of the bag constant, there is 
a large negative contribution to the pressure in the quark- 
gluon phase such that the quark-gluon pressure is always 
lower than the hadronic pressure. This is true for temperatures 
lower than ~300 MeV, but for higher temperatures, QCD 
corrections may become large enough to cause the curves to 
cross (Suhonen 1982). This dependence of the phase 
coexistence thermodynamics on the bag constant is important 
for the nucléation properties as well as for the amplitude of the 
emergent baryon density fluctuations. 

Higher bag constants are favored in the chiral bag models 
(cf. Thomas 1984). We present results for B = (278 MeV)4 

because it is representative of the behavior we are trying to 
illustrate and because this is the value of the bag constant used 
by many recent papers (cf. Suhonen 1982 and Kajantie and 
Kurki-Suonio 1986). Brown and Bethe (1986) favor a lower 
bag constant, B = (220 MeV)4, which will give results similar 
to the low bag constant scenario. It should be kept in mind 
that finite temperature corrections to the bag constant are 
important and uncertain. In keeping with the exploratory 
spirit of this work, we treat the bag constant as a parameter 
which characterizes the coexistence temperature. 

The critical bag constant where the division between the 
high bag constant and low bag constant scenarios occur is 
found to be B ~ (260 MeV)4. This is an interesting value 
because it falls between the low values which fit the hadronic 
spectrum best, as in the MIT bag model with B = (145 MeV)4, 
and the high values of B, which are found in the pionic or 
chiral bag models (cf. the review of bag models in Thomas 
1984). Furthermore, the critical bag constant may not be too 
far from the value of the bag constant necessary to reproduce 
the phase transition temperature derived from lattice QCD 
(Fukugita and Ukawa 1986). 

We also note here a curious phenomenon which could occur 
if the Hagedorn mass spectrum is not too far from the truth. As 
the universe filled with quark-gluon plasma cools the positive 
pressure contribution from photons, leptons, quarks, and 
gluons eventually could be dominated by the negative pressure 
from the QCD vacuum energy. A short de Sitter phase would 
then ensue in which the scale factor of the universe increases by 
about 15%. The ratio of the scale factor at the beginning of the 
de Sitter phase (Rcross, where the total pressure is zero) to the 
scale factor at the end of the inflation (RHag> where the tem- 
perature has cooled below the Hagedorn limiting temperature) 
is 

^Hag/^cross ^cross/^Hag ^ [(^Hag - fcroJA] > (5) 

where Tcross and THag are the respective temperatures corre- 
sponding to Rcross and RHag. For the case shown in Figure lb, 
ÍRag - iCross ~ 4 /¿s is only a small fraction of the expansion 
time scale t ~ 20 jus. This mini-inflationary epoch is thus very 
short-lived and could not contribute to the large-scale struc- 
ture of the universe. On the other hand, it could drastically 
affect the nucléation properties during the quark-hadron phase 
transition. 

III. BARYON NUMBER DENSITY 

The critical parameter for isothermal baryon density fluc- 
tuations is the difference in the net baryon number concentra- 
tion of the two phases while they coexist. The larger this 
difference, the larger will be the baryon density fluctuations 
when, and if, quark-gluon plasma decoupling takes place. The 
net baryon concentration in the unconfined (quark) phase can 
be computed from equations (1) and (2b) : 

nb
q » l(kTIhcŸinJkT), (6a) 

where we have neglected terms of higher order than (nb/kT) ~ 
10“8. The number of quarks is comparable to the number of 
photons, but the net baryon number is, of course, much smaller 
since it depends on the difference between the number of 
quarks and antiquarks. By contrast, the net baryon number in 
a gas of neutrons and protons is only 

nb
h « (S/n)1/2(kT/hc)3(iLib/kT)(mc2/kT)3/2 exp [ —mc2/^T] , 

(6b) 

where, me2 « 938 MeV is the nucleon rest mass. Even though 
the temperature is much less than the nucleon mass, the 
number of nucleons and antinucleons is comparable, 
(nN/nN) » exp ( — 2jib/kT) ä 1, but the net baryon number in 
equation (6c) is much smaller than in the quark phase. If we 
include only the contribution from neutrons and protons in the 
hadronic phase then, for illustration, the ratio of the baryon 
density in the two phases can be written analytically, 

n¿ ~ ArV2 ^ 1042 at kT ä 106 MeV 
nb

h~\2j z3/1 ^ 25 at kT « 240 MeV ’ ( C) 

where z = mc2/kT. The large disparity in baryon concentra- 
tion in the two phases is clearly due to the much greater sta- 
tistical weight for putting baryon number in nearly massless 
relativistic quarks, as opposed to the nonrelativistic baryons. 
The inclusion of the other known baryonic resonances, 
however, has the effect of lowering the ratio in equation (6c) at 
a given coexistence temperature. The ratio of baryon to photon 
density for the two phases (including all known hadron reson- 
ances in the hadronic phase) as a function of baryon chemical 
potential is shown in Figure 1c for two different values of the 
critical temperature (or bag constant). 

Equation (6c) and Figure 1c make it clear that the difference 
in the baryon number concentration between the two phases 
goes down as the coexistence temperature increases (i.e., value 
of B increases). This effect is enhanced by the inclusion of more 
hadronic resonances. When regions of quark-gluon plasma 
decouple and cool, this difference in baryon number concentra- 
tions translates into baryon density fluctuations which are 
essentially isothermal (Witten 1984). 

We emphasize the importance of the value of the bag con- 
stant in determining the coexistence temperature. Previous 
studies have shown that, for the most part, the dynamics and 
large-scale structure of the universe going through the quark- 
hadron phase transition are relatively insensitive to the value 
of the bag constant (Suhonen 1982; Lodenquai and Dixit 1983; 
Dixit and Suhonen 1983). We point out that since the bag 
constant determines the coexistence temperature, it will strong- 
ly influence the baryon number concentration difference and 
hence, primordial nucleosynthesis as discussed below. Values 
of the bag constant greater than (260 MeV)4 imply that any 
coexistence must be at a temperature greater than 300 MeV 
where the difference in baryon concentration is small. 
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As far as which value of the coexistence temperature (or bag 
constant) is best to use, there is still considerable uncertainty. 
Lattice QCD with fermions on an 83 x 4 lattice would place 
the phase transition temperature at about 200-230 MeV 
(Fukugita and Ukawa 1986). Calculations on a 103 x 6 lattice 
however place the transition temperature at ~160 MeV 
(Kogut 1986). These results indicate the trend. However, the 
lattice sizes are probably still too small for a reliable extraction 
of the continuum physics. The bag constant is also uncertain 
due to finite temperature corrections which will reduce the 
value of B (McLerran and Svetitsky 1981). Thus, the 
coexistence temperature is probably close to the value 
obtained with lower values for the bag constant which produce 
significant baryon number concentration differences between 
the phases, but we emphasize the uncertainty in this parameter. 

IV. NUCLEATION 

In the standard case, where the bag constant is less than 
(260 MeV)4, the universe will supercool until the classical 
nucléation rate becomes large. This initial nucléation releases 
latent heat and reheats the universe back to the coexistence 
temperature. The latent heat is carried by neutrinos and by 
relativistic shocks generated by the expanding hadonic bubbles 
(Kajantie and Kurki-Suonio 1986). Once the universe is heated 
back to the coexistence temperature, further nucléation is 
inhibited due to the steep temperature dependence of the 
nucléation rate. 

If, however, the bag constant is large (B > [260 MeV]4), and 
we insist that the nucléation of the hadronic phase occur for 
kT < 300 MeV, then the nucléation will take place out of equi- 
librium. In this case, the nucléation rate will be much higher 
than in the standard separation of phases scenario. A higher 
nucléation rate implies a smaller initial volume for each bubble 
of hadronic phase, many more bubbles per unit volume, and 
hence, less efficient separation of phases. This is an additional 
effect which will tend to diminish the amplitude of baryon 
density fluctuations if the bag constant is large. 

It is very difficult to make an accurate prediction of the 
properties of the nucléation. However, it is useful to make 
some estimate of the number of nucléation sites per unit 
volume in order to model the effects of nucleon diffusion from 
the regions of the high density. This diffusion will have an 
important effect on the primordial nucleosynthesis, as we shall 
see. In order to have an indication of the nucléation rate, we 
follow Landau and Lifshitz (1969) and Kajantie and Kurki- 
Suonio (1986) to estimate the nucléation rate, p(T) 

p(T) = CTc
4 exp \_ — DTc

2I(Tc - T)2] , (7a) 

where C and D are parameters which depend on microscopic 
details of the phase transition, and Tc is the coexistence tem- 
perature. If we define the supercooling parameter to be ^ = 
(Tc — Tf)/Tc, where 7} is the lowest temperature reached before 
reheating, then the number of nucleated sites per unit volume, 

will be 

N„(ct)3 
£>3 

8nvs
3ri9 ’ 

(7b) 

where ct is the horizon scale and vs is the velocity of the shocks 
which are assumed to be responsible for the reheating 
(Kajantie and Kurki-Suonio 1986). The amount of super 
cooling depends relatively weakly on the phase transition 

parameters from equation (7a) 

1)1/2 

11 ~ [195 + ln C - 4 In Z> - 4 In (7;/MeV) + 12 In rjf71 

(7c) 

so that to a fair approximation, the number density of nucle- 
ated sites can be written 

Nn(ct)2 ä lO9!)-1,5 . (7d) 

For D ~ 1, then rj ~ 8 x 10-2 and Nn(ct)3 ~ 109. For a 
horizon scale of 10 km, we find that the nucleated hadron 
bubbles are on the order of a meter apart, in agreement with 
Kajantie and Kurki-Suonio (1986). We assume that there is a 
duality between the centers of nucleated hadron bubbles at the 
beginning of the phase transition and the centers of regions of 
quark-gluon plasma at the end of the phase transition. 

We note the relatively weak dependence on the phase tran- 
sition parameters, C and D. For several orders of magnitude 
variation in D we estimate that the average separation between 
nucléation sites should be ~ 1 to 10 m at the phase transition 
which would correspond to 103 to 104 m during nucleo- 
synthesis. Thus, we find that the separation between baryon 
density fluctuations should be within the neutron diffusion 
length (~30 km) yet larger than the proton diffusion length 
( ~ 300 m) computed by AHS at the time of nucleosynthesis. 

V. BARYON DENSITY FLUCTUATIONS AND 
PRIMORDIAL NUCLEOSYNTHESIS 

We have seen in the previous sections that isothermal 
baryon number density fluctuations are a possible conse- 
quence of the phase transition from quark-gluon plasma to 
hadronic matter. If this is true, then these fluctuations can have 
an interesting effect on primordial nucleosynthesis. There are 
two influences which must be considered. One is the fact that 
more than one baryon-to-photon ratio must be averaged to 
produce the final nucleosynthesis yield. Such an averaging by 
itself tends to alter significantly the yields from primordial 
nucleosynthesis (Sale and Mathews 1986). The second intrigu- 
ing effect was recently suggested by AHS. It is that the neutron 
and proton components of these density fluctuations will 
diffuse differently after the weak reactions fall out of equi- 
librium. Essentially, the neutron mean free path is much larger 
(by more than an order of magnitude) since the neutron inter- 
acts only weakly with the background plasma via nucleon 
scattering or via the small neutron dipole moment. The diffu- 
sion of protons, on the other hand, is slowed by the more 
dominant proton-electron scattering. 

The influence of these two effects must be studied by follow- 
ing the evolution of the proton and neutron fluids, the nucleo- 
synthetic reaction rates, and the universal expansion. To model 
these processes we use the following scenario which should 
correspond to the maximum possible effect on primordial 
nucleosynthesis. 

For reasons of theoretical prejudice, we consider a universe 
with total average = 1 during the present baryon- 
dominated epoch. This average present Q is determined by the 
contributions from the high baryon density and low baryon 
density regions produced by the quark-hadron phase tran- 
sition 

n=fvnq + (i-fv)nh = i, (8) 
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where fv is the volume fraction of the universe in the high 
baryon density regions which were originally in the form of 
quark-gluon plasma when these regions began to decouple 
from the expansion and cool. Note that our definition of fv 
differs from that of AHS. In that work fv refers to the volume 
fraction in the low-density neutron-rich regions. The quantity 

is a measure of the baryon density in the formerly quark- 
gluon plasma regions, and similarly Qh a measure of the 
hadronic baryon density before neutron diffusion. From 
Figure 1c, and equation (6c), Q,, ~ 0.020^ for Tc = 106 MeV 
(bag constant of [145 MeV]4), if we ignore baryon diffusion 
before the freezeout of the weak interaction rates. 

To include the effects of nucleon diffusion in this picture, we 
make two simplifying assumptions: (1) the nucléation rate is 
sufficiently great that the mean separation between fluctua- 
tions is significantly less than a neutron diffusion length at the 
time of nucleosynthesis; (2) the proton diffusion can be 
ignored. These assumptions are a fair approximation to the 
results of our nucléation rate studies discussed above and to 
the diffusion rates of AHS, where it was shown that the diffu- 
sion length for baryons is small until the time when the weak 
interactions can be neglected. Our approximation to their 
result is to ignore baryon diffusion altogether until the tem- 
perature falls below T « 1.3 x 109 K as discussed below. The 
differential diffusion process occurs in the ensuing ~100 s 
before nucleosynthesis, during which time the nucleons are 
locked into their identities (except for the slow neutron decay, 
which we include). 

To implement these assumptions we have utilized the big 
bang nucleosynthesis code of Wagoner (1973) with three neu- 
trino flavors, a neutron half-life of 10.6 minutes, and a number 
of nuclear reactions updated from the original version. We 
begin the nucleosynthesis with a baryon density corresponding 
to Qq or Qh as a function offv from equation (8). 

The weak interaction drops out of equilibrium at a tem- 
perature of T ~ 1 MeV. That is, the forward and reverse rates 
for electron (positron) and neutrino (antineutrino) capture 
reactions are not equal for temperatures lower than this. 
However, the rates of these reactions are still appreciable down 
to temperatures of T ~ 0.11 MeV (1.3 x 109 K), where the 
final neutron-to-proton ratio is set and then subsequently 
changes only through neutron decay (cf. the discussion on p. 
550 of Weinberg [1972]). Nucleosynthesis begins about 100 s 
later when the temperature has dropped to T ä 0.9 x 109 K. 

As nucleosynthesis begins, the universe consists of two com- 
ponents: one a high baryon density proton-rich region (1), with 

+ Q,(l - Xn), (9) 

Xn^ = Xn/&
lK (10) 

(where Xn is the neutron mass fraction before diffusion at 
T = 1.3 x 109 K) and a low baryon density neutron-rich 
region (2), 

Q<2> = X* + Q*(l - Vn) (11) 

x„<2) = xn/n
(2>. (12) 

The final averaged mass fraction for each nuclide is then 
determined from 

X, =fv X,.(1)n(1) + (1 -fv)XÏ2W2). (13) 

In Figures 2a-c we show the nucleosynthesis yields in each of 
the two phases and final averaged abundances as a function of 

the high-density region volume factor,/y. Figure 2d shows the 
relative baryon densities, Q(1) and Q(2), after neutron diffusion. 
For a broad range of models (0.1 <fv < 0.9) most of the aver- 
aged nucleosynthesis yields are consistent with observation, 
except for an overabundance of 7Li. This overabundance may 
not be too significant due to the uncertainties in the 7 Li abun- 
dance, the nuclear reaction rates, and stellar destruction of 7 Li 
(Boesgaard and Steigman 1985). Nevertheless, this over- 
abundance appears to be an unavoidable consequence of these 
models due to the large contribution from the 3He(a, y)7Be 
reaction in the high baryon density regions, and the 3H(a, y)7Li 
reaction in the low baryon density regions. This seems to be a 
general problem with nucleosynthesis in inhomogeneous cos- 
mologies, unless the high baryon density regions selectively 
collapse to form dark matter (Sale and Mathews 1986). This 
may, therefore, be a significant argument against such inhomo- 
geneities being present during nucleosynthesis. Other authors 
have considered the effect on big bang nucleosynthesis of iso- 
thermal inhomogeneities (Barrow and Morgan 1983; Epstein 
and Petrosian 1975; Gisler, Harrison, and Rees 1974; Harrison 
1968; Sale and Mathews 1986; Wagoner 1973; Yang ei al 
1984; and Zel’dovich 1975), but none has taken into account 
the differential diffusion of neutrons and protons pointed out 
by AHS. 

We also note that the mass fraction for heavy nuclei (A > 11) 
in the neutron-rich regions is not large enough to contribute 
significantly to the heavy-element abundances as speculated in 
AHS. The reasons for this difference are due to the constraint 
(eq. [8]) that Q be unity, and our calculated ratio of baryon 
densities in the two phases. These two constraints imply that 
Q(2) < 0.3 (or baryon-to-photon ratio, rj < 10“9) for/„ >0.1 
(see Fig. 2d), which corresponds to baryon densities too low for 
significant heavy-element formation even in neutron-rich 
regions. This low heavy-element abundance will probably be 
made even lower (Fowler and Malaney 1986) by new reaction 
rates for the production of A = 11. Nevertheless, Applegate 
(1986) speculates that such neutron-rich regions could be a site 
for primordial r-process nucleosynthesis. 

VI. SUMMARY AND CONCLUSION 

We have made a simple model for the quark-hadron phase 
transition based on the bag model for the quark-gluon plasma, 
the known spectrum of hadronic states, and elementary sta- 
tistical mechanics. We believe that these simple ingredients 
provide an adequate parameterization of the phase transition 
allowing us to mock up the essential features needed to gauge 
the maximum size of the isothermal baryon number density 
fluctuations. The most important parameters are (1) the bag 
constant, which determines the coexistence temperature and 
therefore the difference in baryon number concentration; and 
(2) the fraction of the volume of the universe which is in high 
baryon density regions left over from the decoupling of quark- 
gluon plasma. 

We have investigated primordial nucleosynthesis in the 
parameter space discussed above. For high coexistence tem- 
peratures, characteristic of a large bag constant, we find that 
the isothermal baryon number fluctuations are small and we 
recover standard big bang nucleosynthesis. We find for 
coexistence temperatures not too much greater than that 
derived from the standard MIT bag model, Tc = 106 MeV, 
£ = (145 MeV)4, we are able to confirm the hypothesis that 
isothermal baryon inhomogeneities (from the quark-hadron 
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Fig. 2.—{a) Averaged nucleosynthesis yields as a function of the fraction of the volume of the universe (after freezeout of the weak reactions) in high baryon 
density regions after the quark-hadron phase transition, (b) Nucleosynthesis yields from the high baryon density proton-rich regions, (c) Nucleosynthesis yields from 
the low baryon density neutron-rich regions, (d) Relative baryon densities in the proton-rich and neutron-rich regions after neutron diffusion. The ratio of the baryon 
densities in the two regions before neutron diffusion is given by R. This ratio after neutron diffusion can be derived from Fig. 2d. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

7A
pJ

. 
. .

32
0.

 .
43

 9A
 

ALCOCK, FULLER, AND MATHEWS Vol. 320 446 

fv 

Fig. 2—Continued 

phase transition) lead to predictions of primordial nucleo- 
synthesis consistent with most light-element abundances even 
with = 1, but with an overproduction of7 Li. However, over 
the entire parameter space we find that only an insignificant 
mass fraction in heavy elements with A > 11 can be produced 
in a universe with = 1. 

In addition, we have pointed out that the inclusion of the 
known spectrum of hadronic masses implies a critical bag con- 
stant, B = (260 MeV)4, above which the separation of phase 
scenario described above cannot be realized at temperatures 
below 300 MeV, since the pressure in the quark-gluon plasma 
is always less than that in the hadron phase. In the extreme 
case of a Hagedorn limiting temperature a mini-inflation 

period can ensue in which the hadron-phase nucléation rate is 
high and the baryon number fluctuations are small so that 
standard big bang nucleosynthesis is recovered. It is significant 
that these two very different scenarios for the quark-hadron 
transition depend on a quantity, the bag constant, which is at 
the center of research and debate in nuclear physics. 

The authors acknowledge useful discussions with G. F. 
Bertsch, M.-Y. Chu, W. A. Fowler, C. J. Hogan, A. Kerman, R. 
Perry, K. E. Sale, D. N. Schramm, and S. E. Woosley. Work 
performed under the auspices of the US Department of Energy 
by Lawrence Livermore National Laboratory under contract 
no. W-7405-ENG-48. 
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