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Consistent Numerical Methods for State and Control Constrained

Trajectory Optimization with Parameter Dependency

ARTICLE HISTORY

Compiled December 9, 2019

ABSTRACT
This paper describes and proves the consistency of a flexible numerical method
for producing solutions to state and control constrained control problems with pa-
rameter dependencies. This method allows for the use of a variety of underlying
discretization schemes, which can be catered to differing numerical challenges of
specific problems, such as rapid convergence or large parameter spaces. The paper
first provides a broad formulation for optimal control problems with parameter de-
pendencies which includes multiple types of state, control, and end time constraints
to enable a wide scope of application. For this formulation, the consistency of these
methods for state and control constrained problems is then proved. Finally, a nu-
merical example of an optimal search problem with constraints is demonstrated.

KEYWORDS
optimal control, nonlinear control, numerical methods, parameter dependency,
parameter uncertainty, distributed-parameter systems, ensemble control, optimal
search

1. Introduction

Instances of optimal control problems with parameter dependency have arisen in mul-
tiple recent control applications. In these applications, performance is optimized over
a set of parameters which impact cost and possibly system dynamics given access to
the system only through a parameter independent control. For instance, the ensemble
control problem deals with the control of a family or continuum of systems x(t, θ)
whose dynamics

∂x

∂t
= f(x(t, θ), u(t), θ)

depend continuously on parameter θ ∈ Rnθ and are driven by parameter independent
control u(t). Optimizing the behavior of the ‘ensemble’ of systems over all parameter
values creates control problems which must track the behavior over a range of param-
eter values and incorporate this range of performances in its cost metric. Ensemble
control problems arise in quantum applications such as medical imaging or quantum
experiments, where an external application of electromagnetic pulses is applied to
a system with environmental inhomogeneity [Brockett and Khaneja (2000); Li and
Khaneja (2007); Ruths and Li (2012)]. Parameter dependency can also present itself
in spatially distributed problems with no spatial feedback control. For example, the
optimal search problem [Foraker (2011); Phelps, Gong, Royset, Walton, and Kaminer



(2014)], which aims to optimize the search for uncertain targets over a search region.
When uncertain target location is modeled as a deterministic quantity conditionally
dependent on a set of unknown parameter values, such as initial location, then ex-
pected probability of success becomes dependent on the parameter set. This creates a
cost function in the form of an integral over parameter space:

J [x, u] =

∫
Θ

[
F (x(T, θ), θ) +

∫ T

0
r(x(t, θ), u(t), t, θ)dt

]
dθ

where
∫

Θ represents the possibly multidimensional integral over parameter space. Ad-
ditional examples include robotics, where manufacturing error can create parameter
uncertainty in regards to vehicle part sizes and subsequent dynamics [Becker (2012)]
and in chemical engineering, where the model of parameter dependency has been uti-
lized for the optimization of batch processes under uncertainty [Ruppen, Benthack,
and Bonvin (1995); Terwiesch, Ravemark, Schenker, and Rippin (1998)].

A key issue in addressing optimal control problems with parameter dependencies,
which tend to be analytically intractable, has been the development of numerical
algorithms. Recently, there has been much progress in this area. For instance, for
nonlinear finite-dimensional optimization problems with parameter uncertainty, Ro-
bust Optimization (RO) frameworks have been developed to address the minimization
of mean performance given constraints on variance or other risk metrics, such as in
[Darlington, Pantelides, Rustem, and Tanyi (2000)]. In continuous time optimal con-
trol, the method of polynomial chaos has been applied to a variety of problems with
amenable problem structures, such as quadratic costs or linear dynamics [Fisher and
Bhattacharya (2011); Hover and Triantafyllou (2006)].

As an approach to general nonlinear control problems, there have been many vari-
ations on forms of direct discretization put forth. This can be summarized informally
as first choosing a set of nodes {θMi }Mi=1 from the parameter domain Θ and an asso-
ciated set of integration weights {αMi }Mi=1. States, if parameter dependent, are then
propagated at these nodes:

dxMi
dt

(t) = f(xMi (t), u(t), θMi ), i = 1, . . . ,M

and the cost function is estimated as a weighted sum:∫
Θ

[
F (x(T, θ), θ) +

∫ T

0
r(x(t, θ), u(t), t, θ)dt

]
dθ ≈

M∑
i=1

αMi

[
F
(
xMi (T ), θMi

)
+

∫ T

0
r(xMi (t), u(t), t, θMi )dt

]
.

This creates an approximate problem—a standard control problem which can be solved
using other established methods. There are many approaches to node selection, with
distinct tradeoffs. Monte Carlo sampling, for instance, provides slow converge but is
a way to circumvent the dimensional growth problem of a high dimension parame-
ter space [Phelps, Royset, and Gong (2016)]. Conversely, the multi-dimensional pseu-
dospectral approach can provide rapid convergence but node selection grows exponen-

2



tially with dimension [Ruths and Li (2012)]. Other options include Riemann-Stieltjes
integration [Ross, Proulx, Karpenko, and Gong (2015)] and using the sigma points
from the unscented transform [Ross, Karpenko, and Proulx (2016)]. A more generic
approach is that of [Phelps et al. (2014)] and [Walton, Phelps, Gong, and Kaminer
(2016)], which considers all node and weight schemes which provide convergent quadra-
ture for continuous functions.

Approach multi-dimensional Monte Carlo Riemann- unscented collocation with

pseudospectral sampling Stieltjes transform convergent quadrature

Reference (i) (ii) (iii) (iv) (v) (vi) this paper

Constraints:

control Yes Yes No No Yes Yes Yes
state-control Yes No No Yes No No Yes

end time state Yes No No Yes No No Yes
distributional

state-control No No No No No No Yes
distributional

end time state No No Yes No No No Yes

uncertain

dynamics Yes Yes Yes Yes No Yes Yes

consistency

proof Yes Yes No No Yes Yes Yes

Reference
(i) Ruths and Li (2012)

(ii) Phelps et al. (2016)
(iii) Ross et al. (2015)
(iv) Ross et al. (2016)
(v) Phelps et al. (2014)
(vi) Walton et al. (2016)

Table 1. Overview for Direct Discretization

The variety of node generation approaches in the literature have been applied to
diverse formulations of this problem. Differences include whether state dynamics are
influenced by the uncertain parameter, whether control and/or state constraints are
incorporated, and whether any convergence results are proven. Table 1 provides an
overview of results for direct discretization methods applied to finite horizon prob-
lems with uncertain parameters. The goal of this paper is to provide a method which
addresses the full variety of constraint needs and to provide the subsequent proof of
consistency (that convergent numerical solutions of approximate problems converge
to optimal solutions of the original problem) of the numerical method. An additional
goal is to provide this for a broad family of numerical methods, by building on the
convergent quadrature approach. This method is inclusive of both multi-dimensional
pseudospectral and Riemann-Stieltjes, as well methods that can mitigate the dimen-
sional growth problems of quadrature, such as sparse grid methods.

We address the variety of parameter dependency forms and constraint needs through
the following class of optimal control problems:
Problem P. Determine the state and control pair, (x, u), that minimizes the cost
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function:

J [x, u] =

∫
Θ

[
F (x(T, θ), θ) +

∫ T

0
r(x(t, θ), u(t), t, θ)dt

]
dθ (1)

subject to:

∂x

∂t
(t, θ) = f(x(t, θ), u(t), θ), t ∈ [0, T ], θ ∈ Θ, (2)

x(0, θ) = x0(θ), θ ∈ Θ, (3)

g(u(t)) ≤ 0, t ∈ [0, T ], (4)

e(x(T, θ), θ) ≤ 0, θ ∈ Θ, (5)

h(x(t, θ), θ) ≤ 0, t ∈ [0, T ], θ ∈ Θ, (6)

Ψe

(∫
Θ
eI (x(T, θ), θ) dθ

)
≤ 0, (7)

Ψh

(∫
Θ
hI (x(t, θ), θ) dθ

)
≤ 0, t ∈ [0, T ]. (8)

Component functions have dimensions: x : R × Rnθ 7→ Rnx , u : R 7→ Rnu , F :
Rnx ×Rnθ 7→ R, r : Rnx ×Rnu ×R×Rnθ 7→ R, x0 : Rnθ 7→ Rnx , e : Rnx ×Rnθ 7→ Rne ,
g : Rnu 7→ Rng , h : Rnx × Rnθ 7→ Rnh , eI : Rnx × Rnθ 7→ R, Ψe : R 7→ R, hI :
Rnx ×Rnθ 7→ R, Ψh : R 7→ R. Additional conditions imposed on the state and control
space and component functions for the numerical method are specified in Section 2.

In Problem P, the set Θ is the domain of the parameters θ ∈ Rnθ . The format of the
cost function J is that of the integral over Θ of a Mayer-Bolza type cost dependent on
the uncertain parameters. In regards to state constraints, the nature of the problem,
in which a single control input is applied over multiple values of parameters θ, creates
a variety of possible boundary conditions and constraints which can arise in applica-
tions. In this formulation, constraints over all parameter values, in the form of [Li and
Khaneja (2006, 2007, 2009); Ross, Proulx, and Karpenko (2014b)] are included with
conditions (5) and (6), as are the control constraints found in [Phelps et al. (2014)] and
[Walton et al. (2016)] with condition (4). State constraints bounded over all param-
eter values, however, are rather strict, and guaranteed feasibility of a problems with
such constraints has not been established with great generality for control systems
with parameter uncertainty. Due to these limitations and also the strictness of condi-
tions which constrain all parameter values in cases where low probability parameter
values may not be as critical to restrict, applications may also consider constraints
on aggregate performance, as suggested in [Ross, Proulx, and Karpenko (2014a)]. The
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constraints on the aggregate performance found in [Ross et al. (2014a)] are generalized
here to conditions (7) and (8). These conditions allow for limits to be set on quantities
such as the expectation or variance of states over a distribution of parameter values.

As with all control formulations, the feasibility of individual problems is a difficult
issue and not necessarily guaranteed. However, there are plenty of available examples
which demonstrate the feasibility of parameter uncertainty problems under diverse
constraints. For example, the constraint e(x(T, θ), θ) ≤ 0 with

e(x(T, θ), θ) =

[
x(T, θ)− γ(θ)− ε
γ(θ)− x(T, θ)− ε

]
, (9)

limits the end time states x(T, θ) to be within [−ε, ε] of an end time goal curve γ(θ). In
[Li and Khaneja (2006, 2007, 2009)], feasibility results for a class of linear parameter
uncertainty systems are derived, in the sense that for all ε there exists a final time
T such that the systems can be driven to within an ε-ball of a goal curve γ(θ). (The
case of nonlinear systems with parameter uncertainty, however, is an open question,
and in fact it is easy to construct systems which will be unable to satisfy such a con-
straint. For instance, [Becker (2012)] provides a scaled nonholonomic unicycle system
which is provably unable to satisfy an end constraint on orientation over all param-
eters.) A path constraint example can be found in [Ross et al. (2016)], which uses
such a constraint of type (6) to avoid singular gimbal trajectories for an agile space-
craft. The spatially distributed application of optimal search [Pursiheimo (1976)] also
provides many intuitive instances of feasible constrained problems—attainable search
performance constraints, for instance. We provide such an example in Section 4.

For this general Problem P, we provide a discretization-based numerical algorithm,
and proofs of its feasibility (that it generates solutions which are feasible for Problem
P) and consistency (that convergent numerical solutions converge to optimal solutions
of Problem P). These results build on the work of [Phelps et al. (2014)] and [Walton et
al. (2016)] to extend to the broader problem formulation presented here. The structure
of this paper is as follows. Section 2 provides the additional regularity conditions
imposed on Problem P. Section 3 presents a numerical method for generating solutions
and a proof of the consistency of this method. Finally, Section 4 provides an example
with numerical solution.

2. Regularity Assumptions

In order to address Problem P numerically and analytically in the next sections, we
impose the following regularity assumptions:

Assumption 2.1. The functions f , r, F , e, h, eI , hI , Ψe, and Ψh are C1, and
x0 : Θ 7→ Rnx is continuous.

Due to their compact domains, the C1 functions thus satisfy Lipschitz conditions.

Assumption 2.2. Control solutions u are C0 on [0, T ].

From Assumption 2.1, this implies state solutions are C1 on Θ× [0, T ].

Assumption 2.3. The function g is continuous and the set U = {ν ∈ Rnu |g(ν) ≤ 0}
is compact.
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Assumption 2.4. The set Θ is compact, and there exists a compact set X ⊂ Rnx
such that for all u(t) ∈ U and θ ∈ Θ, x(t, θ) ∈ X for all t ∈ [0, T ], where x(t, θ) =

x0 +
∫ t

0 f(x(s, θ), u(s), θ)ds.

This assumption essentially requires for all bounded controls that there is no θ ∈ Θ
for which the state has a finite escape time. A large class of nonlinear systems satisfy
this assumption, for example, input-to-state stable systems and systems for which f
is globally Lipschitz or satisfies a linear growth condition.

3. Numerical Approximation Scheme

We introduce an approximation of Problem P, referred to as Problem PM. Problem
PM is created by approximating the parameter space, Θ, with a numerical integration
scheme which is defined in terms of a finite set of M nodes {θMi }Mi=1 and an associated
set ofM weights {αMi }Mi=1 ⊂ R. Throughout the paper,M is used to denote the number
of nodes used in this approximation of parameter space. The only requirement on the
numerical integration scheme is that it satisfies the following assumptions:

Assumption 3.1. For each M ∈ N, the integration scheme is defined by a set of
nodes {θMi }Mi=1 ⊂ Θ and an associated set of weights {αMi }Mi=1 ⊂ R such that for any
continuous function f : Θ→ R,

∫
Θ
f(θ)dθ = lim

M→∞

M∑
i=1

f(θMi )αMi .

Remark 1. For a series of functions {fM}, note that if fM : Θ → R is continuous
for all M ∈ N and {fM} converges uniformly to f on Θ with respect to the Euclidean
norm, then the following also holds as a result of Assumption 3.1:

∫
Θ
f(θ)dθ = lim

M→∞

M∑
i=1

fM (θMi )αMi .

This property is used later.

Remark 2. For a given function h : Θ → R, h ∈ C1 and given integration scheme
satisfying Assumption 3.1, there exists a constant K ∈ R and function ε(M) : N→ R
such that limM→∞ ε(M) = 0 and the numerical integration error is bounded by:

∣∣∣ ∫
Θ
f(θ)dθ −

M∑
i=1

f(θMi )αMi

∣∣∣ ≤ Kε(M). (10)

We note that Θ has been defined as a compact domain. Many numerical integration
methods satisfy the convergence requirement of Assumption 3.1 on compact domain,
for instance Gaussian quadrature, composite-Simpson, and Clenshaw-Curtis. Remark
2 will be used to quantify slack bounds for the integral constraints of Problem P
given by equations (7) and (8), whose integrated functions hI and eI have been de-
fined as satisfying the C1 requirement of Remark 2. Although numerical integration
errors are often given in terms of higher order derivatives, bounds satisfying Remark 2
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can be provided given the compact domain and subsequently bounded first derivative
of the function. In [Trefethen (2008)], for instance, such bounds are given for Gaus-
sian quadrature and Clenshaw-Curtis in terms of the bounded first derivative of the
function. Reference [Davis and Rabinowitz (2007)] provides such bounds for quadra-
ture schemes which are exact for polynomials of some degree. Alternate discretization
methods with lower dimensional growth rates or the computation of problems with
high parameter space dimension, in which the full tensor product required by multi-
dimensional collocation may be intractable, may also be chosen, for instance Smolyak
sparse grid methods satisfy both assumptions [Gerstner and Griebel (1998)].

For a given set of nodes {θMi }Mi=1 and quadrature weights {αMi }Mi=1 ⊂ R, the ap-
proximate problem is defined as follows:
Problem PM. Determine the control function u that minimizes

JM [XM , u] =

M∑
i=1

[
F
(
xMi (T ), θMi

)
+

∫ T

0
r(xMi (t), u(t), t, θMi )dt

]
αMi (11)

subject to:

dxMi
dt

(t) = f(xMi (t), u(t), θMi ), t ∈ [0, T ], i = 1, . . . ,M, (12)

xMi (0) = x0(θMi ), i = 1, . . . ,M, (13)

g(u(t)) ≤ 0, t ∈ [0, T ], (14)

e(xMi (T ), θMi ) ≤ 0, i = 1, . . . ,M, (15)

h(xMi (t), θMi ) ≤ 0, t ∈ [0, T ], i = 1, . . . ,M, (16)

Ψe

(
M∑
i=1

eI
(
xMi (T ), θMi

)
αMi

)
≤ Keεe(M), (17)

Ψh

(
M∑
i=1

hI
(
xMi (t), θMi

)
αMi

)
≤ Khεh(M), t ∈ [0, T ]. (18)

This approximate problem is a result of the enforcement of the state dynamics and
conditions (3)-(8) at the collocation nodes {θMi }Mi=1 and the enforcement at these nodes
of an approximation of the integral constraints (7) and (8) through quadrature. Due to
the discretization of parameter space, the state space for Problem PM is of a different
dimension than that of Problem P. The state variables xMi , i = 1, . . . ,M specified by
the ODEs in (12) are functions of time rather than time and parameter space, and
the dimension of the entire state space, XM (t) = [xM1 (t), . . . , xMM (t)], has dimension
nx ×M , where nx is the dimension of the original state space. The dimension of the
control space, however, remains the same.
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We take a moment to discuss the slack constraints of equations (17) and (18) versus
the exact constraints which precede them. In contrast to direct discretization methods
in the time domain which must introduce slack constraints into all state constraints,
such as the pseudospectral method for standard control, Problem PM is only approx-
imating the additional parameter space. Constraints which are defined pointwise with
respect to this parameter space, such as the dynamics, can be enforced exactly. This
does not mean that the original problem, Problem P, is necessarily feasible without
its own slack constraints. Recall that equation (9) in Section 1 for instance, provides
an example of an end time constraint which is only provably feasible within an ε-ball.
This ‘slack’ constraint of the original problem is first defined in terms of its own ε-
slacks, which are in turn enforced strictly via equation (15). Equations (17) and (18) in
contrast are made approximate from the approximation of integration. The constants
Ke and Kh come from Remark 2 combined with the Lipschitz constants of Ψe and
Ψh respectively. For equation (18), the constant from Remark 2 must be determined
using the max over the time interval [0, T ].

The resulting Problem PM is a standard optimal control problem, no longer dis-
tinguished by an additional parameter domain, for which there are many available
methods of solution. The following theorem establishes the property of consistency
for solutions of Problem PM in regards to Problem P. Consistency is not a proof of
the feasibility of the original Problem P—that is a design task. Rather, this proof
addresses the reliability of the numerical solutions for a feasible problem. The proof
thus assumes Problem P is feasible. From that it follows that Problem PM is feasible,
since any discretization of Problem P at the nodes will generate a feasible solution to
Problem PM . The question the proof then addresses, consistency, is the property that
if optimal controls to Problem PM converge as the number of nodes M → ∞, they
converge to feasible, optimal controls of Problem P. Convergence is referred to in the
following sense:

Definition 3.2. Uniform Accumulation Point - A function f is called a uniform
accumulation point of the sequence of functions {fn}∞n=0 if ∃ a subsequence of {fn}∞n=0

that uniformly converges to f . Similarly, a vector v ∈ RM is called a uniform accu-
mulation point of the sequence of vectors {vn}∞n=0 if ∃ a subsequence of {vn}∞n=0 that
converges to v.

Note that Definition 3.2 applies to limits of subsequences, not the limits of the
sequence in entirety. To express this we adopt the following notation. Let V be an
infinite subset of the index set {0, 1, 2, . . . }. If for a sequence {xn}∞N=0, the subsequence
{xn|n ∈ V } has a limit point x, we will refer to this with the notation limn∈V xn = x.
For uniform accumulation points of the controls of Problem PM as M → ∞, the
following holds:

Theorem 3.3. Control Consistency: Let {uM∗}M∈V be a sequence of optimal con-
trols for Problem PM with an accumulation point u∞. Given Assumptions 2.2 - 2.4 ,
then u∞ is an optimal control for Problem P.

3.1. Theorem 3.3 Proof

In the following proof, and all subsequent proofs in this paper, ‖ · ‖ refers to the
Euclidean norm. Let {uM∗}M∈V be a set of optimal controls for the Problem PM such
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that limM∈V {uM∗} = u∞. Let x∞(t, θ) be the solution to the dynamical system:

∂x∞

∂t
(t, θ) = f(x∞(t, θ), u∞(t), θ), x∞(0, θ) = x0(θ) (19)

and let {xM∗(t, θ)} be the sequence of solutions to the dynamical systems:

∂xM∗

∂t
(t, θ) = f(xM∗(t,θ), uM∗(t), θ), xM∗(0, θ) = x0(θ) (20)

for M ∈ V . We note, first of all, that since Problem P and Problem PM share the same
feasible control set U , the solutions to equations (19) and (20) exist, due to Assumption
2.4. We note, second of all, that these solutions are not necessarily feasible solutions to
Problem P , as they may violate the state constraints. We will revisit this issue after
the following lemma.

Lemma 3.4. The sequence {xM∗(t, θ)} converges pointwise to x∞(t, θ) and this con-
vergence is uniform in θ.

Proof: From their definitions, we have:

‖xM∗(t, θ)− x∞(t, θ)‖ ≤
∫ t

0
‖f(xM∗(τ, θ), uM∗(τ), θ)− f(x∞(τ, θ), u∞(τ), θ)‖dτ

Since f is C1 on a compact domain by Assumptions 2.3, 2.4, and 2.1, the Lipschitz
condition applies, yielding:

‖xM∗(t, θ)− x∞(t, θ)‖ ≤
∫ t

0
c

(
‖xM∗(τ, θ)− x∞(τ, θ)‖+ ‖uM∗(τ)− u∞(τ)‖

)
dτ

for Lipschitz constant c. Since uM∗ and u∞ are in the compact set U , they are bounded.
Thus the Dominated Convergence Theorem applies and we have:

lim
M∈V

∫ t

0
‖uM∗(τ)− u∞(τ)‖dτ = 0.

For any t and δu we can therefore pick an N such that for all M > N , M ∈ V :∫ t

0
‖uM∗(τ)− u∞(τ)‖dτ < δu.

This provides us with the inequality

‖xM∗(t, θ)− x∞(t, θ)‖ ≤ cTδu + c

∫ t

0
‖xM∗(τ, θ)− x∞(τ, θ)‖dτ.

By Gronwall’s Inequality, ‖xM∗(t, θ)− x∞(t, θ)‖ ≤ cTδuecT . Since for each value of t
and θ, this quantity can be made arbitrarily small, {xM∗(t, θ)} converges pointwise to
x∞(t, θ). Furthermore, since δu, though it may depend on t, does not depend on the
value of θ, this convergence is uniform in θ.

We now revisit feasibility. State feasibility in this context is defined as a state
generated through the state dynamics by an admissible control which satisfies all
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boundary conditions and state constraints.

Lemma 3.5. State x∞(t, θ) is a feasible state for Problem P .
Proof: By definition, x∞(t, θ) satisfies Problem P ’s conditions (2) and (3). It fur-

thermore satisfies control constraints (4), as since U is compact, the set of feasible
controls is trivially closed in the topology of pointwise convergence. We thus consider
the satisfaction of conditions (5), (6), (7), and (8).

Condition (5): When θ = θMi , then xM∗(t, θMi ) = xM∗i (t), where xM∗i is the optimal
state for Problem PM generated by the optimal control uM∗(t). Thus from constraint
(15) xM∗(t, θ) satisfies constraint (5) at the collocated constraints:

e(xM∗(T, θMi ), θMi ) ≤ 0, i = 1, . . . ,M.

For an arbitrary θ ∈ Θ and an arbitrary node θMi , we have

‖e(x∞(T, θ), θ)−e(xM∗(T, θMi ), θMi )‖

= ‖e(x∞(T, θ), θ)− e(xM∗(T, θ), θ) + e(xM∗(T, θ), θ)− e(xM∗(T, θMi ), θMi )‖

≤ ‖e(x∞(T, θ), θ)− e(xM∗(T, θ), θ)‖+ ‖e(xM∗(T, θ), θ)− e(xM∗(T, θMi ), θMi )‖.

Due to Assumptions 2.1 and 2.4, e satisfies Lipschitz conditions with respect to each
argument. Thus:

‖e(x∞(T, θ), θ)− e(xM∗(T, θ), θ)‖ ≤ cx‖x∞(T, θ)− xM∗(T, θ)‖

for Lipschitz constant cx with respect to the first argument of e. By the results of
Lemma 3.4, for any εx there exists an M ′ such that ∀M > M ′ this quantity is less
than εx and this M ′ is independent of θ. Similarly,

‖e(xM∗(T, θ), θ)− e(xM∗(T, θMi ), θMi )‖ ≤ cx‖xM∗(T, θ)− xM∗(T, θMi )‖+ cθ‖θ − θMi ‖

where cθ is the Lipschitz constant with respect to the second argument of e. Further-
more,

‖xM∗(T, θ)−xM∗(T, θMi )‖ ≤
∫ T

0
‖f(xM∗(τ, θ), uM∗(τ), θ)−f(xM∗(τ, θMi ), uM∗(τ), θMi )‖dτ

≤
∫ T

0
c
(
‖xM∗(τ, θ)− xM∗(τ, θMi )‖+ ‖θ − θMi ‖

)
dτ

Thus, choosing now θMi for each M > M ′ to be a node within εθ of θ, as was done in
Lemma 3.4 we can apply the Dominated Convergence Theorem to the integral of the
second quantity, yielding:

‖xM∗(T, θ)− xM∗(T, θMi )‖ ≤ c
∫ T

0
‖xM∗(τ, θ)− xM∗(τ, θMi )‖dτ + cT εθ.
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By Gronwall’s Inequality, ‖xM∗(T, θ)−xM∗(T, θMi )‖ ≤ cT εθecT , which through choos-
ing εθ can be made smaller than any ε̄θ. Together these inequalities yield that for
arbitrary εx and ε̄θ, there exists an M ′, independent of θ such that for all M > M ′

there exists a node θMi within εθ of θ and:

‖e(x∞(T, θ), θ)− e(xM∗(T, θMi ), θMi )‖ ≤ εx + ε̄θ.

If we assume by contradiction that e(x∞(T, θ), θ) > 0 for some θ then since
e(xM∗(T, θMi ), θMi ) ≤ 0, the difference in quantities is some constant number greater
than zero. Choice of εx + ε̄θ less than this number creates a contradiction.

Condition (6) follows from similar arguments.
Condition (7): The satisfaction of the integral constraints will be shown through

similar arguments as above with the addition of the convergence property of Remark
1. By the uniform convergence of {xM∗(t, θ)} to x∞(t, θ) with regards to θ given by
Lemma 3.4, and by the Lipschitz condition on eI provided by Assumptions 2.1 and
2.4, it can be seen that the sequence of functions {eI

(
xM∗(T, θMi ), θMi

)
} converges to

eI (x∞(T, θ), θ) and that this convergence is uniform in θ. By Remark 1 then:

lim
M∈V

M∑
i=1

eI
(
xM∗(T, θMi ), θMi

)
αMi =

∫
Θ
eI (x∞(T, θ), θ) dθ

and by the continuity of Ψe from Assumption 2.1 we have

Ψe

(
lim
M∈V

M∑
i=1

eI
(
xM∗(T, θMi ), θMi

)
αMi

)
= lim

M∈V
Ψe

(
M∑
i=1

eI
(
xM∗(T, θMi ), θMi

)
αMi

)

= Ψe

(∫
Θ
eI (x∞(T, θ), θ) dθ

)
.

Since the collocated constraints are satisfied:

Ψe

(
M∑
i=1

eI
(
xMi (T ), θMi

)
αMi

)
≤ Keεe(M), i = 1, . . . ,M

with limM→∞ εe(M) = 0, and since Assumptions 2.1 and 2.4 also provide a Lipschitz
condition for Ψe, the arguments of the proof of Condition (5) follow from this point
on. One finds that this contradicts the possibility that Ψe

(∫
Θ eI (x∞(T, θ), θ) dθ

)
> 0

thus proving satisfaction of the constraint.
Condition (8) follows from similar arguments.

Using Lemmas 3.4 and 3.5, we now establish Theorem 3.3. By Lemma 3.5, the pair
(x∞, u∞) is feasible for Problem P . The limit of the difference in cost values satisfies:

lim
M∈V

∥∥JM [XM∗, uM∗]− J [x∞, u∞]
∥∥
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= lim
M∈V

∥∥∥∥∥
M∑
i=1

[
F(xM∗(T,θMi ))+

∫ T

0
r(xM∗(t,θMi ),uM∗(t),t, θMi )dt

]
αMi

−
∫

Θ

[
F (x∞(T, θ)) +

∫ T

0
r(x∞(t, θ), u∞(t), t, θ)dt

]
dθ

∥∥∥∥

≤ lim
M∈V

∥∥∥∥∥
M∑
i=1

F
(
xM∗(T, θMi )

)
αMi −

∫
Θ
F (x∞(T, θ)) dθ

∥∥∥∥∥

+ lim
M∈V

∥∥∥∥∥
M∑
i=1

∫ T

0
r(xM∗(t, θMi ), uM∗(t), t, θMi )dt −

∫
Θ

∫ T

0
r(x∞(t, θ), u∞(t), t, θ)dtdθ

∥∥∥∥ .
We examine the quantity:

lim
M∈V

∥∥∥∥∫ T

0
r(xM∗(t,θ),uM∗(t),t,θ)dt−

∫ T

0
r(x∞(t,θ),u∞(t),t,θ)dt

∥∥∥∥
≤ lim
M∈V

∫ T

0
‖r(xM∗(t, θ), uM∗(t), t, θ)− r(x∞(t, θ), u∞(t), t, θ)‖dt.

From the continuity of r on a compact domain, we apply the Lipschitz condition to
get:∫ T

0
‖r(xM∗(t, θ), uM∗(t), t, θ)− r(x∞(t, θ), u∞(t), t, θ)‖dt

≤
∫ T

0
c
(
‖xM∗(t, θ)− x∞(t)‖+ ‖uM∗(t)− u∞(t)‖

)
dt.

The results of Lemma 3.4, the compactness of X and U , and the assumption that u∞ is
an accumulation point of {uM∗}M∈V , enable us to apply the Dominated Convergence
Theorem. Thus:

lim
M∈V

∫ T

0
c
(
‖xM∗(t, θ)− x∞(t, θ)‖+ ‖uM∗(t)− u∞(t)‖

)
dt = 0

and this convergence must be uniform in θ due to the uniform convergence of xM∗(t, θ).
We can therefore conclude that:

lim
M∈V

∫ T

0
r(xM∗(t,θ),uM∗(t),t,θ)dt=

∫ T

0
r(x∞(t,θ),u∞(t),t,θ)dt

12



and that the convergence is uniform. This enables the use of Remark 1, which provides:∥∥∥∥∥ lim
M∈V

M∑
i=1

∫ T

0
r(xM∗(t, θMi ), uM∗(t), t, θMi )dt −

∫
Θ

∫ T

0
r(x∞(t, θ), u∞(t), t, θ)dtdθ

∥∥∥∥ = 0.

Similar arguments show:∥∥∥∥∥ lim
M∈V

M∑
i=1

F (xM∗(T, θMi ))αMi −
∫

Θ
F (x∞(T, θ)) dθ

∥∥∥∥ = 0.

Thus limM∈V J
M [XM∗, uM∗] = J [x∞, u∞].

Assume that u∞ is not an optimal control for Problem P . Then there exists some
admissible control u such J [x, u] < J [x∞, u∞], where x is a feasible state for Problem
P defined by:

∂x

∂t
(t, θ) = f(x(t, θ), u(t), θ), x(0, θ) = x0(θ).

As can be seen by the definition of Problem PM , the set of states given by XM =
{x(t, θMi )}Mi=1 is a feasible solution to Problem PM (note that this assertion requires
the slackness in constraints (17) and (18)). Furthermore, limM∈V J

M [XM , u] = J [x, u]
through identical arguments as the convergence of the optimal cost. The optimality of
XM∗ for Problem PM creates the following inequalities:

J [x∞, u∞] = lim
M∈V

JM [XM∗, uM∗] < lim
M∈V

JM [XM , u],

lim
M∈V

JM [XM , u] = J [x, u] < J [x∞, u∞]

which are in contradiction. Thus u∞ must in fact be an optimal solution to Problem
P .

4. Example: Optimal Search

Here we present an example application of optimal motion planning with parameter
dependency: the task of path planning for sonar search over an area. The search prob-
lem can be considered an example of a coverage path planning problem. This challenge
of covering a region can be generically defined as the task of producing a path for a
vehicle which reaches all regions of interest while avoiding obstacles. The problem has
been studied in robotics and reviews of approaches can be found in [Choset (2001)]
and [Galceran and Carreras (2013)]. Applications of covering algorithms include vac-
uuming, snow cleanup, lawn mowing, window cleaning, painting, and topographical
mapping. Commercial products, such as the Roomba, incorporate a mix of local and
global planning in their design to attain satisfactory confidence in their performance
[Hess, Beinhofer, and Burgard (2014)]. However, though global coverage plans have
been developed which provide assurances of eventual complete or near-complete cover-
age, the question of optimality in performance is still largely unaddressed. One reason
for this is that performance is ultimately not a feature solely of the geometry of the
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coverage path, the production of which has been the main focus of research [Choset
(2001); Galceran and Carreras (2013)]. Rather, performance is additionally dependent
on specific equipment capabilities as well as dynamic features, such as the duration
of coverage and the impact of kinematics on equipment. Spatial approaches to cover-
age path planning which minimize path overlap for example, such as [Galceran and
Carreras (2012)], will not necessarily produce maximal performance if a slow-acting
device hasn’t allotted enough time to a region.

In this example, we model the SeaFox [MarineLink (2004)] unmanned surface vehicle
(USV), pictured in Figure 1 searching for a target on a 100m2 surface region. Param-

Figure 1. The Naval Postgraduate School’s SeaFox USV

eters θ ∈ Θ ⊂ R2 parameterize the two-dimensional surface region where the goal
target could be located beneath, with uniform probability density function given by
φ(θ). The dynamics of the vehicle are represented by the horizontal location (x1, x2),
heading angle ψ, and velocity v, and given by:

dx

dt
(t) =


ẋ1(t)
ẋ2(t)

ψ̇(t)
v̇(t)

 =


v sinψ(t)
v cosψ(t)
u1(t)
u2(t)

 , x(0) =


0
0
0

1.57

 .
The functions u1 and u2 are the control inputs guiding the vehicle’s motion. They are
limited by constraints of the form:

|u1(t)| ≤ K1, |u2(t)| ≤ K2.

Velocity is also constrained:

0 ≤ v ≤ Kv.

Coefficient values are provided in Table 2.
A range-limited sonar is modeled by an indicator function, I(x, θ) which returns

1 if the point θ is within range of location x ∈ R2 and 0 if it doesn’t. To comply
with the regularity assumptions of the numerical algorithm, we further approximate
this indicator function by a continuously differentiable approximation of the indicator
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function, Ismooth(x, θ), which we define as:

Ismooth(x, θ) =
1

2

(
1 + erf

(
c1 − c2x

σ

))
,

where

erf(x) =
2√
π

∫ x

0
e−t

2

dt.

Coefficient values are given in Table 2. Figures 2 and 3 illustrate the smoothed indicator
concept and its implementation with the values in Table 2. For an object within the

Figure 2. Smoothed sensor range indicator function

Figure 3. Ismooth for the values in Table 2

vehicle’s range, we assume that the vehicle acts on it with a constant probabilistic
detection rate, r0. The probability that the vehicle detects the object in time interval
[t, t + ∆t] is approximated by r0Ismooth(x, θ)∆t. The probability of not detecting the
target at location θ by time t, given by PND(t, θ), is thus given by:

PND(t+ ∆t, θ) = PND(t, θ)[1− r0Ismooth(x, θ)∆t]

which as ∆t→ 0 creates the dynamics:

∂PND
∂t

(t, θ) = −r0Ismooth(x, θ)PND(t, θ), PND(0, θ) = φ(θ).

This is the exponential detection model, derived in [Koopman (1956)].
In the scenarios that follow, the initial probability at each location has been set to

φ(θ) = 1. Together, x and PND create the state space of our control problem, referred
to with the augmented state variable z:

z(t, θ) =

[
x(t)

PND(t, θ)

]
.

15



We consider three path plans and contrast their performance. Performance is gauged
by the expected final probability of missing the target after searching:

J =

∫
Θ PND(T, θ)dθ∫

Θ dθ
. (21)

Table 2. Scenario Values for Paths 1 - 3

Aperture coefficients c1 20
c2 .15
σ 10

max detection rate r0 .5
Control constraints K1 .125

K2 1
Velocity constraint Kv 12.5 m/s
search region Θ [0, 100]× [0, 100] m2

Initial probability φ(θ) φ(θ) = 1
Final time T 360 s
Switchback interval 2ρ 2× 12.5
Path 1 velocity v 1.57 m/s

Path 1, a baseline, is a heuristic solution generated by following a lawnmower pattern
at constant velocity. The vehicle region is over Θ = [0, 100] × [0, 100] m2. The width
between paths has been chosen as 2ρ where ρ is an estimate of the effective radius of
the aperture, based on Ismooth and allowing for a small amount of overlap; its value is
set as ρ = 12.5. The time interval has been chosen to allow for this lawnmower path to
finish: T = 360. Control constraints on u1(t) enforce a maximum turning rate, ψ̇max,
for executing the lawnmower path’s switchbacks, and the velocity of the vehicle is
determined by ρ and this turning rate using the equation ρψ̇max = v = 1.57. Figure 4
shows the performance of the lawnmower pattern, Path 1. Path 1’s average probability
of failure, J1, is 0.2982. The lowest failure probability PND(T, θ) at point θ it attains
is 0.1195 and the highest is 1 (i.e. there are spots it completely misses, where if the
target is located there, probability of failure to detect is 1.

Path 2 is generated by solving the optimal control problem to minimize the failure
probability in equation (21). This solution has been generated by discretizing Θ with
25×25 nodes and time with 150 nodes, both domains using LGL pseudospectral nodes.
We note that the choice of solution method used in the time domain is independent
of the method chosen for the parameter domain. In this example, we have chosen to
use matching methods. However, any method appropriate to the approximate problem
established in Section 3, Problem PM, can be applied to the time domain. Discretized
state and control constraints (14) - (18) may create an approximate problem which,
due to the constraints, may benefit from a method from a time domain method which
caters more specifically to constrained optimal control problems, such as the local
pseudospectral method [Darby, Garg, and Rao (2011)], or the symplectic pseudospec-
tral method [Wang, Peng, Zhang, Chen, and Zhong (2017)]. This can be ascertained
from the structure of Problem P. In this example, which has smooth state and control
solutions, we find the global pseudospectral method utilized to be sufficient.

Figure 5 shows the performance of Path 2. Path 2’s average failure probability,
J2, is 0.1795, the lowest failure probability at point θ it attains is 0.0710 and the
highest is 0.9694. As one would expect, the optimal solution performs much better than
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Figure 4. Path 1 at final time T

Path 1, providing around a 40% reduction in expected failure. However, depending on
one’s standards, Path 2 may still not be ideal. It is notable that the highest failure
probability, 0.9694, reveals spots which have been mostly skipped in order to create the
best average. An alternate goal for a vehicle’s searching path could be to a thoroughly
search the region to within a certain risk threshold.

Path 3 has been generated by minimizing the expected failure given by equation
(21) subject to the risk constraint:

PND(T, θ) ≤ γ, ∀θ ∈ Θ (22)

with γ = 0.5. This problem sets a floor for the vehicle’s performance. As with Path 2,
Path 3 is generated by discretizing Θ with 25×25 nodes and time with 150 nodes, both
domains using LGL pseudospectral nodes. Figure 6 shows the performance of Path 3.
Path 3’s average final performance, J3, is worse than Path 2’s, at 0.2305. However, it’s
maximum non-detection probabilities, γ, is much improved at 0.6917.

Table 3. Performance Values

Avg final PND Low PND High PND Computation time

Path 1
(heuristic) 0.2982 0.1195 1 n/a
Path 2
(optimal avg) 0.1795 0.0710 0.9694 12.61 min
Path 3
(constrained worst case) 0.2305 0.0638 0.6917 26.67 min

Table 3 provides a summary of the performance of all three paths. Each path’s
control solution is assessed in performance by propagation through a refined 300×300
LGL-pseudospectral quadrature grid of Θ to estimate its performance in the non-
approximated problem. We note that Path 3, calculated from a 25× 25 discretization
of Θ, does not yet strictly satisfy the constraint inequality PND(T, θ) ≤ 0.5 at all θ ∈ Θ
when the control solution is propagated through the refined 300× 300 grid. The strict
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Figure 5. Path 2 at final time T

satisfaction of the constraint at the discretized nodes yields an asymptotic point-wise
convergence. Figures 7 and 8 show the convergence of the constraint as discretization
increases.

5. Conclusions

The tools presented in this paper enable the computation of numerical solutions to
a wide variety of optimal control problems with parameter dependency in the cost
and/or dynamics. These problems include those with state constraints over the pa-
rameter domain, constraints over the distribution (such as constrained mean and other
statistics), and also minimum time problems. The computational framework presented
allows for the flexible choice of many numerical schemes such as pseudospectral meth-
ods or sparse grid methods, as well as the ability to use separate methods in the
parameter domain versus the time domain, allowing for the application in the time
domain of the plentiful available computational methods developed for standard opti-
mal control problems.

These tools enable multiple new avenues for application. As Section 4 mentions, the
optimal control framework presented in this paper is applicable to many types of area
coverage problems. These problems are increasingly relevant for autonomous vehicles
as these vehicles gain in durability and longterm deployability. Problems such as aerial
and marine mapping, search, networked communication coverage, and efficient routing
can all be approached as control problems with (spatial) parameter dependencies. The
use of optimal control for these problems provides the opportunity to generate path
plans optimized over specific vehicle and sensor dynamics. This has the potential to
provide substantial performance improvements, especially when planning for multi-
vehicle teams with heterogenous dynamics.

The framework also provides a tool for many motion planning problems with uncer-
tainty. The parameter domain can be used to consider uncertain locations, as in the
optimal search problem in Section 4. It can also be used to incorporate model uncer-
tainty through estimated parameter ranges or as the coefficients of series expansion
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Figure 6. Path 3 at final time T

for function approximation. These provide approaches for optimizing plans against
dynamic targets with unknown dynamics models. Another interesting future direction
of application may be in the estimation of the unknown parameters themselves. With
sensor-based observations driving updated parameter estimates (for instance through
Bayesian updates), path planning for the mobile sensor platforms to optimize observa-
tion trajectories for estimating the unknown parameters becomes an optimal control
problem dependent on those parameters.

The wealth of potential applications provide many future directions for this problem,
as well as many technical challenges. A challenge in application will be the available
methods for solving the resulting standard control problem, which may have to deal
with a high number of states and state constraints. Due to the high number of state
variables generated through parameter discretization, efficiency is also key. However,
as the example in this paper demonstrates, the implementation of this approach is
already feasible. Future work includes building problem models for the applications
described above and investigating efficient numerical methods for both parameter and
time domain implementations.
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