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ABSTRACT: Dark-field microscopy (DFM) is a widely used
imaging tool, due to its high-contrast capability in imaging label-
free specimens. Traditional DFM requires optical alignment to block
the oblique illumination, and the resolution is diffraction-limited to
the wavelength scale. In this work, we present deep-learning assisted
plasmonic dark-field microscopy (DAPD), which is a single-frame
super-resolution method using plasmonic dark-field (PDF) micros-
copy and deep-learning assisted image reconstruction. Specifically,
we fabricated a designed PDF substrate with surface plasmon
polaritons (SPPs) illuminating specimens on the substrate. Dark field
images formed by scattered light from the specimen are further
processed by a pretrained convolutional neural network (CNN)
using a simulation dataset based on the designed substrate and
parameters of the detection optics. We demonstrated a resolution enhancement of 2.8 times on various label-free objects with a large
potential for future improvement. We highlight our technique as a compact alternative to traditional DFM with a significantly
enhanced spatial resolution.
KEYWORDS: Super resolution, dark field microscopy, surface plasmon polaritons, deep learning

Optical microscopy has been an indispensable tool for
biological and chemical studies since its first invention in

the 17th century. In the realm of microscopy, the pursuit of
finer resolutions and higher contrasts has been a constant
endeavor. However, Abbe’s diffraction limit had long confined
microscopy to a fundamental resolution threshold. In the past
few decades, the emergence of super resolution microscopy
technologies such as stimulated emission depletion (STED)
microscopy, stochastic optical reconstruction microscopy
(STORM), photoactivated localization microscopy (PALM)
and structured illumination microscopy (SIM), enables
scientists to delve into previously invisible realms of the
nanoscale world.1−4 While these methods provide excellent
spatial resolution, they all rely on fluorescent labels, which are
prone to photobleaching and suffer other difficulties associated
with the usage of fluorophores.5−7

Label-free imaging allows for the direct observation of
samples in their native states, preserving their natural
characteristics and dynamic behaviors.8 However, it is often
limited by low contrast between the specimen and the
surrounding refractive indices, as well as by diffraction-limited
spatial resolution. Traditional label-free imaging techniques,
such as dark-field microscopy, phase-contrast microscopy, and
differential interference contrast microscopy, improve image
contrast compared to bright-field imaging but still suffer from

limited resolution.9−13 In recent years, several novel techniques
in the label-free imaging domain have been developed.14−17

Interferometric scattering microscopy (iSCAT) was introduced
to detect nanometer-scale objects with high sensitivity and
contrast by leveraging the interference between scattered light
from the object and reflected illumination.18 However, its
resolution remains diffraction limited. Fourier ptychographic
microscopy (FPM), based on the synthetic aperture concept,
achieves resolution improvement using a light-emitting diode
(LED) array as the illumination source.19 Tens of images are
recorded under LEDs from different illuminating angles and
used for super-resolution image reconstruction in both
amplitude and phase. Despite its advantages, FPM requires a
complex optical setup and numerous subframes for image
reconstruction, limiting its imaging speed.
In recent years, the field of optical imaging has been

significantly impacted by deep learning (DL), yielding
remarkable achievements in addressing intricate inverse
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problems.20−26 In contrast to traditional reconstruction
approaches that typically necessitate explicit mathematical
models to derive analytical solutions, DL neural networks rely
on extensive datasets to autonomously learn and tackle
complex inverse quandaries. Well-designed neural networks
have been effectively employed in numerous super-resolution
imaging techniques.27−30 For instance, deep-STORM makes
use of a fully convolutional encoder−decoder network trained
on simulation dataset to achieve comparable resolution in
STORM with higher emitter density and reconstruction
speed.31 Rationalized deep learning super-resolution micros-
copy was developed to increase the resolution in low signal-to-
noise (SNR) ratio structure illumination microscopy image
reconstruction.32 These neural networks thereby enhance the
capabilities of prevailing imaging methods, in terms of either
speed or resolution.
In this work, we propose and experimentally demonstrate a

new label-free super-resolution imaging method termed deep-
learning assisted plasmonic dark-field microscopy (DAPD)
that offers a 2.8-fold improvement in spatial resolution. In
DAPD, a designed plasmonic substrate is used to generate
SPPs with a large wave vector as dark-field illumination. SPPs
scattered by the specimen on the substrate become far-field
detectable and form diffraction-limited dark-field images which
contain high k information on the object. The diffraction-
limited plasmonic dark-field images are further processed by a
pretrained neural network into super-resolution dark-field
images. The neural network is trained on a simulation data set
generated based on the designed substrate and detection
optics. The performance of the framework is evaluated on both
simulated and experimental images including transparent beads
and COS-7 cells, which demonstrate a resolution improvement
of ∼2.8 times. Requiring only a single-frame diffraction-limited
image for reconstruction, DAPD is also capable of high-speed
imaging. The proposed technique has the potential to become
a significant tool in biomedical and chemical research with its
compact architecture and super-resolution capability in label-
free imaging.
In traditional DFM, oblique dark-field illumination light is

generated with a dark-field ring and cannot enter the objective
lens. The objective only collects a scattered beam from the
object to form a background-free image. As a result, the
illumination wave vector in the object plane is slightly bigger
than the detection numerical aperture (NA) but always smaller
than k0, which is the free space wave vector of the illumination

light. It has been demonstrated that, with the oblique
illumination in DFM, the high spatial frequency information
encoded in the diffraction-limited image can be retrieved with
deep learning neural networks.33 The resolution improvement
was restricted to 2-fold, due to the limitation of the wave
vector of illumination light.
To overcome such a limit, we designed a plasmonic dark-

field substrate to provide a high-k illumination source. As
shown in Figure 1a, the DAPD substrate consists of 2 layers,
including a light emission layer and a SPP mode supporting
layer. The light emission layer (200 nm thick) is composed of a
transparent polymer mixed with fluorescent dye. The excited
fluorescent dyes in the polymer will be directly coupled into
the SPP mode of the gold film at the emission wavelength with
SPP k-vectors in every possible planar direction.34 The coupled
SPP on gold film serves as illumination, which can be collected
by the objective only when scattered by the specimen within
the evanescent wave range. As a result, the background remains
dark in the acquired image, which makes it a dark-field
image.34 Importantly, with plasmonic dark-field substrate, the
illumination wave vector is determined by the k-vector of the
SPP mode which is always larger than free space k0. Since no
SPP waves can be directly detected in the far field, this
illumination scheme assures a clean dark-field background,
regardless of the objective used in detection. In addition, the
SPP k-vector can be designed with values much higher than
those accessible in traditional dark-field microscopes. More
details about the plasmonic substrate design can be found in
Figure S1.
In DAPD, higher spatial frequency information is encoded in

diffraction-limited images. In a similar manner to the synthetic
aperture method, the high-k illumination SPP shifts high
spatial frequency information on the object into the limited
detection bandwidth. As shown in Figure 1b, the SPP mode in
Fourier space is a ring with higher k-vectors than both the
objective detection range and the free-space k0. The object
information that is detected and encoded in the diffraction
limited dark-field image is a donut in Fourier space, as
illustrated in Figure 1b. The relationship between the
illumination, imaging system detection, and detected object
information in the Fourier space can be mathematically written
as

O k k I k k H k k( , ) ( , ) ( , )x y x y x yd SPP= (1)

Figure 1. Schematic of DAPD working principle. (a) DAPD substrate schematic. Laser projected on the substrate excites the fluorescent emission
layer (R6G in PMMA). R6G emission light is coupled into SPP mode at the top gold surface. Specimen atop of the Au film is illuminated by the
SPPs. The scattered light is detected by an objective and forms a dark field image. (b) Fourier space relationship between the SPP illumination
light, free space k-vector (k0), diffraction-limit detection range, and the actual information collected from the object. (c) Super-resolution DAPD
image could be reconstructed by a pretrained CNN with a single-frame low-resolution PDF image as input.
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where Od is the Fourier spectrum of detected object
information, ISPP the Fourier spectrum of the illumination
SPP mode, and H the coherent transfer function of the imaging
system. Therefore, the effective numerical aperture (NAeff) of
the imaging is defined as NAeff = NAobj + NASPP, where NAobj
is the numerical aperture of the objective and NASPP is the
numerical aperture of the illumination SPP mode. As a result,
the DAPD raw image contains much higher resolution
information on the object than the normal dark-field image.
Once the raw plasmonic dark-field image is acquired from

the object, an image processing tool is necessary to extract the
high-k information encoded in the low-resolution image.
Retrieving the high-resolution image is extremely challenging,
because all the high-k information produced from the high-k
SPP illumination is concentrated and encoded in a single
diffraction-limited image frame, making it an ill-posed problem,
which is difficult to solve with mathematical equations or
optimization techniques. Convolutional neural networks
(CNNs) have gained significant attention in the optical
imaging field due to their excellent performance in complex
image processing tasks, including super-resolution, denoising,
and image segmentation.35−37 In this work, we use a pretrained
CNN to process the low-resolution plasmonic dark-field image
and generate a super-resolution output.
Collecting a sufficient image dataset is crucial for ensuring

the quality of network training. However, this process can be
very time-consuming for many imaging technologies. In super-

resolution microscopy, obtaining ground truth images is
particularly challenging. In this work, given that the forward
imaging model is known, we employ a simulation method to
estimate the low-resolution plasmonic dark-field image of any
given object based on the design of the plasmonic substrate
and imaging system, which is shown in Figures 2a−c. In
DAPD, the SPP mode on the Au film illuminates the specimen,
and the scattered beam is detected by the imaging system. Due
to the incoherent fluorescent illumination, the PDF image can
be calculated as a superposition of images under each SPP
mode. With a given object, the low-resolution PDF image can
be estimated as

I F U k k H k n( ) ( )
i

m

iPDF
1

1
spp,

2= | [ + · ]| +
= (2)

where U is the Fourier spectrum of the object spatial
information, H is the coherent transfer function of the imaging
system, kspp,i is the k-vector of the SPP mode at different
directions, m is the total number of SPP modes, and n is the
additive white Gaussian noise (signal-to-noise (S/N) ratio =
35). The final PDF image is calculated by summarizing the
image intensity produced from different SPP mode illumina-
tion. The simulation image dataset is numerically generated
and processed using MATLAB R2020b. As shown in Figure
2b, the estimation is more accurate with a larger m. In practice,
we use m = 30 to balance the simulation performance and

Figure 2. Simulation method for dataset generation and reconstruction performance. (a) Generated ground truth super-resolution images with
random objects. (b) Fourier space manipulation of ground truth information. SPP mode illumination shifts the high-k information on the object
into detection band to form the diffraction-limited PDF image in panel (c). (d, g) Simulated low-resolution PDF images of edges and scattering
particles for network performance test. (e, h) Network output super-resolution DAPD images. (f, j) Object ground truth. Scale bar = 1 μm.
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computation cost. More information about the effective optical
transfer function and choice of m can be found in Figure S2.
The simulated training dataset is then used to train a U-net

structure for super-resolution reconstruction. More informa-
tion about the network structure and loss function can be
found in Figure S3. The training and testing processes are
executed on a desktop computer equipped with a NVIDIA
GeForce GTX2070S graphic cards and a Core i7−9700K CPU
@ 3.6 GHz. 3000 pairs of simulated images are used for
training and the batch size is set to be 15. Input images are
cropped to be 256 × 256 in size. After training with the
simulation dataset, we test the network performance with
previously unseen simulation images. As shown in Figures 2d−

i, the diffraction limited PDF images are successfully
reconstructed to a super-resolution dark-field image of the
object. We use structure and similarity index measure (SSIM)
and peak signal-to-noise ratio (PSNR) to compare the network
output and object ground truth to evaluate the reconstructed
images, which shows a SSIM of 0.9885 ± 0.008 and a PSNR of
33.049 ± 0.019 dB.
To fabricate the DAPD substrate for experiments, we

cleaned coverslips with acetone under sonication for 10 min,
followed by rinsing with isopropanol and deionized water. R6G
powder (Thermo Fisher) were dissolved in PMMA 495A4
solution in anisole (MicroChem). The solution was then
filtered with a 0.22 μm membrane filter (Millex Express) three

Figure 3. Experimental demonstration of DAPD by using 200 nm polystyrene beads. (a, b, e, f) Low-resolution PDF image before neural network
processing. (c, d, g, h) Super-resolution DAPD reconstructed images. (i) Cross-section profile of the object marked with a pair of arrows line in
panels (a) and (c). (j) Cross-section profile of the object marked with a pair of arrows line in panels (e) and (g). Dark line represents the original
low-resolution PDF image. Red circles represent the output image pixels. Red solid line represents the fitted curve of two Gaussian functions and
the blue dashed lines display the single Gaussian curve from each bead. Scale bar = 1 μm.

Figure 4. Trained network performance on experiment data with cells. (a) PDF image of single COS-7 cell. Top-left is the diffraction-limit PDF
image, and bottom-right is the network processed DAPD image. (b−d, h−j) Diffraction-limited PDF images acquired with a 40×/0.6NA objective.
(e−g, k−m) DAPD super-resolved images. Scale bar = 2 μm in panel (a) and 1 μm in all other panels. All the cross-section profiles are magnified
twice for better visualization.
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times, followed by centrifuge under 17g for 1 h to further
remove the impurities. The purified R6G-PMMA solution was
then spin-coated on coverslips under 3000 rpm for 1 min. The
substrate was placed on a 150 °C hot plate for 7 min to form a
200 nm film. After the PMMA is annealed, 40 nm Au film was
deposited on the substrate using E-beam evaporation before
the DAPD substrates were ready for use.
With the fabricated DAPD substrates, we demonstrated the

success of the trained neural network in different samples.
Initially, we demonstrated the resolution improvement of
DAPD by imaging polystyrene beads (Invitrogen, USA) 200
nm in diameter. The beads were diluted 10 times and drop-
cast on DAPD substrates before imaging. The substrate was
imaged under an inverted microscope (Model IX83,
Olympus). We used a 532 nm laser guided by a multimode
fiber as illumination to excite the Rhodamine 6G (R6G) in
poly(methyl methacrylate) (PMMA). The multimode fiber
was attached to a rotating eccentric motor to remove the
speckle in illumination. The scattering signal was then
collected by a 40×/0.6NA objective lens, followed by a 4×
magnification before the camera. Considering kspp ≈ 1.1k0, we
have NAeff ≈ 1.7 for the DAPD microscopy. A 532-nm notch
filter (Semrock) and a 20-nm bandpass filter centered at 588
nm (Semrock) were used to block the laser transmission. The
images shown in Figure 3 were recorded with a CCD camera
(iXon 897, Andor) and processed by a trained neural network.
The low-resolution image was expected to have a resolution of
∼500 nm. The network output images in Figures 3c−h show
that the polystyrene beads with ∼200 nm diameters can be
clearly resolved. As shown in Figure 3j, double Gaussian fitting
was applied to the high-resolution output image of the beads
and shows a 190-nm center-to-center distance, which
corresponds to an ∼2.8 times resolution improvement and
matches the theoretical estimation.
Subsequently, we imaged COS-7 cells using the same

microscope setup as that previously described. COS-7 cells
used in this study were acquired from ATCC and were
cultured in Dulbecco’s modified Eagle medium (DMEM)
(Gibco, Lot No. 11995-065) including 4.5 g/L glucose, 4 mM
L-glutamine, 1.5 g/L sodium bicarbonate, and 1 mM sodium
pyruvate, supplemented with 10% fetal bovine serum (FBS)
(Gibco, Lot No. 26140-079), and 1% (v/v) penicillin/
streptomycin (Pen/Strep) (Gibco, Lot No. 15140−122).
Cells were routinely tested for mycoplasma contamination
and found to be negative. For experiments, cells were plated
onto DAPD substrate 24 h prior to imaging.
Although the network had not encountered COS-7 cells

during the training process, it still achieved commendable
reconstruction results. The images presented in Figures 4b−d
and 4h−j illustrate the unprocessed plasmonic dark-field
(PDF) images of COS-7 cells, which appear blurred due to
the diffraction limit. In contrast, the network’s output, shown
in Figures 4e−g and 4k−m, clearly resolves cellular features
close to the surface of the substrate, with structures as small as
200 nm being distinctly identifiable. Additional data, including
Fourier spectrum comparisons and Fourier ring correlation
results, are provided in Figure S5. To illustrate the resolution
enhancement achieved by DAPD, we also compared the
DAPD reconstruction results with those obtained using the
Lucy−Richardson deconvolution algorithm, as presented in
Figure S6.
The resolution enhancement in this study is attributed to the

high-k illumination of the SPP mode on the Au surface. For a

gold−air interface, kspp ≈ 1.1k0 has been demonstrated to
increase the resolution limit beyond that of traditional dark-
field microscopy. The fluorescent emission from dye molecules
within the near field of the Au film is coupled to the SPP
mode. Although the 40-nm Au film blocks a significant portion
of the fluorescent emission in other directions, some
transmitted fluorescent signals remain, serving as background
noise in the raw plasmonic dark-field image. In the meantime,
the surface roughness of the plasmonic substrate caused by the
polymer spin-coating and Au film deposition also introduces
additional background noise from scattering of the SPP mode.
Consequently, the scattering cross-section of the object must
be sufficiently large to ensure the visibility. The 2.8-fold
resolution improvement demonstrated in this work allows for
the resolution of features down to 200 nm, which can still be
considered strong scatterers compared to the 527-nm wave-
length of SPP on Au.
The SPP mode excitation is achieved by coupling

fluorescent emission to the near field. Note that the lifetime
of the DAPD substrate is limited due to the photobleaching
effect of the fluorescent dye. In this study, we used a saturated
solution of R6G to maximize the lifetime of the substrate under
laser excitation. In the future, substrates can be further
improved by using electroluminescence layer like GaAs or
GaN p−n junction to excite SPPs on the metal film.38 This will
not only extend the lifetime of the substrate but also reduce the
cost of optical setup since the illumination laser is no longer
needed, making super-resolution dark-field microscopy more
accessible. The resolution in DAPD is primarily determined by
the numerical aperture of the detection objective and the k-
vector of the SPP mode. In fact, the effective numerical
aperture of the imaging system is the combination of an
illumination k-vector and the detection k-vector. Resolution
can be further enhanced by using a substrate that supports SPP
with higher k-vector.39−41 It is important to emphasize that the
improvement in resolution is also constrained by the design
and implementation of neural networks. To achieve substantial
advancements in resolution, the development of new network
architectures that are more effectively tailored to focus on high-
k information is still required. See Figure S4 for more
information.
DAPD microscopy is primarily suited for surface imaging

because the SPP mode exhibits an evanescent exponential
decay with distance from the substrate. Scatterers within the
evanescent range are enhanced by SPP illumination, resulting
in high-contrast dark-field images. This makes DAPD
microscopy particularly useful for observing structures near
the surface. However, for thicker objects with greater spatial
distribution away from the surface, the scattering signal
weakens, reducing the imaging effectiveness.
In summary, we have proposed and demonstrated DAPD

microscopy, a label-free super-resolution imaging technique.
This method leverages near-field high-k illumination of SPP
waves and spatial frequency unmixing of the object
information. High spatial frequency information is encoded
by the high-k SPP illumination and detected in low-resolution
plasmonic dark-field images. These images are then processed
by a pretrained neural network to reconstruct high-resolution
images. By replacing traditional dark-field microscope illumi-
nation optics with a specially designed plasmonic substrate, we
also reduce the complexity of the optical setup. Compared with
the diffraction limit, DAPD microscopy shows a 2.8-fold
resolution improvement on different specimens with single-
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frame detection. This technique holds significant potential for
numerous label-free super-resolution imaging applications.
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