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Abstract

Applied Machine Learning for Resource Provisioning of Data-Intensive

Applications on Scale-Out Platforms and Its Security Challenges

The processing of data-intensive applications is a challenging and time-consuming task that

often requires massive infrastructure to ensure fast data analysis. One of the most power-

ful scale-out infrastructures to perform massive computation (e.g. big data analytics) and

eliminate the need to maintain high-end expensive computing resources at the user side is

the cloud. The performance and the cost of such infrastructure depend on the overall server

configuration, such as processor, memory, network, and storage configurations. In addition

to the cost of owning or maintaining the hardware, the heterogeneity in the server config-

uration further expands the selection space, leading to non-convergence. The challenge is

further exacerbated by the dependency of the application’s performance on the underlying

hardware.

Despite an increasing interest in resource provisioning, little works have been done in devel-

oping accurate and practical models to proactively predict the performance of data-intensive

applications corresponding to the server configuration and provision an optimal configu-

ration online. The key challenges of current solutions are uncertainty in predictions, cost

of training, generalizability from benchmark datasets to real-world systems datasets, and

interpretability of the model.

In this dissertation, through a comprehensive real-system empirical analysis of performance,

we address these challenges by introducing a proactive machine-learning-based methodol-

ogy for resource provisioning. We first characterize diverse types of data-intensive workloads

across different types of server architectures. The characterization aids in accurately capture

applications’ behavior and train a model for the prediction of their performance. Then, we

build a set of cross-platform performance models for applications. Based on the developed
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predictive model, we use optimization techniques to distinguish close-to-optimal configura-

tions in order to reach the performance goal.

On the other hand, in recent literature, researchers substantiated that the machine learning-

based models bring new security challenges such as adversarial machine learning attacks. In

this dissertation, we investigate what could be the target of adversarial machine learning

in the cloud domain and how much the risk of this new thread is real. To the best of

our knowledge, we are the first group looking into this domain of research as no report

has been found on the adversarial attacks on resource provisioning systems (RPS) of the

cloud. Our investigation shows that adversarial machine learning can be used for co-locating

the adversary Virtual Machines (VM) with the victim VM to attack to its performance.

Moreover, we show that the attacker can fool the RPS to evade the detection and migration

performed by RPS.
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Chapter 1

Introduction

The information age brought along an explosion of big data from multiple sources in every

aspect of our lives [142]. Recent trends suggest that for efficient processing of data-intensive

applications, there is a strong demand to find effective solutions for improved data storage,

real-time processing, and energy-efficient processing [18]. In response, distributed platforms

have emerged as a solution to address these challenges [18]. For a such environment, several

frameworks such as Hadoop [42], Spark [44], Flink [41], and Tez [45] have been developed

in recent years.

In-Memory cluster Computing (IMC) frameworks such as Spark and Flink have become

increasingly important and popular as they achieve multifold speedup over traditional On-

Disk Cluster Computing (ODC) frameworks for iterative and interactive applications [31].

However, a key challenge for IMC is that its performance is highly sensitive to the underlying

processing and memory configuration, thus requiring the developers to navigate through a

large design space to determine a configuration that leads to the optimal performance [130].

At the same time, the advancements of hardware architecture designs lead to datacenters

with diverse hardware systems. This hardware diversification at different levels is marking

the beginning of an era of super-heterogeneous datacenters. From the application perspec-

tive, as different applications have different characteristics, one architectural configuration
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fits all does not provide the best performance and energy efficiency for every application.

This calls for developing an effective strategy to determine the most suitable architecture

(resource provisioning) in a heterogeneous datacenter for a given application to deal with

the fast-growing data using the existing resources more efficiently. This dissertation aims

at developing automatic resource management mechanisms for the scale-out platforms that

enable distributed systems to achieve faster and predictable performance while reducing the

cost and energy.

1.1 Challenge of Diversity

Virtualization is a process of resource sharing and isolation of underlying hardware to in-

crease computer resource utilization, efficiency, and scalability. Therefore, the cloud service

providers offer a wide range of cloud configuration choices such as VM instances with a

variety of CPUs, memory, disk, and network configurations and also customized VMs for

analytics applications.

The super-heterogeneous datacenter makes determining the best cloud configuration for

a given application by brute-force search expensive and exhaustive. Choosing the right cloud

configuration is essential, as a non-optimal configuration results in more cost for the same

performance target as different analytic jobs have diverse behaviors and resource require-

ments. As Figure 1.1 illustrates, an efficient resource provisioning impacts three different

aspects of the cloud. It fulfills Service-level agreements (SLA) and meets cloud customers’

requirements. It guarantees cloud obligations to its users. It also prevents resource waste,

thereby reducing energy consumption and the operational cost. The reduction of energy con-

sumption leads to a decrease in carbon emission, which facilitates green computing. Hence,

energy-aware resource provisioning is also important for reducing cost and for increasing

revenue that improves the profit of cloud providers [120].

A more challenging problem is that the behavior and resource requirements of applica-

tions running on the cloud vary during different phases of execution. Each application faces
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Figure 1.1: Impact of resource provisioning on the cloud’s aspects

various phases of execution, each with different memory and processing requirements. Based

on the Top-down methodology [128] , three major phases can be identified in an applica-

tion namely I/O bound phase, memory bound phase, and compute bound phase. These

phases are different in terms of their microarchitectural behavior, therefore requiring differ-

ent processing and memory resources for performance and energy-efficiency optimization.

For instance, compute-bound phase requires more cores, higher core frequency, and higher

DRAM bandwidth.

Figure 1.2 illustrates the microarchitectural differences between those three phases. The

micro-op (µop) queue of an out-of-order processor is used to abstract the microarchitectural

behavior. The op queue is classified in four broad categories: Retiring, Front-end bound,

Bad speculation, Back-end bound. Out of these categories, only the Retiring is classified as

“useful work” while the rest prevents the workload from utilizing the full core bandwidth. In

addition to µop queues, C0 (active state residency of processor) is a metric that can be used

to differentiate among phases. As the figure shows, the main difference between memory

bound and I/O bound is C0 residency. This can be explained as follows: in I/O intensive

phase, the core is waiting for I/O, hence the core changes its state to save power. Therefore,

C0 residency drops.

There are thousands of applications running at the same time in a cloud and each requir-

ing different processing and memory resources to be allocated at different phases of runtime.

It is, therefore, necessary that resource management system identifies those phases at run-
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Figure 1.2: Microarchitectural break-down of workloads for different phases

time, to be able to allocate resources accordingly. Hence, this makes existing traditional

reactive resource allocation methodologies achieve a sub-optimal performance gain and hard

to apply effectively to emerging cloud computing services.

1.2 Security Threats in Cloud Rooted from ML in

RPS

Although maximizing utilization, i.e., sharing of resources, is key to achieving cost-efficiency

in the cloud, it also opens the door for security and privacy vulnerabilities. In particular,

these resources will be shared among different users, due to the multi-tenancy capability

of hosts in the cloud, which facilitate a platform for performing a wide range of resource

sharing-based attacks, including transient execution attacks [17], rowhammer attacks [123],

distributed side-channel attacks [65] and distributed denial of service attacks (DDoS) [34],

data leakage exploitation [139, 116], and attacks that pinpoint target VMs in a cloud sys-

tem [125]. Mounting such attacks is trivial once the attacker is co-located with the victim.

Therefore, the biggest challenge of attacks that exploit resource sharing in cloud environ-
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ments is co-location [138].

Unfortunately, RPSs can become a blind spot and vulnerability that can be exploited

to solve the co-location challenge of resource sharing-based attacks. In particular, adver-

sarial attacks against machine learning models can be adopted to force RPSs to co-locate

the attacker with the victim. A plethora of works on adversarial attacks exists, focusing

specifically on computer vision applications [15, 30, 60, 90]. These attacks work by adding

specially crafted perturbations to the input data, i.e., an image, of machine learning models

to manipulate their outcome. However, pixels of an image can be easily manipulated inde-

pendently without changing the appearance of the image since images have high entropy. In

contrast, adding adversarial perturbations to attack programs have different challenges since

the attacker needs to ensure that the adversarial perturbations do not alter the malicious

payload.

We urge that current RPSs can be exploited to facilitate a wide range of attacks by solving

the co-location challenge in the cloud and also highlight a serious need for new techniques

to be invented that guarantee security. Specifically, although there is a large number of

defenses classes that were developed against computer vision-based adversarial attacks, these

defenses are limited in defending against such attacks to RPSs. In particular, these defenses

assume that the attacker has a budget, i.e., the maximum amount of perturbation that can

be added to an image without changing it’s content. This is important in the computer

vision domain, since the goal of adversaries is to perturb an image to fool a specific machine

learning classifier, but can still be classified correctly by a human. However, for programs

perturbations, there is no such budget/constraint, allowing the attacker to have an unlimited

degree of freedom to add perturbations without risking increasing the possibility of being

detected.

After co-locating the adversarial VMs with the targeted victim, attackers face two more

challenges, namely detection and migration. Specifically, the RPS job does not stop after

the instance initialization phase, i.e., initial deployment of a VM on a suitable host. It has

been shown that periodic monitoring after the initial deployment can be unitized to improve
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both security and performance. For security, the trace information can be used to detect

attacks based on computational anomaly [22]. For performance, the trace can be utilized

to detect performance degradation due to resource contention or behavioral change of the

running application and migrate the VM to a different host. However, attacks can evolve to

bypass such detection as well as avoiding VM migration.

1.3 Overview of the dissertation

Aforementioned challenges have motivated us to devise a new resource management method-

ology in the scale-out environment. A resource provisioning system (RPS) facilitates various

services including resource efficiency, security, fault tolerance, and monitoring to achieve

the performance goals while maximizing the utilization of available resources. To this end,

our contributions focus on using machine learning solutions to overcome the challenge of

application diversity and heterogeneity of resources.

Several machine learning based resource provisioning systems have been proposed for

cloud systems in literature that we will discuss their details in the chapter 2, the state of the

art of RPSs. As we mentioned, the RPS attempts to meet the user performance requirements

and provider efficiency in terms of multiple aspects such as load balancing among servers,

minimum number of active hosts, and least response time, to avoid service-level agreement

(SLA) violations in the cloud platform. Hence, RPSs or schedulers to fulfil their objectives

must have two main tasks [78]: 1) Instance initialization and 2) Periodic monitoring of

applications.

During the instance initialization stage, when an instance is created and submitted to

scheduler, the scheduler profiles the application and based on the application’s behavior

determines the resources required for meeting its SLA. Machine learning can be used in this

stage to identify application’s characteristics and determine its basic requirements. After

that, scheduler allocates the instance to a host in the infrastructure.

During the periodic monitoring stage, scheduler monitors application’s behavior to guar-
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Figure 1.3: MLbased resource provisioning system

antee the SLA all the time. In a case that application’s behavior changes, the scheduler

attempts to reschedule and migrate the instance to a new host to provide required resources

to meet the SLA agreement. In this stage, machine learning can be leveraged to first detect

the behavior change, and secondly to model the performance, cost, or even the energy of

application for determining the best instance that can cope with the change of application’s

requirements.

Figure 1.3 shows how a general ML-based RPS works. First, the system monitors the

application and extracts its micro-architectural and system level information. Then based on

the current behavior and server configuration, it may predict the performance of application

to make sure that performance of application will not be degraded. If the RPS identifies a

performance degradation, then by leveraging optimization techniques, it determines another

suitable configuration and host for the application. We propose a new approach that lever-

ages the knowledge on application behavior the system accumulates through data collection

over time. By applying data mining principles to these datasets in a mindful manner, we

significantly improve both the quality and practicality of large-scale resource provisioning.

In the context of the problem domains described in the previous sections, below we outline

the systems we designed, implemented, and evaluated.
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A Comprehensive Performance Analysis of Data-Intensive

Workloads on Server Class Architecture

Given the large size and heterogeneity of the data, it is currently unclear whether big data

analytics’ frameworks will require high-performance and large-capacity memory to cope with

this change and exactly what role main memory subsystems will play; particularly in terms

of energy efficiency. In this work, we investigate how the choice of DRAM (high-end vs low-

end) impacts the performance of Hadoop, Spark, and MPI based big data workloads in the

presence of different storage types on a local cluster. Our results show that Hadoop workloads

do not require high capacity memory. However, Spark and MPI based workloads require large

capacity memory. Moreover, Increasing memory bandwidth through the increasing memory

frequency or the number of channels does not improve the performance of Hadoop workloads

while iterative tasks in Spark and MPI benefits from high bandwidth memory. Among the

configurable parameters, our results indicate that increasing the number of DRAM channels

reduces DRAM power and improves the energy-efficiency across all applications.

MeNa: A Memory Navigator for Modern Hardware in a Scale-out

Environment

Scale-out infrastructure such as Cloud is built upon a large network of multi-core proces-

sors. Performance, power consumption, and capital cost of such infrastructure depend on

the overall system configuration including number of processing cores, core frequency, mem-

ory hierarchy and capacity, number of memory channels, and memory data rate. Among

these parameters, memory subsystem is known to be one of the performance bottlenecks,

contributing significantly to the overall capital and operational cost of the server. Also, given

the rise of Big Data and analytics applications, this could potentially pose an even bigger

challenge to the performance of cloud applications and cost of cloud infrastructure. Hence

it is important to understand the role of memory subsystem in cloud infrastructure and in
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particular for this emerging class of applications. In this work, through a comprehensive

real-system empirical analysis of performance, we first characterize diverse types of scale-out

applications across a wide range of memory configuration parameters. The characterization

helps to accurately capture applications’ behavior and derive a model to predict their perfor-

mance. Based on the developed predictive model, we propose MeNa, which is a methodology

to maximize the performance/cost ratio of scale-out applications running in cloud environ-

ment. MeNa navigates memory and processor parameters to find the system configuration

for a given application and a given budget, to maximum performance. Compared to brute

force method, MeNa achieves more than 90% accuracy for identifying the right configura-

tion parameters to maximize performance/cost ratio. Moreover, we show how MeNa can

be effectively leveraged for server designers to find architectural insights or subscribers to

allocate just enough budget to maximize performance of their applications in the cloud.

E-Net: Energy-Aware and Neural Network-based Resource

Provisioning for In-Memory Computing on Scale-Out Platform

In this work [74], we propose E-Net which leverages an artificial neural network to build

a cross-platform energy-performance estimation model as well as an application’s behavior

predictor. Based on the developed predictive model and energy-performance estimator, E-

Net uses an optimization engine to distinguish close-to-optimal configuration in order to

minimize the Energy Delay Product (EDP) metric, which indicates the trade-off between

energy and performance. Compared to Oracle cluster management system, proposed E-Net

achieves 93% accuracy to predict the future application’s behavior. E-Net shows promising

energy-efficiency results, improving the EDP by 40% compared to the default scheduler in

Spark and Flink and 16% compared to the state of the art technique.
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ProMLB: Adaptive Performance Modeling of Data-Intensive

Workloads for Resource Provisioning in Virtualized Environment

Despite an increasing interest in resource provisioning, little works have been done in devel-

oping accurate and practical models to proactively predict the performance of data-intensive

applications corresponding to the server configuration and provision a cost-optimal config-

uration online. In this work, we introduce ProMLB: a proactive machine-learning-based

methodology for resource provisioning.

ProMLB builds a set of cross-platform performance models for each application. Based

on the developed predictive model, ProMLB uses an optimization technique to distinguish

close-to-optimal configuration in order to minimize the product of execution time and cost.

Compared to the oracle scheduler, ProMLB achieves 91% accuracy in terms of application-

resource matching. On average, ProMLB improves the performance and resource utilization

by 42.6% and 41.1%, respectively, compared to baseline scheduler. Moreover, ProMLB

improves the performance per cost by 2.5× on average.

Adversarial Railroading of Resource Sharing-based Attacks on the

Cloud

We propose Cloak & Co-locate – a novel approach to improve the effectiveness of distributed

attacks on cloud infrastructure. For this purpose, by reverse-engineering the resource provi-

sioning system and employing the adversarial machine learning attack, we co-locate adver-

sary VM with the victim and evade detection, as well as migration caused by the scheduler.

We proposed to use a fake trace generator (FTG) and wrap it around the adversary kernel

(Cloak). The fake trace generator can be spawned as a separate thread, generating a pat-

tern close to the victim VM’s pattern, fooling the scheduler to co-locate it with the victim

VM. After co-location, FTG continuously crafts new behavior to disguise itself and fool RPS

for remaining co-located on the same host as the victim. This research motivates real-world
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public cloud providers to introduce stricter isolation solutions in their platforms and systems

architects to develop robust RPSs that provide security and performance predictability at

high utilization.

1.4 Organization

This dissertation incorporates our previously published work [72, 69, 74, 67] and is organized

as follows.

Chapter 2 surveys existing characterization of data-intensive applications and resource

management mechanisms.

Chapter 3 evaluates the impact of the memory parameters on the performance and energy

efficiency of big data analytics frameworks.

Chapter 4 introduces MeNa. MeNa is a three-stage methodology that navigates memory

and CPU parameters to find the best performance/cost configuration for a given budget set

by the user.

Chapter 5 describes E-Net, a configuration tuning methodology that automatically adjusts

the hardware configuration assigned to a Virtual Machine (VM) in a proactive manner in

order to dynamically optimize the energy efficiency of a given IMC program running on a

given heterogeneous cluster of servers.

Chapter 6 presents ProMLB, a proactive online resource provisioning methodology to ad-

dress the challenge of resource allocation for data-intensive workloads in scale-out platforms.

Chapter 7 covers the security vulnerability of resource provisioning systems and shows that

RPSs can be exploited to solve the challenge of co-location in resource sharing-based attacks
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in the cloud.

Chapter 8 concludes with future directions for research.
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Chapter 2

State of the Arts on ML-Assisted

Resource Provisioning Systems

This chapter presents the state-of-the-art resource provisioning systems. But before that,

we summarize the relevant literature on the characterization of data-intensive applications

and memory subsystem.

2.1 Characterization

Memory

A recent work on big data [27] profiles the memory access patterns of Hadoop and noSQL

workloads by collecting memory DIMM traces using special hardware. This study does not

examine the effects of memory frequency and number of channels on the performance of the

system. A more recent work [21] provides a performance model that considers the impact

of memory bandwidth and latency for big data, high-performance, and enterprise workloads.

The work in [4] shows how Hadoop workload demands different hardware resources. This

work also studies the memory capacity as a parameter that impacts the performance. How-

ever, as we showed in this work, their finding is in contrast with ours. In [141] the authors
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evaluate contemporary multi-channel DDR SDRAM and Rambus DRAM systems in SMT

architectures. The work in [9] mainly focuses on page table and virtual memory optimization

of big data and [53] presents the characterization of cache hierarchy for a Hadoop cluster.

These works do not analyze the DRAM memory subsystem. In addition, several studies

have focused on memory system characterization of various non-big data workloads such as

SPEC CPU or parallel benchmark suites [8, 133, 103]. Moreover, [68] studied the impact

of memory parameters on the power and energy efficiency of big data frameworks but did

not study the effect of input size and processor configuration on memory behavior. Another

recent work studied the effect of memory bandwidth on the performance of MapReduce

frameworks and presented a memory navigator for modern hardware [69]. Few works [70,

131] studied the impact of fault tolerant techniques on the performance and memory usage

of embedded system.

Big Data

A recent work on big data benchmarking [124] analyzes the redundancy among different big

data benchmarks such as ICTBench, HiBench and traditional CPU workloads and introduces

a new big data benchmark suite for spatio-temporal data. The work in [89] selects four big

data workloads from the BigDataBench [119] to study I/O characteristics, such as disk

read/write bandwidth, I/O devices utilization, average waiting time of I/O requests, and

average size of I/O requests. Another work [63] studies the performance characterization of

Hadoop and DataMPI, using Amdahl’s second law. This study shows that a DataMPI is more

balanced than a Hadoop system. In a more recent work [47] the authors analyze three SPEC

CPU2006 benchmarks (libquantum, h264ref, and hmmer) to determine their potential as big

data computation workloads. The work in [11] examines the performance characteristics of

three high-performance graph analytics. One of their findings is that graph workloads fail to

fully utilize the platform’s memory bandwidth. In a recent work [54], Principle Component

Analysis is used to detect the most important characteristics of big data workloads from
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BigDataBench. To understand Spark’s architectural and micro-architectural behaviors, a

recent work evaluates the benchmark on a 17-node Xeon cluster [55]. Their results show

that Spark workloads have different behavior than Hadoop and HPC benchmarks. Again,

this study does not consider the effect of memory subsystems on big data. The work in [50]

performs performance analysis and characterizations for Hadoop K-means iterations. This

study has also proposed a performance prediction model in order to estimates performance

of Hadoop K-means iterations, without considering the memory requirements. The results

of the latest works on memory characterization of Hadoop applications also are in-line with

our findings [75, 71]. Moreover, there are studies on hardware acceleration of Hadoop

applications that do not analyze the impact of memory and storage on the performance [87,

86]. Makrani et al. proposed compressive sensing based accelerator for multimedia big data

application to reduce the I/O bottleneck for getting performance gain from high-end memory

[73].

2.2 Resource Provisioning Systems

Table 2.1 summarizes the recent works and differentiates them from each others. In the

system column, after the name of each system, we have provided the name and the con-

ference in which the research has been published. Moreover, in this table proactive means

to act before a significant change occurs in the behavior of application and influences the

performance of the system.

One of the most popular RPS is Quasar [26] that leverages machine learning and col-

laborative filtering to quickly determine which applications can be co-scheduled on the same

machine without destructive interference. CherryPick [2] is another successful system that

leverages Bayesian Optimization and Regression technique to build performance models for

various applications to distinguish the close-to-the-best configuration. Ernest [112] uses

common machine learning kernels and statistical techniques for selecting the optimal config-

uration on the cloud. PARIS [127] is another ML-assisted system that uses Random Forest
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Table 2.1: Comparison of state of the arts

System Target Complexity Accuracy Proactive Dynamic Domain Cost aware
ProMLB (TOMPECS’21) Performance/cost, Fairness High High Yes Yes Big Data Yes
BoPF (SIGMETRICS’19) Fairness Medium High No No Big Data No

DAC (ASPLOS’18) Performance High High No No In-memory No
PARIS (SoCC’17) Performance Medium Medium No Yes Broad Yes

CherryPick (NSDI’17) Performance Low Low No No Big Data No
MeNa (IISWC’17) Performance/cost Low Low No No Broad Yes

HCloud (ASPLOS’16) Cost Medium Medium No Yes Scale-out Yes
Ernest (NSDI’16) Performance Medium High No No Big Data No

Heracles (ISCA’15) Performance Low Medium No Yes Latency-critical No
Quasar (ASPLOS’14) Performance Medium Medium No Yes Scale-out No
REF (ASPLOS’14) Fairness low Low No Yes Broad No

Paragorn (ASPLOS’13) Performance Medium Low No Yes Scale-out No

for predicting performance from the application’s micro-architectural behavior to find the

best VM type configuration.

There are several works that have focused on other aspects of resource provisioning

such as energy efficient resource provisioning for cloud. Zhang et al. [135] provided a

control-theoretic solution to the dynamic capacity provisioning problem that minimizes the

total energy-cost while meeting the performance objective in terms of task scheduling de-

lay. Guevara et al. [33] studied how heterogeneous platforms bring energy-efficiency for

cloud applications. Guenter et al. [32] proposed an automated server provisioning system

that aims to meet workload demand while minimizing energy consumption in data centers.

Altomare et al. [3] developed a system for energy-aware allocation of virtual machines on

Cloud physical nodes.

Paragon, ANN-Dynamic, and HCloud [25, 57, 23] were proposed to address QoS-aware,

performance-aware, and cost-aware scheduling and resource allocation. The works in REF

[132] and BoPF [61] are resource provision methods to schedule a fair set of resources for

each user at a computer architecture to cloud level by presenting fair resource allocation

mechanisms that customized preferences to determine each user’s fair share of the hardware.

However those methods are not proactive. Kulkarni et al. [58], and Delimitrou et al. [22] are

other works that target heterogeneity and security of the cloud respectively. Kousiouris et al.

[57] proposed to use a two-layer service in cloud to translate high level application parameters

(workload and QoS based on Service Level Agreement) to resource level attributes. Their
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work did not consider any performance model to select the optimum configuration. Also,

they have not considered the cost efficiency.

There are other systems that adaptively allocate resources based on feedback. Rightscale

[94] creates additional VM instances when the load of an application crosses a threshold for

EC2. YARN [111] decides resource needs based on requests from the application. Other

systems have explicit models to inform the control system, e.g., work of Bodik et al. [16].

Wrangler [126] identifies overloaded nodes in map-reduce clusters and delays scheduling

jobs on them. Interference is creating challenge in accurate performance estimation. In two

recent works, Maji et al. [66], and Romero et al. [96] explore placing applications on par-

ticular resources to reduce interference, by co-scheduling applications with disjoint resource

requirements. However, users requesting VM types in cloud services like Amazon EC2 can-

not usually control what applications are co-scheduled. None of these studies have focused

on the influence of system parameters such as of memory or storage on the performance and

cost in the cloud.

Moreover, Jackson et al. [51], and Barker et al. [7] analyzed high-performance com-

puting (HPC) applications, latency-sensitive applications, scientific applications, and micro-

benchmark applications on the cloud. Kanev et al. [56] analyzed cloud-scale workloads

to provide infrastructure-level insights for cloud providers. Our approach is to alleviates

the need for significant knowledge about the application. Using application’s architectural

signature collected by running a task from a workload for a short perio of time on a reference

VMs, we predict the performance-energy trade-off tailored to that workload across various

options in the scale-out environments.
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Chapter 3

Performance Analysis of

Data-Intensive Applications

The emergence of data analytics frameworks requires computational resources and memory

subsystems that can naturally scale to manage massive amounts of diverse data. It is cur-

rently unclear whether big data frameworks such as Hadoop, Spark, and MPI will require

high bandwidth and large capacity memory to cope with this change. The primary purpose

of this chapter is to answer this question through empirical analysis of different memory con-

figurations available for commodity server and to assess the impact of these configurations on

the performance Hadoop and Spark frameworks, and MPI based applications. Our results

show that neither DRAM capacity, frequency, nor the number of channels play a critical

role on the performance of all studied Hadoop as well as most studied Spark applications.

However, our results reveal that iterative tasks (e.g. machine learning) in Spark and MPI

are benefiting from a high bandwidth and large capacity memory.
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3.1 Introduction

The information age brought along an explosion of big data from multiple sources in every

aspect of our lives [142]. Big data is an enabler of future strategies and immediate change

through the power of predictive analytics and advanced data science. Properly harnessing

data can help to achieve better, fact-based decision-making and improve the overall customer

experience. By using new big data technologies, companies can answer questions in seconds

rather than days, and in days rather than months. This acceleration allows businesses to

enable the type of quick reactions to key business questions and challenges that can build

competitive advantage and improve performance, and provide answers for complex problems

or questions that have resisted analysis.

Big data analytics applications heavily rely on machine learning and data mining algo-

rithms, and are running complex software stack with significant interaction with I/O and

OS, and exhibit high computational intensity and I/O intensity [13]. In addition, unlike

conventional CPU applications, big data applications combine a high data rate requirement

with high computational power requirement, in particular for real-time and near-time per-

formance constraints.

Big data frameworks such as Hadoop, Spark, and MPI are three popular platform that

enables big data analytics. Hadoop has been developed to use a cluster of commodity

server to process large datasets. However, Spark is developed to overcome the limitation

of Hadoop on efficiently utilizing main memory. MPI, a de facto industry standard for

parallel programming on distributed memory systems, is also another platform used for data

analytics [119].

In the era of big data, it is important to evaluate the effect of main memory parameters

on the performance of data-intensive applications in the presence of different storage types.

While there is literature on understanding the behavior of big data applications by charac-

terizing them, most of prior works have focused on the CPU parameters such as core counts,

core frequency, cache parameters, and network configuration or I/O implication with the
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assumption of the demand for using the fastest and largest main memory in the commodity

hardware [27, 4, 53, 89, 63, 50, 76]. .

In this chapter, we evaluate the impact of the memory parameters on the performance and

energy efficiency of big data analytics frameworks. To perform the memory subsystem analy-

sis, we have investigated three configurable memory parameters including memory capacity,

memory frequency, and number of memory channels, to determine how these parameters

affect the performance and power consumption of big data applications. Additionally, we

study the impact of storage on the memory behavior of big data applications. This analysis

helps in making architectural decision such as what memory architecture to use to build a

server for big data applications.

Our evaluation reveals that Hadoop applications do not require a high bandwidth-

capacity memory subsystem to enhance the performance. Improving memory subsystem

parameters beyond 1866 MHz Frequency and a single channel does not enhance Hadoop

performance noticeably. Moreover, Hadoop framework does not require large capacity mem-

ory, since it stores all intermediates data on the storage rather than in the main memory.

On the other hand, Spark and MPI applications benefit from higher memory frequency

and number of channels if the application is iterative such as machine learning algorithms.

However, increasing the number of memory channels beyond two channels does not enhance

the performance of those applications. This is an indication for lack of efficient memory

allocation and management in both hardware (memory controller) as well as software stack.

Furthermore, our results show that the memory usage of Spark framework is predictable

that helps to not over-provision the memory capacity for Spark based big data applica-

tions. On the other hand, MPI framework shows that its memory capacity requirement

varies significantly across studied applications. This therefore indicates that applications

implemented with MPI are requiring a large capacity memory to prevent from becoming

a performance bottleneck. To understand whether our observations on memory subsystem

behavior remains valid for future architectures with higher number of cores, larger cache

capacity, and higher operating frequency, we performed further micro-architectural study
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to understand the impact of these parameters on memory behavior. Our results suggest to

use a low frequency DRAM memory with high number of channels which reduces the power

consumption of DRAM by 57% without any performance degradation in order to improve

the energy efficiency of big data clusters.

The findings of this study are important as they help server designers to avoid over

provisioning the memory subsystem for many of data analytics applications. Moreover, we

found that the current storage systems are the main bottleneck for the studied applications

hence any further improvement of memory and CPU architecture without addressing the

storage problem is a waste of money and energy.

The remainder of this chapter is organized as follows: Section 3.2 provides technical

overview of the investigated workloads and the experimental setup. Results are presented in

Section 3.3. Finally, Section 3.4 concludes the chapter.

3.2 Experimental Setup

In this section, we present our experimental system configurations and its setup. We first

introduce the studied frameworks and workloads. We then describe our hardware platform.

Finally, we present experimental methodology and the tuning of HDFS (Hadoop Distributed

File System) block size in order to optimize the platform for Hadoop and Spark frameworks.

Frameworks

Hadoop: One of the most popular framework for big data is MapReduce introduced by

Google. Apache Hadoop is a java-based open source implementation of the MapReduce

programming model, which is pivotal in big data computing [107]. Hadoop has been utilized

in various areas, such as machine learning, search engines, log analysis, and e-commerce. The

success of Hadoop is due to its scalability, fault tolerance, and simplicity of programming.

Hadoop is composed of two layers. The first layer is a data storage called HDFS and the
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second layer is a data processor called Hadoop MapReduce framework. HDFS is a block

based file system. Hadoop MapReduce cannot keep reused data and state information during

execution [46]. Hence, it has to iteratively read the same data in each iteration, which results

in significant disk accesses and unnecessary overhead.

Spark: Spark is another MapReduce-like cluster computing framework designed to over-

come Hadoop’s shortage in utilizing main memory. Spark uses HDFS as data storage system.

In addition, Spark uses a new data structure called Resilient Distribute Dataset (RDD). The

main responsibility of RDD is to cache data, which avoids data reloading from the disk. RDD

allows users to cache the high value data in memory, and controls the persistence of data.

It is suitable for applications with iterative algorithms that can achieve tremendous speed

up. Moreover, Spark supports a Directed Acyclic Graph (DAG) schedule which avoids ma-

terializing the intermediate values by pipeline operations to decrease I/O accesses. While

Hadoop uses a heartbeat scheduler to communicate scheduling decisions which impose 5 to

10 second delay, Spark task scheduling is low latency through an event-driven architecture.

MPI: A peer-to-Peer network is a decentralized and distributed network where thousands

of machines connected in the network consume, as well as, serve resources. Nodes use

Message Passing Interface (MPI) to communicate and exchange data between themselves.

One of the features of MPI is that a process does not need to read same data over and

over because it can live as long as the system runs. However, MPI has a major drawback

of lacking fault tolerance. Each node in this network is a single point of failure that can

cause the whole system to shut down. Hence, users who prefer a robust and fault tolerant

framework exploit other big data framework such as Hadoop. In response to this issue,

there are plans to include fault-tolerance inside the MPI model in its next major release. In

this chapter, our focus is not on MPI applications but on data analytics workloads which

use MPI for parallel implementation. The nature of most of big data applications is simple

but the main challenge is to process big amount of data which is out of the capability of a

single server to process. Therefore, findings of this chapter regarding MPI are only valid for

studied applications. It is important to note that, there are complex MPI based applications
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(outside of the scope of this study) that could have completely different behavior than what

we have observed in our experiments.

In our study, we used Hadoop MapReduce version 2.7.1, Spark version 2.1.0 in conjunc-

tion with Scala 2.11, and MPICH2 version 3.2 installed on Linux Ubuntu 16.04 LTS. Our

JVM version is 1.8.

Table 3.1: Studied workloads

Workload Domain Input type Input size (huge) Framework Suite
Wordcount micro-kernel text 1.1 TB

Sort micro-kernel data 178.8 GB Hadoop, Spark, MPI
Grep micro-kernel text 1.1 TB BigData Bench

Terasort micro-kernel data 834 GB Hadoop, Spark
Naive Bayes E-commerce Data 306 GB Hadoop, Spark, MPI
Page Rank E-commerce Data 306 GB Hadoop, Spark

Bayes E-commerce Data 306 GB Hadoop, Spark HiBench
k-means Machine learning Graph 112.2 GB Hadoop, Spark, MPI BigDataBench
nweight Graph analytics Graph 176 GB Spark

HiBench
Aggregation Analytical query Data 1.08 TB

HadoopJoin Analytical query Data 1.08 TB
Scan Analytical query Data 1.08 TB

B.MPEG Multimedia DVD stream 437 GB

MPI BigDataBench

DBN Multimedia Images MNIST Dataset
Speech recognition Multimedia Audio 252 GB

Image segmentation Multimedia Images 162 GB
SIFT Multimedia Images 162 GB

Face detection Multimedia Images 162 GB

Workloads

Big data analytics applications are characterized by four critical features, referred as the four

”Vs”: volume, velocity, variety, and veracity. Big data is inherently large in volume. Velocity

refers to how fast the data is coming in and to how fast it needs to be analyzed. Variety refers

to the number and diversity of sources of data and databases, such as sensor data, social

media, multimedia, text, and much more. Veracity refers to the level of trust, consistency,

and completeness of data. The diversity of applications is important for characterizing big

data frameworks. This diversity can enable users to optimize their programs considering the

memory configuration of the framework.
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Similarly, cluster designers can evaluate their candidate memory configurations by con-

sidering different classes of applications. Hence, for this study we target various domains of

applications namely that of microkernels, graph analytics, machine learning, E-commerce,

social networks, search engines, and multimedia. We used BigDataBench [119] and HiBench

[46] for the choice of benchmarking. We selected a diverse set of applications and frameworks

to be representative of data analytics domain. More details of these workloads are provided

in Table 5.1. The selected workloads have different characteristics such as high level data

graph and different input/output ratios. Some of them have unstructured data type and

some others are graph based. Also these workloads are popular in academia and are widely

used in various studies.

Hardware platform

We carefully selected our experimental platform to investigate the micro-architectural effect

on the performance of data analytics frameworks to understand whether our observations on

memory subsystem behavior remains valid for future architectures with enhanced microar-

chitecture parameters or not. This includes analyzing the results when increasing the core

count and processor operating frequency. This is important, as the results will shed light

on whether in future architectures larger number of cores, higher cache capacity and higher

operating frequency change memory behavior of big data applications or not. Using the

data collected from our experimental test setup, we will drive architectural conclusion on

how these microarchitecture parameters are changing DRAM memory behavior and therefore

impacting performance and energy-efficiency of data-intensive applications.

For running the workloads and monitoring statistics, we used a six-node standalone clus-

ter with detailed characteristics presented in Table 7.1. To have a comprehensive experiment

we used different SDRAM memory modules. All modules are provided from the same vendor.

We used single socket servers in this study, in order to hide the NUMA effect (to understand

DRAM-only impact). While network overhead in general is influencing the performance of
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studied applications and therefore the characterization results, for big data applications, as

shown in a recent work [88], a modern high speed network introduces only a small 2%

performance benefit. We therefore used a high speed 1 Gbit/s network to avoid making it a

performance bottleneck for this study. Our NICs have two ports and we used one of them

per node for this study.

Table 3.2: Hardware Platform

Hardware
Parameter Value

type

CPU

Model
Intel Xeon
E5-2683 V4

# Core 16 (32 thread)
Base Frequency 2.1 GHz
Turbo Frequency 3.0 GHz
TDP 120
L3 Cache 40 MB
Memory Type DDR4
Support 1866/2133/2400
Maximum Memory

76.8 GB/S
Bandwidth
Max Memory

4
Channels supported

Disk
Model Samsung 960 PRO M.2
Capacity 512 GB

(SSD PCIE) Speed Max 3.5 GB/S

Disk
Model HyperX FURY
Capacity 480 GB

(SSD SATA) Speed 500 MB/S

Disk
Model Seagate
Capacity 500 GB

(HDD) Speed 7200 RPM
Network Model ST1000SPEXD4

Interface card Speed 1000 Mbps

Methodology

The experimental methodology of this chapter is focused on understanding how data ana-

lytics frameworks are utilizing main memory.

Data collection: We used Intel Performance Counter Monitor tool (PCM) [43] to

understand hardware (memory and processor) behavior. The performance counter data are
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collected for the entire run of each application, those counters were used to get the amount of

Bytes read or written by memory controller to calculate the memory bandwidth. We collect

OS-level performance information with DSTAT tool-a profiling tool for Linux based systems

by specifying the event under study. Some of the metrics that we used for this study are

memory footprint, L2, and Last Level Cache (LLC) hits ratio, instruction per cycle (IPC),

core C0 state residency, and power consumption. For power measurement, we used PCM-

power utility, which provides the detailed power consumption of each socket and DRAM.

We did not use WattsUp power meter because it does not have the breakdown of power and

also it collects power consumption of several parts of the system which are not related to

this study. Throughout this chapter we will present the results based on high speed SSD

disk. The default values for experiments are as follow: DRAM capacity = 32 GB, number

of memory channels = 4, memory frequency = 2400 MHz, core count per CPU = 16, and

CPU frequency = 2.6 GHz.

Parameter tuning: For both Hadoop and Spark frameworks, it is important to set the

number of mapper and reducer slots appropriately to maximize the performance. Based on

the result of [29], the maximum number of mappers running concurrently on the system to

maximize performance should be equal to the total number of available CPU cores in the

system. Therefore, for each experiment, we set the number of mappers equal to the total

number of cores. We also follow same approach for the number of parallel tasks in MPI.

Adjusting default memory parameters of Hadoop and Spark also is important. Hence, we

tuned Hadoop and Spark memory related configuration parameters. Followings are two most

important memory related parameters that we tuned for all experiments:

mapreduce.map.memory.mb: is the upper memory limit that Hadoop allows to be allo-

cated to a mapper, in megabytes. spark.executor.memory : Amount of memory to use per

executor process in Spark (e.g. 2 GB, 8 GB).

We set those values according to the following (we reserved 20% of DRAM capacity for
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OS):

mapreduce.map.memory.mb =

(DRAM capacity× 0.8)/

Number of concurrent mappers per node

(3.1)

spark.executor.memory =

((DRAM capacity− spark.driver.memory)× 0.8)/

Number of executor per node

(3.2)

A recent work has shown that among other tuning parameters in a MapReduce framework,

HDFS block size is also influential on the performance [14]. HDFS Block size has a direct

relation to the number of parallel tasks (in Spark and Hadoop), as shown in EQ. (3.3).

Number of Tasks = Input Size/Block Size (3.3)

In the above equation, the input size is the size of data that is distributed among nodes.

The block size is the amount of data that is transferred among nodes. Hence, block size

has impact on the network traffic and its usage. Therefore, we first evaluate how changing

this parameter affects the performance of the system. We studied a broad range of HDFS

block sizes varying from 32 MB to 1GB when the main memory capacity is 64 GB per node

and it has the highest frequency and number of channels. Table 7.2 demonstrates the best

HDFS configuration for maximizing the performance in both Hadoop and Spark frameworks

based on the ratio of Input data size to the total number of available processing cores, and

the application class. The rest of the experiments presented in this chapter are based on

Table 7.2 configuration. We will present the classification of applications into CPU-intensive,

I/O-intensive, and memory-intensive tasks in next section. Our tuning methodology helps

to put high pressure on memory subsystem.
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Table 3.3: HDFS block size tuning

Application Input size/(# nodes×#cores per node)
class <64 MB <512 MB <4 GB > 4 GB
CPU

32 MB 64 MB 128 MB 256 MB
intensive

I/O
64 MB 256 MB 512 MB 1 GB

intensive
Iterative

64 MB 128 MB 256 MB 512 MB
tasks

3.3 Results

Our experimental results are presented in this section. First, we present the memory analy-

sis of the studied workloads. We present how performance of studied workloads is sensitive

to memory capacity, frequency and number of channels. Then, we provide results of ar-

chitectural implication of processor parameters on data analytics frameworks and memory

requirements. We also discuss the impact of storage system, and size of input data on mem-

ory subsystem. In addition, we present the power analysis results. This is to help finding

out which memory configuration is a better choice for energy-efficient big data processing.

Memory Analysis

In this section, we present a comprehensive discussion on memory analysis results to help

better understanding the memory requirements of big data frameworks. As the focus of this

study is on the memory subsystem, each memory related experiment has been performed 5

times. We present the average results, and also the minimum and maximum values of each

set of experiments as an error bar.

Memory channels implication: The off-chip peak memory bandwidth equation is

shown in EQ. (3.4).

Bandwidth = Channels× Frequency ×Width (3.4)

We observe in Figure 3.1 that increasing the number of channels from 1 to 4 does not

significantly reduces the execution time of Hadoop applications (on average 6%). However,
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the execution time of K-means and Nweight in Spark framework, and Image segmentation

with MPI implementation reduces more than 30%. It is noteworthy that aforementioned

workloads are iterative tasks. Figure 3.2 provides more insights to explain this exceptional

behavior. This figure demonstrates the memory bandwidth usage of each workload. K-

means, Image Segmentation, and Nweight memory bandwidth usages are shown to be sub-

stantially higher than other workloads. One reason is those workloads are iterative and the

second reason is the low cache hit rate of these application that cause excessive access to

main memory (we will present that cache hit rate later in this chapter). Therefore, providing

more bandwidth improves their performance. By increasing the number of channels from 1

to 4, the performance gain is found to be 38%.

Memory frequency implication: As results in Figure 3.3 shows, similarly we don’t

observe significant reduction of execution time by increasing memory frequency (from 1866

MHz to 2400 MHz) for most of Hadoop applications. This finding may mislead to use the

lowest memory frequency for Hadoop applications. Based on EQ. (3.5), read latency of

DRAM depends on the memory frequency.

Read latency = 2× (CL/Frequency) (3.5)

However, for DDRx (e.g. DDR3), this latency is set fixed by the manufacturer with

controlling CAS latency (CL). This means two memory modules with different frequency

(1333 MHz and 1866 MHz) and different CAS Latency (9 and 13) can have the same read

latency of 13.5 ns, but provide different bandwidth per channel (10.66 GB/s and 14.93

GB/s). Hence, as along as reduction of frequency does not change the read latency, it is

recommended to reduce DRAM frequency for Hadoop applications. In the other hand, we

observe that iterative tasks in Spark and MPI require high frequency memory and their

execution time reduces by high bandwidth memory.

DRAM capacity implication: To investigate the impact of memory capacity on the

performance of big data applications, we run all workloads with 7 different memory capaci-

ties per node. During our experiments, Spark workloads encountered an error when running
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Figure 3.1: Effect of memory channel on the execution time (Normalized to 4CH)

on a 4GB memory capacity per node due to lack of memory space for the Java heap. Hence,

the experiment of Spark workloads is performed with at least 8 GB of memory. An inter-

esting observation is that a large memory capacity has not impact on the performance of

studied Hadoop workloads. Hadoop applications do not require high capacity memory be-

cause Hadoop stores all intermediate values generated by map tasks on the storage. Hence,

regardless of the number of map tasks or input size, the memory usage remains almost the

same. In our experiments, the memory capacity usage of studied Hadoop applications never
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Figure 3.2: Impact of memory channel on bandwidth usage

exceeded 4 GB on each node.

However, Spark and MPI based applications show different behavior. Spark uses RDD

to cache intermediate values in memory. Hence, by increasing the number of map tasks to

run on a node, the memory usage increases. Therefore, by knowing the number of map

tasks assigned to a nodes and the amount of intermediate values generated by each task, the

maximum memory usage per node of Spark applications is predictable. To better understand

the impact of memory capacity on the performance, we have provided the average normalized

execution time of these three frameworks in Figure 3.4 (Normalized to 64 GB). To illustrate
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Figure 3.3: Effect of memory frequency on the execution time (Normalized to 2400MHz)

how these frameworks utilize DRAM capacity we present K-means memory usage on different

frameworks in Figure 3.5.

Input size implication: Today the paradigm has been shifted and new MapReduce

processing frameworks such as Hadoop and Spark are emerging. Hadoop uses disk as storage

and rely on a cluster of servers to process data in a distributed manner. The ability of hadoop

frameworks is that each map task processes one block of data on HDFS at a time. Hence,

this relieves the pressure of large input data on the memory subsystem. Therefore, regardless
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Figure 3.4: Impact of memory capacity per node on performance

of input size, the memory subsystem usage remains almost constant in this framework. In

the other hand, Spark is in-memory computing framework and changing input size have

a large impact on the memory capacity usage. Fo MPI based applications, the extent of

impact of input size on memory capacity usage depends on the application ’s implementation.

Although, for most of MPI based applications, we observed that memory capacity usage

increases by increasing input size.

Another parameter that can be affected by the size of input data is the memory bandwidth

usage. Our results reveal that the size of input data does not noticeably change the memory

behavior of big data frameworks. Because the memory bandwidth usage depends to the

cache miss ratio of application (further we will discuss it in detail). Also cache behavior

of application mostly depends to the application algorithm. Consequently, by increasing

the size of input, the cache hit ratio remains almost the same. Therefore, while increasing

the input size increases the job completion time, the DRAM bandwidth requirements of

applications do not change noticeably. Figure 3.6 shows the average results of workloads

from Hibench benchmark. We have performed experiments with 3 sets of input data namely

medium, large, and huge (these are keywords of Hibench for input generation).

Architectural analysis

As we discussed, several parameters, such as CPU frequency, number of cores per CPU,

and cache hierarchy are studied in this chapter to characterize big data frameworks. In this
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Figure 3.5: K-means memory usage on various frameworks

section, we present the classification of workloads into memory bound, compute bound, and

I/O bound based on architectural behavior, which helps to accurately present the relation

of performance and workload characteristics.

Classification of workloads: As the goal of this section is to study the combined

impact of node architecture and data-intensive workload’s characteristics, it is important to

classify those workloads. To this goal, we have explored the architectural behavior of studied

workloads to classify them and find more insights.

1) Core frequency implication: Figure 3.7 shows that studied workloads behave in two

distinct ways. The execution time of the first group is decreased linearly by increasing the
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core frequency. The second group’s execution time does not drop significantly by increasing

the CPU frequency, particularly when changing frequency from 1.9 GHz to 2.6 GHz. These

two trends indicate that studied workloads have distinct behaviors of being either CPU

bound or I/O bound. This conclusion further advocated by C0 state residency of processor

in Figure 3.8. This proves sort, grep, PageRank, and scan from Hadoop, wordcount, grep,

PageRank, Bayes, and nBayes from Spark, and sort, BasicMPEG, and grep from MPI to be

I/O bound while others to be CPU bound. This can be explained as follows: If increasing the

processor’s frequency reduces the active state residency (C0) of the processor, the workload

is I/O bound, as when a core is waiting for I/O, the core changes its state to save power.

Similarly, if active state residency does not change the workload is CPU bound.

2) Cache implication: Modern processor has a 3-level cache hierarchy. Figure 3.9 shows

cache hit ratio of level 2 (L2) and last level cache (LLC). The results reveal an important

characteristic of data-intensive workloads. Our experimental results show most of the studied

workloads (particularly MapReduce workloads) have a much higher cache hit ratio, which

helps reducing the number of accesses to the main memory. Based on simulation as well as

real-system experiment results in recent works, it is reported that these applications’ cache

hit rate is too low (under 10%) [27, 4] for a system with 10 MB of LLC and for having LLC

hit rate of 40%, the system should have around 100 MB of LLC. However, our real system
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Figure 3.7: Impact of CPU frequency on the execution time

experimental results show that most of data-intensive workloads have much higher LLC hit

rate (more than 50%) with only 40 MB LLC.

The reason of high cache hit ratio is that each parallel task of MapReduce framework

processes data in a sequential manner. This behavior increases the cache hits; therefore it

prevents excessive access to DRAM. Hence, based on the cache hit ratio of workloads and

the intensity of accesses to memory, we can classify them into memory bound. If the cache

hit ratio is low and the workload is an iterative task, it is classified as memory intensive. Our
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characterization showed that N-weight and Kmeans from Spark, and Image Segmentation

from MPI are memory intensive. Therefore, we divided our workloads into three major

groups of I/O bound, compute bound, and memory bound.

Disk implication: To show how choice of storage can change the performance while

using different memory configuration, we performed several experiments using three types of

storage (HDD, SSD SATA, and SSD PCIe). Figure 3.10 shows that changing the disk from

HDD to SSD PCIe improves the performance of Spark, Hadoop, and MPI by 1.6x, 2.4x,

and 3.3x respectively. The reason that MPI workloads take more advantage from faster disk

is that these workloads are written in C++. However, Hadoop and Spark are Java based

frameworks and they use HDFS as an intermediate layer to access and manage storage.

Our results show a high bandwidth DRAM is not required to accelerate the performance of
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MapReduce frameworks in presence of a slow HDD. However, MPI based workloads has the

potential to benefit from high-end DRAM.
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Figure 3.10: Effect of memory and storage configuration on the performance

Another point regarding the storage is to use multiple disks per node to alleviate IO

bottleneck. We performed a new set of experiments with two SSD storages per node. While

the performance will improve for IO intensive applications but using multiple disks per

node does not guarantee the parallel access to the data blocks of HDFS to reduce the IO

bottleneck. Another point is to use RAID. Since HDFS is taking care of fault-tolerance and

”striped” reading, there is no need to use RAID underneath an HDFS. Using RAID will

only be more expensive, offer less storage, and also be slower (depending on the concrete

RAID configuration). Since the Namenode is a single-point-of-failure in HDFS, it requires

a more reliable hardware setup. Therefore, the use of RAID is recommended only on the

Namenodes.

It is important to note that SSD increases the read and write bandwidth of disk and

substantially reduces the latency of access to disk compared to HDD. However, accessing to

I/O means losing of millions of CPU cycles, which is large enough to remove any noticeable

advantage of using a high-performance DRAM. On the other hand, the only way to take

advantage of a SSD is to read or write a big file (hundreds of megabyte) at once but our

result shows that HDFS reads the data in much smaller blocks, regardless of HDFS block size.
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Figure 3.11 demonstrates the memory bandwidth utilization of each class on different storage

type. Bandwidth utilization of memory bound workloads is shown to be substantially higher

than other workloads and the results shows using low speed disk reduces 55% the memory

bandwidth usage, and therefore, prevents to get performance benefit from high bandwidth

DRAM.
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Figure 3.11: Average memory bandwidth utilization

Core count implication: In the previous section, we classified workloads into three

groups. Figure 3.12 demonstrates the effect of increasing the number of cores per node on

the performance of two groups of CPU intensive and IO intensive. The expectation is that

performance of the system improves linearly by adding cores because big data workloads are

heavily parallel. However, we observe a different trend. For CPU intensive workloads and

when the core count is less than 6 cores per node, the performance improvement is close to

the ideal case. The interesting trend is that increasing the number of cores per node does

not improve the performance of data-intensive workloads noticeably beyond 6 cores. As the

increase in the number of cores increases the number of accesses to the disk, the disk becomes

the bottleneck of the system. At 8 cores, the CPU utilization is dropped to 44% for I/O

intensive workloads, on average. This experiment performed when storage was SSD PCIe.
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Figure 3.12: Effect of core count on the performance

Based on those observations, we develop Eq. (3.6) to find the number of cores for which

further increase does not noticeably enhance the performance of system:

Max(cores) = ((BW ×Nd))/((Nsc× Fr × λ)) (3.6)

We define the variables used in this equation as follow: BW is the nominal bandwidth of

each disk. Nd is the number of disk installed on the server. Nsc is the number of sockets. Fr

is CPU core frequency and Lambda is a constant, which we found through our real-system

experiments. As the effective I/O bandwidth depends on the block size and I/O request

size, we have used fio [1] to calculate Lambda for different block size requests, presented in

Figure 3.13. Designers can use this equation to select an optimum configuration, such as the

number of cores, core frequency, disk type, and number of disks per node. As an example,

the number of cores beyond which there is no noticeable performance gain on a server with

one socket, one SSD storage with nominal 400 MBpS bandwidth, 16KB IO request size,

running at 2.8 GHz is 8 based on the above equation. We have validated equation 1 for

different classes of workload and the result is presented in Figure 3.14.
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IO Request 

Size (IRS) 
IRS = 16KB 32KB = IRS = 256KB 512KB = IRS = 128MB 

Workload 

class 
Com.  Mem.  IO  Com.  Mem.  IO  Com.  Mem.  IO  

Ave. error 5% 6% 15% 4% 4% 12% 4% 4% 7% 

 

TABLE IV: Average error of optimum core count prediction

Figure 3.14: Average error of optimum core count prediction
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Figure 3.15: DRAM power consumption

Power Analysis

Figure 3.15 reports the DRAM power consumption. The first observation is that by increas-

ing the frequency of DRAM by about 28% (1866 MHz to 2400 MHz), the power increases by

almost 15%. Also, DRAM power increases when the core frequency raises as this increases

the number of accesses to off-chip memory per unit of time. However, the DRAM power

consumption is reduced when we increase the number of channels. An interesting obser-

vation is that a memory with 4 channels consumes 42% less power than a memory with 1
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Figure 3.16: Average normalized EDP (Normalized to 4CH, 2400MHz, 2.6GHz)

channel. This is due to the fact that DRAM channels are designed to increase the efficiency

of interleaving. Thus, the memory controller can manage accesses more efficiently, which in

turn reduces the power consumption.

In our experiments, the number of DIMMs/Channel is one. Despite the small/no impact

on performance, increasing the number of memory channels to four significantly impacts

the power consumption. Reducing the power of DRAM while increasing the number of

channels can be explained as follow: Consider a 32 GB and 4 channel memory (occupied

4 DIMMs with 8 GB module), the memory controller does not need to put all modules in

active state unlike the single channel. In single channel memory, one module with 32 GB

capacity always must be in active state regardless of memory usage pattern. However, with 4

channels, memory controller can manage each channel individually and if there is no need to

access to a channel, it can go to power saving mode. This increases the options for memory

controller to perform power management.

Figure 3.16 depicts the average normalized Energy Delay Product (EDP) of frameworks.

EQ. (3.7) indicates how we calculated this metric.

EDP = (CPUenergy +DRAMenergy)× ExecutionT ime (3.7)

The results reveal that almost always increasing the number of channels improves EDP, as

memory controller power management policy can benefit from such increase and reduce the

power accordingly. Increasing the number of channels does not increase the execution time
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of studied applications. It also reduces DRAM power by up to 40%. Therefore, decreasing

DRAM power decreases system power and consequently the energy of the system.

Energy = Power ×Delay (3.8)

Hence, increasing the number of memory channels leads to an improvement in energy effi-

ciency. The EDP’s results of 1-channel and 2-channel memory are very similar. The trend

in this figure shows that increasing the memory frequency increases EDP across all CPU

operating frequency points. This implies that a high frequency off-chip memory is not an

appropriate choice for EDP optimization for this class of big data applications. Further-

more, we observe that the EDP at 1.9 GHz CPU frequency is close to 2.6 GHZ. It shows

that running the processor with highest frequency is not always necessary. A configuration

with a single channel running at 2400 MHz memory frequency when CPU is running at 1.2

GHz is shown to have the worst EDP. On the other hand, a configuration with 4-channel

and 1866 MHz memory frequency when CPU is running at 2.6 GHz is shown to have the

best EDP for big data applications.

3.4 Conclusion

This chapter answers the important questions of whether some of important data analyt-

ics frameworks such as Hadoop, Spark and MPI require high-capacity and high-performance

DRAM memory and what the role of memory for energy-efficient processing of data-intensive

applications is. Characterizing memory behavior of frameworks is important as it helps guid-

ing scheduling decision in cloud scale architectures as well as helping making decisions in

designing server cluster for big data computing. While latest works have performed a lim-

ited study on memory characterization of data-intensive applications, this work performs a

comprehensive analysis of memory requirements through an experimental evaluation setup.

We study diverse domains of applications from microkernels, graph analytics, machine learn-

ing, E-commerce, social networks, search engines, and multimedia in Hadoop, Spark, and
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MPI. This gives us several insights into understanding the memory role for these important

frameworks.

The contribution of this chapter is to give an insight on the role the memory subsystem

plays in the overall performance of the servers when running data analytics frameworks. Our

experimental results illustrate that data-intensive workloads show three distinct behaviors

(CPU-intensive, Disk-intensive, and memory-intensive). Based on the results presented in

this chapter, we observed that Hadoop framework is not memory intensive. This means

Hadoop does not require high frequency, and large number of channels memory for higher

performance. Our results show MPI and Spark based iterative tasks benefit from high

memory frequency and large number of channels. Among the configurable parameters, our

results indicate that increasing the number of DRAM channels reduces DRAM power and

improves the energy-efficiency.

Moreover, our result shows that changing the disk from HDD to SSD improves the per-

formance of Spark, Hadoop, and MPI by 1.6x, 2.4x, and 3.3x respectively. However, I/O

bandwidth caps the performance benefit of multicore CPU. Therefore, we developed an ex-

perimental equation to help designers to find the number of cores for which further increase

does not enhance system performance noticeably.
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Chapter 4

Memory Navigator for Modern

Hardware in a Scale-out Environment

Today, more applications are moving to the cloud. Therefore, for cloud-scale servers, the

increasing number of cores and applications sharing off-chip memory makes its bandwidth

as well as capacity a critical shared resource. These trends suggest that it is important to

understand the role of memory parameters such as capacity, number of channels, and oper-

ating frequency on performance of emerging class of applications in scale-out environment.

The main contribution of this study is setting out a roadmap for memory configuration to

maximize the performance cost ratio of cloud infrastructure.

4.1 Introduction

An empirical evaluation is important as it provides the community with reliable and accurate

outcomes, which can be used to identify trends and guide optimization decisions.

To this goal, we first analyze various applications architectural characteristics. Based on

the characterization results we classify applications into four different classes namely CPU

intensive, IO intensive, Hybrid Memory-CPU intensive, and Hybrid Memory-IO intensive.
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Based on this information we build a database and use it to drive an empirical performance

model for each application class. Furthermore, we utilize IBM/SoftLayer TCO (total cost of

ownership) calculator to drive a cost model for server platform in a scale-out environment

such as cloud. The developed cost model takes into account the processor as well as memory

parameters.

Based on the proposed predictive model, we present a novel methodology for selecting

main memory parameters to maximize the performance per cost ratio of a given application

in cloud. As the performance of memory subsystem depends on processor configuration, our

methodology also navigates processor parameters as well as memory parameters (MeNa).

MeNa is a three-stage methodology. It utilizes a fully connected Neural Network to clas-

sify a given application. After the classification, in the second stage, MeNa calculates the

performance-cost sensitivity of application with respect to the server’s parameters. In the

third stage, MeNa solves a bounded knapsack problem using dynamic programming to find

a configuration, which maximizes the performance per cost ratio.

Utilizing MeNa and based on the characterization results we make the following major

observations:

1) Hybrid Memory-CPU intensive applications performance benefit noticeably from in-

creasing the number of cores, low frequency core, low frequency memory, and large number

of memory channels. 2) IO intensive applications are benefiting from small number of cores,

high frequency cores, low frequency memory, and small number of memory channels. 3)

Despite diverse range of frequency available in the memory market, increasing the memory

frequency does not show to improve performance/cost ratio. 4) Increasing the number of

memory channels improves the performance/cost ratio of hybrid Memory-CPU intensive ap-

plications. 5) Increasing the number of sockets increases the performance/cost of the system

only if the number of cores per socket increases accordingly. 6) Increasing the capital cost of

a server or a target budget set by a user does not always enhance in the performance/cost

ratio of applications.
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Table 4.1: Big Data Workloads

Workload wordcount sort grep pagerank näıve bayes kmeans
Domain micro kernel micro kernel micro kernel websearch e-commerce machine learning

Input type text data text data data graph
Input size 1.1 T 178.8G 1.1 T 16.8G 30.6G 112.2G
Framework Hadoop, Spark Hadoop, Spark Hadoop, Spark Hadoop, Spark Hadoop, Spark Hadoop, Spark

Suite BigDataBench BigDataBench BigDataBench BigDataBench BigDataBench BigDataBench

4.2 Experimental Setup

In this section, we present our experimental methodology and setup. We first present the

studied applications and then introduce the studied big data software stacks. We will then

describe our hardware platform and our experimental methodology.

Workloads

Diversity of applications is important for characterizing cloud platforms. Hence, we target

three domains of applications from Big Data, multi-threaded programs, and CPU applica-

tions. For CPU and multithreaded applications we use SPEC CPU2006 [38] and PARSEC

[14] benchmark suites, respectively. The studied big data applications are selected from Big-

DataBench suite [119], presented in table 4.1. BigDataBench has micro kernel applications

as well as graph analytics and machine learning applications.

Hardware Platform

To have a comprehensive analysis of memory subsystem we used different SDRAM modules

shown in table 4.2. All modules are from the same vendor. To build a cost model, we used

IBM SoftLayer TCO Calculator, based on datacenter SJC01 (Located in San Jose, CA). A

list of some of available processor types is presented in Table 4.3. For running the workloads,

and monitoring the main memory, CPU, and disk behavior, we used a six-node server with

detailed parameters for each node presented in table 4.4.
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Table 4.2: Memory modules’ part numbers

DDR3 4 GB 8 GB 16 GB 32 GB
1333 MHz D51264J90S KVR13R9D8/8 KVR13R9D4/16 —
1600 MHz D51272K111S8 D1G72K111S D2G72K111 —
1867 MHz KVR18R13S8/4 D1G72L131 D2G72L131 KVR18L13Q4/32

Table 4.3: IBM SoftLayer bare metal servers

Processor type #Socket #Core Core freq DRAM capacity Disk bays Net speed Monthly charge
Xeon E3-1270 1 4 3.40 GHz 2 GB 2 2 Gbps 137 $
Xeon E5-2620 2 6 2.00 GHz 16 GB 12 10 Gbps 470 $
Xeon E5-2690 2 8 2.90 GHz 16 GB 12 10 Gbps 640 $
Xeon E7-4850 4 10 2.00 GHz 64 GB 6 10 Gbps 1602 $
Xeon E7-4890 4 15 2.80 GHz 128 GB 24 10 Gbps 2566 $

Architectural Behavior: We used Intel Performance Counter Monitor tool (PCM) [43]

to understand memory and processor behavior. The performance counter data are collected

for the entire run of each application. We collect OS-level performance information with

DSTAT tool—a profiling tool for Linux based systems. Some of the metrics that we used

for study are memory footprint, memory bandwidth, L2, and Last Level Cache (LLC) hits

ratio, instruction per cycle (IPC), and core C0 state residency.

4.3 Characterization and Results

In a cloud platform, architecture and configuration of the server directly impacts its TCO

and performance. The extent of this impact depends on the sensitivity of a cloud application

to the architectural parameters and system configurations. Hence, we need to evaluate the

performance sensitivity of our workloads to those parameters. Based on the level of sensitiv-

ity, we will classify the studied workloads. We then explore the relation between performance

and TCO, and architectural configurations for each application class. This approach helps to

formulize the relationship among configuration of cloud’s platform, performance, and cost.
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Table 4.4: Hardware Platform

Hardware Type Parameter Value
Motherboard Model Intel S2600CP2

CPU

Model Intel Xeon E5-2650 v2
# Core 8

# Threads 16
Base Frequency 2.6

Turbo Frequency 3.4
TDP 95

L1 Cache 32 * 2 KB
L2 Cache 256 KB
L3 Cache 20 MB

Memory Type Support
DDR3

800/1000/1333/1600/1867
Maximum Memory Bandwidth 59.7 GB/S

Max Memory Channels supported 4

Disk
(SSD)

Model HyperX FURY
Capacity 480 GB

Speed 500 MB/S

Network Interface Card
Model ST1000SPEXD4
Speed 1000 Mbps

memory Analysis

We use IPC as a measure of application’s performance. We consider the variation of work-

load’s IPC, when we navigate memory and processor parameters, as an indicator for sensi-

tivity of the application performance to those parameters.

1) Memory Sensitivity: Equation (3.4) expresses the memory bandwidth of the system as

a function of number of channels, operating frequency and width. According to this equation,

the maximum bandwidth that our platform supports is 59.7 GB/s (4 channel × 1.867 GHz

× 8 Byte). Memory frequency is a characteristic of memory module and channel is the

configuration of memory modules on the platform. The ability of using multiple channels

effectively is decided by the support of memory controller. Because the focus of our study

is on memory subsystem and its configuration, it is important to evaluate the sensitivity of

our studied workloads to those parameters that are configurable, namely memory frequency,

channels, and capacity. For our experiments, we used 3 sets of memory modules with different
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Figure 4.1: Memory sensitivity analysis

frequencies. A total of 22 different memory modules with a wide range of operating frequency,

number of channels and capacity were selected based on their availability in the market for

server class architectures. The memory modules frequency varies from 1333 MHz to 1867

MHz, number of channels ranges from 1 to 4, and their capacity is swept from 4 GB to 32

GB.

Figure 4.1 (a) and (b) show IPC variation when increasing memory frequency and memory

channel, respectively, for a subset of studied applications. The interesting observation is that

Spark-Sort workloads is the most sensitive application to the number of channels. Another

interesting observation is that the sensitivity of most applications to memory channel is more

than their sensitivity to memory frequency.

2) Bandwidth Sensitivity: Based on Equation (3.4) and the parameters of the studied

memory modules reported in table 4.4, the minimum bandwidth that studied memory mod-

ules supports is 10.6 GB/s and the maximum bandwidth is 59.7 GB/s. Given that the studied

workloads have different memory behavior and requirements, for off-chip memory bandwidth

study we classify applications into memory intensive and non-intensive applications. The

classification is done based on IPC variation as a function of memory bandwidth reported

earlier in this section. Figure 4.2 presents the average utilization of off-chip bandwidth for

each class of applications. According to this observation, memory intensive workloads use

almost 4× more bandwidth than non-intensive workloads. This figure also shows that both

memory intensive and non-intensive workloads cannot fully utilize the maximum available

bandwidth. This implies the inefficiency of the modern server platforms when utilizing mem-

ory bandwidth. Our observation shows available memory bandwidth exceeds the needs of
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all studied applications from various domains by approximately 10× and off-chip bandwidth

is not a bottleneck for increasing the number of cores.

Figure 4.3 demonstrates the impact of core frequency on the average bandwidth usage

of memory intensive workloads for two different memory configurations, one with maximum

and the other with minimum memory bandwidth. The first configuration is a memory with

one channel and memory frequency of 1333 MHz and the second is a four-channel memory

and 1867 MHz frequency. Based on this figure, we observe that when the core frequency

is low we can see both configurations can deliver required bandwidth for the workloads.

However, by increasing the frequency, the bandwidth utilization of workloads is increasing.

This is due to the fact that increasing processor frequency increases the number of memory

request generates per unit of time. The bandwidth utilization gap between the two memory

configurations increases when increasing the processor frequency. To show the impact of

bandwidth utilization on performance, in Figure 4.4 we report the speedup in terms of

relative execution time improvement comparing the two memory configurations. Increasing

the core frequency up to 1.8 GHz does not bring performance advantage when using a higher

bandwidth memory. However, it is only at frequency of 1.8 GHz and beyond where we

observe a clear speedup gain using a high bandwidth memory. Therefore, the speedup gain

when deciding memory configuration, is not only decided by the application type (memory

intensive or not), but also by the maximum operating frequency of the core.

Figure 4.5 depicts which parameters of memory configuration help gaining more speed

up when the core frequency is set to the highest; i.e. 2.6 GHz. The result shows memory

configuration does not have any noticeable effect on the performance of memory non-intensive

workloads, however memory frequency and number of channels impact the performance of

memory intensive applications. In addition, the effect of memory frequency depends on

the number of channels. By increasing the number of channels the influences of frequency

on performance is reduced. We observe that increasing the number of channels from 2 to 4

does not improve the performance. This shows that the state-of-the- art server class memory

controllers need to improve their management policy to effectively use 4 channels, otherwise 2
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channels is sufficient for a wide range of applications studied in this work. Memory controllers

utilize a large fraction of the chip transistor budget and reducing the number of channels

from 4 to 2 reduces the complexity of memory controller and therefore the entire processor,

without sacrificing studied applications’ performance.

3) Memory Capacity Sensitivity: Based on our results (not presented) we found that

memory capacity and disk caching does not play a significant role for SPEC and PARSEC

applications. However, for big data applications, due to their large input size, this is impor-

tant to be investigated. To investigate the effect of memory capacity on the performance of

Big Data applications, we run all workloads with 7 different memory capacities. During our
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experiments, Spark workloads encountered an error when running on a 4GB memory capac-

ity due to lack of memory space for the Java heap. Hence, experiments of Spark workloads

are performed with at least 8 GB of memory. Sensitivity of Spark and Hadoop applications

to the memory capacity has been presented in Figure 4.1 (c).

Microarchitectural Analysis

Figure 4.6 reports the microarchitectural analysis results for the two classes of studied ap-

plications. The first parameter to study is CPU stall. It is well known that front-end stall
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Figure 4.6: Workloads’ microarchitectural behavior

directly incurs performance loss. Frontend stalls are also responsible for wasting power con-

sumption. Figure 4.6 (d) shows stalled cycle per instruction for the two studied classes.

Stalled CPI of memory sensitive workloads is almost 3 times more than nonsensitive work-

loads. Memory sensitive workloads suffer more from front-end stalls as the deep hierarchy

of caches delays instruction–fetch and increases fetch penalty. While in general hardware

prefetcher in modern multi-core processors are effective to improve performance of applica-

tions by reducing frequency of front-end stalls, for memory sensitive applications a noticeable

front-end stall is still observed which indicates that a significant improvement is still needed

for prefetchers.

Figure 4.6 (a) demonstrates the L2 and L3 cache hit rates. The main difference between

memory intensive and nonintensive workloads is in L2 and L3 hit rates. Memory intensive

applications show a very low L2 and L3 hit rate. As an example, Canneal, which is one of the

most memory sensitive applications, has L2 and L3 hit rates of 0.02 and 0.03 respectively.

However, for some applications, L3 can mask L2 misses. An example is Hadoop wordcount,

with a 0.41 L2 hit rate, where its L3 hit rate is 0.44, enough to prevents Hadoop wordcount

performance to suffer from low L2 hit rate.

Figure 4.6 (b) shows the average normalized IPC of memory intensive and non-intensive

workloads for different core frequencies. The results show that increasing the core frequency

reduces IPC of memory intensive applications. To show the effect of IPC reduction on the

performance of the workloads in terms of execution time, we provide the average speed up

of workloads in Figure 4.6 (e). The execution time results are normalized to the minimum
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execution time of each application. The observation shows that memory non-intensive work-

loads speed up gain scale linearly with core frequency as their IPC impacted by only 2%, on

average. For memory intensive workloads, the speed up curve falls below a linear curve, and

even saturates when increasing the frequency beyond 2 GHz. As discussed earlier, increasing

the bandwidth can mitigate this slightly. Increasing the available bandwidth from 10.6 GB

to 59.7 only improves performance by 16%. Therefore, this is not an effective solution as the

bottleneck exists in off chip memory access latency.

Based on Figure 4.7, we classify big data applications in two group of CPU-intensive

and Disk-intensive class. Our decision criteria for this classification is based on the average

Disk bandwidth usage. This Figure shows Spark wordcount, Spark grep, Spark PageRank,

Hadoop Sort, Hadoop grep to be Disk-intensive while others to be CPU-intensive.

Workload classification. As the main goal of this paper is to study the combined

impact of node architecture and cloud workload characteristics as well as performance/cost

analysis, it is important to first classify those workloads. To this goal, we have explored the

microarchitectural behavior of studied workloads to classify those workloads and find more

insights. We divided workloads into two major groups of memory intensive and memory

non-intensive. Each group of memory intensive and non-intensive applications will classify

to two more Hybrid groups of I/O intensive and CPU intensive. This classification will help

55



us later to accurately formulate the relation of performance and application characteristics.

4.4 Performance and Cost Analysis

In this section, we formulate performance and cost analysis of different application classes in

a scale-out environment. The first part of this section is devoted to formulating the total cost

of ownership for different server configurations, using the cost offered by IBM/SoftLayer. We

then develop equations to formulate the performance improvement of each application class

with respect to the baseline configuration. These equations will be exploited by MeNa to

select the most performance/cost efficient memory and CPU configuration for each class of

application.

Cost Model

In this part, we analyze the parameters that are influencing the total cost of ownership

(TCO) in a data center. Our goal is to establish a relationship between performance of

studied applications, and the total cost of ownership when running these applications. We

utilize EETCO [36] to drive a model for estimating TCO. The following five main factors

determine the TCO in a data center:

• Datacenter Infrastructure Cost: the cost of acquisition of the datacenter building (real

estate and development of building) and the power distribution and cooling equipment

acquisition cost. The cost of the infrastructure is amortized over 10-20 years.

• Server Cost Expenses: the cost of acquiring the servers, which depreciates within 3-4

years.

• Networking Equipment Cost Expenses: the cost of acquiring the networking equipment,

which depreciates within 4-5 years.
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• Datacenter Operating Expenses: the cost of electricity for servers, networking equip-

ment and cooling.

• Maintenance and Staff Expenses: the cost for repairs and the salaries of the personnel.

TCO = Cinfrastructure + Cserver + Cnetwork +

Cpower + Cmaintenance

In the above equation, the first line represents the capital expenses (CAPEX) and the

second line represents the operational expenses (OPEX). Given that the infrastructure, net-

work, power, and maintenance costs are decided by the server configuration parameters, we

can simplify the equation with TCO = Cserver(configuration) which indicates the total cost

of ownership is a function of server configuration parameters.

The server price is determined as a function of server configuration as follow:

Cserver = Cprocessor + Cmemory + Cdisk + Cnetwork

The per-server costs include configurable DRAM, configurable processor, disk, and net-

work costs. In this work, we do not consider configuring the network for performance opti-

mization. Therefore, to establish a relationship between performances of applications as well

as the price, we are simply treating the network cost as constant. We extracted the price

data for 32 available server configurations in IBM SoftLayer bare metal servers. We used

the regression technique to derive a cost equation for storage, memory, and processor.

All the below cost equations are the predicted charge that subscribers must pay in dollar

for renting a bare metal server (on a monthly basis) on the IBM SoftLayer (data is collected

in January 2017), which includes the power, cooling, and maintenance related costs of the

server. The equation for price per server based on the server’s processing configuration is as

follow:

Cprocessor = δ + θNsocket + ζCore+ κFrequency

Where Frequency < 3.6GHz,Cache = 2.5MB/Core, and Core < 16 per socket.

The values presented in table 4.5 are coefficients of parameters and eventually can be

translated to the cost in dollar. We used MATLAB’s regress library to fit our models with
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Table 4.5: Values of processor cost’s formula

Parameter δ θ ζ κ R2

Value -353.5 208.1 31.4 54.9 0.82

the price data that we collected from IBM SoftLayer in January 2017. R-squared is a

goodness-of-fit measure for linear regression models. This statistic indicates the amount of

the variance in the dependent variable that the independent variables explain collectively.

R-squared measures the strength of the relationship between our model and the dependent

variable on a convenient [0,1] scale. 0 represents a model that does not explain any of the

variation and 1 represents a model that explains all of the variation in the response variable

around its mean.

For the cost of memory, we derived two different equations. The first considers the effect of

memory frequency and the number of channels on the cost of each memory module. These

parameters determine the available DRAM bandwidth for the processor. The maximum

capacity of each available memory module is 32 GB. This is the maximum available DRAM

module in the market (at the time of this research). In this work, we consider one module

per DIMM.

Cmodule =[(9× Capacity)×(Mem.Frequency − 0.31)]−5×Nchannel

where the memory frequency is in GHz and memory capacity is in GB.

Beyond 32 GB, the memory cost is estimated using the following equation:

Cmemory =(1.81× Capacity)+364

For the cost of storage, three types of storage are available such as SSD PCIe, SSD SATA,

and HDD. In order to change the capacity or the bandwidth of storage, MeNa can aggregate

multiple disks together. In this way, the cost of storage is as follow:

Cstorage =(NSSD−PCIe×CostSSD−PCIE)+(NSSD−SATA×CostSSD−SATA)+(NHDD×CostHDD)
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Performance Model

Previously, we classified studied applications into 4 different classes. Based on our character-

ization and previous analysis, a set of performance equations is derived for each application

class. These equations are developed using regression technique on a database collected

through comprehensive experiments. We formulate those observations into regression-based

equations to express performance of an application as a function of processor and memory

configurations. Given the influence of both processor configuration and memory configura-

tion on performance, we divide the performance gain equation into two parts; a part showing

the performance gained by processor and another one showing the performance gained by

the memory subsystem. The base configuration, which was used to account for performance

gain is as follow: Number of sockets = 1, number of core per socket = 2, base frequency =

2 GHz, memory frequency = 1333 MHz, number of channels = 1, price = 73 $.

Table 4.6 shows the performance gain as a function of core count. For each class, we

derived two different equations as the core frequency changes the behavior of applications.

Similarly, Table 4.7 shows the performance gain by changing the core frequency.

Performance gain as a function of memory frequency and number of channels for various

classes of applications is shown in Table 4.8. We only provide the equation for CPU-Memory

intensive application class because other classes of applications do not gain noticeable per-

formance benefit by increasing the memory frequency and the number of channels.

In addition, we derived the performance gain equation as a function of DRAM capacity

as follows (only for Big Data applications, as the rest are not sensitive to DRAM capacity):

Performance capacity = 0.0018 capacity + 0.99

The minimum capacity for Big Data application is also determined by the following

equation:

Minimum capacity = (footprint × core) / 8

In the next section, MeNa exploits these performance and cost equations to calculate

performance/cost for a given user defined budget.
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Table 4.6: Performance gain by increasing core count

App. class Core frequency >2.8 Core frequency 2.8
Mem-CPU Perf = 0.16 core + 0.67 Perf = 0.28 core + 0.42

CPU Perf = 0.28 core + 0.48 Perf = 0.3 core + 0.38
IO Perf = 0.1 core + 0.79 Perf = 0.14 core + 0.7

Mem-IO Perf = -0.02 core + 1.04 Perf = -0.01 core + 1.43

Table 4.7: Performance gain by increasing core frequency

App. class Core count >8 Core count 8
Mem-CPU Perf = 0.04 freq + 0.96 Perf = 0.43 freq + 0.57

CPU Perf = 0.25 freq + 0.75 Perf = 0.3 freq + 0.7
IO Perf = 0.09 freq + 0.91 Perf = 0.26 freq + 0.74

Mem-IO Perf = 0.03 freq + 0.93 Perf = 0.03 freq + 0.95

Table 4.8: Performance gain by memory frequency and channel

High core and frequency Low core and frequency
Memory frequency Perf = 0.08 freq + 0.92 Perf = 0.03 freq + 0.96

Channel Perf = 0.15 Ch + 0.89 Perf = 0.09 Ch + 0.97

4.5 Memory Navigator (MeNa)

In this section, we present our novel methodology for selecting and configuring DRAM

system-level parameters in scale-out environment. Our methodology is based on the com-

prehensive analysis provided in previous sections.

Methodology

Figure 4.8 shows an overview of the proposed memory navigator. MeNa is a three-stage

methodology, which navigates memory and CPU parameters to find the best performance/cost

configuration for a given budget set by the user. In addition to memory parameters MeNa

also navigates processor parameters as performance gain of memory subsystem is influenced

by the interaction of both, as shown earlier in this chapter.

The first stage of MeNa is to determine the applications’ behavior. Using the microarchi-
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Stage 1Stage 1 Stage 2Stage 2 Stage 3Stage 3

Pseudocode for finding the best configuration using 

dynamic programming 

Pseudocode for finding the best configuration using 

dynamic programming 

Extract all application’s 

characteristics

(LLC hit rate, Stall CPI, IPC, 

C0 residency, CPU utilization, 

Memory footprint)

Classify application into one of 

these class:

1- Memory-CPU intensive

2- Memory-IO intensive

3- CPU intensive

4- IO intensive

Input: Application

Calculate the performance-cost 

sensitivity of application 

respect to all server’s 

parameters

(number of socket, core count, 

core frequency, memory 

frequency, memory channel, 

memory capacity) 

Input: Application class

1- Sort all performance-cost 

Sensitivity 

2- Put them in FIFO based on 

the largest value

Solve bounded knapsack 

problem:

Maximize performance/cost 

subject to the available budget 

and resources 

Input: Priority FIFO, application type, 

input data size

1- Select the best configuration 

2- Calculate the performance/

cost

3- calculate the charge

procedure dp_optimizer(parameters, budget):

    table = [[0 for cost in range(budget + 1)] for j in xrange(len(parameters) + 1)]

 

    for j in xrange(1, len(parameters) + 1):

        item, wt, sens = parameters[j-1]

        for cost in xrange(1, budget + 1):

            if wt > cost:

                table[j][cost] = table[j-1][cost]

            else:

                table[j][cost] = max(table[j-1][cost], table[j-1][cost-wt] + sens)

 

    result = []

    cost = budget

    for j in range(len(parameters), 0, -1):

        was_added = table[j][cost] != table[j-1][cost]

 

        if was_added:

            item, wt, sens = parameters[j-1]

            result.append(parameters[j-1])

            cost -= wt

 

    return result

Figure 4.8: MeNa methodology overview

Figure 4.9: MeNa classifier (Neural Network)

tectural analysis presented earlier, MeNa classifies application into two main classes; mem-

ory intensive and memory non-intensive. Additionally, we divided applications to two more

classes, namely CPU and I/O intensive, for more accurate performance estimate. Therefore,

there are a total of four different classes as follow: 1) Mem-CPU intensive 2) Mem-IO in-

tensive 3) CPU intensive 4) IO intensive. The classification is done on a three layer fully

connected neural network trained by our training database. Figure 4.9 shows the first stage

of MeNa. The neural network has 6 inputs and 4 outputs. Each output neuron stands for

a class and it gives a probability between 0 and 1. Hence, a neuron with the highest value

determines the class of application.

To identify the cost to increase performance by changing each server parameters, we define

a quantity called performance-cost sensitivity. For example, the performancecost sensitivity

to the number of cores per processor is defined as follow:
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Sens(Core)=((∂Performance)/(∂Core))/((∂Cost)/(∂Core))

The second stage is to calculate this quantity with respect to the number of sockets per

server, number of cores per processor, core frequency, memory frequency, number of memory

channels, and the capacity of DRAM. The equations for performance are provided in tables

4.6, 4.7, 4.8, as well as cost equations. This quantity helps MeNa to set a priority for each

parameter when allocating processor and memory resources. In this step, MeNa sorts all

sensitivity results and based on the largest results it puts them into a FIFO. We refer to this

as Priority FIFO.

In the third stage, MeNa determines the configuration to maximize the performance/cost

while satisfying the subscriber budget. For this purpose, MeNa solves the following problem

known as bounded knapsack by using dynamic programming:

Maximize Σn
i=1Perfi × Confi

Subject to Σn
i=1Costi × Confi ≤ Budget and mini ≤ Confi ≤ maxi

Where Confi represents the number or the value of parameter i, mini and maxi are

the minimum and the maximum available resource for parameter i. Also, Costi present

the cost corresponding to Confi. Similarly, Perfi present the performance improvement

corresponding to Confi.

The last step determines the final configuration and its corresponding performance/cost

ratio as well as the corresponding cost using performance-cost equation.

Validation

To show how MeNa allows subscribers to intelligently search all server configuration space for

finding the best parameters to maximize performance/cost while meeting the user specified

budget, we validate MeNa against an oracle configuration identified through the brute force

search. We apply the brute force search as follow: First, we select an application and set a

budget. Then we find all configurations that achieve cost equal or smaller than the target

budget. Finally, we run the application on those configurations and calculate its performance
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Table 4.9: MeNa Validation

Application Class Budget Configuration #core Core freq. #Socket Mem. Cap. Mem. Freq. #channel Perf./Cost Error

Spark Kmeans Mem-CPU intensive 500$ Oracle 12 2.6 1 16 1333 2 0.977268
3.5%

MeNa 13 2.8 1 12 1333 4 0.942737

Hadoop Sort IO intensive 180$ Oracle 4 2.8 1 4 1333 1 0.885733
10%

MeNa 5 3 1 2 1333 1 0.796636

Hadoop WordCount CPU intensive 400$ Oracle 8 3 1 6 1333 1 1.010769
8.6%

MeNa 10 2.8 1 8 1333 2 0.923691
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Figure 4.10: Average error for different class of applications and Budget

gain compared to the base configuration. By knowing the cost of each configuration, we

calculate performance/cost for each configuration. The best configuration is referred as

the oracle configuration. We then use MeNa to find the best configuration for the same

application. Comparison between MeNa’s outcome and oracle outcome shows that MeNa

methodology can find the best configuration with 9% performance/cost error rate on, average

for our training data sets. In the worst case, a 17% error is the price for avoiding an exhaustive

brute-force search. The standard deviation of errors is 4%. Table 4.9 shows the error rate

of MeNa compared to oracle configuration for three test applications from our training data

sets.

Figure 4.10 shows the average performance/cost error rate of MeNa for various budgets.

This result shows MeNa accuracy is higher for Mem-CPU class (8% error rate) while it has

the lowest accuracy for I/O intensive class (12%). Moreover, MeNa is more accurate for

mid-range target budget (between 500$ and 900$).
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Table 4.10: Applications’ features

Application LLC hit L2 hit C0 residency CPU util. CPI stall IPC Class
S-Nweight 32 39 89.27 83 2.7 1.6 CPU-Mem
H-Terasoer 44 41 74.88 75 0.26 2 CPU

H-Scan 69 59 29.23 37 0.42 0.72 IO
S-srt 40 35 51.28 48 0.43 0.8 IO-Mem

Table 4.11: Configurations selected for Spark Nweight

Budget 250$ 450$ 700$ 900$ 1100$ 1400$
#Core 7 13 13 6 12 16

Core freq (GHz) 2.8 2.8 2.8 2.8 2.8 2.8
#Socket 1 1 2 4 4 4

Mem cap (GB) 5 10 16 16 24 32
Mem-freq (MHz) 1333 1333 1333 1333 1333 1333

#channel 1 2 2 1 2 4
Perf/Cost 0.826133 0.765555 1.01344 0.792148 1.160709 1.53858
Error (%) 8.2 5.3 3.1 5.6 7.9 11.1

Table 4.12: Configurations selected for Hadoop Terasort

Budget 250$ 450$ 700$ 900$ 1100$ 1400$
#Core 7 6 6 6 12 16

Core freq (GHz) 2.8 2.8 2.8 2.8 2.8 2.8
#Socket 1 2 3 4 4 4

Mem cap (GB) 3.5 6 9 12 24 32
Mem-freq (MHz) 1333 1333 1333 1333 1333 1333

#channel 1 1 1 1 1 1
Perf/Cost 1.119605 1.093411 1.077358 1.069507 1.589477 1.840536
Error (%) 9.8 7.5 5.9 6 9.4 10.8

Evaluation

In this section, we evaluate MeNa with unknown applications for various target budget. The

selected applications are: Hadoop Terasort, Hadoop Scan, Spark sort, and Spark Nweight.

Table 4.10 shows the features of each application and the class identified by MeNa. Tables

4.11, 4.12, 4.13, and 4.14 show the configurations selected by MeNa for the given budgets.

We also report the performance/cost error rate of each application for each target budget.

The results show that MeNa identifies a configuration with performance/cost of on average

11% close to an oracle configuration.

The evaluation of MeNa can also be used to derive architectural insights for server design-
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Table 4.13: Configurations selected for Hadoop Scan

Budget 250$ 450$ 700$ 900$ 1100$ 1400$
#Core 5 5 5 4 9 9

Core freq (GHz) 3.6 3.6 3.6 3.6 3.6 3.6
#Socket 1 2 3 4 4 4

Mem cap (GB) 2.5 5 7.5 8 18 18
Mem-freq (MHz) 1333 1333 1333 1333 1333 1333

#channel 1 1 1 1 1 1
Perf/Cost 1.046293 1.044781 1.044279 0.922948 1.449773 1.449773
Error (%) 14.6 14.8 12.2 13.5 15.4 17.2

Table 4.14: Configurations selected for Spark sort

Budget 250$ 450$ 700$ 900$ 1100$ 1400$
#Core 3 3 2 2 4 4

Core freq (GHz) 3.6 3.6 3.6 3.6 3.6 3.6
#Socket 1 2 3 4 4 4

Mem cap (GB) 3 6 6 8 16 16
Mem-freq (MHz) 1333 1333 1333 1333 1333 1333

#channel 1 2 2 2 4 4
Perf/Cost 0.510734 0.455947 0.464989 0.445342 0.456145 0.364948
Error (%) 13.3 14.7 9.4 10.1 16 15.3

ers. For instance based on MeNa results we can see CPU intensive applications to demand

large number of cores and low frequency processors while I/O intensive applications to re-

quire low number of core but high frequency processors. The result of I/O-Memory intensive

application shows a very high performance/cost ratio since all options that can improve the

performance are playing against each other. As a memory intensive application, we need

large number of cores and high core frequency to take advantage of a fast memory subsystem.

As an I/O intensive application, however, increasing the number of cores and core frequency

exacerbate the I/O accesses and impacts application’s performance. These findings have

been corroborated by our characterization’s result presented earlier in this chapter. Another

observation is that increasing the memory frequency does not enhance performance/cost

ratio even for memory intensive applications. On the other hand, increasing the number of

memory channels improve the performance/cost ratio of memory intensive applications.

The trend in Figure 4.11 shows that, regardless of application class, scale-out approach

cannot always enhance the performance/cost unless the scale-up solution is exploited. For
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Figure 4.11: Average Performance/Cost correspond to the average number of core and socket

Figure 4.12: Effect of memory parameters on Performance/Cost

example, increasing the number of sockets, when the number of cores is low, reduces perfor-

mance/cost. However, when the number of cores increases, performance/cost enhances by

increasing the number of sockets. This means that the unseen cost that subscribers pay for

a server such as for cooling, maintenance, and network, forces them to get the maximum uti-

lization from their server. To show how memory frequency and number of channels affect the

performance/cost of applications, we present the average results of our dataset for different

number of cores in Figure 4.12. Figure 4.12 shows that increasing the memory frequency has

almost no impact on improving the performance/cost ratio. On the other hand, increasing
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Figure 4.13: Average Performance/Cost correspond to Budget

the number of channel improves performance/cost ratio. However the improvement will be

diminished if the number of cores is low. In fact, as long as the number of cores is high,

enough pressure is being put on the memory subsystem, therefore results in enhancing the

performance when the number of memory channels increases.

Another interesting observation is that allocating higher budget for an application does

not necessary yield a better performance/cost, shown in Figure 4.13. This implies that

there needs to be a method to enable subscribers to provision a rational budget for their

application to get the max performance/cost benefits. MeNa proved that it is an answer for

such urgent demand. MeNa methodology is architecture independent and therefore it can

still be utilized for future technology.

4.6 Conclusion

Main memory performance is becoming an increasingly important factor contributing to

overall system performance and the operational and capital costs. This particularly becomes

important for server-class architectures as more applications are moving to the clouds. This

suggests that it is important to understand the role of memory configuration parameters,
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such as capacity, number of channels, and operating frequency, for performance and energy-

optimization of emerging class of applications in scale-out environment. In response, this

work addresses these challenges with a realsystem experimental setup. Our analysis reveals

several interesting trends and provides key system and architectural insights on how memory

configuration parameters must be tuned across various classes of applications to achieve high

performance at low cost. To the best of our knowledge, this is the first work that provides

a methodology for improving the performance/cost ratio of server class architectures in a

scaleout environment while considering the memory parameter as well as processor parame-

ters. We proposed a novel three-stage methodology to navigate memory parameter referred

as MeNa. MeNa uses a fully connected Neural Network to characterize and classify appli-

cations. Based on the characterization results, we present experimentally derived models

for estimating and predicting the impact of memory and processor parameters on capital

and operational cost and performance of applications. MeNa uses those models to navigate

memory and processor configuration parameters in order to find the best configuration to

maximize performance/cost ratio for a given user defined budget. MeNa utilizes dynamic

programming to solve bounded knapsack problem to achieve that goal. The validation re-

sults on our extensive database show MeNa to have 91% accuracy on average to estimate

the performance/cost ratio compared to a brute force approach. MeNa enables subscribers

to provision a rational budget for their application to get the max performance/cost in cloud

environment. MeNa also reveals several interesting trends and provides key insights that can

be leveraged by server designers for various optimization goals.
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Chapter 5

Energy-Aware and NN-based RPS for

IMC Application

In this chapter, we develop accurate and effective models to predict the resource requirements

for each of the phases of IMC workloads at runtime, to determine an optimal energy-efficient

configuration.

Neural networks has been used in several domains from wearable devices [84, 79, 80]

to the cloud. We propose E-Net which leverages an artificial neural network to build a

cross-platform energy-performance estimation model as well as an application’s behavior

predictor. Based on the developed predictive model and energy-performance estimator, E-

Net uses an optimization engine to distinguish close-to-optimal configuration in order to

minimize the Energy Delay Product (EDP) metric, which indicates the trade-off between

energy and performance.

5.1 Introduction

In this work, we propose E-Net to overcome challenges discussed in section 1.1. With the aid

of microarchitectural analysis, E-Net determines the characteristics of an application w.r.t.
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the underlying hardware configuration. These application characteristics are employed for

resource provisioning i.e., determining the best fitting architecture. E-Net is a system that

proactively predicts the future behavior of running IMC applications using a time-series

neural network (TSNN). It uses an artificial neural network (ANN) to dynamically estimate

the Energy Delay Product (EDP) of an application for all available hardware resources, and

provisions a near-optimal configuration that minimizes EDP while introducing low search

overhead using a imperialist competitive algorithm.

The evaluation results show that the phase predictor of E-Net achieves 93% accuracy

to correctly predict the future phase change of an arbitrary workload. On average, E-Net

improves the EDP and the performance by 40% and 23% (up to 51%, and 36%), respectively,

compared to a default scheduler. Such improvement in speedup is only achieved by efficient

resource provisioning and without any software or framework tuning overheads. Based on

the evaluation results, E-Net increases CPU utilization (average across all servers), DRAM

bandwidth and memory capacity utilization by 74%, 49%, and 31%, respectively compared

to default scheduler.

5.2 Background and Motivation

Energy is always important: Discussion in section 1.1 motivated us to propose an energy-

aware resources provisioning system that allocates an appropriate amount of resources for

not only performance benefits but also for consuming less power. The easiest and most

effective way to decrease the power consumption and energy is reducing the voltage and

frequency of the processor, however it increases the execution time and significantly degrades

the performance. In this work we use EDP metric which considers both performance and

power at the same time, and also is a popular metric in the computer architecture field, to

measure the energy efficiency of the system. Equation (3.7) indicates how we calculated this

metric.

Runtime changes in application’s behavior: challenge to predict and act in
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Figure 5.1: Example of application behavior and phase change

proactive manner: Each application faces various phases of execution, each with different

memory and processing requirements. Figure 5.1 demonstrate the phase change of PageRank

application during a part of its execution. Figure 5.2 shows the distribution of phases for

a subset of studied workloads. As Figure 5.2 shows, Grep is a workload that is mostly I/O

bound, Naive Bayes is memory and compute bound, CC (Connected Components) is mostly

compute and I/O bound, and PageRank has all kinds of behavior, therefore each requiring

different processing and memory resources to be allocated at different phases of runtime.

Additionally, the results show the number of times the workloads behavior changes during

the execution time. It is, therefore, necessary to identify those phases at runtime, to allocate

resources accordingly.

While IMC applications’ behavior changes multiple times during execution, their transi-

tions are predictable. E-companies typically run IMC programs repeatedly for a long period

of time with different contents but similar input dataset size [93]. We refer to this type of

programs as periodic (daily, weekly, and etc.) long jobs. This dynamically varying char-

acteristic motivates to develop a model that can proactively predict application behavior
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Figure 5.2: Average phase distribution of Spark workloads

changes online and allocate appropriate processing and computing resources, accordingly.

Model must account for both hardware and software characteristics: Prior

works mostly attempt to tune software parameters on a single server configuration [59].

However, given the heterogeneity and diversity of processing and memory architectures in

the cloud, it is important to account for hardware configurations, as well. In addition, while

prior works mostly tune parameters for better performance [130, 127, 140], tuning for op-

timal energy is also important and challenging. The main challenge is how to tune the

parameters for both power and performance, as a configuration that is optimized for power

in most cases deliver sub-optimal performance and vice-versa. To respond to this conflicting

optimization goal, i.e. tuning for power and performance simultaneously using energy-delay

product metrics (EDP), in this work we use an artificial neural network (ANN) for estimat-

ing the energy consumption of each application corresponding to each server platform. To

accurately estimate the performance and power, the deployed ANN takes the target server’s

configuration as well as the application’s microarchitectural signature as inputs to account

for both hardware and software features. In a real-world cloud environment, an IMC program

can run repeatedly multiple times with similar size of input datasets, while the underlying

hardware can be different because of the virtual environment. This motivates our work to

seek new modeling solution to provision hardware resources for a given IMC program for
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Figure 5.3: E-Net overview

energy optimization goal. E-Net is a comprehensive system that leverages machine learning

technique (e.g. neural networks) to address all the aforementioned challenges.

5.3 E-Net Methodology

E-Net is a configuration tuning methodology that automatically adjusts the hardware config-

uration assigned to a Virtual Machine (VM) in a proactive manner in order to dynamically

optimize the energy efficiency of a given IMC program on a given heterogeneous cluster

of servers. E-Net consists of four major components: predictor, estimator, explorer, and

decision maker. Following subsections elaborate the details of each component.

System Overview

Figure 5.3 illustrates the block diagram of E-Net. E-Net server maintains a database of per-

host state and updates it on each interval. E-Net predicts the next phase of an application

and its microarchitectural signature based on the current and previous states. Given the

predicted signature and corresponding server configuration, E-Net estimates the application’s
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energy consumption and performance in term of the EDP metric. Next, E-Net searches for

the best platform and configuration that minimize the EDP for a given IMC application. The

searching component (explorer) automatically searches for the configuration that achieves

minimal EDP. Overall, the estimator component of E-net relies on the results of the predictor,

and the explorer component selects the best configuration from the outcome of the estimator.

Online Monitoring

In order to continuously monitor each host’s state, a monitoring agent runs on each host.

Monitoring agent extracts architectural information and resource utilization of application

during each execution window and reports it periodically to the E-Net server. We define

the window as a sufficient amount of time that a VM on a particular physical server can

be maintained without migration. In this study, we set the window size to 3 minutes. The

architectural information is collected through the Intel Performance Counter Monitor tool

(PCM) [43] to capture the memory and processor behavior. Although PCM reports the

power consumption of CPU and memory, we installed WattsUp power meter on each server

to measure the whole power consumption of the server. To capture application behavior we

studied 17 features in the following broad categories:

(a) Memory related: Available virtual, physical, and shared memory, the cache and

buffer space, and memory bandwidth utilization.

(b) Disk related: Ratio of free to total disk space, and storage bandwidth utilization.

(c) Network related: Bytes sent and received.

(d) CPU related: L2, and Last Level Cache (LLC) hits ratio, instruction per cycle

(IPC), core C0 state residency, and CPU idle, system, user time.

We consider this information as an architectural signature of an application.
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Predictor

As shown previously, an IMC application has various phases during its execution time. We

define a phase as a period of time that application’s behavior remains unchanged. Here,

the application behavior is interpreted as a way that the application utilizes different server

resources and exhibit various architectural features. As the proposed E-Net needs to be

proactive in order to determine an optimal server configuration at runtime, it must be able

to act before a significant change occurs in the behavior of application which influences the

performance and power of the system. In order to act in a proactive manner, E-Net is

equipped with a phase predictor to predict the future phase and its corresponding archi-

tectural signature of the application. For this purpose, we employed Time Series Neural

Network (TSNN) technique and also traditional ML models such as hidden Markov model,

and K nearest neighborhood, and support vector machine (SVM). Each of these techniques

has its own trade-offs in terms of accuracy and complexity. However, we eventually decided

to employ TSNN. The detailed explanation of this decision is explained later in section 5.5.

The accurate prediction is important as all other steps of E-Net depends on the predicted ar-

chitectural signature of application to assign an appropriate resource to the VM in advance,

before the performance is changed (degraded) or resource utilization drops.

SVM

We also explore the Support Vector Machine to model the data, due to the benefits of

relatively lower complexity and similar performance. SVM analysis is a popular ML tool

for nonlinear functions. SVM is considered a non-parametric technique because it relies on

kernel functions. Some problems cannot adequately be described using a linear model. In

such a case, the Lagrange dual formulation in SVM allows the technique to be extended to

nonlinear functions.
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Hidden Markov model

The hidden Markov model (HMM) is another eager technique employed for effective predic-

tion. The HMM is used extensively for performance modeling and performance-prediction

analysis, where the HMM can predict the future state of a target system based on its current

state. In reality, as the relationship between the observed time and the observed state is

not one to one, a group of probability distributions for two stochastic processes are involved,

called the HMM. In an HMM, the states are not observable, but when we visit a state, an

observation is recorded that is a probabilistic function of the state.

K nearest neighbors (KNN) regression

KNN [105] is a lazy learning technique that does not require training. Suppose the dataset

has m samples that each sample xi is described by n input variables and an output variable

yi such as xi = {xi1, ..., xin|yi}. The goal is to learn a mapping function F: x to y known

as a regression function that captures and models the relationship between input variables

x and an output variable y. The KNN regression estimates the function by taking a local

average of the dataset. Locality is defined in terms of the k samples nearest to the estimation

sample. As the performance of KNN algorithm strongly depends on the parameter k, finding

the best values of k is essential. A large k value decreases the effect of noise and minimizes

the prediction losses. However, a small k value allows simple implementation and efficient

queries.

Time series neural network

Time series neural network or TSNN [134] is an eager learning technique. The training of

TSNN is done offline by our database. The time series neural network module is based on a

nonlinear autoregressive network with exogenous inputs network.

Equation (5.1) is deployed to predict the next architectural signature of IMC application.

Y (t) = F (Y (t− 1), Y (t− 2), ..., Y (t− n)) (5.1)
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For the prediction of each architectural feature, we used one TSNN. The output of pre-

dictor is a vector (Sign) and is fed to the EDP estimator. In Equation (7.1), ai denotes each

architectural feature.

Sign = {a1, a2, ..., a17} (5.2)

EDP Estimator

It has been shown in prior works that using analytical modeling techniques [39, 40] is not

an effective solution for predicting the performance and power since these methods suffer

from low accuracy caused by over-simplified assumptions [12]. In order to model the EDP

of each application on different platforms, in this work we used Artificial Neural Networks

(ANN). We will show that ANN-based estimator is an effective, accurate, and fast approach

to model the EDP of applications with respect to their microarchitectural behavior.

ANN attempts to estimate the performance and power consumption of monitored appli-

cation for a target server specified by server configuration inputs. The ANN has three sets of

inputs (total 37 inputs). The first set of inputs is the current parameters of the server. The

second set of inputs is the architectural signature of application coming from the predictor

which is called signature inputs. The third set is the proposed configuration parameters of

the server platform referred to configuration inputs The configuration inputs vector is as

follow:

Conf = {c1, c2, ..., c10} (5.3)

where Conf is the configuration vector and ci is the value of the ith configuration parameter

(number of sockets, number of cores, core frequency, cache size, memory capacity, memory

frequency, number of memory channel, storage capacity, storage speed, network bandwidth).

Next, the ANN model estimates the EDP based on Sign and Conf . The EDP model is

described by:

EDP = f(Conf, Sign) (5.4)
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Note that f(Conf, Sign) is a data model, which means there is no equation to describe

it.

Once the EDP of application is estimated, the E vector is constructed to store the EDP

and the corresponding configuration. The E vector is defined as follows:

E = {EDP,Conf} (5.5)

where E is an input for the explorer.

Explorer

The purpose of Explorer is to find the best configuration that minimizes the EDP. Therefore,

it is an optimization problem which the optimization variables are server’s configuration and

the cost function is EDP. In order to solve this problem, Explorer uses an optimization

engine (OE). In this work, we explore the effectiveness of popular optimization algorithms

such as genetic algorithm (GA) [64], Imperialist competitive algorithm (ICA) [52], Discrete

Particle Swarm Optimization (PSO) [121], and Bat algorithm [92]. The results (presented in

section 5.5) show that the ICA achieved better convergence to the global optimum, thereby

we use it in our optimization engine. There exists other techniques for navigating complex

configuration spaces, e.g., recursive random search [129], and pattern search [108]. Random

recursive search has shown to be ineffective since it is more likely to be locked in local optima,

preventing the system to achieve the maximum efficiency. Pattern search typically suffers

from slow local (asymptotic) convergence rates [108].

Algorithm 1 describes the configuration search procedure which consists of six steps,

as shown in Figure 5.3. In step 1, we run the application on a random platform (random

configuration) and start monitoring its microarchitectural behavior for N execution windows

(N = 12 for experiments conducted in this research). Next, we extract the architectural

information to predict the next phase of the application using TSNN in step 2. In step 3,

we input the initial values of the configuration parameters and architectural signature of

78



Algorithm 1 Explorer functionality

Input: Architectural signature of application, List of available servers
Output: An optimal configuration
Result: Minimized EDP

1 Optimal EDP = ∞
2 Conf ← Get Random(List of servers)

3 Sign ← Architectural Signature

4 E ← ANN Estimate(Conf,Sign)

5 while iteration ≤ Threshold do
6 Opimal EDP← OE Assimilation(E EDP,Opimal EDP)

7 Conf’ ← OE Im compet.(OE Revolu.(E Conf))

8 E ← ANN Estimate(Conf’,Sign)

9 return E Conf

the next phase of application to the EDP estimator. In step 4, we pass the estimated EDP

and configuration parameter values to the OE. Note that the configuration parameters are

randomly selected. OE is based on ICA. Therefore, we define an array of values of a candidate

solution as a Colony. The OE then performs a number of operations such Assimilation

(Colonies move towards imperialist states in different in directions), Revolution (Random

changes occur in the characteristics of some countries), and Imperialistic competition (All

imperialists compete to take possession of colonies of each other). In this way, a new set of

configuration parameter values is generated. In step 5, these configuration parameter values

are fed to the estimator to estimate a new EDP value and the EDP is passed to the OE again

to check if the stop condition is satisfied or not. Steps from 3 to 5 are repeated for a number

of times until the optimum configuration is found. The next step (6) includes sending the

optimal configuration to the decision maker. All steps are repeated for the next window of

operation until the execution of the IMC program finishes.

79



Decision Maker

After finding the optimum or close the optimal configuration, E-Net manager follows a

methodology which divides the resource allocation problem into smaller sub-problems using

a hierarchical approach. It demonstrates which actions can be executed in what level for

efficient resource allocation of scale-out infrastructures. In general, the following reallocation

actions can be considered:

• 1) Increase CPU frequency

• 2) Decrease CPU frequency

• 3) Increase CPU core (number of cores of a host allocated to a VM)

• 4) Decrease CPU core

• 5) Add allocated storage.

• 6) Remove allocated storage.

• 7) Increase memory capacity.

• 8) Decrease memory capacity.

• 9) Migrate VM to a different host.

Note that in all experiments there is an underlying mechanism (Xen Hypervisor) that

performs the live migration. Decision maker migrates VM when the migration latency is less

than half of window’s time and also when it is necessary.

Changing the CPU frequency is performed by DVFS. The first escalation level (“change

VM configuration”) works locally on a host and attempts to change the host resources. This

operation is performed by hot-(un)plugging of resources (memory and cores). For example,

mounting storage or adding memory to the VM is more lightweight than migrating VMs. If

there is no appropriate VM available in level 1, the second escalation level is called, where
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the decision maker creates a new VM on an appropriate host or migrates the VM to a host

that has enough available resources.

Migration consideration: The manager must take into account the Xen live migration

time to decide whether to migrate the VM or not. Therefore, we adopt the performance

model of Xen live migration proposed in [82] to predict the time that takes to migrate a VM

from node A to node B and resume the job.

Performance modeling of live migration involves three main factors: the size of VM

memory (VMem), the memory dirtying rate (D), and network transmission rate (J). Live

VM migration achieves negligible application downtime by iteratively pre-copying the pages

dirtied at the previous round of transmission. Xen provides the ability to track memory

accesses of guest VMs using a mechanism referred to shadow page tables. The shadow page

tables are maintained by the hypervisor and translated from guest page tables on demand.

In this way, the hypervisor is able to trap all memory updates within a VM and maintains a

bitmap to mark the dirty pages. As VM live migration also works in shadow paging model,

we can measure a VMs memory dirtying rate incidentally before the pre-migration phase.

The data transmission rate for each round is determined by adding a constant increment to

the previous rounds memory dirtying rate (D) where the constant variable and its default

value is empirically set at 100 Mb/s. Let λ denote the ratio of D to J. Then we have the

migration latency:

Tmig =
n∑

i=0

Ti =
Vmem

J
.
1− λn+1

1− λ (5.6)

5.4 Implementation

In this section, we present our experimental system configurations and the setup. We first

present the E-Net prototype. We then describe our hardware platform which runs the E-Net

cluster. Lastly, the frameworks and the workloads for evaluating E-Net are introduced.
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E-Net prototype

E-Net prototype is written in Java with about 3K LOC and is integrated into Apache Cloud-

Stack [106] which is an open-source cloud management software for running a private cloud

infrastructure. It has enterprise-class support for scaling out VMs on XenServer hosts and

controls the XenServer host instances using the Java bindings of the XenServer Management

API. XenServer is a Linux distribution that is based on the Xen hypervisor and running Linux

Ubuntu 16.04 LTS in our work. The API designed for E-Net includes functions to express

the type of submitted workloads, and functions to check job status, revoke it, or update the

constraints. E-Net currently can manage IMC frameworks such as Spark and Flink within

VM with no need to change the applications code.

Figure 5.4 shows the overview of E-Net cluster. We implemented the monitoring agent

in Dom-0, which is a privileged VM in Xen hypervisor. E-Net server maintains a database

of per-host state and updates it on each interval. Each record of the database contains the

information of each workload on each server and each record size is roughly 1080 bytes.

Neural Networks used in this work are implemented in MATLAB [6]. To use them in E-Net

framework, we used MATLAB Compiler to compile MATLAB code into a shared library to

be able to call it from our Java code. To implement genetic algorithm, we used Jenetics

Programming Library [5]. All components of E-Net (predictor, estimator, explorer, and

decision maker) are running on the server side and they do not have any impact on the

execution of IMC applications.

Cluster Setup

We implemented E-Net as a centralized resource provisioning server on Argo cluster located

at George Mason University with a total of 20 hosts. The local cluster includes servers of 12

different configurations shown in Table 5.1. As seen from the table, we also show how many

servers of each type we can use. Note that these configurations range from high-end Xeon

servers to low-end ones. There is a wide range of core counts, clock frequencies, storage type,

82



Host 1 Host 2 Host n

E-Net
Server

State information

Application

(Libxenlight) API

Xen Hypervisor

VM

Virtualized Host

Monitoring 
Agent

Dom-0

Figure 5.4: Overview of E-Net cluster

and memory capacities and bandwidth in our experimented cluster. All servers are equipped

with at least one high speed 1 Gbps network interface card.

Table 5.1: Detailed information of local cluster

Server (Xeon) Freq. Socket Core Cache Mem. Storage Server type Count
(GHz) (MB) (GB)

E5-4669 V4 2.2 4 22 55 96 SSD PCIe HPC 1
E5-4667 V4 2.2 4 18 45 64 SSD SATA HPC 1
E5-4650 V4 2.2 4 14 35 32 SSD SATA HPC 1
E5-2690 V4 2.6 2 14 35 512 SSD / HDD Memory opt. 2
E5-2650 V4 2.2 2 12 30 256 SSD / HDD Memory opt. 2
E5-2667 V4 3.2 2 8 25 32 SSD PCIe I/O opt. 2
E5-2643 V4 3.4 1 6 20 32 SSD PCIe I/O opt. 2
E5-2660 V2 2.2 2 10 25 16 HDD General purp. 3
E5-2650 V2 2.6 2 8 20 16 HDD General purp. 3
E5-1630 V4 3.7 1 4 10 8 HDD Power opt. 1
E5-1680 V4 3.4 1 8 20 12 HDD Power opt. 1
E3-1270 V6 3.8 1 4 8 8 HDD Power opt. 1

Representative Applications

Apache Flink [20] is the latest framework to the list of open-source frameworks focused on

Big Data Analytics that are trying to replace Hadoop and Spark. Flink is built for in-

memory processing of batch data, like Spark. This model outperforms Spark when repeated
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passes need to be made on the same data. This makes Flink an ideal candidate for machine

learning and other use cases that require adaptive learning, self-learning networks, and etc.

For training of E-Net neural networks’ models, we target various domains of data-

intensive workloads such as microkernels (Wordcount, Sort), graph analytics (Nweight, Con-

nected Components), machine learning (Kmeans, Naive Bayes), E-commerce (PageRank),

and social networks (Grep). In total 8 workloads for each Spark and Flink framework are

experimented from BigDataBench 4.0 [119] in which the size of the input is in the range of

200 GB up to 4 TB. The selected workloads have different characteristics such as high-level

data graph and different input/output ratios. Some of them have unstructured data types

and some others are graph based. Also, these workloads are popular in research and are

widely used for the demonstration of techniques. In our study, we used Spark version 2.1.0

in conjunction with Scala 2.11, and Flink version 1.3.3.

Offline Benchmarking and Training

Figure 5.5 illustrates the overview of workloads benchmarking and models training divided

into two phases: Collecting and Training. In the collecting phase, we perform these experi-

ments: we generate a number of configurations, automatically run IMC programs with the

generated configurations, and collect the architectural information, the execution times, and

power consumption of the running workload. In the training phase, we use the benchmarking

database to train the ANN for the EDP estimation as a function of the high dimensional

server configuration parameters and application’s architectural signature, and also to train

TSNN for the future architectural signature prediction.

Data Collecting: For a given IMC program, we create a database of power and perfor-

mance as follows:

1) We use a configuration generator to create a configuration which is a vector containing

10 configuration parameter values for each experiment (Confi).

2) We then run the IMC program with its input dataset on a server with Confi configu-
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Figure 5.5: Overview of benchmarking and training

ration.

3) During the execution, we monitor the application and extract its architectural signa-

ture (Signi) for each execution window. Eventually, we store the information in a vector as

a time series data.

4) After the execution of the program, we create a vector to save the execution time

(t) and power consumption (p) with the corresponding server configuration and application

signature. Given the estimated values, we calculate EDP as follow:

EDP = (t)2 × p (5.7)

Targeti = {EDPi, ti, pi, Confi, Signi} (5.8)

Model training: We use Targeti vector as a training set for building the EDP estimator.

We use EDPi as a target data and Confi and Signi as input data for the training of ANNs.

In this work, we used a ten-layer fully connected ANN with the following architecture [37,

105, 80, 80, 75, 60, 65, 45, 15, 1] for EDP estimation. The number of neurons for the hidden

layer is decided through Grid Search [104] to reach the highest possible accuracy. Moreover,
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we use the time series data to train different ML models for future phase prediction of IMC

applications.

To determine the best set of hyperparameters, we employed Grid search. 17 predictors

from each type of ML model are used that each of them is trained for one metric. Each

model has 12 inputs and one output. Each input shows a single timestamp sample and the

output shows the predicted value. When a job has just started and does not have the full

12 history measurements, we use the current data for all previous stamps.

5.5 Results and Evaluation

Overhead

The collecting data incurs the highest cost, 31.7 hours on average and up to 39.2 hours for

each workload. Model training of each TSNN took 48 minutes on average and ANN for EDP

estimation took 393 minutes. While training phase is very long, it is a one-time cost and

is still attractive compared to manual configuration. It is important to note that the target

of E-Net is the iterative applications which repeatedly run in data centers for months or

even longer. In this usage scenario, this high one-time cost is amortized with a very large

number of runs. Therefore, the additional overhead per run is very low. Moreover, when

a new application or a server comes, the whole data collection procedure is not required to

be redone. In this case, when the predictor finds a new behavior, we just save that trace

and report it to manager. After a while, when a collection of new traces has been collected,

new traces will be added to the database to only retrain the predictor and estimator. In this

way, we can easily update models with low overhead. Searching optimal configuration using

OE is performed in few seconds (1.2 s) for 65 iterations. This processing time is negligible

compared to the window’s size (3 minutes).

To show the results of scheduling decisions made by decision maker, we report the the

number of migrations and VM resource changes for studied applications in Table 5.2. The
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results show each VM migrated 10 times on average. The average migration latency is 89.8

seconds. Moreover, the ratio of total migration time to total execution time is around 5.3%

which is acceptable. Based on the results, the downtime of each migration is around 370 ms

on average.

Table 5.2: Information of scheduling decisions (Average results for each Virtual Machine)

Applications WC Sort NW CC KM NB PR Grep Average
Number of phase change 24 38 65 41 33 20 59 172 56.5

Number of change in VM configuration 22 33 56 37 28 18 53 151 49.7
Number of VM migration 5 6 10 8 7 4 11 32 10.3

Average VM migration latency (Second) 95 81 103 92 94 87 91 76 89.8
Standard deviation of migration latency 17 16 31 10 24 16 12 9 16.8

Average down time (millisecond) 378 264 571 342 389 355 367 294 370
Total migration time to total execution time (%) 6.2% 4.0% 5.1% 5.7% 6.4% 5.6% 5.4% 4.6% 5.3%

Accuracy

In this work, we used 5-fold cross-validation to evaluate the accuracy and validity of the

predictors and estimator. In order to avoid over-fitting and enhance the accuracy, we deploy

dropout technique with probability of 0.2.

To evaluate the accuracy of the generated predictors and the estimator, we use RMSE

(Root Mean Squared Error) equation.

RelativeRMSE =

√√√√ 1

N

N∑
n=1

(
pi − ai
ai

)2 × 100 (5.9)

where N is the number of samples, and pi and ai are the predicted and actual values of

the sample, respectively. We want the % relative RMSE to be as low as possible. RMSE is a

standard metric in regression which is sensitive to scalability. For example, an RMSE of 1 s

in runtime prediction is not acceptable if the actual runtime is 2 s, but can be acceptable if

the actual runtime is 1000 s. Expressing the error as a percentage of the actual value solves

this issue.

Assessment of Predictors and Estimator: Figure 5.6 shows how best each model

can predict the next behavior of running application. Results show that the average errors of
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Figure 5.7: Impact of the number of windows on the accuracy of TSNNs

models built by TSNN, HMM, KNN, and SVM are 5.1%, 8.8%, 14.2%, and 9.5%, respectively.

Based on these results, we opt to only use TSNN as our predictor whcih is more robust than

other models. Figure 5.7 depicts the impact of number of windows (time stamp) on the

accuracy of TSNNs. As the result shows, 12 windows data are sufficient to accurately

predict the next value for most parameters. The accuracy for CPU related, memory related,

storage related, and network related metrics are 98%, 96%, 91%, and 89% respectively. As

the Figure presents, ANN reaches to 96.2% accuracy with 780 neurons.

Assessment of optimization algorithms: Figure 5.8 shows the performance of opti-

mization techniques to brute force method. ICA performs faster that any other techniques
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Figure 5.8: Comparison of Optimization techniques (BF as a baseline)

and also has the better accuracy (97%). Moreover, ICA slightly utilizes more CPU but less

Memory capacity compared to the other techniques. We observe GA has the worst perfor-

mance, and PSO and Bat techniques have similar performance. Based on our evaluation, we

opt to use ICA as our optimization engine. On average, ICA reaches to its best performance

on 65 iteration and we use this number as stop threshold.

Performance and Energy Efficiency

In this section we compare E-Net methodology with other schedulers. To the best of our

knowledge there is no off-the-shelf approach for minimizing the EDP of arbitrary IMC work-

loads on various server types in a heterogeneous cluster. Often the end users provision the

most powerful server, but this may lead to excessive costs and energy waste without any

significant performance gains. Alternatively, exhaustively profiling the workload on every

available server provides accurate EDP estimates, but it is prohibitively expensive in terms

of cost, energy, and time. Instead, we chose baseline schedulers described below that can be

a good candidate to evaluate and compared with E-Net:

(1) Oracle scheduler : This scheduler is an ideal scheduler that has a prior knowledge of

the application’s behavior and therefor, it provisions the best resources for each phase of an

application at runtime.
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Figure 5.9: Evaluation of different metrics using various schedulers: (a) Normalized speedup;
(b) Normalized EDP; (c) CPU utilization across all servers; (d) DRAM bandwidth utiliza-
tion across all servers; (e) DRAM capacity utilization across all servers; and, (f) Storage
bandwidth utilization across all servers.

(2) Default scheduler : This is the base scheduler of Spark and Flink. In this case,

applications are running on the cluster without any manipulation from outside.

(3) Matrix Completion (MC) scheduler : We compare E-Net with a representative matrix

completion method or collaborative filtering [62] proposed previously in Quasar [26]. The

goal of this scheduler is to optimize the EDP. The advantage of comparing E-Net with this

type of scheduler is to understand how E-Net works well compared to a simpler scheme sched-

uler. For this purpose, we generate the initial dense matrix using our offline benchmarking

database. Applications form the rows of the matrix, the server types form the columns, and

each cell (j, k) in the matrix contains the value of the EDP for j-th application on the k-th

server type. When an application is profiled on two servers, we modify a row with only two

values corresponding to those two servers. Using matrix completion, we are able to obtain

the predicted the EDP of the application on the rest of the servers.

(4) Power-Aware (PA) scheduler : It is a scheduler that allocates the lowest-power plat-

form first.
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Performance: Figure 5.9(a) shows the speedup of applications using E-Net and other

methods. In this figure, we normalized speedup of each application to the oracle results such

that higher value represents a better speedup. We observe that E-Net always outperforms

MC scheduler. This is unsurprising as E-Net scheduler is designed to proactively estimate

the energy delay product of arbitrary IMC workloads at each phase of the program on various

server types at runtime to provision the best energy-efficient configuration in a heterogeneous

scale-out environment. On average, E-Net improves the performance by 23% and up to 36%

compared to default scheduler. Moreover, E-Net has 14.8% better performance than MC

scheduler on average. This is noticeable as this speedup was only achieved by efficient

resource allocation, without any software or framework parameter tuning. Results show

PA scheduler is not an effective solution for speedup as it performs worse than the default

scheduler. Because PA always tries to select the lowest power configuration for resource

allocation and hence, its performance is lower than the other schedulers.

Energy Delay Product: Figure 5.9(b) shows the EDP improvement of studied work-

loads. Again, we normalized the results with regard to the oracle. The lower value is better.

Our results show the default scheduler outperforms PA. Because, PA can only allocate low

power configuration to the application. As a low power configuration has the lower perfor-

mance and in the other hand EDP is a metric that favors performance, PA’s outcome is

a high EDP configuration. Hence, default scheduler works better than PA. Moreover, MC

works better than PA. Because MC is more intelligent than PA. MC scheduler is able to

learn from the experience of other applications and also the current application’s history.

Based on the presented results, E-Net improves the EDP by 40% on average and up to

51% compared to default scheduler. Moreover, E-Net reduces EDP 18.3% more than MC

scheduler, on average.

In order to compare the benefits of using E-Net over a bare metal cluster where only

Spark or Flink are managing the jobs without interfering of any virtualization mechanism

such as Xen hypervisor, we performed 15 experiments with a different number of jobs that

runs in parallel. Figure 5.10 shows the EDP normalized to the Oracle Scheduler. BM stands
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for Bare Metal cluster using default Spark’s or Flink’s scheduler. The interesting observation

is that when the number of jobs is low, BM outperforms all virtualized solutions. However,

by increasing the number of jobs, the BM cannot manage the jobs and this is where E-Net’s

complexity pays off. The results show E-Net co-locates multiple jobs with the same quality

of managing single job and still allocates the close to optimal configuration to VMs. In

the other hand, the effectiveness of virtualized default scheduler reduces when multiple jobs

are running concurrently. Another interesting observation is that by increasing the number

of simultaneous jobs, PA starts to outperform virtualized default scheduler. Because by

increasing the number of jobs, the ability of default scheduler to properly manage jobs

reduces and the performance degrades. Therefore, as the PA can mange jobs with the lower

power consumption, it can outperform default scheduler.
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Figure 5.10: Impact of running multiple jobs on EDP
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Figure 5.11: Correlation between the server type and average utilization

Utilization: Figure 5.9(c) demonstrates the results for CPU utilization across all servers.

As shown, E-Net increases CPU utilization (average across all servers) to 72% versus 43%
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with default scheduler which is a 69% improvement. Figures 5.9(d), 5.9(e), and 5.9(f) show

the average utilization of DRAM bandwidth, memory capacity, and storage bandwidth dur-

ing the execution of workloads across all servers. Based on the evaluation results, E-Net

increases DRAM bandwidth and memory capacity utilization by 49% and 31% respectively

on average compared to default scheduler. However, the results show that the storage band-

width utilization is reduced by 35% on average. E-Net increases the storage bandwidth

by aggregating multiple disks together to alleviate I/O bottleneck and improves the perfor-

mance. Since the storage bandwidth increases and the usage remains constant, the utilization

drops. Hence, this reduction of storage bandwidth utilization is not interpreted as a negative

sign.

Figure 5.11 shows the correlation between the server type and utilization. The results

clearly show that the default scheduler is not aware of the server types and wastes the

resources available on each host. However, E-Net perfectly manages resources in a way that

each server has been assigned to a VM that can take advantage of its resources. For example,

we can observe that default scheduler is putting too much pressure on Power Optimized

servers but it does not use extra resources on memory or IO optimized servers. Whereas,

E-Net tries to lower the pressure on power optimized and general purpose servers. At the

same time, E-Net can take advantage of HPC and memory optimized server by assigning

more VMs to them based on each VM’s requirement.

Limitation

E-Net took a first but important step in cluster management to help users provision energy

efficient resources for their workloads on a heterogeneous scale-out platform such as the cloud.

In this section, we describe the limitations of the current system and possible future direc-

tions. At this stage, E-Net is not data size aware. Extending E-Net to consider task-specific

features, such as input size, can enable generalization across jobs. In the future, we plan to

merge E-Net resource provisioning algorithms in Apache Helix cluster management frame-
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work. Extending E-Net for multi-tier services will also require further work. Furthermore,

E-Net does not support fault tolerance. However, this will be a straightforward extension

if E-Net server is used as a hot-spare mirroring to provide fault-tolerance which requires a

continuously replication of all system states between two servers. E-Net does not explicitly

consider latency-critical applications or dependencies between application components. It

also does not enforce fine-grain priorities between application components or user requests,

or optimize for shared data placement. We will address these issues in our future work.

5.6 Conclusion

To address the challenge of resource provisioning for IMC workloads in heterogeneous cloud

platforms consist of diverse types of servers, in this work we propose E-Net which is a

proactive online resource provisioning methodology. As cloud platforms provide a wide range

of server configuration choices, and the applications’ performance and power consumption

changes at runtime and depends on the chosen configuration, resource provisioning in cloud

platforms is a challenging optimization problem with a large search space to navigate. E-Net

proactively assigns a suitable hardware configuration to IMC program for energy-efficiency

(EDP) optimization at runtime before any significant change occurs in the application’s

behavior. This helps to save energy without sacrificing performance. E-Net uses time series

neural network to predict the next phase of an application. It then uses artificial neural

networks to estimate the performance and power consumption of the predicted phase of

application on various server configurations. Further, E-Net uses a imperialist competitive

algorithm to distinguish close-to-optimal configuration in order to minimize EDP. Compared

to Oracle scheduler, E-Net achieves 93% accuracy to allocate the right resource to a given

workload at runtime and for each phase of the program. E-Net improves the performance

by 23% and the EDP by 40% on average, compared to default scheduler.
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Chapter 6

Proactive and ML-based RPS for

Data-Intensive Applications

To the best of our knowledge, previous works did not fully address all the following chal-

lenges together: proactive behavior prediction of data-intensive applications, selecting a

highly accurate machine learning (ML) technique for performance modeling based on real

empirical characterization, consideration of VM live migration time overhead, optimizing the

performance w.r.t the cloud cost, and considering various optimization techniques to achieve

fairness among jobs at the same time.

In response to these challenges, we propose ProMLB-a methodology that proactively pre-

dicts the future behavior of running applications by dynamically generating a cross-platform

performance model for all the available hardware resources and provisions a near-optimal

configuration that maximizes performance per cost, while introducing a low search overhead.

The overhead of generating the performance model and finding the optimal configuration is

negligible as ProMLB is implemented on a separate server as centralized cluster management,

and it does not interfere with on-going application executions.
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6.1 Contribution and Novelty of ProMLB

In this work, we propose a practical framework called ProMLB that can address all the

aforementioned challenges simultaneously. To this goal, we first analyze various applica-

tions’ architectural characteristics. Based on this information, a database is built and used

for training the prediction models (using time series neural network, K nearest neighbors

regression, and hidden Markov model), generating performance models (using multilayer

perceptron, and Support Vector Machine), and applying different optimization techniques

(Knapsack algorithm, and Cobb Douglas utility function) in terms of performance/cost ef-

ficiency and fairness. To be as close as to the real-world cloud providers, we utilize IBM’s

SoftLayer pricing list to derive a cost model for server platforms in a scale-out environment.

The developed cost model takes into account the processor, memory, and disk configurations.

The novelty of this work is outlined in a three-fold manner:

• An Ensemble learning-based proactive phase prediction with high accuracy based on

the behavior of the application and underlying execution hardware is devised.

• A non-linear performance model to efficiently estimate the actual behavior of the ap-

plications running on different hardware platforms considering the architectural pa-

rameters, as well as real-time constraints such as migration time, is deployed.

• A cost-performance trade-off is achieved by employing the Bounded Knapsack algo-

rithm. In order to solve the problem of proactive resource allocation in data centers

with minimal processing overheads, a hierarchical approach based decision-maker is

employed in the last stage.

The evaluation results show that the phase predictor of ProMLB achieves 92% to pre-

dict the future phase change of workloads correctly. On average, ProMLB improves the

performance/cost (performance per unit cost) and performance by 2.5x and 42% on an av-

erage (up to 70%), respectively. It needs to be noted that this improvement in speedup is
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only achieved by efficient resource allocation and without any software or framework tuning

overheads. Based on the evaluation results, ProMLB increases CPU utilization efficiency

(averaged across all cores), DRAM bandwidth, and memory capacity utilization efficiency

by 36%, 53%, and 39%, respectively.

6.2 ProMLB

In this part, we discuss the details of ProMLB and its components.

Overview

Figure 6.1 shows the overview of ProMLB framework. In order to continuously monitor

each server’s state, a monitoring agent runs on each host. These agents periodically send

the host’s state, such as architectural information and resource utilization, to the ProMLB

server. ProMLB server maintains a database of per-host state and updates it on each in-

terval. ProMLB predicts the future state of application based on the current and previous

states. Based on the predicted state and corresponding architectural signature of applica-

tion, ProMLB generates the application’s performance model for all available platforms in

the cloud. Afterward, ProMLB solves an optimization problem to find the best platform

and configuration that maximize the performance/cost for a specific application at a given

budget. Then, ProMLB uses Cobb-Douglas utility function to achieve fair allocation.

ProMLB is designed to maximize the performance per cost of running a data-intensive

application on a distributed platform. To achieve this goal, our approach is to use bounded

knapsack algorithm. In the Knapsack algorithm, by giving a set of items each with a weight

and a value, we must determine the number of each item to include in a collection so that the

total weight is less than or equal to a given limit and the total value is as large as possible.

In our problem, we consider each resource as an item and their value is the performance

gain that they can add to the system. In our problem, the cost of each resource is equal
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Figure 6.1: ProMLB overview

to the weight of an item in the original problem. The given limit is equal to the total

budget of the user to provision resources for its application. We have another restriction

that from each item, we must select at least a minimum amount. Because an application

cannot start execution unless it gets a core, memory, storage, and network resources. To

solve the optimization problem, we need a performance and cost model to determine the

performance gain and the cost of adding each resource to the system.

The important point is that as we must assign all resources at the same time, we need a

performance model that correlates the performance of adding a resource to all other resources.

For example, if we want to add one core to the system, the performance gain of that extra

core is dependent to the current resources, and it is not independent from them. Therefore,

we need performance models to accurately calculate the performance gain. On the other

hand, the cost of adding each resource is independent from other resources. Therefore, the

cost models are much simpler than the performance models. ProMLB server consists of four

components to deliver all the above functionalities: Phase predictor, performance model

generator, optimizer, and decision-maker.

Figure 6.2 shows the block diagram of ProMLB and explains how aforementioned com-

ponents work together, e.g., how the optimizer and the manager take the knowledge of the

predicted results and models in their configuration and allocation decisions.
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Monitoring agent

The monitoring agent is similar that we implemented in section 5.3. It has been implemented

in a privileged VM in Xen hypervisor called Dom-0. Alternatively, datacenter operators may

decide to host it on the application’s VM. The monitoring agent periodically reports the state

of the host to ProMLB server. The duration of the period, which is referred to as Window,

depends on the application’s characteristics. The monitoring agent reports the current state,

architectural signature, and the duration of window to the ProMLB server.

Architectural signature

The monitoring agent extracts architectural information of application during each window

and reports it to the server. This architectural information is collected through the Intel

Performance Counter Monitor tool (PCM) [43] to understand the memory and processor

behavior. The information that we use to study the behavior of applications are: available

virtual, physical, and shared memory, the cache, buffer space, memory bandwidth utilization,

ratio of free to total disk space, storage bandwidth utilization, network Bytes sent and
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received, L2 and Last Level Cache (LLC) hits ratio, instruction per cycle (IPC), core C0 state

residency, and CPU idle, system, user time. We consider this information as an architectural

signature of an application.

In this work, the resource usage pattern is called application’s behavior. We showed

that the behavior of an application changes if it becomes memory-bound, core-bound, I/O-

bound, or idle. Each of those distinct behavior is called a ”phase”. As an example, when

we say an application is in its memory bound phase, it means its memory usage pattern

shows the application is memory-intensive. Hence, if the application’s behavior changes, it

means that its phase is changed too. Therefore, a period of time that application shows a

distinct behavior is a phase. We define ”window” as follows: a fixed duration of time that

monitoring agents periodically sends its state report to the ProMLB server (master node).

During each window, an application may have multiple phases. We label the window with a

phase that consumes most of the time of that window. For example, if two thirds of a window

are memory-bound, we call that window memory-bound. Basically, what our predictors will

predict would be the major phase in the next window.

Phase predictor

Similar to E-Net, we equipped ProMLB with a phase predictor to be proactive in order to

act before a significant change happens in the behavior of the application and degrades the

application’s performance. Phase predictor will predict the future behavior of the application

based on the current and previous behavior. For this purpose, we employ three techniques,

such as time series neural network, hidden Markov model, and K nearest neighborhood. Each

of these techniques has its trade-offs. We observed during simulations that accuracy is limited

for unseen applications. Therefore, we employ Ensemble learning to boost accuracy. There

are several complex neural networks such as CNN and LSTM that provides high accuracy but

their complexity is not appropriate for our application. While few works proposed to reduce

the complexity and the number of parameters of such networks [83, 85] but still they are
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much more sophisticated than our selected techniques. We use the ensemble method, which

uses a combination of multiple learning algorithms to obtain better predictive performance

than could be obtained from any of the constituent learning techniques alone. The accurate

prediction is important as we can allocate enough resources to the application before the

performance degrades.

Ensemble method

Ensemble learning [100] is a branch of machine learning which is used to improve the accuracy

and performance of general ML predictors. We use ensemble learning to enable the use of

both eager learning techniques (TSNN, HMM) and lazy learning techniques (KNN), which

does not require training. Using the Lazy learning technique enables ProMLB to be more

flexible and have better accuracy for unknown applications. In this work, we use Bagging or

Bootstrap Aggregation [100], which is an ensemble learning model that is used for predictions.

It is a statistical prediction technique where a future state of the application is estimated from

voting of prediction results of three models. Each model is exploited to make a prediction,

and the results are voted to give a more robust and generalized prediction. If the prediction

of all three ML techniques is different from each other, then the voter will select the current

state as the final result.

Adaptive performance modeling and cost model generator

In this part, we formulate the performance and cost analysis for different applications in a

scale-out environment. The first part of this section is devoted to performance modeling.

The second part is to formulate the dependency of the price that a subscriber must pay for

utilizing different server configurations. This cost model is based on what we presented in

section 4.4. We then present the developed models to formulate the performance improve-

ment of each application with respect to the baseline hardware configuration. These models

will be exploited by the optimizer in the next step to select the most performance- and
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cost-efficient server configuration for a given application.

Adaptive performance modeling

One of the novel contributions of this paper is to adaptively generate a performance model

for each phase of applications dynamically. This leads to a more accurate model and helps

the optimizer to select the best configuration. Figure 6.3 is an example to illustrate that each

application has a different performance model depending on its phase and the server platform.

Offline analysis of our applications shows that the performance of data-intensive applications

is a convex function of servers’ parameters such as core count and core’s frequency. Based on

the analysis of our characterization, a generic performance model can be developed. However,

this generic model has to be adopted for each application. As a panacea to automatically tune

the generic model depending on the architectural signature of the application, we employ

Artificial Neural Network (ANN) here [35]. ANNs are a class of machine learning technique

that maps a set of input parameters to a set of target values.

We formulate each server’s performance as the product of per-processor performance and

the number of processors in each server. Regarding servers’ configuration, the parameters

that can be configured are core count, core frequency, DRAM bandwidth and capacity, stor-

age bandwidth. Therefore, there are nine different performance models from the combination

of those parameters. As the performance does not scale linearly with the parameters, such

as the number of cores, a nonlinear modeling is required. Following Equation demonstrates

the generic model:

Perf = α1x
2 + β1y

2 + α2x+ β2y + ωxy + γ

Where x, y ∈ {core, freq,DRAMBW,DRAMcap, StorageBW}

and x 6= y.

In order to capture this non-linearity effectively, we chose a Support Vector Machine

(SVM) [109] to fit the performance models. SVM analysis is a popular machine learning

tool for regression. Based on our database, we fit these models using SVM in order to find
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Figure 6.3: Performance model generated for workload graph analytic from Flink framework

the coefficients. Once the coefficients are calculated, we use them for training the ANNs in

order to map the architectural signature of applications to those coefficients.

Nine three-layer fully connected ANNs were trained by our training database to adopt

the generic performance model for each application based on the architectural signature. We

started with a simple three fully connected layer neural network. We found out this model

achieves our desired accuracy. Therefore, we did not use a more complex model, such as a

convolutional neural network. Each ANN has 17 inputs, 230 hidden neurons, and six outputs.

We used Grid Search to find the best number of hidden neurons. Inputs of neural networks

are the architectural signature. Each output neuron stands for a coefficient. ANNs generate
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the performance models in parallel. In the next section, these models will be used to find

the best platform and configuration. Figure 6.3 shows a subset of generated performance

models for three different phases of graph analytic application in the Flink framework. In

each sub-figure, X represents the number of cores, and Y stands for the other parameter.

The advantage of this approach is that we can accurately model the performance of

applications at each phase of their execution for various type of servers and improve the

server selection. An appropriate resource provisioning will decrease the execution time of

subscriber’s job, increases the resource utilization of scale-out infrastructure and eventually

brings economic benefits for both subscriber and provider. This is important because per-

formance improvement in datacenters translates into millions of dollars revenue per year for

cloud provider and also it decreases the cost for subscriber and make cloud services more

attractive for the end users.

Cost Modeling

This cost model is exactly what we presented in section 4.4 in MeNa with this change that

data is collected in January 2019. All cost equations are the predicted charge that subscribers

must pay in dollar for renting a bare metal server (on a monthly basis) on the IBM SoftLayer,

which includes the power, cooling, and maintenance related costs of the server.

Optimizer

For a given application and workload, our goal is to find the optimal or a near-optimal

server configuration that simultaneously satisfies the performance requirements with minimal

operational cost. For this purpose, we use the Bounded Knapsack algorithm to solve the

aforementioned optimization problem.
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Bounded Knapsack solution

This solution was introduced in MeNa [69] to select the best memory configuration to max-

imize the performance/cost. We discussed it in detain in section 4.5. In this work, we use

the Bounded Knapsack solution to select the optimal server configuration (not only mem-

ory). The result of this optimization is the recommended configuration to the manager. The

budget is a constraint that the user must provide. The result of solving the optimization

problem is a set of configuration such as the number of sockets, number of nodes, the number

of cores, core frequency, memory capacity, memory bandwidth, storage capacity, and storage

bandwidth. The optimizer recommends this configuration to the manager. It is the respon-

sibility of the manager to decide about the action which is needed to take for scaling the

current platform to make it as close as to the recommended configuration for the targeted

VM.

Manager

After finding the optimal configuration, the manager takes actions to allocate or adjust the

resources assigned to the applications. The manager of ProMLB is working in the same way

as the E-Net decision maker discussed in section 5.3. Actions that can be executed by the

manger are as follow:

The first action can be Dynamic voltage and frequency scaling (DVFS) which is the

adjustment of voltage and speed settings to increase or decrease CPU frequency. If it is

required, the manager can increase or decrease the number of CPU cores assigned to the

application (hot-(un)plugging of resources such as memory and cores). Moreover, the man-

ager can change VM configuration and add allocated storage or remove them. It is also

feasible to increase or decrease memory capacity. The last action will be to migrate VM to a

different node. Live migration is performed by an underlying mechanism (Xen Hypervisor).

The manager migrates a VM when the migration latency is predicted less than half of the

window’s time and also when there are not enough resources on the current server.
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Figure 6.4: Migration time

Predicting migration time

We use the same model of migration modeling discussed in section 5.3. More details are

available in [82].

Figure 6.4 shows the variation of migration time for different data-intensive frameworks.

In this study, we set the window size equal to three times (3X) of migration time because it

gives better prediction accuracy (Figure 6.6 shows the impact of window size on accuracy).

Fair allocation:

Another aspect to consider is fair allocation. When running multiple VM on a node, the

manager uses Resource Elasticity Fairness (REF) [132] in order to allocate the resources

among VMs, as co-scheduling multiple VMs on a single server could result in interference.

REF is a fair allocation mechanism that satisfies three game-theoretic properties (sharing

incentives (SI), envy-freeness (EF), and Pareto efficiency (PE)) using Cobb-Douglass utility

function. In this work, we begin with the space of possible allocations. We then add

constraints to identify allocations with the desired properties as follow:

Suppose multiple VMs share a server with R types of hardware resources. Let xi = {xi1,

..., xiR} denote i-th VM’s hardware allocation. Further, let ui(xi) denote i-th VM’s utility.
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Following equation defines utility within the Cobb-Douglas preference domain:

ui(xi)= ai0 uRr=1 xir
air

The parameters ai={ai1,...,aiR} quantify the elasticity with which a VM demands a re-

source. Let Cr denote the total capacity of resource r in the system. We can find a fair

multi-resource allocations given Cobb-Douglas preferences with the following feasibility prob-

lem for N virtual machines and R resources:

Find x subject to:

1) ui(xi) ≥ ui(xj) i,j∈[1,N]

2) air
ais

xis

xir
=

ajr
ajs

xjs

xjr
i,j∈[1,N]; r,s∈[1,R]

3) ui(xi) ≥ ui(C/N) i∈[1,N]

4)
∑N

i=1 xir ≤ Cr r∈[1,R]

Where C/N={C1/N,...,CR/N}. In this formulation, the four constraints enforce EF, PE,

SI, and capacity. The outcome of applying Cobb-Douglass utility function is a fair resource

allocation among multiple VMs running on a server.

Resource isolation:

In order to decrease the side effects of resource contention and interference, we enforce

resource partitioning and isolation techniques. We employ core isolation (thread pinning to

physical cores), to constrain interference context switching. We employ the Cache Allocation

Technology (CAT) available in Intel chips [49] to isolate last level cache (LLC). The size of

cache partitions can be changed at runtime by reprogramming MSR registers. We also use the

outbound network bandwidth partitioning capabilities of Linux’s traffic control. We employ

the qdisc [77] to enforce bandwidth limits. To perform DRAM bandwidth partitioning,

the manager monitors the DRAM bandwidth usage of each application using Intel PCM to

co-locate jobs on the same machine where it can accommodate their aggregate peak memory

bandwidth usage.
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6.3 Implementation

In this section, we present our experimental system configurations and the setup. We first

introduce the frameworks and the workloads we consider for evaluating the ProMLB. We

then describe our hardware platform which runs the ProMLB server.

Workloads

In our study, we used Hadoop MapReduce version 2.7.1, Spark version 2.1.0 in conjunction

with Scala 2.11, Flink version 1.3.3, and MPICH2 version 3.2 installed on Linux Ubuntu

16.04 LTS.

For a building and training of ProMLB, we target various domains of data-intensive

workloads such that of microkernels, graph analytics, machine learning, E-commerce, social

networks, search engines, and multimedia, totally 19 workloads. The size of input is in the

range of 10 GB and 2 TB. We use BigDataBench [119] and HiBench [46] for the choice

of big-data benchmarking. The selected workloads have different characteristics such as

high-level data graph and different input/output ratios. Some of them have unstructured

data types and some others are graph based. Also, these workloads are popular in research

and are widely used for demonstration of techniques. For validation of ProMLB, we used

CloudSuite [29] workloads: Data Analytics, web search, Graph Analytics, and In-memory

Analytics.

Figure 6.5 clarifies how we divided our workloads and dataset. First part is devoted

for developing the system, and the second part is devoted for the evaluation of our entire

system. During the development part, we used 19 workloads from two suites (BigDataBench

and HiBench) to train our models. To evaluate our models during this part, we partitioned

our dataset to two sets (unseen dataset for testing, and seen dataset for the training and

validation). In this part, data from all 19 workloads are aggregated together and we randomly

leave out 20% of the data for the unseen data points. Then we applied 5-fold cross-validation

technique on the 80% remaining data. The common schemes of cross-validation are m-fold
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Figure 6.5: Workloads and the dataset division for the training and testing phases of ProMLB

cross-validation. In m-fold cross-validation, the dataset is randomly divided into m subsets

or folds and repeated m times. Each time, one fold is reserved as a test dataset to validate

the model and the remaining m-1 folds are used for training of the model. Then, the

classification accuracy across all m trails is computed. Figure 6.8 is related to this part of

our experiments. As you can see, the training subfigure is related to the accuracy of training

folds (m-1 folds) and validation subfigure is related to the validation fold (the remained fold).

Then the testing subfigure is related to those 20% data that we leaved out from dataset as

unseen data points. After building the models and in the second part, to evaluate ProMLB

with a completely new unseen workloads, we selected 4 workloads from CloudSuite which we

never used them to train or build our models. Results presented in figure 6.9(b) are related

to this part of our dataset.
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Hardware Platform

We tested ProMLB on our 40-node cluster. Our cluster includes servers of twelve different

configurations shown in Table 5.1.

ProMLB Prototype

We implemented the ProMLB prototype as a Java application running on Linux Ubuntu

16.04 LTS. ProMLB is merged into Apache CloudStack [106]. At the current stage, ProMLB

can not be used for container-based systems such as Kubernetes. We will address these issues

in our future works. ProMLB currently can manage Hadoop, Spark, Flink, and MPI based

data-intensive applications. At this stage of implementation, ProMLB does not support

fault tolerance. This will be a straight forward extension if ProMLB server is used as a

hot-spare mirroring to provide fault-tolerance which requires a continuously replication of

all system states between two servers. ProMLB does not explicitly consider latency-critical

applications or dependencies between application components. It also does not enforce fine-

grain priorities between application components or user requests, or optimize for shared data

placement.

6.4 Evaluation of ProMLB

In this section, first we report the experimental results in terms of overhead and accuracy.

We then compare ProMLB scheduler with other schedulers.

Overhead

In this subsection, we report the overhead of ProMLB, including the time used to collect

training data, training the performance models, and searching for optimum configurations.

The collecting data has the highest overhead, 8.3 hours on average and up to 10.2 hours for

each workload (using 1 GB input data). Model training of each predictor took 31 minutes
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Table 6.1: Average prediction time of each predictor.

Average prediction time
KNN 74 ms
HMM 351 ms
TSNN 580 ms
Ensemble 22 ms

on average and training of ANNs took 73 minutes using two Nvidia GeForce RTX 2080

on a 16 core processor. It should be noted that training time is a one-time cost and it

is even an offline cost. It only is required when we are building the system. When the

development of system is finished and the system is under the deployment, we do not have

such overheads. Compared to the manual configuration this overhead is still attractive as

the target of ProMLB is the big data applications that repeatedly run in data centers for

months or even longer. In this usage scenario, this one-time cost is amortized with a very

large number of runs. Therefore, the additional overhead per run is very low. Table 6.1

presents the average prediction time of predictors. It should be noted that the average of

prediction time is around 607 ms.

ProMLB does not need to redo the process of data collection when a new application

or a server comes. In this case, when the predictor encounters a new behavior, it saves the

trace and reports it to the manager. New traces will be added to the database to retrain

and update the models offline. When the new model is ready, it can easily be replaced with

the old one without any significant interrupt in the execution of the manager. Searching

optimal configuration is done very fast, in seconds. This time is negligible compared to the

window’s size (few minutes). Moreover, this time will not be added to the execution time

of workloads as this computation is being performed on ProMLB server while workloads are

performing their normal execution without interrupt.

Corresponding to the resource utilization overhead of ProMLB, we should mention that

all components of ProMLB such as predictor, performance model generator, optimizer, and

manager are running on the ProMLB server (on the master node). The only component
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Figure 6.6: Impact of window’s size and number of windows on accuracy of predictors

running on the worker nodes is monitoring agent. Therefore, when the ProMLB is managing

the cluster, the overhead of total resource utilization of cluster is 1/N in which N is the

number of nodes in the cluster. Because only one node is devoted to the ProMLB and the

rest of the nodes are running the jobs. Hence, regardless of the memory usage of predictors

or the CPU utilization of optimizer, these components are running on master node and they

do not have any interfere with the worker nodes.

Accuracy

In this work, we used 20% of our data for testing the models as an unseen data. Rest of the

data was used for training and validation through the five fold cross-validation.

Figure 6.6 demonstrates how the window size affects the accuracy of ML techniques. In

this work, each timestamp entry of time series neural network is a phase of application. The

number of delay for our time series network is 10 windows. We use 8 windows information to

train the HMM. We then use this information to predict the next phase. After each window,

the HMM model will be retrained and therefore, training of our HMM is online. In this

study, we set k = 7 as equal to the number observing windows for KNN.

Each predictor is basically designed to predict what would be the major phase in the

next window. For example, if it predicts the distribution of phases in the next window is

as follow: 40% of the window time memory bound, 25% of the time core bound, 20% of

time I/O bound and the rest is idle, then the predictor concludes that the next window is

memory bound which means the application is memory-intensive for the most of the time
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Figure 6.7: Overall accuracy of predictors

in the next window of execution. The accuracy of phase prediction is calculated as follow:

Number of windows that predictor correctly predicted the phase / total number of windows.

For example, if the prediction for 8 windows from a total of 10 windows is correct, then the

accuracy is 80%. The results presented in Figure 6.7 are based on this type of calculation

for accuracy.

Figure 6.7 summarizes a validation of the accuracy of the phase predictor engine in

ProMLB. The result shows that the accuracy of ensemble method is much higher compared

to each ML technique. Ensemble method achieves 92% accuracy to correctly predict the

next phase of workloads. It is interesting to observe that the behavior of Hadoop, Spark,

and Flink frameworks are more predictable, compared to MPI based applications. it should

be noted that that without enforcing any isolation technique, the accuracy will drop to 78%.

Therefore, it is important to avoid of interference between co-located VMs for better resource

allocation.

Moreover, we also wanted to show that how much the major time prediction is accurate

for each window. For example, suppose that the predictor predicts that the major phase in

next window would be memory bound for 60% of the time. After the execution of application

in that window If we find out that the application was memory bound for 65% of the time,

although the prediction was true, but there is 5% difference in the prediction. The results
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Figure 6.8: Scatter plots of prediction values versus real measurements for 25920 data points

presented in Figure 6.8 shows the actual value and the predicted value in a scatter view

by our predictors. R value clearly shows that the models are fairly accurate across the

entire configuration space: all data points are located around the corresponding bisectore,

indicating that the predictions and estimations are close to the real measurements. Overall,

we find that there are not many outliers in our models, indicating that they can be used for

optimizing the performance.

Performance and Cost Efficiency

To have a comprehensive comparison between ProMLB and other resource provisioners, we

consider the following systems:

(1) Oracle: This is an ideal system that has a full prior knowledge of application behavior

and therefor it allocates the optimal resources at runtime.
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(2) Default : This is the default system without any manipulation from outside.

(3) Matrix Completion (MC): Matrix completion method or collaborative filtering [62]

proposed in Quasar [26].

(4) Cherry-Pick scheduler : One of the closest to ours is CherryPick which uses regression

model for performance estimation and Bayesian optimization to find the right configuration.

(5)Ernest scheduler : Ernest [112] predicts the runtime of distributed analytics jobs as a

function of cluster size and provisions a cost optimal configuration. However, Ernest cannot

infer the performance of new workloads on a VM type without first running the workload

on that VM type and also is not a dynamic approach.

Performance:

Figure 6.9(a) shows the speed up of ProMLB over the baseline for CloudSuite workloads.

On average, ProMLB improves the performance by 42% and up to 70%. This speed up

was only achieved by efficient resource allocation, without any change in the applications or

frameworks. ProMLB is performing 14% better than the state of the arts approaches because

it is proactive and dynamic as well. We observe that MC outperforms Ernest and CherryPick

techniques as MC is able to dynamically change the configuration. Figure 6.9(b) shows the

performance/cost improvement of studied workloads. On average, ProMLB can improve

the performance/cost by 2.5X compared to default scheduler. The interesting observation is

that Ernest performs better than MC and CHerryPick in terms of Performance/Cost. The

reason is that Ernes is a cost aware approach but ProMLB is still performing 15.6% better

than Ernest.

Utilization:

Based on results presented in Figure 6.9(c), ProMLB increases CPU utilization (average

across all cores) to 67% versus 49% with baseline which is a 36% improvement. Figures

6.9(d), 6.9(e), and 6.9(f) show the utilization of DRAM bandwidth, memory capacity, and
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Figure 6.9: Evaluation of different metrics using various schedulers: (a) Normalized speedup;
(b) Normalized Perf/Cost; (c) CPU utilization across all servers; (d) DRAM bandwidth uti-
lization across all servers; (e) DRAM capacity utilization across all servers; and, (f) Storage
bandwidth utilization across all servers.

storage bandwidth during the execution of workloads. Based on the evaluation results,

ProMLB increases DRAM bandwidth and memory capacity utilization by 53% and 39%

respectively, on average. Our results indicate that the storage bandwidth utilization was

dropped by 35% on average. ProMLB increases the available storage bandwidth to the

applications by aggregating multiple disks together. By increasing the storage bandwidth

and keep remaining the number of disk accesses, the disk utilization decreases and this

degradation does not have a negative impact on the performance.

6.5 Conclusion

In this work, we propose a proactive online resource provisioning methodology called ProMLB

to address the challenge of resource allocation for data-intensive workloads in scale-out plat-

forms. A wide range of server configuration choices are available in the cloud, and it creates

a large search space to navigate for selecting an optimal configuration. Moreover, the ap-
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plications’ performance depends on the chosen configuration, and it makes the optimization

problem even harder. In this work, to reduce the complexity, the application’s behavior is

first characterized into a core, I/O, or memory bound. Then, the ensemble learning based

prediction is employed to predict the next phase of the application.

Further, the performance models for predicted application behavior across different plat-

forms is derived. As the cost for chosen configuration plays a key role in resource allocation,

ProMLB uses an optimization technique to distinguish a close-to-optimal configuration in or-

der to maximize performance per cost. Compared to the oracle scheduler, ProMLB achieves

91% accuracy to allocate the right resource to workloads. ProMLB improves the performance

and resource utilization by 42.6% and 41.1%, respectively, compared to baseline scheduler,

on average. Moreover, ProMLB improves the performance per cost by 2.5X on average.
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Chapter 7

Railroading of Resource

Sharing-based Attacks on the Cloud

The heterogeneity of resources and the diversity of applications on the cloud motivated the

need for resource provisioning systems (RPSs) to meet the users’ performance requirements

while maximizing the resource utilization to achieve cost-efficiency. On the other hand,

resource sharing-based attacks, such as side-channel, transient execution, rowhammer, and

denial of service attacks, exploit shared resources to leak sensitive data or hurt the perfor-

mance of a victim. Although mounting resource sharing-based attacks on the cloud is trivial

once the attacker virtual machine (VM) is co-located with the victim VM, the co-location

requirement with the victim limit the practicality of resource sharing-based attacks on the

cloud. In this chapter, we show that RPSs can be exploited to solve the co-location chal-

lenge of resource sharing-based attacks in the cloud. In particular, we propose a new attack,

called Cloak & Co-locate, which utilize adversarial evasion attacks to force RPSs to co-locate

attackers’ VMs with targeted victims’ VMs. Specifically, Cloak is a fake trace generator

(FTG) that is wrapped around an adversary kernel in order to force RPSs to Co-locate it

with a specific victim’s VM, while also evading from detection and migration by the RPS.
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7.1 Background and Threat Model

The performance unpredictability problems that stem from platform heterogeneity, resource

interference, software bugs and load variation [102], are well-studied in the public cloud.

However, there are other challenges that lead to security threats. Below we discuss related

vulnerabilities with respect to the resource provisioning systems in the cloud. In particular,

we show that RPSs hides security vulnerabilities, since they enable an adversary to extract

information about an application’s type and the infrastructure’s characteristics.

Background

As different clients share hardware resources in the public cloud, isolation becomes a core

security challenge for the cloud computing paradigm, which consequently enables adversaries

to exploit it for their malicious desires.

A distributed attack [10] aims to retrieve sensitive information, or degrade the perfor-

mance of a number of computing resources on a distributed system, where each computing

resource performs processing of a part of the overall system activity. The retrieved infor-

mation may, for instance, be a set of encryption keys that can be exploited to compromise

the functionality of the whole distributed system. A distributed attack may also be used

to retrieve information about the cloud infrastructure. In the following, we describe some

characteristics and provide more details on such attacks.

Definition 1 A distributed attack over a set Mvic of virtualized instances running in a

distributed system S, is defined as the tuple DSCA = (S,Mvic, D,Mmal, A, CP,EP ) where:

S is a distributed system; Mvic are the VMs that are targeted by the attack; D is the

distributed dataset to be compromised (partially or totally); Mmal are malicious VMs, co-

located with the victim VMs; A is a set of local attack techniques (such as side channel,

denial of service, or resource freeing attack); CP is a protocol to coordinate the attacker

VMs in Mmal; EP is a protocol to exfiltrate data.

We consider D = {d1, . . . , dn} a dataset to be processed by the distributed system S
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= {s1, . . . , sn} implemented on a set of VMs Mvic = {mvic1, . . . ,mvicn} on a virtualized

platform. Each component si of S processes data di locally and runs on its own VM, mvici.

To perform the distributed attack, the adversary sets up a number of malicious VMs at

least equal to the number of Mvic) Mmal = mmal1, . . . ,mmaln, co-located with the victim

instance Mvic. The adversary also masters a set A = a1, . . . , am of local attack techniques,

i.e., Flush+Reload.

The objective of a distributed attack is to first attack each component of the system

si running on mvici through mmali running local attack technique aj to retrieve di. The

synchronization between attack instances and a central server may be performed using a

coordination protocol CP . A protocol EP may be used to control attacking instances

remotely, and to send collected information to a remote server to exfiltrate sensitive data.

In the following, we briefly explain three well-known local attacks on a distributed system:

Side Channel Attack (SC)

Lack of enforced isolation can create side-channels, due to the sharing of physical resources

like processor caches, or by mechanisms implemented in the virtualization layer. A side-

channel is a hidden information channel that differs from traditional ”main” channels (e.g.,

network) in that security violations may not be prevented by placing protection mechanisms

directly around data. A side-channel attack exploits a side-channel to obtain important

information. SC attacks may be classified according to the type of exploited channel. Timing

attacks and cache-based attacks are two main classes of SC attacks, where the processor

cache memory is often exploited by adversaries to obtain information. There are attacks

that attempt to extract confidential information from co-scheduled applications, such as

private keys [139]. Zhang et al. [137] proposed a system that launches side-channel attacks

in a virtualized environment. Wu et al. [122] used the memory bus of an x86 processor to

launch a covert channel attack and degrade the victim’s performance. This type of attack

requires the adversarial VM to be co-located with the victim VM.
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Denial of Service Attack (DoS)

Denial of service attacks hurt the performance of a victim service by overloading its resources.

In cloud settings specifically, they can be categorized into two types; external and internal

(or host-based) attacks. Internal DoS attacks take advantage of IaaS cloud multi-tenancy

to launch adversarial programs on the same host as the victim and degrade its performance.

For example, Ristenpart et al. [95] showed how an adversarial user could leverage the IP

naming conventions of IaaS clouds to locate a victim VM and degrade its performance. Cloud

providers are starting to build defenses against such attacks by increasing the instances of a

service under heavy resource usage. This means that DoS attacks that overload a physical

host are ineffective. However, Bolt [22] showed they can perform DoS attacks in a way to

make them resilient against such defenses by avoiding resource saturation.

Resource Freeing Attack (RFA)

Resource-freeing attacks also hurt a victim’s performance, while additionally forcing it to

yield its resources to the adversary [110]. While RFAs are effective, they require significant

compute and network resources, and are prone to defenses, such as live VM migration.

Delimitrou and Kozyrakis [22] showed that it is possible to launch host-based attacks on

the same machine as the victim that take advantage of the victim’s resource sensitivity, and

keep resource utilization moderate, thus, evading defense mechanisms.

Threat Model

In this chapter, we target Infrastructure as a service (IaaS) providers that operate public

clouds for mutually untrusting users. Multiple VMs can be co-located on the same server.

Each VM has no control over where it is placed, and no priori information on other VMs on

the same physical host. For now, we assume that the resource provisioning system is neutral

with respect to detection by adversarial VMs, i.e., it does not assist such attacks or employ

additional resource isolation techniques to hinder attacks by adversarial users. Moreover,
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RPS is considered ideal and treats all the VMs in a fair manner and places them according

to workload characteristics rather than its place of origin or intention. Moreover, we assume

black-box access to the RPSs, were we do not know the underlying model that the RPS is

using for placing VM instances. Thus, we can only create VM instances and observe the

placing outcome.

In this paper, we assume two types of VM as follow:

• Adversarial VM: An adversarial VM has the goal of getting co-located with victims

and evade from detection mechanism embedded into resource provisioning system to

negatively impact victims’ performance or steal information.

• Friendly VM: This is a benign VM scheduled on a physical host that runs one or more

applications. They do not employ any schemes, such as memory pattern obfuscation,

to prevent detection by an adversary.

In this chapter, we consider the worst case for an attacker in which if the adversarial

application does not change its behavior and architectural signature, the RPS will detect it.

The detection mechanism can be any arbitrary technique. Therefore, adversarial applications

are required to change its microarchitectural and system level profiling trace to prevent the

detection. It should be noted that changing the microarchitectural and system level profiling

trace does not mean hacking the performance counters or accessing the RPS’s database,

but it means that the adversary application changes its behavior, e.g., using CPU more, or

performing dummy memory access to increase the cache misses or memory bandwidth usage.

The direct result of such behavior is a change in the state of the system, without hacking

the system. Additionally, the adversary must remain co-located with the victim. In the case

of a change in the behavior, there is a high chance that RPS migrates the adversary VM to

another host. For example, Figure 5.1 demonstrates how an applications’ behavior changes

during the runtime. This is the another challenge of attack and we are going to address it

in this chapter.
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7.2 Cloak & Co-locate

Contention-based attack’s setting

Adversaries are rarely interested in a random service running on a public cloud. They need

to pinpoint where the target resides in a practical manner to be able to perform DoS, RFA, or

SC attacks. This requires a launch strategy for co-location and a mechanism for co-residency

detection. The attack is practical if the target is located with high accuracy, in reasonable

time and with modest resource costs. Performing any distributed attack requires a number

of prerequisites steps detailed in the following:

Finding physical hosts running victim instances

To perform any attacks based on co-location, the attacker needs several VM launching strate-

gies to achieve co-residency with the victim instance, which is impractical and not feasible.

A pre-condition for the attack is that the malicious VMs reside on the same physical host

as victim VMs, as side-channel and RFA attacks are performed locally. The first and main

step is thus to find the location of physical hosts running victim VMs. Several placement

variables such as datacenter region, time interval, and instance type are important to achieve

co-residency. These variables may be different among IaaS clouds. However, the application

type is considered as an effective factor in the placement strategy [136]. Let P (mmali) be

the probability of instance mmali to be co-resident with instance victim mvici. The value

of P will be raised by increasing the number of launched attack instances. To make sure

that both attacker and victim VMs achieve coresident placement, the adversary can perform

co-residency detection techniques such as network probing [48]. The attacker can also use

data mining techniques to detect the type and characteristics of a running application in the

victim VM by analyzing interferences introduced in the different resources to increase the

accuracy of co-residency detection [22].
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Evasion from detection and migration

There are various techniques to detect an attack in virtualized environment. For example, as

side-channel attacks are very fine-grained attacks, the detection of such attacks requires high-

resolution information, mainly provided by Hardware Performance Counters (HPCs) [81,

97]. The HPCs are a set of special-purpose registers built into modern microprocessors

to capture the trace of hardware-related events such as last-level cache (LLC) load misses,

branch instructions, branch misses, and executed instructions while executing an application.

Those events are basically used to profile a program behavior for optimization purposes and

are available for any application in the user space. These events are also used in the detection

of abnormal behaviors in computer systems [99, 115, 114]. We distinguish two different

methods of detection: (1) signature based [91, 28] and (2) threshold-based [19]. Signature-

based approaches create the signature of the attack based on received information from

HPCs, and compare the behavior of the system with the generated signature to identify

any eventual malicious activity. For example, Payer et al. [91] proposed an approach to

detect cache-based side-channel attacks between two processes. Their approach is based on

HPCs and kernel events, e.g., number of page faults, to generate signatures for cache-based

side-channel attacks. To detect a malicious process, they compare the generated signatures

with the process signature.

It has been shown that resource usage correlates to the probability that an application

is of a specific type. For an example, it becomes clear that cache activity is a very strong

indicator of this attack type, with applications with a very high level-1 instruction cache

(L1-i) and high LLC pressure corresponding to cache based side channel attack with a high

probability. Disk traffic also conveys a lot of information, with zero disk usage signaling a

side channel attack with very high likelihood. Correlating similarity concepts to resources

shows that certain resources are more prone to leaking information about a workload, and

their isolation should be prioritized.

On the other hand, threshold-based approaches utilize the HPCs trace to flag anomaly
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Figure 7.1: Overview of Cloak & Co-locate

resource utilization that goes beyond a pre-specified threshold. For example, Chiappetta et

al. [19] proposed to collect certain statistics through HPCs for running processes, and then

use machine learning techniques (neural networks and unsupervised learning) to detect a

side-channel attack between two processes. Recent works suggest to use machine learning

for Malware or side-channel attack detection [37, 117, 113, 118, 98, 101].

Proposed Approach

In any resource sharing-based attack, the instance initialization phase of RPS plays a preven-

tive role in such attacks by avoiding a malicious instance to be co-localized with a targeted

victim instance on the same physical machine. This phase of VM placement algorithm is

undocumented for security reasons by cloud service providers. However, we show how an

adversary can bypass the instance initialization phase and gets co-located by victims with

high probability. Moreover, periodic monitoring and rescheduling is leveraged to mitigate

co-residency attacks, when the attack is detected. Therefore, we will also show how it is

possible to disguise the malicious behavior of adversary’s VM and remain on the same host

with the victim and avoid the migration.

In this work, we propose to use a Cloak, which is technically a fake trace generator (FTG),

to wrap it around an adversary application in order to first get co-located with a targeted

victim and subsequently evade detection and migration. At instance initialization phase, the

Cloak goal is to perform a trace mimicry task that will mimic the behavior of the targeted

victim application to increase the chance of co-location. If the desired server has not been
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assigned to the adversary VM (co-residency with the victim can be detected by network

probing) then the adversary VM terminates, and a new VM must be reinstantiated as the

cost of forcing RPS to migrate the adversary VM to another host that may have the victim

is high. After co-residency, the Cloak will change its mode to constantly generate a new

specialized trace that changes the behavior of the adversary application to not only evade

detection but also migration.

To create the Cloak, i.e., FTG, we use the concept of adversarial sample in machine

learning where we can add specially crafted perturbations to an input signal to fool the

machine learning models. In particular, our goal is to change the model’s output decision

to a specific output, i.e., output that is similar to the targeted victim output. For this

purpose, our attack is performed in two phases. First, we need to reverse engineer the

resource provisioning system using a machine learning model to have access into to how the

RPS make decisions. Second, we utilize the reversed engineering results to craft specialized

Cloak ; a FTG that will add perturbations to the adversary’s application trace to force the

RPS to co-locate it with a targeted victim. Figure 7.1 shows the overview of our proposed

method. The details of this approach will be discussed in the following sections.

7.3 Reverse engineering of RPS

To perform any resource sharing-based attack, such as side-channel attacks, an attacker must

co-locate an adversary instance, e.g., an attacker VM with the victim VM. To find hosts that

victim’s VM are running on, we propose to reverse engineer the resource provisioning system

in the IaaS cloud. As mentioned, RPS can be considered as a blackbox (worst-case scenario).

Figure 7.2 shows an overview of our reverse engineering scheme. Thus, as a first step, we

propose the following methodology to perform the reverse engineering.

The goal of reverse engineering of RPS is to create an ML model that can mimic the

functionality of the original RPS. For this purpose, we train an arbitrary ML model, i.e., a

proxy model, that can provision a server with the same configuration that the original RPS
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provisions for an incoming application to the cloud. We implement PARIS [127], a RPS

proposed at UC Berkeley, to act as our original RPS, i.e., victim.

PARIS uses a machine learning technique (Random Forest) for predicting the perfor-

mance from the application’s fingerprint (microarchitectural signature) to find the best VM

type configuration. To generate the fingerprint of an application, PARIS extracts 20 resource

utilization counters spanning the following broad categories and calls it the fingerprint: CPU

utilization, Network utilization, Disk utilization, Memory utilization, and System-level fea-

tures. On the other hand, CPU count, core count, core frequency, cache size, RAM per core,

memory bandwidth, storage space, disk speed, and network bandwidth of the server are the

representation of the configuration provisioned by PARIS.

We denote the microarchitectural fingerprint and system level information of an applica-

tion as Fing vector. In Equation (7.1), ai denotes each architectural feature.

Fing = {a1, a2, ..., a20} (7.1)

configuration parameters of the server’s platform referred to configuration inputs is as

follow:

Conf = {c1, c2, ..., c9} (7.2)

where Conf is the configuration vector and ci is the value of the ith configuration pa-

rameter (number of sockets, number of cores, core frequency, cache size, memory capacity,

memory frequency, number of memory channels, storage capacity, storage speed, network

bandwidth).

The RPS is responsible to provision Conf based on Fing:

Conf = f(Fing) (7.3)

Note that f(Fing) is just a data model, which means there is no direct analytical equation

to formulate it.
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Figure 7.2: (a) Process of reverse engineering RPS; (b) Testing Performance of Reverse-
Engineered RPS

Data collection and model training

To use an arbitrary machine learning model to act as a resource provisioning system, we need

a training dataset to train a proxy model. The dataset has two parts: the first part is the

application’s fingerprint and the second part is the corresponding configuration provisioned

by RPS. Then we can use the dataset for training our proxy model to map those fingerprints

to final configurations.

We perform the data collection in a controlled environment, where all applications are

known. We use a medium size 40-machine cluster (presented in Table 5.1), and schedule a

total of 120 workloads, including batch analytics in Hadoop and Spark and latency-critical

services, such as webservers, Memcached and Cassandra. For each application type, there

are several different workloads with respect to algorithms, framework versions, datasets, and

input load patterns. The training set is selected to provide sufficient coverage of the space

of resource characteristics. Figure 7.3 shows the coverage of resource characteristics for

applications in the training set. The selected workloads cover the majority of the resource

usage space. This enables us to match any new application that has not been previously

seen.
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We submit all of these applications to the targeted RPS. In the beginning, the RPS

profiles the application and extracts the fingerprint. Then, the RPS uses the Random Forest

model to determine an appropriate server configuration. We collect all the fingerprints and

their correspondent configurations generated by the RPS to shape our dataset.

We then use an Artificial Neural Network (ANN) to map the Fing to Conf . We exploit

one ANN per each ci in the Conf . Therefore, we totally train 9 ANNs that each of them has

20 inputs and one output. We started with a simple 5 fully connected layers neural network.

We found out this model achieves our desired accuracy. Therefore, we did not use a more

complex model, such as a deep neural network. Each ANN has 230 hidden neurons. The

number of neurons for the hidden layer is decided through Grid Search [104] to reach the

highest possible accuracy.

Performance of reverse engineered RPS

The testing set consists of 108 diverse applications that include web servers, various analytics

algorithms and datasets, and several key-value stores and databases. Note that there is less

than 30% overlap between training and testing sets in terms of algorithms, datasets, and

input loads. The Original RPS is fed with all applications and the responses are recorded.

These responses are utilized in order to compare the functionality of ANNs versus the original

RPS. We observed that ANNs perform well with an overall accuracy of 92.7% to mimic the

original RPS, the precision of 0.90, recall 0.93 and F1-score of 0.91. Now, we have a proxy

model in hand that can be utilized to generate adversarial.

7.4 Cloak Generator

Our proposed Cloak, i.e., FTG, works in two modes. Mode (1) is for the instant initialization

phase (before co-location) and mode (2) is for the periodic monitoring phase. When an

adversary application is submitted to the RPS, the adversary kernel is deactivated. However,
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Figure 7.3: Coverage of application’s characteristic

FTG must start working and change the behavior during instant initialization phase to

generate a trace similar to the victim application in order to fool the RPS and get co-located

with the victim on the same host.

After co-location, when co-residency has been detected by using any techniques men-

tioned in Section 7.2, the adversary kernel can starts its attack. While starting the attack,

the Cloak, i.e., FTG, switches to mode (2), where it is required to carefully generate a fake

trace that disguises the behavior of the adversary kernel. Moreover, this trace must fool the

RPS to provision the same configuration as it provisioned during the instant initialization

phase. For this purpose, FTG must constantly monitor the system’s state. In order to mon-

itor the system state and extract the Hardware performance counters (HPC) information,

FTG uses Perf tool available under Linux. Perf provides rich generalized abstractions over

hardware specific capabilities. It exploits perf−event−open function call in the background

which can measure multiple events simultaneously. It is non-trivial to determine the level

of perturbations that need to be injected into the application’s microarchitectural patterns

in order to get the desired host configuration. Crafting a trace that can fool the RPS is

only possible by performing a targeted adversarial attack on RPS. We discuss this targeted

adversarial attack in the next subsection of the paper.

When the trace generated by FTG has been calculated (either in mode (1) or mode

(2)), FTG runs a few micro benchmarks of tunable intensity from iBench [24] that each

put pressure on a specific shared resource. iBench consists of a set of carefully-crafted

benchmarks that generate contention on core, the cache and memory hierarchy, and the
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Figure 7.4: Fast Gradient Sign Method

storage and networking subsystems.

Targeted adversarial attack to RPS

To perturb the microarchitectural patterns, we employ a low-complex gradient loss based

approach, similar to Fast-Gradient Sign Method (FGSM), which is widely employed in image

processing. The advantage of this approach is its low complexity and low computational

overheads. In order to craft the adversarial perturbations, we consider the proxy model

generated from the reverse engineering of the targeted RPS. In our experiments, the proxy

model is a neural network with θ as the hyperparameters, x being the input to the model

(current fingerprint of adversary kernel), and y is the output (current configuration of server)

for a given input x, and L(θ, x, y) be the cost function used to train the neural network. Then

the perturbation required to change the output to the target configuration is determined

based on the cost function gradient of the neural network (in this case). Eventually, this

perturbation is the trace that must be generated by FTG. The adversarial perturbation is

calculated based on the gradient loss, as shown in Figure 7.4, similar to the FGSM [30] and

is given by:

xadv = x + ε sign(∇x L(θ, x, y)

where ε is a scaling constant ranging between 0.0 to 1.0 and is set to be very small such

that the variation in x(δx) is undetectable. In case of FGSM, the input x is perturbed along

each dimension in the direction of gradient by a perturbation magnitude of ε. Considering
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Figure 7.5: Activation of FTG and increase in the similarity of fake trace and victim’s
fingerprint during instant initialization phase

Figure 7.6: Overall trace using FTG, adversary kernel trace, and the target

a small ε leads to well-disguised adversarial samples that successfully fool the ML model. In

contrast to the images where the number of features is large, the number of features, i.e.,

microarchitectural metrics are limited; thus, the perturbations need to be crafted carefully

and, more importantly, can be generated during runtime by the applications. For instance,

a negative value cannot be generated by an application. Hence, we provided a lower bound

on the adversary values.

Figure 7.5 shows a side channel attack and its fingerprint’s similarity with a victim

application (Spark: recommender system) during instant initialization phase. After the

activation of FTG, the similarity of fingerprint increases to 78% and therefore the adversary

VM can be identified as friendly VM. Figure 7.6 illustrates how FTG can generate the

desired trace proposed by adversarial sample generator during periodic monitoring phase

(when co-residency has been detected). The blue line shows the trace of adversarial kernel.

132



The target trace is the black line, which shows the overall trace must be the same to be able

to evade detection and migration. The red line shows the overall trace (with the impact

of FTG trace), which is the trace after adding perturbation. We can observe that the fake

trace generator is successful in disguising the adversarial kernel.

7.5 Evaluation

To evaluate our proposed approach, we implemented 8 distributed attacks as follow: SC1:

Prime + Probe, SC2: Flush + Reload, SC3: Flush + Flush, SC4: Evict + Time, DoS1:

increasing latency by saturating the network, DoS2: decreasing throughput by saturating

storage, RFA1: freeing memory resource, and RFA2: freeing CPU resource. We perform

these attacks on 20 unseen victim applications from different domains (SPEC, Hadoop,

Spark, Memcache, and Cassandra). Based on our evaluation, the success rate of being co-

located with victims, evading the detection and migration, and getting the desired outcome

from attack depends on many factors such as victim’s type, the period of monitoring phase,

and amount of perturbation.

Experimental results

Table 7.1 shows the impact of victims’ type on the success rate of each type of attack. The

interesting observation is that there is a meaningful relationship between the application’s

type and the nature of the attack by itself. For instance, we observe that side-channel attacks

are more successful when the cache hit rate of the victim is low. Similarly, we observed that

RFA is more successful when the resource utilization of the victim is high. One reason is

that in such case, FTG can generate a better fake trace to convince the RPS to stay at

the current host. In a case that the difference between the behavior of the adversary kernel

and the victim is high, the FTG has to generate more perturbation and this may lead to a

migration decision by RPS.
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Table 7.1: Success Rate (SR) of distributed attacks based on the application’s type.
(*: SR ≤ 25%, ∗∗ : 25% < SR ≤ 75%, ∗ ∗ ∗ : SR ≥ 75%)

SPEC Hadoop Spark Memcached Cassandra
SC1 *** * ** * **
SC2 *** * * * **
SC3 *** * ** ** *
SC4 *** ** ** * **
DoS1 * * *** *** **
DoS2 * *** * * ***
RFA1 * ** *** *** **
RFA2 *** ** *** *** *
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Figure 7.7: Impact of monitoring period on the chance of evasion from migration

In order to provide an insight into the impact of the monitoring period on the evasion

chance of attack and the effectiveness of FTG, we performed each attack under different

monitoring periods. Figure 7.7 shows the results of this experiment. One can observe that

by increasing the period, the chance of evasion increases. The reason is that the fingerprint

of application changes more frequently when the period is small and FTG is not able to

generate the desired trace. However, when the period increases, the perturbation that FTG

generates becomes more effective.

It is important to know how much perturbation is required to evade the detection but

still have a good chance for remaining on the same host and evade migration. Figure 7.8
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Figure 7.8: Impact of similarity with the target trace on migration chance

shows the average migration chance of each attack and the similarity of our adversary VM’s

behavior with the victim’s behavior. It was expected that by increasing the similarity be-

tween the adversary and victim, the migration chance reduces. However, we observed that

generating fake trace to exactly follow the target trace proposed by adversarial sample is

hard. Therefore, reaching to 0% chance of migration is out of reach. Moreover, Figure

7.9 demonstrates the impact of the perturbation amount on the migration chance. The re-

sults show that the amount of perturbation should be carefully determined as a high or low

amount of perturbation causes migration.

We evaluated the impact of perturbation on the effectiveness of the attack by itself and

obtaining the desired outcome. As Figure 7.10 shows, side-channel attacks are very sensitive

to a perturbation such that by increasing the perturbation, the attacks become useless. This

is due to the fact that side channel attacks are customized and fine-grained and any noise on

the system, especially on the hardware performance counters, can prevent the attack from

being successful.

Last but not least, we evaluated the number of VM’s per host and its impact on the

success rate of Cloak & Co-locate attack. We run randomly multiple friendly applications

from our application pool on each host and perform an attack on one of them. The success
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Figure 7.9: Impact of perturbation on migration chance
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Figure 7.10: Impact of perturbation on attack success rate

rate of attacks mostly depends on the server’s type as the amount of resources available on

the host impacts the applications’ fingerprints, and configuration assignment. Figure 7.11

demonstrates the average success rate of attacks corresponding to the number of friendly

VMs on the same host. The trend shows that increasing the number of applications on the

host significantly reduces the attack’s success rate from 60% to 16% on average.

The breakdown of attacks’ success or failure rate on a general purpose server is presented

in Figure 7.12. The red bar shows the percentage of failing to co-locate with victim at

the instantiate phase. The gray bar shows that the adversary co-located with the victim
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Figure 7.11: Average of attacks’ success rate when multiple VMs are running in the host

at the instantiate phase but RPS migrated the adversary VM to another host during the

monitoring phase. The blue bar shows the percentage that the adversary co-located with the

victim and remained co-locate on the same host and was not detected or migrated. However,

the adversary could not perform the attack successfully. The green bar shows that the attack

was completely successful. This figure shows that by increasing the number of VMs per host,

the chance of migration or not being co-locate by the victim increases up to 4X. It shows

even if the adversary co-locates with the victim, the chance of success would be low as there

are other applications running on the host that impacts the attack’s setting.

Improving security using resource isolation

In order to study the effects of resource isolation, we enforce several resource partitioning and

isolation techniques discussed previously in section 6.2. We employ core isolation (thread

pinning to physical cores), to constrain interference context switching. We employ the Cache

Allocation Technology (CAT) available in Intel chips [49] to isolate last level cache (LLC).

The size of cache partitions can be changed at runtime by reprogramming MSR registers. We

also use the outbound network bandwidth partitioning capabilities of Linux’s traffic control.
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Figure 7.12: Breakdown of attacks’ success or failure on a general purpose server

We employ the qdisc [77] to enforce bandwidth limits. To perform DRAM bandwidth

partitioning, RPS monitors the DRAM bandwidth usage of each application using Intel

PCM to co-locate jobs on the same machine where it can accommodate their aggregate peak

memory bandwidth usage.

Figure 7.13 shows the impact of isolation techniques on the effectiveness of attacks. As

expected, when no isolation is used, we have a significantly higher success rate. As a result,

introducing thread pinning benefits, since it reduces core contention. The dominant resource

usage of each application determines which isolation technique benefits it the most. Thread

pinning mostly benefits workloads bound by on-chip resources, such as L1/L2 caches and

cores. Adding network bandwidth partitioning lowers success rate for DoS attacks. It pri-

marily benefits network-bound workloads, for which network interference conveys the most

information for detection of co-residency. Cache partitioning has the most dramatic reduc-

tion in success rate of SCA, as they are LLC-bound applications. Enforcing core isolation

is also sufficient to degrade the success rate of RFAs. Finally, memory bandwidth isolation

further reduces success rate by 10% on average, benefiting jobs dominated by DRAM traffic.

It is more effective on DoS and RFA and has less impact on SCAs.

The number of co-residents also affects the extent to which isolation helps. The more
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co-scheduled applications exist per machine, the more isolation techniques degrade success

rate, as they make distinguishing between co-residents harder. Improving security using

isolation, however, comes at a performance penalty of 32% on average in execution time, as

threads of the same job are forced to contend with one another. Alternatively, users can

overprovision their resource reservations to avoid performance degradation, which results in

a 47% drop in utilization. This means that the cloud provider cannot leverage CPU idleness

to share machines, decreasing the cost benefits of cloud computing.

Our analysis highlights a design problem with current datacenter platforms. Traditional

multicores are prone to contention, which will only worsen as more cores are integrated into

each server, and multi-tenancy becomes more pronounced. Existing isolation techniques

are insufficient to mitigate security vulnerabilities, and techniques that provide reasonable

security guarantees sacrifice performance or cost efficiency, through low utilization. This

highlights the need for new techniques to be invented that guarantee security at high uti-

lization for shared resources.
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Transferability analysis

Different RPSs use different underling mechanisms to preform resource provisioning. For

instance, Quasar [26] leverages collaborative filtering to quickly determine which applications

can be co-scheduled on the same machine without destructive interference. CherryPick [2]

and Ernest [112] also uses machine learning for selecting close to optimal configuration on

the cloud. Therefore, we tried to answer the question of whether an adversarial Cloak that is

targeting a specific RPS can also force other RPS, which uses different underling mechanisms,

to co-locate it with the victim. Specifically, we are testing the transferability of our attack

methodology across RPS, which will showcase the robustness of the proposed adversarial

sample crafting.

For this purpose, we setup an experiment where we generate Cloaks that target a specific

RPS and see if they can also fool the other RPS. Table 7.2 shows the results of our transfer-

ability analysis for all combinations. It should be noted that the analysis is performed under

these circumstances: perturbation is set to 0.4, the monitoring period is one minute, the

number of VM allowed on the same host is two, and none of the isolation techniques is used.

Each value of table 7.2 is attacks’ average success rate (in percentage). Each row represents

the original RPS and each column represents the substituted RPS. Where the column and

the row are equal, it means we did not replace the RPS. For example, we used PARIS as

our original RPS and then we reverse-engineered it. For transferability analysis, we replaced

the original RPS (PARIS) with another RPS (CherryPick in this example). Then we used

the Cloak & Co-locate approach to attack the system. Afterward, we evaluated the success

rate of our attacks. In the above example, the average success rate of attacks was 56.5% as

shown in Table 7.2.

The results from Table 7.2 show that the reverse-engineered model from PARIS is more

generalizable than others as the transferability of attacks is 55.1% (shown in blue color).

Because of this generalization, we selected PARIS as our original RPS to study the Cloak

& Co-locate attack throughout the paper. The results also show that the traces generated
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Table 7.2: Attacks’ average success rate (all values are percentage). Each row represent
original RPS and each column is for substituted RPS

PARIS CherryPick Ernest Quasar Average
PARIS 62.3 56.5 53.2 48.7 55.1
CherryPick 54.4 65.4 54 44.1 54.4
Ernest 46.8 55.7 67.4 33.5 50.8
Quasar 53.6 47.3 52.9 59.3 53.3
Average 54.3 56.2 56.9 46.4 63.6

by FTG for PARIS can be applied to CherryPick, Ernest, and Quasar with a success rate

of 56%, 53%, and 48%, respectively. This indicates that the ML model used to craft the

adversarial samples is transferable to other systems as long as we can mimic the RPS’s

functionality.

On the other hand, results show that Ernest has the lowest transferability as it is the

simplest RPS in our evaluation, and the average success rate of attacks transferred from

Ernest to other RPSs is 50.8%. Ernest is based on a statistical technique and therefore

cannot capture the complexity of the system. For the same reason, it is the most vulnerable

RPS as the transferability of attacks from other RPSs to it is the highest (average success

rate is around 56.9%, shown in red color). We observed that Quasar is the most resilient

RPS against Cloak & Co-locate attack. The average success is only 46.4% as shown in the

green color. The Quasar’s collaborative filtering and its complexity are the reasons behind

this immunity. Without considering the transferability (no substitution of original RPS),

the average success rate of attacks is around 63% (the purple color).

7.6 Conclusions

In this work, we proposed Cloak & Co-locate – a novel approach to improve the effectiveness

of distributed attacks on cloud infrastructure. For this purpose, we demonstrated that by

reverse-engineering the resource provisioning system and employing the adversarial machine

learning attack, adversary VM can co-locate itself with the victim and evade detection, as
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well as migration caused by the scheduler. For this purpose, we proposed to use a fake trace

generator (Cloak) and wrap it around the adversary kernel. The fake trace generator is

spawned as a separate thread, generating a pattern close to the victim VM’s pattern, fooling

the scheduler to co-locate it with the victim VM. After co-location, FTG continuously crafts

new behavior to disguise itself and fool RPS for remaining co-located on the same host as the

victim. Our results show that applying strict isolation can reduce the impact of such attacks

while increases the cost of cloud (lower utilization). This research work, while deployed on

a medium-size cluster, will motivate real-world public cloud providers to introduce stricter

isolation solutions in their platforms and systems architects to develop robust RPSs that

provide security and performance predictability at high utilization.
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Chapter 8

Future Directions and Conclusion

In this dissertation, we argued for machine learning-based resource provisioning systems for

data-intensive applications in scale-out platforms.

Through our empirical performance evaluation (Chapter 3), we provided an insight into

the role the memory subsystem plays in the overall performance of the servers when running

data analytics frameworks. Characterizing the memory behavior of frameworks is important

as it helps to guide scheduling decisions in cloud-scale architectures as well as helping to

make decisions in designing better clusters for data-intensive applications.

We introduced MeNa in chapter 4 to help memory provisioning for data-intensive appli-

cations and increase the performance/cost.

With E-Net (Chapter 5), we designed, implemented, and evaluated a predictive sched-

uler for improved and predictable job completion times while reducing total resources used

and power consumption. E-Net addresses the challenge of resource provisioning for IMC

workloads in heterogeneous scale-out platforms consist of diverse types of servers.

In chapter 6, we utilized what we have developed in MeNa and E-Net to adaptively model

the performance of data-intensive applications and use it for developing a highly accurate

RPS, called ProMLB.

The security concerns rising from ML-Based RPSs have been studied in chapter 7. We
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showed that by reverse-engineering the resource provisioning system and employing the ad-

versarial machine learning attack, adversary VM can co-locate itself with the victim and

evade detection, as well as migration caused by the scheduler. One of the mitigation for

such vulnerability is to use an isolation mechanism and we evaluated the effectiveness of this

approach in reducing the risk of ML-based RPSs.

There is a lot left to be done to achieve a secure high-utilization automatic resource

provisioning system. moreover, a lot of new avenues of research will open up as we move

forward in using machine learning techniques. Before the conclusion, we present upcoming

and potential future directions.

8.1 Avenues for Future Directions in ML Research

With the evolution of computing, infrastructures, and frameworks, we see more and more

decentralization. This trend can include the provisioning of resources that we call it federated

resource provisioning system era. Federated RPS can have many attractive features, such as

no need to manage individual servers, continuous scaling, and sub-second metering. However,

this approach can simultaneously reduce users’ control over the underlying physical resources.

Exploring this research direction needs to deal with many challenges including understanding

performance and power as a function of allocated resources, and deciding on the granularity

of federation to allow predictability of performance or any other optimization target.

One important direction that we have not studied in this dissertation is the use of GPUs

and FPGAs in modern datacenters for accelerating the performance of data-intensive appli-

cations. Another interesting direction to continue this research is to model the performance

of such hardware accelerators and integrate them in RPSs. The current setup of our work

can easily get expanded and be used in future works.

Machine Learning techniques are being exploited in various applications, in addition to

the field of resource provisioning discussed in this dissertation, in which the data continuously

is collected. There are two important questions in each ML application; when and how to
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retrain ML models as the environment changes and how to guarantee that the collected data

is appropriate. Further work is required while advances in online learning, and reinforcement

learning address different aspects of this issue. Because the integration of these techniques

with existing RPSs and retraining algorithms can be challenging.

In addition to accurate predictions, when applying ML techniques for deriving decisions

in the domain of RPSs, it is important for experts and designers to obtain insights from

the decision-making process of the ML models. The need for explainability is the reason

behind selecting simple models such as decision trees in the current model-driven systems.

Powerful, popular, and complex models such as deep learning-based models, are not easy to

understand. Another new avenue to further ML-based RPSs is to build models that achieve

both, high accuracy and interpretability. Exploring interpretable ML models for RPS is one

of our future works.

8.2 Concluding Remarks

In this dissertation, we demonstrated the effectiveness of machine learning models for de-

veloping high-accurate and high-utilization resource provisioning systems for data-intensive

applications in scale-out platforms, by dealing with the challenges they bring, such as security

vulnerability, model uncertainty, generalization from benchmark suits to real applications,

high-cost training, and interpretability of existing ML models. We discussed issues that are

left behind to be addressed including the challenge of performance modeling of hardware

accelerators, and developing more interpretable ML models. It is essential to comprehend

when we should use machine learning models in the context of systems. Based on our un-

derstanding, machine learning should be deployed when the size or the complexity of the

problem dominates the decision-making process. Heuristic approaches were used in several

computing systems and they were suitable for the common cases. In the era of heterogeneous

datacenters and with the growing complexity of frameworks, we are facing situations that

require custom decisions. Machine learning, unlike heuristics, is an appropriate solution for
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new challenges. Moreover, while we have focused on improving resource efficiency at the

cluster management level, designing novel hardware and software schemes that ensure strict

isolation between applications can improve resource efficiency too. We leave these endeavors

to future work.
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