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4-NODE AXISYMMETRIC ELEMENT BASED UPON
THE HELLINGER-REISSNER FUNCTIONAL

Shmuel L. Weissman & Robert L. Taylor
Department of Civil Engineering, University of California, Berkeley

Abstract - The Hellinger-Reissner functional is used to formulate axisymmetric elements of the
correct rank using seven and eight parameter stress fields. The resulting elements exhibit
excellent performance in bending problems and at the nearly incompressible limit. The stress
field is developed in conjunction with an orthogonal projection so that the resulting stiffness
matrix requires only block diagonal inversion. Several numerical examples are given to demon-
strate the performance of the suggested formulation.

0. Introduction

Solution of problems by the finite element method require that certain requirements be fulfilled
by the formulation employed. Lax & Richtmyer [1956] proved that consistency and stability are
necessary and sufficient requirements for a linear problem to converge. Isoparametric formulations
are known to satisfy consistency and stability conditions provided sufficient order quadrature is used
(Bicanic & Hinton [1979]). However, equally well known is the "locking" behavior of this type of
formulation for the plane strain and axisymmetric linear isotropic elasticity models with high Poisson
ratio (e.g., v > 0.499). Accordingly, it is evident that "good" element performance goes beyond the
minimum requirements for convergence. It is commonly accepted that elements should have the fol-
lowing properties :

a) High accuracy over wide ranges of problem types and material properties.

b) Stable solutions for all type of boundary conditions.

c) Insensitive to element distortion and mesh configuration.

d) Perform independent of coordinate system or user input of data.

This paper considers the development of elements which satisfy the above conditions for the
torsionless axisymmetric problem. The finite element formulation of the torsionless axisymmetric
problem is almost identical with the plane strain formulation (Hughes [1987]). Indeed, both elements
normally can be combined at a low overhead. As noted above, the isoparametric fully-integrated
axisymmetric element locks at the nearly incompressible limit. Also, this element is overstiff when
applied to bending problems (e.g., see pp. 221 of Hughes [1987]). The similarity of these formula-
tions suggests that techniques used to overcome the problems in the plane strain case also can be
applied to the axisymmetric case.

The simplest way to overcome the locking at the nearly incompressible limit is to use an
under-integrated stiffness matrix. The stiffness matrix satisfies necessary accuracy (consistency)
requirements, however, it does not meet stability requirements. To overcome this setback, Hughes
[1977] applied the selective reduced integration (SRI) technique to develop element stiffness matrices
through the assumed displacement method. The SRI scheme used under-integration on the
volumetric strain terms and full-integration on the deviatoric terms. Malkus & Hughes [1978]
showed that the SRI method falls within the concept of the mixed finite element method for plane
strain and three-dimensional analysis. This analogy, however, breaks down in the axisymmetric case.
Hughes [1987] suggested that a mixed formulation will lead to superior elements.

Hughes [1980] refined the SRI scheme into a general B-bar method for three-dimensional and
axisymmetric elements. More recently, Simo, Taylor & Pister [1985] showed that it is possible to
derive the B-bar method from the Hu-Washizu variational principle.

Belytschko and co-workers, ( see e.g., Belytschko, Liu, Ong & Kennedy [1984] and Liu &
Belytschko [1984] ) took a different approach to overcome the problem of locking at the nearly
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incompressible limit. Using a projection operator, Belytschko & Bachrach [1986] showed that the
usual finite element appraximation can be rewritten in a form that leads to decoupling of the stiffness
matrix in the plane strain/stress cases. The decoupling of the stiffness matrix for the plane cases con-
sists of an under-integrated stiffness matrix and a "stabilization" stiffness matrix. This decoupling
leads to an efficient implementation as well as to a better understanding of element behavior in limit
situations (such as the nearly incompressible limit). Bachrach & Belytschko [1986] applied this tech-
nique to the axisymmetric problem. The elements presented employ only seven independent interpo-
lants in the stress and strain fields, thus obtaining the correct rank using a minimum number of
independent interpolants. The best of the elements presented is called the optimal axisymmetric
bending/incompressible (OABI). This element doesn’t lock at the nearly incompressible limit and
seems to yield good results in terms of the bending problem. This element, however, is not coordi-
nate frame invariant.

Pian & Sumihara [1984] presented a plane strain element that has excellent characteristics at
the nearly incompressible limit and also in bending applications. In addition, the element sensitivity
to mesh distortions from a parallelogram shape appears to be the smallest of any 4-node element
evaluated to date. Using the Hellinger-Reissner variational principle, Pian & Chen [1983] showed it
is possible to obtain an axisymmetric element of the correct rank using seven independent interpo-
lants in the stress field.

This paper presents 4-node axisymmetric elements that will perform well for all Poisson ratios
and for the bending problem. The Hellinger-Reissner variational principle is used to derive the stiff-
ness matrix. The stress field presented by Pian & Sumihara [1984] is modified to account for the
differences between the axisymmetric and plane strain elements, i.e., only one physical, rigid body
motion mode is present in the axisymmetric case whereas three modes are present, in the plane
strain case. The projection operator, introduced by Belytschko, together with the modified stress
field leads to an elegant formulation of the stiffness matrix.

Section 1 begins with a presentation of the equivalent form of the finite element approximation
based on the projection operator. Also included are some basic quantities that are useful in deriving
the stiffness matrix. The stiffness matrix based on the Hellinger-Reissner variational principle is for-
mulated in section 2, and numerical results which demonstrate the performance of the different stress
field approximations are presented in section 3.

1. Alternative Finite Element Approximation and Basic Quantities

This section presents an equivalent form to the usual finite element appraximation. This form
is based on the vy projection operator, first introduced by Flanagan & Belytschko [1981]. This
equivalent form leads to a better understanding of the element topology. Also included are some
basic quantities used to derive the element stiffness matrix.

Finite element appraximation of a variable U over the element area Q, (i.e., Q, =dr dz) is
given by

4
v (§ﬂ]) =121 NI (§,'r]) Ul (11)
where N; is the shape function. For the 4-node element, the shape function is given by
N (&= 3(1+&£)(1+mm) (12)

With § and m; the natural coordinates for each node (see Fig. 1.1). Flanagan & Belytschko [1981]
introduced the v projection operator that allowed replacing (1.1) by

U@Em)=(A'+rb'+zb'+hvy)U (1.3)
where
A= Tt —robt b, ] (1.42)

¥=3[h @R b -@'2)b, ] (1.40)
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U=<U, Uy, U, Ug>
with
t=<1,1,1,1>
h'=<1,-1,1,-1>
Ri=<ryryrsrg>

Z'= <Zl’ Z2’23’Z4 >

AN,

N,
by =——le=n=0

r0=i—(r1+r2+r3+r4)
1
Zg=4_(21+22+23+24)

where
h=¢&n

(1.4c)

(1.5)

(1.6)

This form is particularly useful in subsequent calculations where derivatives of the shape functions
are involved. It can be shown that the derivatives of the first three terms of the alternative form of

the shape function are constant and the partial derivatives of 4 are given by

oh
ar 12t —zs|[m
[~ T |-t rs {E}
dz

where the area integrals of the derivatives of 2 have the property
Jh,dQ=[h,dQ=0
nl nl

and are thus orthogonal to a constant on any quadrilateral element.
In the following discussion the torsionless axisymmetric problem is considered where

o' =[o, 0, 0, 0]
are the stress components which enter the internal energy; and
€ =[e € €, €]
are the associated strain components which are related to the displacement field through

-

Et:é(")‘=[ur,r’uz,zaur,z+uz,r9 r

Using (1.3), the gradient of the displacements may be written as
¢ =Bd

)

is the element nodal displacement vector, and

where

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)
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I
b! 0 h,¥ 0

0 b! 0 h,v

B= + 1.14
bt b [V |h, v by (114
00 N

r

is the strain-displacement matrix. The first term in the split of the strain-displacement matrix is
derived from the first three terms in (1.3) (excluding the €, term) and is constant over the element.
The second term results from the derivatives of 4 and the €, term.

For a linear elastic isotropic material the material, modulus matrix D may be expressed as

Dy Dy; 0 Dy

_|pa Dz 0 Dy
0 0 Dy 0 (1.15)
Dy Dy 0 Dy

where

D =N+2p;Djj=N;Dyz=p i,j=1,2,4;i+#]j (1.16)

"Ih; Lamé parameters A and p. may also be expressed in terms of Young’s modulus, E, and Poisson’s
ratio, v, as

vE

NI (1)

(1.17a)

and

L= 2(15—+v) (1.17b)

Subsequent development also requires the inverse of D, which may be written as

Cuu Cp 0 Cyy

L |€uCn 0 Cyu

Ca Cyp 0 Cy

For the linear isotropic case, D;; = Dj, Dy =b22 =Dy4 and D1y = D14 = D44. Thus the elements of
the C matrix are given by (C; = C;)
1
Cy= Dy
Dy,

Dy (Dy+ Dy ) -2D4
_ 1-2Dy,Cyy
B Dy ’

Finally, it is useful to write the Jacobian in the following form, after Zienkiewicz [1977],
J(Em)=Jo+JiE+Tom (1.20)

Cu=C14= C24= (119)

Cii i=1, 2,4

where
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Jo=rs-zt —rt- zs
Ji=rs-zh —rh- zs (1.21)
Jy=rh-zt —=rt- zh
with
rs = %—(—r1+r2+r3-—r4)
rn= %—(—rl—r2+r3+r4)

rh=‘1t—(+rl—r2+r3—r4) (1'22)

zs = ‘11—( —Z1+z3+tz3—24)

zh = i—( +21 —22+Z3—Z4)

2. Element Stiffness Formulation via the Hellinger-Reissner Variational Principle

The element stiffness matrix is formulated using the Hellinger-Reissner variational principle.
The stress field presented by Pian & Sumihara [1984] for the plane stress, plane strain element is
modified to obtain the correct rank for the axisymmetric element. The plane strain, plane stress for-
mulation yielded excellent results for all Poisson ratios as well as for bending problems. The modi-
fied stress field, for the axisymmetric element, is designed to retain these properties.

'The Hellinger-Reissner functional for a linear elastic material can be written as

HR=f[—%-o-’Co+o‘e(u)]rdQ—fu’z_rdF 2.1)
nl ml

The first variation yields a formulation which includes the constitutive equation and the momentum
balance equation and is given by

8Tk = [ [80° (—Co+(e(u)))+8(e()Y o]lrdQ—[su'irdl=0 2.2)
1] 30

The construction of a finite element model requires an approximation of the displacements and the
stresses. The dispacement field may be appraximated using (1.3). Let the stress field be of the form

o=Ss (2.3)

Substituting (1.3) and (2.3) into (2.2) yields the finite element approximation of the varational
equation, given by

§Ig =—38s' (Hs —Gd )+ 84" (G's —f) =0 (2.4)
where
G=[SBrda 2.5)
nl
H= [ S'CSrdQ (2.6)
nl

The stress field proposed by Pian & Sumihara [1984] is modified to obtain a correct rank for
the torsionless axisymmetric problem. The plane stress/strain element has three rigid body modes.
In the axisymmetric case only one rigid body mode is present, the translation in the z direction. A
translation in the r direction introduce hoop stresses. Thus, only the rigid body rotation appears as a
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spurious zero energy mode if oy is assumed constant over the element domain. This suggests allow-
ing linear variation in oy in the r and z directions or at least in one direction. The variation is taken
in the global frame in order to obtain a frame invariant element (even if oy is allowed to vary only in
one direction). This leads to the following stress field

o, 1000 rs27q n%2E 00
_Jo:| _|0100 z27 =z22E 0 0|5 s )
T lo. [T 0010mzanrzEo0o0]]o [ °° 27

o | 0001 o0 0 Fille

Ore
(0
where
F=rsE+rn+rhh (2.83)
FT=zsE+an+zhh (2.8b)
and
E=t~& ; T=m-mo ; h=h—h (2.9)

Mo, & and kg are shifts introduced in order to make H block diagonal. In order to obtain this result
the following requirement must be meet.

[ardQ=0 (2.10)

The resulting & mg and h are given by

4

3 (ot + 3hEm )

&= = (2.11a)
: 1
121(12'*‘10711 +3hE&m )
= - 2.11b)
4
1_21('51711-’0'*711-’1*‘&112)’1
ho= - @.11¢)
with
4
(1=2(3J(]+.11§1 +Jz'f|l )T‘I (212)
i=1

The stationary condition (2.4) becomes
Hs=Gd (2.13a)
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G s=f (2.13b)
Combining (2.13a) and (2.13b) yields the element stiffness matrix given by
K,=G'H'G (2.19)

where G and H are given in explicit form in appendix A.

From a strict point of stabilizing the element, seven parameters would suffice (Pian & Chen
[1983]). Thus, either 0,4 or Q¢ can be set to zero. In this case, only a (3x3) stabilization matrix is
inverted. In plate bending applications it is better to omit Q,,. The resulting element, requires at
least two elements in the r-direction any time there is a change in o in the r-direction. For clarifica-
tion, let the eight parameter element be denoted as the full stress field (FSF) element and the seven
parameter one as the degenerated stress field (DSF) element.

REMARK 2.1 : The shift introduced by £, 7 and & makes the H matrix block diagonal.
Thus, it is necessary to invert a (4X4) matrix for the FSF element, but only (3X3) matrix for the
DSF element.

REMARK 2.2 : The stiffness matrix of the two-dimensional element presented by Pian &
Sumihara [1984] can be written as the sum of the uncoupled under-integrated stiffness matrix and
the stabilization matrix. This leads to a very efficient implementation from a computational point of
view ( about 40% of the computation required for the fully-integrated isoparametric axisymmetric
element.). Due to the curvilinear coordinate in the r-direction, this decoupling is not possible in the
axisymmetric case. As a result, the cost of computing the element stiffness matrix is about the same
as for the fully-integrated isoparametric axisymmetric element.

3. Numerical Results

A number of examples are given to compare the proposed elements with the usual displace-
ment method , 2X2 quadrature isoparametric element (referred to as the 2X2 element) and where
available with results from Bachrach & Belytschko [1986] (OABI element). Results for all examples
are normalized by an exact solution.

Five examples are reported. The first example a thick-walled cylinder subjected to uniform
internal pressure. Axisymmetric plate subjected to uniform normal loading is investigated in the
second example. The third example is a cylindrical shell loaded by an edge moment. The fourth
example is a thin sphere subjected to an internal pressure. The fifth example is a thick sphere sub-
jected to an internal pressure.

Example 3.1

The thick-walled cylinder subjected to internal pressure problem, proposed by MacNeal &
Harder [1985] as a standard problem is addressed first,. The problem parameters are : r,, =3.0 ,
Tour =9.0, zppom =0, 2 =1.0 , E = 1000 and the loading is an unit internal pressure. The mesh
consists of five elements in the r-direction and 1 in the z-direction. The problem is analyzed once for
a regular mesh Fig. 3.1a and once using a skewed mesh Fig. 3.1b (6, = 21.801° and 6, = 45.0°).
The analytical solution is given in MacNeal & Harder [1985]. The displacement at point A for the
various formulations is given in Table 1. The regular mesh results show that the DSF element gives
the exact result at each node ( it is noted that the exact result js obtained using one DSF element).
The FSF element has about 1.5% error in the worst case. For the skewed mesh again the DSF ele-
ment shows the lowest error less than 0.5%; however, the FSF element has about 2.5% error in the
worst case. For both meshs the 2X2 element yields good results for the low values on Poisson’s ratio,
but as expected locks as the incompressible limit is approached.
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Table 1. MacNeal-Harder test

v Regular mesh Skewed mesh
FSF DSF 2X2 FSF DSF 2X2
0 0.99363 | 1.00000 | 0.99363 | 0.98488 | 0.99695 | 0.98869

0.3 0.99035 | 1.00000 | 0.98820 | 0.98071 | 0.99697 | 0.98218
0.49 0.98623 | 1.00000 | 0.84650 | 0.97605 | 0.99696 | 0.81615
0.499 | 0.98596 | 1.00000 | 0.35908 | 0.97575 | 0.99695 | 0.31467
0.4999 | 0.98593 | 1.00000 | 0.05313 | 0.97572 | 0.99659 | 0.04370

Example 3.2

The performance of each element in plate bending problems is addressed next. First a simply
supported circular plate is subjected to an uniform unit normal load. The problem parameters are
the plate radius, R =10 , the plate depth, 4 = 1., and Young’s modulus, E = 1875. The analytical
solution for a uniformly loaded, thick or thin circular plate with simple supports is given in
Timoshenko & Woinowsky-Krieger [1959]. The mesh consists of four elements in the r-direction
and 1 in the z-direction. A regular mesh Fig 3.2a and a skewed mesh Fig 3.2b (8 = 26.265°) are
used. The displacement of point A for each case is summarized in Table 2. The DSF and FSF ele-
ments are identical when a regular mesh is used; however, the DSF element is slightly more accurate
when the skewed mesh is used. It is noted that when the skewed mesh is used the performance of
both elements improves as the v approaches 0.5 (e.g., from an error of about 15% to about 3%).
Both elements show a large advantage over the 2X2 element for all values of v. This is expected since
the 2X2 element is known to be overstiff in the bending mode. Both elements yield better results in
comparison with the OABI element. The advantage increases as v approaches 0.5. While the pro-
posed element’s performance is independent of v the OABI element is not.

Table 2.  Plate under normal load
v Regular mesh Skewed mesh
FSF DSF 2x2 OABI FSF DSF 2X2
0. 1.02470 | 1.02470 | 0.67555 - 0.85328 | 0.85438 | 0.57400
0.25 1.02540 | 1.02541 | 0.68799 1.05 | 0.91316 | 0.91513 | 0.61117
0.30 1.02718 | 1.02718 | 0.64493 - 0.92399 | 0.92621 | 0.58294
0.49 1.02605 | 1.02606 | 0.07770 - 0.96496 | 0.96786 | 0.08608
0.499 1.02607 | 1.02608 | 0.02137 - 0.96698 | 0.96987 | 0.02275
0.4999 | 1.02607 | 1.02608 | 0.01546 1.13 | 0.96718 | 0.97008 | 0.01625

It is of interest to examine the sensitivity of the proposed elements with changes in the plate
depth. Only the regular mesh is considered ( Fig 3.2a). First, the plate depth is decreased to 0.5 and
the displacement at point A is given in Table 3. The FSF and DSF elements show excellent results.
It is noted that both formulations yield identical results. The 2X2 element, on the other hand, yields
very poor results. The OABI element is outperformed by both the FSF and DSF elements. The
plate thickness is then increased to 2.5 . The displacement of point A is summarized in Table 3.
The DSF and FSF elements show almost identical results with DSF element showing again a small
advantage. The 2X2 element yields relatively good results for the low v ratio. The OABI yields
about the same results as the proposed elements, however, note that for low values of v it is flexible
while for values of v approaching 0.5 it is stiff. It is noted that the performance of both the FSF and
DSF elements is almost independent of the plate depth and v Thus, these elements are applicable to
both thick and thin plates, for all values of v.
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Table 3.  Plate thickness variation
v h=0.5 h=25
FSF DSF OABI' 2x2 FSF DSF OABI' 2X2
0. 1 1.02653 | 1.02653 - 0.35265 | 1.01823 | 1.0183 - 0.93003
0.25 1.02708 | 1.02708 | 0.992 | 0.43360 | 1.02116 1.02128 1.05 0.83512
0.30 1.02718 | 1.02718 - 0.43024 | 1.02175 | 1.02191 - 0.76415
0.49 1.02756 | 1.02756 - 0.06530 | 1.02412 | 1.02447 - 0.14579
0.499 1.02758 | 1.02758 - 0.01037 | 1.02425 | 1.02460 - 0.09198
0.4999 | 1.02758 | 1.02758 1.04 0.00441 | 1.02426 | 1.02460 1.12 | 0.08578

Example 3.3

'The purpose of this example is to test the performance of the proposed elements on a problem
where oy varies in the r-direction. A problem with this property, suggested by Bachrach &
Belytschko [1986], is a cylindrical shell which is modeled by 17 elements in the z-direction 1 element
in the r-direction, see Fig. 3.3. The aspect ratio of the elements is 3 (i.e., Az /Ar = 3). The prob-
lem parameters are : Median radius, a = 167.5 » Youngs modulus is E = 11250. , the cylinder thick-
ness is k =1, and the applied end moment M = 2000 per unit length. The analytical results are
based on an infinitely long thin shell solution given in Timoshenko & Woinowsky-Krieger [1959].

The displacement of point A is summarized in Table 4. As expected the FSF element performs
very well with a tip displacement error less than 1.6%. The DSF element performs well for v =0,
about 1.6% tip displacement error; however, as v approaches 0.5 the tip displacement error grows to
13.6% for v =0.4999. This results for the DSF element is consistent with the fact that the element
cannot account for variations in oy in the r-direction. To verify this conclusion, the mesh is refined
in the r-direction. The modified mesh consists of 17 elements in the z-direction and 2 in the r-
direction. The result is presented in the column under DSF*. As expected the largest tip displace-
ment error is reduced to 1.5%. The OABI vyields similar results to the FSF element, while the 2X2
element is outperformed by a large margin (even by the DSF element with only one element in the
r-direction).

Table 4. Infinite Cylinder
v FSF DSF DSF* OABI 2X2
0. 0.98464 | 0.98051 | 0.98464 - 0.41994
0.25 0.98414 | 1.01649 | 0.99152 | 1.01 | 0.46419
0.30 0.98411 | 1.03165 | 0.99485 - 0.47047
0.49 0.98423 | 1.12857 | 1.01397 - 0.24025
0.499 | 0.98424 | 1.13522 | 1.01515 - 0.08112
0.4999 | 0.98424 | 1.13590 | 1.01527 | 1.02 | 0.01412

Example 3.4

A thin sphere problem subjected to internal pressure is addressed. The analytical solution for a
thin or thick sphere is given by Roark & Young [1975]. The problem is shown in Fig 3.4a. The
problem parameters are : mean radius, a = 9.5, the sphere thickness is, h = 1., and Young’s
modulus is, E = 1000. A unit internal pressure is applied. Only ten elements are used in this mesh.
The resulting displacements at points A and B are summarized in Table 5. For low values of v the
best result is given by the 2X2 element (the best symmetry obtained). However, as v approaches 0.5
the 2X2 element locks. The two elements proposed follow the 2X2 element very closely for the low
values of v, with the DSF element, again, yielding slightly better results. However, the elements do
not lock at the nearly incompressible limit.

Trcsxﬂmrq)oncdforﬂ)cOAHdancntar:obtainedusing 10 elements in the r-direction and 1 in the z-direction.
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Table 5.  Thin Sphere "old" load
v A B
FSF DSF 2x2 FSF DSF 2X2
0. 1.06123 | 1.05892 | 1.02354 | 0.99375 | 0.99477 | 0.99656
0.3 1.07623 | 1.07360 | 1.02653 | 0.99009 | 0.99192 | 0.99174
0.49 1.08475 | 1.08541 | 0.89644 | 0.98446 | 0.98800 | 0.87576
0.499 1.08506 | 1.08604 | 0.42394 | 0.98405 | 0.98772 | 0.41850
0.4999 | 1.08510 | 1.08610 | 0.06768 | 0.98401 | 0.98770 | 0.06733

10

For the shell like sphere case Halleux [1980] suggested that the nodal forces be computed using
shape functions of the form given in Fig. 3.4b. All three elments yield better results with loads
computed in this way. Again for the low values of v the 2X2 yields the best results, and the DSF
element is slightly superior to the FSF element.

Table 6. Thin Sphere "pew”" load
v A B
FSF DSF 2x2 FSF DSF 2X2
0. 1.02186 | 1.01946 | 0.99151 | 0.99528 | 0.99630 | 0.99820
0.3 1.02494 | 1.02172 | 0.98551 | 0.98999 | 0.99184 | 0.99179
0.49 1.02481 | 1.02370 | 0.87427 | 0.98269 | 0.98626 | 0.87588
0.499 | 1.02469 | 1.02381 | 0.41281 | 0.98218 | 0.98589 | 0.41844
0.4999 | 1.02467 | 1.02382 | 0.06273 | 0.98213 | 0.98585 | 0.06544

Example 3.5

A thick sphere problem is addressed. The problem parameters are : r;, = 1., r,,, = 5. and the
Young’s modulus is, £ = 1000. The mesh used is ten elements in the circumferential direction and
four in the radial direction. The mesh is shown in Fig. 3.5. The analytical solution is given by
Roark & Young [1975]. The results for the displacements of points A and B are summarized in
Table 7. The best results are obtained by the DSF element. The 2X2 and the FSF yield results which
are almost as good for the low values of v, but at the nearly incompressible limit the FSF element
yields slightly better results than the DSF element and the 2X2 element locks.

Table 7. Thick Sphere
v A B
FSF DSF 2x2 FSF DSF 2X2
0. 0.97467 | 0.96934 | 0.96385 | 0.94756 | 0.95782 | 0.94808
0.3 0.94910 | 0.94898 | 0.92714 | 0.92804 | 0.94963 | 0.91279
0.49 0.92016 | 0.92727 | 0.42590 | 0.90397 | 0.94273 | 0.42190
0.499 0.91830 | 0.92584 | 0.06%45 | 0.90237 | 0.94237 | 0.06924
0.4999 | 0.91811 | 0.92569 | 0.00740 | 0.90220 | 0.94233 | 0.00740
4. Conclusion

Axisymmetric elements based on the Hellinger-Reissner variational principle are presented.
The elements presented possess the correct rank, are frame invariant, perform well for all Poisson’s
ratios and yield excellent results for bending problems.

'The v projection operator and the stress fields used lead to an elegant formulation of the stiff-
ness matrix for both elements presented. An important computational aspect of this formulation is
that only small matrices need to be inverted ( (4x4) for the FSF element and (3x3) for the DSF ele-
ment).

The DSF element uses only seven independent interpolants, i.e. the minimum independent
interpolants required to obtain correct rank. Although this element is of the correct rank, it requires
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at least two elements in the r-direction any time there is a variation of the oy in the r-direction, as
could be seen in example 3.

The computation cost difference between the FSF and the DSF elements is very small. It is also
noted that in most examples presented (with the exception of example 3) the difference between the
two formulations lead to very small difference in the results. In all examples both formulations show
a clear superiority over the fully-integrated isoparametric element.

The decoupling of the stiffness matrix into an under-integrated stiffness matrix and a stabiliza-
tion stiffness matrix in the plane stress, plane strain formulation does not carry over to the axisym-
metric case. Thus, no computation efficiency is gained over the fully-integrated isoparametric axisym-
metric element.
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Appendix A : Explicit form of G and H

The G and H defined in section 2 matrices are given in an explicit form. The format

presented in this appendix is for the FSF element. To obtain these matrices for the DSF element the
appropriate lines and rows must be deleted. It is also noted that all the required quantities can be

computed explicitly.
Substituting the stress field given by (2.7) into (2.5) yields the G given by
bV 07 Ly 0
0 b 0 LY
b!V b} Ly Ly
0 0 1, 0
G=1lo of* (rs?Ly, +rszsLy, )y (zs?Lg, +rszsLy )Y (a1}
(0) 8 (rtng,-i-rter&)'y’ (ZIZLEZ +ZfﬂL€,)'Y'
0 0 rs]\zg+rti\zﬂ+rh]\zﬁ 0
LZSN€+ZINT}+ZhNEﬂ 0
where
nl nl Ol
I, =[N dQ (A.3)
ﬂ'
L= h,rdQ ; L,=[h,rdQ
n‘ nl
Ly,=[#h,rdQ ; L, =[7h,rdQ (A4
nl nl
Ly=[Eh,rdQ ; Lg=[Eh,rdQ
0, 0,
Note that (A.2) through (A.4) can be integrated explicitly.
Substituting the stress field given by (2.6) into (2.5) yields H of the form
H' O
H= 0us HY (A.5)

where

W =CvV (A.6)
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;vith V the element volume. The elements of the (4x4) H' are given by (recall that H is symmetric
HY 1 =[rs*Cyy + 25*Cn+ 152252 (Cpa+ Cyy + C33) 114
HY o =[rs?2 (rm2Cy+21%Cyy )+ 252 (r2Coy + 212Cp )+ rs 1t zs 2t C33 ]I,
W oa=[rsli+zali+rhls|rs?Cy+[rsls+rtly+rhls]zs?Cq
B =[zsIs+zs I+ zh Is \rs?Cyy+ [ 2s Is+ 2t I + zh I 5 | zs2C
Hl o =[r'Cp+r?z? (Cp+Cy+Cx)+z2*Cxll,
W op=[rsly+rtls+rhl1 ]rs?Cy+[rsly+rIs+rh1,]zt2Cy (A7)
Hy=[zs I+ 2t I3+ 2h 1,2 Cy + [ 2s I+ 2t I3+ zh I, ] 262C
Hlgy=(rs?Iy+2(rsntls+rsthly+nrhls)+ 2l +rh2lg)Cy
Hly=[(zsly+ztIs+zhIg)rs + (zs s+ zt Iy +zh Is)rt +
(zsIg+ztls+zhIg)rh |Cyy
HY = (2521 +2(zs 2t Is+zs zh [+ zt zh Is ) + 2121 + zh21¢ ) C oy
where

Q0
nrdQ 5 I4=[ERrdQ (A.8)
(1)
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Figure Captions

Figure 1.1. Local node ordering.

Figure 3.1a. Thick-cylinder, regular mesh.

Figure 3.1b. Thick-cylinder, skewed mesh.

Figure 3.2a. Simply supported circular plate, regular mesh.

Figure 3.2b. Simply supported circular plate, skewed mesh.

Figure 3.3. Cylinderical thin-shell loaded by an edge moment.

Figure 3.4a. Thin-sphere mesh.

Figure 3.4b. Halleux’s shape functions for computing the nodal loads for an axisymmetric shell.

Figure 3.5. Thick-sphere mesh.
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