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Identification of a Rare Coding Variant in Complement 3 
Associated with Age-related Macular Degeneration
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Abstract

Macular degeneration is a common cause of blindness in the elderly. To identify rare coding 

variants associated with a large increase in risk of age-related macular degeneration (AMD), we 

sequenced 2,335 cases and 789 controls in 10 candidate loci (57 genes). To increase power, we 

augmented our control set with ancestry-matched exome sequenced controls. An analysis of 

coding variation in 2,268 AMD cases and 2,268 ancestry matched controls revealed two large-

effect rare variants; previously described R1210C in the CFH gene (fcase = 0.51%, fcontrol = 

0.02%, OR = 23.11), and newly identified K155Q in the C3 gene (fcase = 1.06%, fcontrol = 0.39%, 

OR = 2.68). The variants suggest decreased inhibition of C3 by Factor H, resulting in increased 

activation of the alternative complement pathway, as a key component of disease biology.

Genetic and environmental factors contribute to age-related macular degeneration 

(AMD)1,2, a major cause of vision loss in elderly individuals3. Pioneering discovery of 

association of AMD with complement factor H (CFH4–6) was quickly followed by the 

identification of additional susceptibility loci that now include ARMS2/HTRA17,8 and 
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complement genes C3, C2/CFB and CFI9–12. Genome-wide association studies (GWAS) of 

AMD cases and controls have now revealed common susceptibility variants at ~20 different 

loci13,14 and begun to uncover specific cellular pathways involved in AMD biology.

While common variants tag the associated genomic region, rare coding variants can provide 

more specific clues about the underlying disease mechanism15. For example, rare variant 

R1210C in the CFH gene was recently associated with a large increase in AMD risk using 

targeted sequencing of rare CFH risk haplotypes16. The resulting altered protein has 

decreased binding to C3b, C3d, heparin and endothelial cells17–19. A reduction in CFH’s 

ability to inactivate C3, leading to increased cell killing activity by the complement 

pathway, could contribute to AMD – a much more specific and testable hypothesis about 

disease mechanism than provided by common CFH variants whose mechanistic 

consequences are unclear.

To systematically identify rare, large-effect variants, we carried out targeted sequencing of 

eight AMD risk loci identified in GWAS20 (near CFH, ARMS2, C3, C2/CFB, CFI, CETP, 

LIPC and TIMP3/SYN3) and two candidate regions (LPL and ABCA1) (Supplementary 

Table 1). We re-sequenced these regions in 3,124 individuals (2,335 cases and 789 controls) 

recruited in ophthalmology clinics at the University of Michigan and at the University of 

Pennsylvania and among Age-Related Eye Disease Study (AREDS) 

participants20,21_ENREF_17. Genomic targets were enriched using a set of 150-bp probes 

designed by Agilent Technologies, and sequence data was generated on Illumina Genome 

Analyzer and HiSeq instruments. The ten loci comprised 115,596 nucleotides of protein 

coding sequence and totaled 2,757,914 nucleotides overall. We designed probes to capture 

111,592 protein coding nucleotides (96.5% of coding sequence) and 966,607 nucleotides 

overall (35.1 % of the locus sequence), generating an average of 123,221,974 mapped bases 

of on-target sequence per individual (127.5× average depth counting bases with quality >20 

in reads with mapping quality >30, after duplicate read removal); 98.49% of sites with 

designed probes were covered at >10× depth. We applied variant calling tools and quality 

control filters similar to those used to analyze NHLBI Exome Sequencing Project data22 

(Supplementary Table 2). We identified an average of 1,714 non-reference sites in each 

sequenced individual. In total, this resulted in 31,527 single nucleotide variants of which 

18,956 were not in dbSNP 135. Discovered sites included 834 synonymous variants, 1,379 

nonsynonymous variants and 43 nonsense variants, most of which were extremely rare (see 

Supplementary Table 3). Among 13 samples sequenced in duplicate, genotype concordance 

was 99.82% (when depth >10×). Among 908 samples previously examined with GWAS 

arrays20, sequence-based genotypes were 98.99% concordant with array-based calls (again, 

when depth >10×).

In an initial comparison of AMD cases and controls (see Supplementary Table 4), no rare 

coding variants with frequency <1% reached experiment wide significance (p < 0.05 / 

31,527 = 1.6×10−6, including all discovered variants, or p < 0.05 / 1,422 = 3.5×10−5 

considering only protein altering variants), although several showed encouraging patterns. 

For example, rare variant R1210C in the CFH gene was observed in 23 of the 2,335 

sequenced cases, but in none of the 789 sequenced controls (exact test p=0.0025). Common 

variants in several loci exhibited strong evidence of association, including in CFH (peak 
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variant rs9427642 with case frequency fcase = 12%, control frequency fcontrol = 27%, P-

value = 2.52×10−48), ARMS2 (rs10490924, fcase = 33%, fcontrol = 18%, P-value = 

5.48×10−27), C3 (rs2230199, fcase = 25%, fcontrol = 17%, P-value = 3.94×10−9) and C2/CFB 

(rs556679, fcase = 7%, fcontrol = 12%, P-value = 1.32×10−10).

A key requirement for establishing significance of rare disease associated variants is the 

availability of sufficient numbers of control samples. To increase power, we sought to 

identify additional controls and focused on samples from the NHLBI Exome Sequencing 

Project (ESP)23, which sequenced 15,336 genes across 6,515 individuals. Sequence data for 

our samples and the NHLBI Exome Sequencing Project samples were analyzed with the 

same analysis pipeline, which minimized potential differences due to heterogeneity in 

analysis tools and parameters. To further avoid sequencing and variant calling artifacts, we 

restricted our analysis to sites within regions targeted in both sequencing experiments, 

genotyped and covered with >10 reads in >90% of the samples examined in each project, 

and >5-bp away from insertion/deletion polymorphisms catalogued by the 1000 Genomes 

Project24. Since careful matching of genetic ancestry is critical for rare variant association 

studies24,25, we selected an ancestry-matched subset of our samples and of samples from the 

NHLBI Exome Sequencing Project. We used principal component analysis to construct a 

genetic ancestry map of the world with samples from the Human Genome Diversity Project, 

each genotyped at 632,958 SNPs26. If GWAS array genotypes were available for our 

samples and for the NHLBI Exome Sequencing Project samples, it would be straightforward 

to place them directly in this genetic ancestry map. Using targeted sequence data, however, 

the analysis is more challenging: targeted regions include too few variants to accurately 

represent global ancestry and off-target regions are covered too poorly, precluding 

estimation of the accurate genotypes needed for standard principal component analysis. 

Thus, we relied on the new LASER algorithm (Wang and Abecasis, personal 

communication) to place each sequenced sample in a pre-defined genetic ancestry map of 

the world. The method can accurately place individuals on this worldwide ancestry map 

with <0.05× average coverage of the genome and is thus ideal for targeted sequence data, 

such as ours and the NHLBI Exome Sequence data, which have average off-target coverage 

of ~0.23× and ~0.90×, respectively (see Supplementary Figures 1A, 1B, 1E and 1F, which 

show that PCA coordinates inferred using 0.10× genome coverage or using GWAS array 

genotypes are highly similar). We focused on samples where PCA coordinates could be 

estimated confidently (Procrustes similarity larger than 0.95; see Online Methods) and used 

a greedy algorithm to match cases and controls based on estimated genetic ancestry. As 

shown in the Online Methods, alternative matching algorithms do not alter our conclusions. 

After matching, we focused on a set of 2,268 AMD cases and 2,268 controls, ancestry-

matched one-to-one (Supplementary Figure 1C and 1G). Since AMD phenotype information 

was not available for most controls, we expect that a small proportion may eventually 

develop disease; however, this should not impact power substantially27. After matching 

case-control samples, we excluded 1 variant with Hardy-Weinberg Equilibrium test p-value 

<10−6 and focused our analysis on 430 protein changing variants in regions that were 

targeted and deeply sequenced in both experiments as well as far away from insertion 

deletion polymorphisms.
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In this expanded analysis (see Table 1), common variant signals at all loci increased in 

significance (in comparison to Supplementary Table 4). In addition, two rare coding variants 

exhibited association with p < 0.01. The first was R1210C in the CFH gene (observed in one 

control and 23 cases, OR = 23.11, pexact = 2.9×10−6), providing strong support for the 

original report16. The second variant was K155Q in the C3 gene (18 controls, 48 cases, OR 

= 2.68, pexact = 2.7×10−4; Supplementary Figure 1D and 1H for carrier ancestry 

distribution). When controlling for a previously described common variant signal nearby, 

rs2230199 (fcontrol = 20.63%, fcase = 25.26%, marginal pexact = 1.8×10−7, OR = 1.31), the 

evidence for association with K155Q increased slightly (conditional OR = 2.91, pexact = 

2.8×10−5). Inspection of the raw read data shows the variant is well supported and is 

unlikely to be a sequencing or alignment artifact, a result further confirmed by Sanger 

sequencing (see Supplementary Figures 2, 3 and 4). Finally, in an examination of our 

sequenced samples and available whole genome sequences (Online Methods), we observed 

no additional variants in strong linkage disequilibrium with K155Q that might account for 

the association signal. Analysis with burden tests, which jointly evaluate evidence for 

association with rare variants at each gene, identified no significant association signals 

(Supplementary Figure 5)28–30.

To confirm the K155Q signal, we genotyped additional samples totaling 4,526 cases and 

3,787 controls and, again, observed strong association (fcontrol = 0.5%, fcase = 1.3%, 

pfollow-up = 7.7×10−7, pcombined = 1.1×10−9, Table 2). In addition, we genotyped 471 

families with multiple AMD cases to identify 18 nuclear families where K155Q segregates. 

These families included 49 affected individuals, where at least one individual carries K155Q 

and, adjusting for ascertainment, we estimate that 75% of first degree relatives of a K155Q 

carrier who also have AMD will carry the variant, consistent with an OR of ~3 

(Supplementary Table 5 and Online Material). Further strong evidence for association of 

this variant with macular degeneration is provided in independent work by deCODE 

Genetics31, examining 1,143 Icelandic macular degeneration cases and 51,435 Icelandic 

controls (control frequency 0.55%, OR = 3.45, pdeCODE = 1.1×10−7, pcombined = 1.6×10−15). 

In 1,606 directly genotyped cases of macular degeneration from the Age Related Disease 

Study II32 the variant has frequency 1.77%, similar to our sequenced AMD cases (frequency 

1.10%) and our follow-up AMD cases (1.30%) and is notably higher than in our sequenced 

controls (0.30%), our genotyped controls (0.50%), in NHLBI Exome Sequencing Project 

participants with primarily European Ancestry (0.40%) and in deCODE controls (0.55%). 

We found no evidence of the K155Q variant in a small sample of patients with atypical 

haemolytic-uremic syndrome (aHUS, n=53), a rare disorder whose genetic risk factors 

partially overlap with macular degeneration.

We next investigated the potential functional consequences of the K155Q variant in silico. 

Based on protein crystallography, the model in Figure 1 shows that CFH variant R1210C 

(OR=23.11), C3 variant K155Q (OR=2.91) and C3 variant R102G (OR=1.31) all map near 

the surface where CFH and C3b interact and suggests they might affect binding of 

complement factor H to C3b. Factor H inhibits C3b and limits immune responses mediated 

by the alternative complement pathway. We hypothesize that K155Q and R102G affect 

binding of the first macro-globular domain of C3 to CFH and thus interferes with 
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inactivation of the alternative complement pathway_ENREF_31, a hypothesis that must be 

confirmed experimentally33. Interestingly, the three variants (R102G and K155Q in C3 and 

R1210C in CFH) all are associated with replacement of a positively charged residue.

In summary, our work and the companion paper identify K155Q as a rare C3 variant 

associated with a ~2.91-fold increased risk of macular degeneration. Together with rare CFH 

variant R1210C and previously described common C3 variant R102G, K155Q may reduce 

binding of CFH to C3b, inhibiting the ability of Factor H to inactivate the alternative 

complement pathway. Clarifying the mechanistic impact of K155Q is likely to be 

challenging, as illustrated by contradictory results of previous functional follow-up of AMD 

loci34–36, but functional studies of complement activity suggest potential next steps33,37. 

Our work relied on targeted sequencing of GWAS loci, genetic ancestry matching of our 

sequenced samples to additional sequenced controls analyzed with the same variant calling 

and filtering tools, focused analysis of regions deeply sequenced in both our project and 

previously sequenced controls, and avoidance of common calling artifacts near insertion/

deletion polymorphisms. The use of publicly available samples to augment control sets may 

be useful to many targeted sequencing studies, but the strictness of matching and variant 

filtering required for preventing false-positive findings due to population stratification 

and/or sequence analysis artifacts are areas deserving of further study. As the number of 

sequenced human genomes and exomes grows, we expect that the utility of the approach 

will grow – making it possible to match multiple controls to each case and to focus on 

progressively finer ancestry matches. Our results also emphasize the challenges and the 

large sample sizes will be required for rare variant studies of complex human traits, as well 

as the promise of these studies to highlight disease biology, as illustrated by the interaction 

between Factor H and C3b that is suggested as a key factor in AMD biology here.

Online Methods

Study samples

Macular degeneration cases and controls were recruited at Ophthalmology clinics at the 

University of Michigan and the University of Pennsylvania and through the Age Related 

Eye Diseases Study, as previously described. For replication, we contacted members of the 

International AMD Genetics Consortium; their samples are described in Fritsche et al13. All 

participants provided informed consent allowing for collection of genetic data and all data 

contributors obtained approval from their local Institutional Review Boards before 

generating genetic data. Our discovery sample, with ~2350 sequenced cases and ~750 

sequenced controls, provides 90% power to discover variants with a frequency of 0.1% and 

an associated relative risk of 19.2 or greater (similar to CFH R1210C) at significance level 

alpha = 0.00005, which corresponds to an adjustment for analysis of 1,000 independent 

coding variants.

Sequence production and quality control

Illumina multiplexed libraries were constructed according to the manufacturer’s protocol 

(Illumina Inc, San Diego, CA) with modifications: 1) DNA was fragmented using a Covaris 

E220 DNA Sonicator (Covaris, Inc. Woburn, MA) to range in size between 100 and 400bp. 

Zhan et al. Page 5

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2) Illumina adapter-ligated library fragments were amplified in four 50μL PCR reactions for 

eighteen cycles. 3) Solid Phase Reversible Immobilization (SPRI) bead cleanup was used for 

enzymatic purification and final library size selection targeting 300–500bp fragments. 

Samples were pooled in groups of 4–24 before hybridization. A custom targeted probe set of 

150bp probes was designed (Agilent Technologies, Santa Clara, CA) and captured 0.97 Mb 

of sequence. The concentration of each captured library pool was determined through qPCR 

(Kapa Biosystems, Inc, Woburn, MA) to produce cluster counts appropriate for the Illumina 

GAIIx and HiSeq 2000 platforms. We generated approximately 1.7Gb of sequence per 

sample, covering 80% of the targeted space at depth >20×. Reads were aligned to the 

NCBI37/hg19 reference sequence using BWA38. Where pre-existing genotype information 

was available, sample identity was confirmed by comparing sequence data with pre-existing 

array data.

Quality control and variant calling

Quality control steps for all BAM files included: removal of duplicated reads; recalibration 

of base qualities39; generation of diagnostic graphs and evaluation of sequencing quality40; 

checks for DNA contamination41. After removing samples with high contamination, 

unexpected relatedness or with high discordance rate, we retained 2,335 cases and 789 

controls for an initial round of analysis. We calculated the sequencing depth using reads 

with mapping quality >30 and bases with quality >20. Across the 966,607 base pair target 

region, we retained an average 123,221,974 bases per individual (127.5× average coverage). 

Within targeted regions, 98.49% of the protein coding exons had coverage >10×.

We performed variant calling step using UMAKE23. Genotype calling and polymorphism 

discovery were attempted across the original target +/− 50 basepairs. To remove low quality 

variants, we excluded: 1) sites with average depth <0.5 or >500; 2) sites with evidence of 

strand bias or cycle bias; 3) sites within 5 basepairs of a 1000 Genomes Project indel; 4) 

sites with excess heterozygosity. These filters excluded 15,219 low quality variants. The 

transition-transversion ratio (Ts/Tv) for the remaining 31,527 site was 2.10. Concordance 

rates between sequence-based genotypes in 13 duplicates were 99.82% when depth >10×. 

Concordance with array-based genotypes20 was 98.99% when depth >10×.

59.8% of discovered variants are novel (versus dbSNP 135 and the 1000 Genomes Project). 

On average, each sample carried 40 synonymous variants, 34 nonsynonymous variants and 1 

nonsense variant.

Initial analyses

We first performed single variant association tests using Fisher’s exact test. This analysis 

confirmed strong association for common variants near CFH, C2, ARMS2 and C3 genes. An 

initial examination of rare variants suggested some signals were shadows of common 

variants with larger effects, so we focused on those where association remained significant 

after accounting for nearby common variants. Conditional signals were evaluated by exact 

logistic regression42,43. Three coding variants had conditional exact P-value less than 0.01 

(all also had marginal p-values < 0.01).
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Augmenting our sample

We sought ancestry matched controls among samples sequenced in the ESP project. First, 

we used genome-wide reads to infer sample ancestries on a worldwide population map. 

Briefly, we first generated a genetic ancestry PCA space using genotyped reference samples 

(such as those from the Human Genome Diversity Panel). Then, we generated a series of 

sample specific genetic ancestry PCA that are calibrated to the exact sequencing depth and 

coverage pattern of each sample and include the reference samples together with a single 

sequenced sample. Finally, we transformed sample specific PCA coordinates to the original 

map using Procrustes analysis. This procedure generates a metric (the Procrustes similarity) 

that summarizes similarity of reference sample placements using array genotypes to 

placements using sequence data and we only considered samples where this metric was 

>0.95 as candidates for matching. Second, we used a procedure inspired on propensity score 

matching to pair cases and controls44. Briefly, this procedure uses logistic regression to 

predict the probability that an individual is a case using the four principal components of 

ancestry as predictors and disease status as the outcome. This estimated probability of being 

a case for each sample is a propensity score and can be used to match cases and controls. For 

matching, we used a greedy algorithm to match cases and controls; allowing matches when 

the respective propensity scores differed by <.0001. An alternative matching algorithm that 

matched cases and controls mapping close together in principal component space according 

to the Euclidean distance between them gave similar results (association at K155Q had 

OR=2.68, exact p-value 4.5×10−5 using Fisher’s exact test).

To avoid variant calling artifacts, we applied very stringent filters to both the AMD study 

and ESP study call sets. For both studies, we examined only sites with call rates >90%, 

Phred-scaled variant quality scores >30, passing all study specific quality control filters, 

with depth >10× for >90% of the samples in the AMD or ESP callsets, and >5-bp from a 

1000 Genomes Project indel. Primers used to confirm the presence of K155Q by Sanger 

Sequencing are given in Supplementary Table 6.

Analyses using the combined AMD and ESP data set

Similar to our initial analysis, we first applied Fisher’s exact test for association to all 

variants. Next, we examined variants with frequency <1% for which signal remained 

significant after adjusting for common variants. This analysis highlighted R1210C in CFH 

and K155Q in C3 (Figure 1).

Linkage disequilibrium analysis

To search for variants that might explain the signal at K155Q, we evaluated linkage 

disequilibrium between K155Q and all variants within 1 Mb both within the samples 

sequenced for this experiment and also in preliminary whole genome sequence data for 600 

individuals (300 macular degeneration cases, 300 controls; Swaroop, Stambolian and 

Abecasis, personal communication). This analysis did not find variants in strong linkage 

disequilibrium in the nearby region. The variant is only present in one 1000 Genomes 

Project sample, which does not allow for reliable estimates of linkage disequilibrium.
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Segregation analysis

In a segregation analysis, one identifies probands who carry K155Q and then evaluates the 

probability that they transmit the variant to affected relatives (under the null, we would 

expect to find the variant in 50% of first degree relatives of a carrier). We genotyped 471 

pedigrees with multiple affected individuals. In each pedigree where K155Q was found in 

>1 affected individual, we selected the nuclear family with the largest number of affected 

individuals. We recorded the number of affected individuals (N) and the number of K155Q 

carriers (C). Then, to average over possible choices of proband, we assigned each family a 

weight of C/N (this is the probability that a randomly selected proband in the family carries 

K155Q) and then scored the number of affected first degree relatives (N-1) and of carriers 

among those (C-1). The estimated fraction of carriers among affected first degree relatives 

of a proband is then calculated by summing C/N * (C-1) and C/N * (N-1) over families and 

taking the ratio of the two quantities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
C3 variants R102G and K155Q and CFH variant R1210C are in the interaction domains of 

the first alpha-macro-globular domain of C3b and CFH, respectively. The fragment of the 

crystal structure of the four Sushi domains (purple in figure, one not shown for clarity) of 

CFH in a complex with complement fragment C3b (PDB file: 2wii) was used to explore the 

effect of disease associated nonsynonymous changes. The CFH residues 987–1230 were 

used to generate the structure using the first four Sushi domains from 2wii as a structural 

template (shown in pink, with cysteine residue side chains in yellow). The C-terminal Sushi 

domains were docked to the binding site in C3b. The first two alpha-macro-globulin 

domains of C3b, MG-1 and MG-2, are shown in green and cyan, respectively. The location 

of mutations R102G, K155Q, and R1210C are marked in red.
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