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ABSTRACT OF THE DISSERTATION

Perception Learning, Prediction and Motion Planning for Energy Efficient Driving of Connected
and Automated Vehicles

by

Fei Ye

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2019

Dr. Matthew J. Barth, Chairperson

The uninterrupted growth in transportation activities has been exerting significant pressure

on our socio-economics and environment in recent years. However, emerging technologies such as

connected and automated vehicles (CAVs), transportation electrification, and edge computing have

been stimulating increasingly dedicated efforts by engineers, researchers and policymakers to tackle

these transportation-related problems, including those that are focused on energy and the environ-

ment. With the advancement towards vehicle connectivity and automation, vehicles can reduce the

energy consumption, emissions and improve urban mobility and safety through environmentally-

friendly eco-driving strategies, vehicle electrification, and driving coordination.

In this dissertation, we developed predictive models and trajectory planning algorithms

using machine learning and optimization techniques to address four key challenge: 1) Driving in

real-world scenarios with constrains and interaction from downstream vehicle’s trajectory and traf-

fic; 2) Extracting essential traffic information from sparse vehicle trajectory data in a connected

vehicle environment; 3) Evaluating and quantifying the behavior of a complex Vehicle-Powertrain

Eco-Operation System; and 4) Optimal scheduling and coordinating automated vehicles in terms

vii



of mobility benefits and energy savings considering the tradeoff between solution optimality and

computational efficiency for online performance.

This research first starts with developing an electric vehicle energy consumption model

based on real world data and integrating it into eco-driving algorithms considering the regenerative

braking effect. By introducing a hybrid modeling approach which provides variables with actual

physical meaning instead of the exhaustive method used in conventional data-driven approaches, we

feature knowledge-driven variable selection and data-driven statistical synthesis together to further

improve the estimation accuracy.

Many of the existing eco-driving algorithms, including the eco-approach and departure

(EAD) algorithm, are not flexible enough to effectively handle customized powertrain characteris-

tics, interaction with other traffic, road grade, and traveling with the presence of the downstream

vehicles. Therefore, when considering the real-world deployment of the EAD application, it is ben-

eficial to further explore the dynamic states from downstream vehicles and incorporate these into

the trajectory planning process. A machine learning technique has been applied to the snippet of

downstream vehicle trajectory (which may be obtained from onboard sensors, such as radar) to pre-

dict trajectories using real-world data. By integrating the prediction on future states of the preceding

vehicle into the trajectory planner, the resulting enhanced EAD algorithm provides an eco-friendly

speed trajectory in the presence of preceding traffic and queues at intersections with additional 2 –

34 % energy savings and emission reduction compared to the EAD algorithms without prediction.

This dissertation also describes a technique to integrate vehicle dynamics and powertrain

operations, using a comprehensive simulation study that was designed and tested for both electric

buses and plug-in hybrid electric buses driving across total 11 signalized intersections in a test corri-
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dor. The overall simulation framework incorporates a two-layer vehicle optimal trajectory planning

module that seamlessly integrates a graph-based trajectory planning algorithm and a deep learning-

based trajectory planning algorithm while interacting with the environment calibrated using real-

world data. It was found that deep learning-based EAD algorithms can achieve a good balance

between solution optimality and computational efficiency. Besides, a dynamic queue prediction in

the connected vehicle environment has been developed to better plan the bus trajectory for greater

energy consumption. Over 20.0% energy savings can be achieved across various traffic conditions

when co-optimizing vehicle dynamics and powertrain operations. In addition, an extra around 5%

energy efficiency improvement for a test PHEV bus was shown when introducing 20% connected

vehicles in the network.

With a partially connected vehicle network, we not only improve the longitudinal control

of the vehicle to obtain better energy efficiency but also extract essential traffic condition infor-

mation such as lane-level traffic information that can be used for better lane selection. We devel-

oped a Lane-Hazard Prediction (LHP) application that can detect lane-level hazards effectively and

efficiently. A machine learning approach was developed with feature extraction from the spatial-

temporal domain to achieve sustainable high accurate lane-level prediction of a downstream hazard

within tenths of seconds after it occurred by crowdsourcing sparse connected vehicle trajectories.

The LHP application then guides the application-equipped vehicles with suggestions for proper lat-

eral maneuvers far ahead of the hazard to avoid traffic jams. Results demonstrate that LHP-equipped

vehicles may gain significant mobility and safety benefits without compromising the mobility and

safety performance of the overall traffic under various traffic conditions and penetration rate of

connectivity in the vehicle network.
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Finally, a Bi-level Optimal Edge Computing (BOEC) methodology was developed under

the fully connectivity vehicle network to maximize both the vehicle mobility benefit and energy

saving by optimizing the vehicle coordination and motion planning. For the on-ramp scenario,

the first-level edge computing is conducted in the roadside unit (RSU) that collects connected ve-

hicle data, dynamically assigning each vehicle into an associated cluster group based on its state

and potential merging conflict and periodically solved for the clustered vehicles with their optimal

scheduling sequence and arrival time at the merge bottleneck point. Once the clustered vehicles

have their assigned arrival time at the merge point, the second-level edge computing determines the

optimal vehicle trajectory to guarantee vehicles meet the assigned arrival time with the minimum

energy cost. It is shown that the computational cost of vehicle trajectory planning approaches can

satisfy the objective of real-time performance with 63.4%-66.8% energy savings.
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Chapter 1

Introduction

1234

1.1 Background and Problem Statement

Considerable attention is now being applied to new solutions for improving transportation mobility

and transportation-related energy consumption and air pollutant emissions due to emerging tech-

nology in connectivity and automation in recent years. Our daily transportation activities have not

only been consuming a great amount of energy but also producing tailpipe emissions that contribute

significantly to climate change and poor air quality. According to the latest report by the California

Air Resource Board, surface transportation modes (such as passenger cars, trucks, buses and motor-

cycles) account for 41% of the total 429.4 MMT CO2 California greenhouse gas (GHG) emissions

in 2016 [1]. Meanwhile, in many areas, vehicle emissions have become the dominant source of air

pollutants, including carbon monoxide (CO), volatile organic compounds (VOC), oxides of nitro-
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Figure 1.1: Total Green House Gas (GHG) emission in California by sector 2016 [1])

Figure 1.2: Total U.S. Energy consumption by transportation sector 2018 (Source: [2])
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Figure 1.3: Energy consumption by sector, 1949-2018 (Source:[2])

gen (NOx), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAH). In addition, the

Monthly Energy Review from U.S. Energy Information Administration reports that the transporta-

tion sector accounts for 28% of the total U.S. energy consumption in 2018 [2]. As shown in Figure

1.3, energy consumption from the transportation sector increased by 200% from 1960 to 2015 and

became the biggest source of energy consumption in the U.S. since 2000.

In recent years, many emerging technologies such as connected vehicles (CV), automated driving,

transportation electrification, and edge computing have been stimulating increasingly dedicated ef-

forts by engineers, researchers and policymakers to tackle these transportation-related energy and

environmental problems. The rapid development in vehicle communication technologies has re-

sulted in a variety of applications that promote energy savings and improved mobility aided by

real-time crowdsourcing information shared between connected vehicles and infrastructure. To
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enable various safety, mobility and environmental transportation applications, connected vehicle

technology is being developed to achieve connectivity between vehicles (V2V), between vehicles

and infrastructure (V2I, I2V) through the use of Dedicated Short Range Communication (DSRC)

transceivers or cellular systems (e.g. 4G/LTE). DSRC is based on Wi-Fi radio adapted for vehicle

communications. A number of messages can be sent in every 10 times/sec and the basic communica-

tion range is approximately 300m [3]. DSRC is preferred for connected vehicle safety applications

since it is more reliable and has low latency compared to cellular network systems. DSRC might

not be the only option when eco-driving algorithms are based on signal information from several

upcoming intersections or for network-wide data collection. The basic protocol for obtaining in-

formation from a vehicle in a connected vehicle environment is the Basic Safety Message (BSM),

which includes vehicle real-time position, speed, acceleration, heading, and many other things. This

type of communication is valuable for improving energy efficiency and mobility in urban environ-

ments. Good examples were the Applications for the Environment: Real-Time Information Synthe-

sis (AERIS) Program initiated by U.S. Department of Transportation [4], and the eCoMove Project

funded by the European Commission [5]. A variety of environmentally-friendly CV applications,

in particular those related to eco-driving strategies have been proposed, developed, and validated [6].

In addition, there are significant efforts devoted to developing autonomous vehicles (AVs, also

referred to as the automated or self-driving vehicles) targeted for urban driving. AVs are being

designed to drive themselves safely and navigate under various road conditions and environmental

conditions based on on-board sensors with little driver input. As the pioneer and leading company

of AVs, Google’s self-driving cars have already driven over 10 million miles on real-world roads
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Figure 1.4: Overview of Connectivity, Automation, and Intelligence, the intersection of three is a
potentially better solution

since 2009 [7] and numerous manufacturers have began testing their self-driving systems on the

road including General Motors, Aptive, Mercedes-Benz, Nissan, Toyota, Volkswagen, etc. AVs

fully rely on their observations from on-board sensors and operate in isolation from all the other ve-

hicles and infrastructure. However, there exists some limitation on how far they can operate purely

using sensors data. For instance, sensors usually have their its own limitations on detection range

and measurement accuracy. Therefore, the current state-of-the-art autonomous driving is focused

on safety critical control but do not consider much on mobility, energy efficiency, and environment

aspects.

As show in Figure 1.4, combining connectivity, automation and artificial intelligence together can

leverage compound benefits from all these technologies. Autonomous vehicles can help improve

safety critical control but not so much for mobility and environmental improvement. In fact, studies
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has shown the mobility and environmental impact remain the same or even get worse with some

partial automation applications such as adaptive cruise control (ACC). Many of the mobility im-

provements and environment impacts depend not only on automated driving capabilities, but also

on crowd-sourcing abilities through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

communications. Connected vehicle technology will very likely become standard on most vehi-

cles before large-scale proliferation of AVs made throughout the U.S. vehicle fleet. Further, we

are witnessing artificial intelligence as the "game changer" to help autonomous vehicles in object

detection, classification, localization, scene understanding and others critical aspects to ensure safe

self-driving. Recently, deep learning is expected to play a larger role for autonomous driving, es-

pecially in perception levels for complex environment scene understanding and even predictions of

other traveler maneuvers. Perceptional predictions using machine learning and deep learning tech-

nology can enable vehicle decisions and plannings in advance instead of reacting afterwards which

can significantly improve safety, mobility and reduce environment impacts.

The overall pipeline of connected and automated vehicles contains four major levels: Observa-

tion, Perception, Planning and Control as shown in Figure 1.5. Observations from onboard sensors

are collected and fused to detect and track other travellers. Simultaneously, vehicle location, speed,

heading, and signal phase and timing data can be transmitted with very low latency in real-time

with nearby connected vehicles and the surrounding infrastructure via wireless communications

including V2V, V2I/I2V and V2X. At the perception level, CAVs conduct surrounding object clas-

sification, environment/scene interpretation based on the observations from multiple sensors’ mea-

surements. Downstream traffic prediction and anomaly detection require longer effective range thus
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Figure 1.5: Connected and Automated System Structure

it rely on both sensor-based measurement and connected vehicle technologies. With the efficient and

reliable estimation, classification, and prediction results, CAVs can regulate route planning, vehicle

maneuvers and second-by-second speed trajectory in an optimum way depending on their priority

concern. As shown in Figure 1.5, the computed optimal trajectory from the Planning Level is taken

as the reference trajectory for the Control algorithms that follow. For the automated vehicle con-

troller, the proper actuation in both longitudinal (i.e. throttle/brake) and lateral level (i.e. steering

angle) are carried out based on some well established control schemes like model predictive control

or even the simple PID control. For the driver assistant model, the proper Driver-Vehicle-Interface

is designed to guide driver to follow a particular reference speed.
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1.2 Related Work

More and more intriguing research and applications have been established to improve a vehicle’s

fuel economy and reduce their tail pipe emissions in a connected vehicle environment. For ex-

ample, in Europe, the Energy Efficiency Intersection (EEI) service of the Compass4D project was

implemented to reduce energy use and vehicle emissions at signalized intersections [8]. The eCo-

Move project funded by the European Commission (EC) built a cooperative, efficient and ecological

transportation system based on vehicle-to-vehicle (V2V) and vehicle-and-infrastructure (V2I/I2V)

communication [5]. In the U.S., the Applications for the Environment: Real-Time Information

Synthesis (AERIS) program investigated the eco-friendly transportation operations in Connected

Vehicle (CV) environment [9].

Among all the programs listed above, eco-driving at signalized intersection is particularly promis-

ing for fuel saving and emission reduction in urban area, as drivers would effectively reduce stops

and avoid unnecessary acceleration and deceleration by receiving real-time signal phase and timing

(SPaT) information from the upcoming traffic signal. Connected eco-driving is also one of the most

feasible pilot applications in the early stage of the Connected and Automated Vehicle (CAV) era,

as it could show significant fuel economy improvements with a low penetration rate, even for a

single vehicle that communicates with a signal controller. In the past decade, a variety of studies

have been conducted on developing eco-driving applications, especially from the perspective of an

isolated intersection.
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Asadi and Vahidi [10] applied traffic signal information to design optimal cruise speeds for probe

vehicles to minimize the probability of stopping at signals during red indications. A predictive

cruise control system was utilized in this study to calculate a set speed for vehicle to achieve timely

arrival at green lights with minimizing the idling time and stops at red lights as well as maintaining

safe distance between vehicles. There are some limitation on this study based on their assumption

and approach. In their proposed optimization-based control algorithm, instead of solving the op-

timization problem, the algorithm is simplified to find a proper target speed by some predefined

logical rules and use model predictive controller to track this target speed. In this case, the proposed

algorithm will provide a sub-optimal constant speed to cruise through signalized intersection. This

simplification will have potential benefit in real-time application. Further, in their control algorithm,

the signal phase and timing information from all the upcoming intersections are required to com-

pute the proper target speed. However, this information may not be available due to the current

limited wireless communication range. Another study conduced by Virginia Tech [11] designed an

eco-cooperative adaptive cruise control (ECACC) system to compute the most fuel-efficient vehicle

trajectory through a fixed signal intersection. In [12], authors developed a Green Light Optimized

Speed Advisory (GLOSA) system whose goal was to minimize average fuel consumption and av-

erage stop delay at a traffic signal. By taking into account the queue discharging process, Chen

et al. [13] developed an eco-driving algorithm for a vehicle approaching and leaving a signalized

intersection to minimize a linear combination of emissions and travel time, without taking into ac-

count roadway grade information. Jin et al. [14] formulated a power-based optimal longitudinal

connected eco-driving into a Binary Mixed Integer Linear Programming (MILP), which is applica-

ble to signalized intersections, non-signalized intersections or freeways. The approach can take into
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account road grade effect and powertrain dynamics, but has relatively low computational efficiency.

Huang and Peng [15] adopted a simplified powertrain model and applied the Sequential Convex

Optimization approach to optimize vehicle speed trajectory at signalized intersections, which aimed

to keep a balance between the optimality and real-time performance.

Eco-Approach and Departure (EAD) was initially developed to address the problem that how to

guide drivers to travel through (including to approach and to depart from) signalized intersections

in an eco-friendly manner using signal phase and timing (SPaT) information from V2I/I2V commu-

nication. When considering the application of EAD system in a more realistic environment, many

studies took a "reactive" approach to cope with the disturbance from the downstream traffic (e.g.,

switching to the car-following mode control if the subject vehicle was too close to its predecessor)

or assumed traffic signals were running in fixed-time mode [16, 17]. To address these issues, some

researchers specifically focused on tackling the queuing effects when planning the vehicle trajec-

tory for fuel efficient driving [18]. Others dealt with uncertainties in traffic signal operation such

as countdown information by improve the prediction of SPaT [19] or developing more robust eco-

driving strategies [20].

Simultaneously, there have been rapid advances in machine learning and reinforcement learning

techniques which can be used for learning-based approaches for eco-driving applications. Because

of the nonlinear feature of traffic dynamics and vehicle behaviors, learning-based approaches can

generally achieve better performance.
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Modeling and predicting the driving behavior of conventional human-driven vehicles is essential

for designing the motion behavior of CAVs in mixed traffic conditions. As the foundation of mi-

croscopic traffic models, car-following (CF) logic describes the longitudinal interactions between

vehicles assuming there is no lane changing or overtaking. Over the past several decades, a consid-

erable number of car-following models have been proposed and developed [21, 22]. For instance,

Gipps model [23], Krauss model [24] and intelligent driver model (IDM) [25] are well-developed to

address the speed adjustment according to the principle of collision avoidance between vehicles. A

comprehensive comparative study of car-following models used in the state-of-the-art microscopic

traffic simulators was conducted in [26]. More recently, to improve the traffic flow stability, an

anticipation optimal velocity model (AOVM) was proposed by Peng et al. to consider the antic-

ipation effect of optimal velocity [27]. Given that human factors play an essential role in driving

behaviors especially under complex traffic conditions, notable efforts have been made to integrate

human factors into the conventional CF model in order to achieve more realistic driving behavior

[22]. Instead of assuming constant reaction time, Khodayari et al. proposed a artificial neural net-

work (ANN) car-following model to estimate the following vehicle’s acceleration based on variable

reaction delay input [28]. In [29], a number of numerical tests showed that ANNs provide a good

approximation of car following dynamics. Comparative studies and evaluation between major car-

following models under mixed traffic conditions can be found in [30].

To describe the driving behavior in various traffic situations, some new methods have been pro-

posed that use mathematical models and neural networks, such as Bayesian filtering and Recurrent

Neural Network, to predict a driver’s intended actions at different traffic scenarios [31, 32]. To in-
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vestigate the cause of stop-and-go pattern and estimate the vehicle behavior in traffic, Agamennoni

et al. proposed a recursive Bayesian filtering approach to fulfill that purpose [31]. The problem

of multi-agent inference was tackled by decoupling the joint inference to log-linear combinations

of individual dependencies. Some other cutting-edge research involved studying the interaction

between human driven vehicles and CAVs. To investigate the impact of AVs on traffic flow, the au-

thors in [33] assumed both AVs and human-driven vehicles follow the well-known intelligent driver

model (IDM) but with different parameters. Simulation studies on the interaction of a single AV and

several human-driven vehicles showed that stabilization can be achieved with a single AV driving at

an equilibrium speed [34]. In this work, a second-order car-following model (i.e. optimal-velocity-

follow-the leader (OV-FTL) model) was applied to describe the AV and human-driven vehicles’

behaviors. It is also demonstrated that by estimating vehicle behaviors and anticipating their future

trajectories, more effective coordination between vehicles can be achieved in mixed traffic condi-

tions.

As an essential component of Connected Eco-driving, the prediction of other participants and down-

stream traffic can be integrated to the vehicle trajectory planning, which is able to further improve

the vehicle’s energy efficiency, mobility, and safety in real-world traffic. In both urban arterials and

highway networks, the interaction between vehicles, and between the vehicle and the infrastructure

can improve the overall traffic performance in terms of safety, traffic capacity, and environmen-

tal sustainability. In this dissertation, predictive models are developed and integrated with various

trajectory planning algorithms using machine learning and optimization techniques, which can pro-

mote traffic performance for both the "proactive" energy-efficient driving in a mixed connected
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vehicle environment, as well as the group-wide driving strategy ensuring the optimal mobility and

energy savings in a fully connected vehicle environment.

1.3 Contributions

This dissertation introduces and develops various energy efficient driving tools (including algo-

rithms and systems), and addresses concrete challenges in mixed traffic and anomaly traffic in con-

nected vehicle environment. The main contributions of this dissertation include:

· Development of innovative electric vehicle energy consumption models using data-driven

approach combined with physical concept modeling. These hybrid models can easily be in-

tegrated into eco-driving algorithm development with considering the regenerative braking

effect. Statistical analyses using the real-world electric vehcle data indicate that the proposed

hybrid models outperform both the knowledge-driven model by 89.3%-92.6% and the poly-

nomial regression models by 75.5%-83.2% in terms of forecast accuracy.

· Development of machine learning algorithms to predict preceding vehicle’s future trajectory

and its future state in the queue at signalized intersections. Comparative study in terms of pre-

diction accuracy and algorithm efficiency was conducted compared to some other commonly

used time series prediction models including Gaussian Process and fully connected neural

networks. Incorporation of real-time prediction of preceding vehicle’s state into vehicle dy-

namic management (i.e. speed, acceleration) can enable energy efficient driving in real-world

traffic and further reduce the energy consumption and emissions by 4%-42% under various

driving scenarios.
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· An advanced simulation study was conducted with integration of vehicle dynamic and pow-

ertrain operation optimization, off-line graph trajectory planning and online deep neural net-

work, dynamic queue prediction model and interaction with real-world environment cali-

brated vehicular network.

· Develop and simulate an innovative agent-based, lane-level hazard prediction application

called Lane Hazard Prediction (LHP) based on partially-available vehicle trajectories data

collected from the V2V environment. The results of the research shows the potential for LHP

to significantly improve the mobility and safety for both individual LHP users and the entire

traffic system.

· A Bi-level Optimal Edge Computing (BOEC) methodology was developed to maximize both

the vehicle mobility benefit and energy saving by optimizing the vehicle coordination and

motion planning. With optimal scheduling and coordination of CAVs solved by BOEC algo-

rithm, group-wide mobility benefits and energy savings can be achieved with 20.4%-21.2%

travel time savings and 63.4%-66.8% energy savings. Another intriguing feature of the BOEC

algorithm is the well balance of solution optimality and computational efficiency for online

performance.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 describes a hybrid approach to esti-

mate electric vehicle energy consumption that leverages profound benefits from data-driven model-

ing and physical concept modeling. In Chapter 3, a Prediction-based Eco-Approach and Departure

(PEAD) algorithm is developed to compute the optimum speed trajectory in the presence of preced-
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ing vehicle and traffic. Machine learning techniques are applied to the snippet of preceding vehicle’s

trajectory to predict its future maneuvers. This information may help the subject vehicle better plan

its trajectory for saving the energy consumption and reducing emissions. Chapter 4 presents an

advanced simulation study of an integrated vehicle-powertrain eco-operation system for real-time

operations of electric/plug-in hybrid electric buses. The two-layers vehicle dynamic control mod-

ule consisting of a off-line graph trajectory planning algorithm and online deep neural network is

developed to achieve real-time optimal performance. The proposed system can achieve a good

balance between solution optimality and computational efficiency while interacting with preceding

traffic. Chapter 5 describes a lane-level traffic anomaly detection model and its corresponding driver

response model using sparse spatial-temporal vehicle trajectory data from partially connectivity ve-

hicular network. Chapter 6 further develops a bi-level optimal edge computing model for on-ramp

merging to maximize overall vehicle mobility benefits and energy saving while optimizing air pol-

lutant emissions. Finally, Chapter 7 concludes the dissertation and presents directions of further

work.
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Chapter 2

Data-Driven Modeling Combined with

Physical Concept Modeling of Electric

Vehicle Energy Consumption

1234In this chapter, we propose a hybrid modeling approach to estimate electric vehicle energy consump-

tion which features knowledge-driven variable selection and data-driven statistical synthesis. The

proposed electric vehicle energy consumption model is developed based on real-world driving data

which can be easily integrated into eco-driving algorithms and taking into account the regenerative

braking effect. We then evaluate the model performance compared to some existing knowledge-

based models and polynomial regression models. Results from statistical analysis indicate that our

proposed hybrid model outperforms both the knowledge-driven model or the data-driven model in

terms of forecast accuracy.
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2.1 Background

At the heart of transportation electrification, the development of energy consumption estimation

models of electric vehicles (EVs) has been an active topic within the realm of EV related research

(see, e.g., [35–37]). According to the purpose for use, there are two major types of models: 1) those

that estimate the instantaneous energy consumption rate (microscopic) [35, 38–40], which is also the

focus of this chapter; and 2) those that estimate the energy consumption (macroscopic/mesoscopic)

over unit distance [41]. From the modeling approach perspective, some studies propose knowledge-

driven ("white-box") approaches which only rely on first principles (e.g., Newtonian equations) or

detailed physical process of each module of an electric vehicle [35, 39, 41]. The others preferred

data-driven ("black-box") approaches where the selection of variables does not necessarily take into

account their physical meanings [36, 38, 40]. In many cases, the knowledge-driven models may be

either too generic at the cost of significant estimation errors, or over-complex, being less attractive

in real-time performance. On the other hand, the data-driven models may suffer from unsatisfactory

predictability and extensibility since they are very likely to be customized by the features of specific

training datasets (e.g., vehicle properties, route characteristics, driver behavior).

Recently, a good deal of effort has been devoted to develop estimation models for electric vehi-

cles’ energy consumption [35–42]. Several studies established EV energy consumption estimation

models at different granularity for the purpose of eco-routing applications [42], assessment of differ-

ent aggregation level influence on energy consumption [37] and eco-driving in urban arterials [36].

From the perspective of modeling methodology, the knowledge-driven (“white-box") approach ei-
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Table 2.1: Related work on EV’s energy consumption.
Year Impact factors Energy estimation model Granularity

[35] Yang S.C et al. 2014 speed, acceleration, road grade Physical/analytical model Instantaneous
[36] Zhang R., et al. 2015 speed, acceleration, SOC Polynomial regression Instantaneous
[37] Baouche F., et al. 2013 average speed VEHLIB consumption model Trip-based
[38] Alvarex D., et al. 2014 statistic values of speed, acceleration and jerk Artificial neural network Instantaneous
Chang N. et al. 2014 speed, acceleration, road grade, cargo weight Physical/ analytical model Instantaneous
[40] Yao E., et al. 2014 speed, acceleration, VSP Polynomial regression Instantaneous
[41] Wu X.K., et al. 2015 speed, acceleration, road grade Physical/analytical model Instantaneous
[43] Felipe J., et al. 2015 speed, acceleration, jerk and road grade Artificial neural network Trip-based

ther considers the vehicle as a point-mass by applying Newton’s Laws (analytical model) or builds

up a detailed physical process for each module in an electric vehicle [35, 39, 41]. Such an ap-

proach has the advantage of providing a direct link between vehicle or power train dynamics and

the variables influential to energy consumption. However, the knowledge-driven models may be too

generic without differentiating the powertrain type or overly complex in real-time implementation.

For example, Wu et al. [41] used real-world measurements and established an instantaneous EV

energy consumption model directly derived from the vehicle dynamics. All the parameters in their

model are reduced to predetermined constants. In contrast, the data-driven (“black-box") approach

applies statistical techniques [36, 40] or machine learning algorithms [38] to the dataset collected

from a vehicle test bed or real world driving. This approach may result in very accurate estimation

results based on a customized dataset or a specific scenario. However, the applicability to another

situation is questionable. In addition, the physical meanings of selected variables and interpretation

of such models are not justifiable. In [40], the author proposed a purely statistical model whose

variables include a complete list of combinations of speed and acceleration up to the 3rd order. The

meaning of some variables is quite vague. Further, the results are validated only with data collected

in an ideal environment without considering road grade effects. A summary of the prior works on

EV’s energy consumption is provided in Table 2.1.

18



Brake

Accelerator

Steering

Wheel

Energy source subsystem Auxiliary subsystem

Vehicle

Controller

Electronic power 

converter

Electric

motor

Mechanical 

transmission

Wheel

Wheel

Electric propulsion subsystem

Energy 

management 

unit

Energy source
Auxiliary 

power supply

Power steering 

unit

Energy 

refueling unit

Hotel climate 

control unit

Mechanical link

Electric link

Control link

Figure 2.1: Schematic of EV’s drivetrain [42].

This chapter describes a hybrid approach ("grey-box") that takes advantage of both knowledge-

based and data-driven approaches, by calibrating the parameters in the model which captures the

vehicle and powertrain dynamics. The proposed model is then validated using data from real-world

driving, and compared with the knowledge-based model established by Wu et al. [41] and the

data-driven model proposed by Yao et al. [40].

2.2 Electric Vehicle Drivetrain Configuration

A typical EV drivetrain configuration is conceptually illustrated in Figure 2.1 [42]. There are three

major subsystems: electric propulsion subsystem, energy source subsystem and auxiliary subsys-

tem. The vehicle controller sends control signals to an electronic power converter and energy man-

agement unit based on the control inputs from brake pedal and accelerator. The electric vehicle

delivers power flow to the electronic power converter which is partially used for driving the electric
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(a) (b)

Figure 2.2: (a) CONSULT III plus kit to collect test vehicle’s energy consumption and other vehicle
activities data; and (b) GPS data logger.

motor and hence the wheels via mechanical transmissions. In the regeneration braking process, the

electric motor acts as a generator, produces negative torque on wheels to convert the kinetic energy

back into electric power, and restores it in the energy source subsystem. The energy management

unit cooperates with the vehicle controller to manage power flows to satisfy the propulsion need and

the auxiliary subsystem operation such as power steering, air conditioning, heater and radio.

2.3 Real-World Data Acquisition and Processing

In this section, we develop our models for energy consumption rate estimation based on driving data

collected from a test electric vehicle (2013 NISSAN LEAF) in real world traffic.
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2.3.1 Data Acquisition

The field data collection was conducted during the period between March 2013 and July 2013. The

test EV was equipped with two major data acquisition systems: CONSULT III plus kit and GPS

data logger (see Figure 2.2), to access vehicle activities (e.g. instantaneous speed), energy related

parameters (e.g., battery current and voltage), and real-time location information (i.e., latitude, lon-

gitude).

More specifically, the CONSULT III plus kit, which is designated for professional diagnostics of

all NISSAN models (including NISSAN LEAF), is able to retrieve high resolution (up to 100 Hz)

data from CAN bus, such as speed, current and voltage for each cell, A/C power, accessory power,

and state of charge (SOC). On the other hand, the GPS data logger is able to report the latitude and

longitude of test EV in real-time. Such information can be synchronized with existing geographic

information system (GIS) to acquire the network-wide index and grade information of the road link

on which the vehicle is traveling. We selected three typical routes near Riverside, California (USA)

for real-world data collection: 1) SR 91 – Magnolia loop; 2) Riverside Plaza – Towngate loop; and

3) Columbia – Alessandro loop. Figure 2.3 presents the SR 91 – Magnolia loop which covers a ma-

jor freeway (SR 91) and arterial (Magnolia Ave.), and a variety of traffic conditions and road grades.

In total, more than 100 hours of vehicle driving data under real-world conditions were collected.

2.3.2 Data Processing

Before the application of the aforementioned field test data for model development, we first com-

bined the dataset from the CONSULT III plus kit with that from the GPS data logger. This data

fusion is a two-step process:
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Figure 2.3: One of the field test loops consisting of SR-91 and Magnolia Ave., Riverside, California.

1) Frequency realignment. The frequency of raw GPS data was realigned into 1 Hz signal which

is consistent with the data resolution from the CONSULT III plus kit and suitable for energy

consumption estimation;

2) Trip start time synchronization. Unlike the GPS data logger, the CONSULT III plus kit uses

a relative time stamp (i.e. each run always starts from time “0") instead of a global time clock

(i.e. Coordinated Universal Time). In order to synchronize these two datasets, we applied a

cross-correlation technique [44] on vehicle speed which is common to both data sources.
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2.4 Hybrid Modeling Approach

2.4.1 Power Flows at the Battery Terminal

The energy consumption of electric vehicle considered in this study is specified as an integration

of output power of electric vehicle at the battery terminal. The equations of electric power for

propulsion and regenerative braking at battery terminal are as follows [42].

Pb−out = v[mg(f cosα+ sinα) + 0.5ρCDAfv
2 +mδdv/dt]/ηtηm (2.1)

Pb−in = kvηtηm
[
mg(f cosα+ sinα) + 0.5ρCDAfv

2+mδdv/dt)] (2.2)

Here, ηt stand for the transmission efficiency and ηm represents motor drive efficiency. These two

parameters are commonly approximately by a constant value. m is EV’s mass; f is the rolling resis-

tance coefficient; g is the gravitational constant; ρ is the air density (kg/m3); CD is the aerodynamic

drag coefficient; Af is the EV’s frontal area; σ is the coefficient that related to the EV’s mass; v is

the vehicle’s speed (m/s); α is the road grade (rad); k (0 < k < 1) is the regenerative braking factor

which indicates the percentage of the total braking energy that can be recovered by the electric mo-

tor. The regenerative braking factor is actually a complex and time-varying coefficient which will

be discussed in detail in a later section.

Thus, the total power flows at the battery terminal can be defined as:

P total = Pb−out + Pb−in (2.3)
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In the real-world test data, the accessory power and A/C power were also measured which turned

out to be non-trivial and was therefore taken into account in the power estimation for the battery

terminal.

2.4.2 Regenerative Braking Factor

Regenerative braking power is one of the most distinct feature in electric vehicles that plays an

important role in improving drivetrain efficiency. Compared to conventional internal combustion

engine (ICE) vehicles, electric vehicles with regenerative braking have an advantage in energy

efficiency, especially under stop-and-go driving scenarios. As described earlier, the regenerative

braking factor, k, indicates the percentage of braking energy recovered back to charge the battery

pack, implying the vehicle’s recharging efficiency. The value of k is between 0 and 1 due to energy

lost from battery internal resistance and cable resistance. Due to the complexity and time varying

character of regenerative braking factor k, it is essential to find proper influential factors in order

to model electric vehicles’ regenerative braking energy. According to the literature review, there

are two major approaches to model the regenerative braking effects: a piecewise linear function of

vehicle’s speed and a fuzzy logic model considering acceleration, jerk and road grade as input vari-

ables [35, 45]. The first approach was derived based on the assumption that the regenerative braking

factor can be represented by regenerative braking force which is supposed to be linearly related to

vehicle’s speed (see Equation (2.4)). The second approach considers a more complex regenerative

braking process with the measurement data available for by many factors (e.g., speed, acceleration,
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Figure 2.4: Structure of the fuzzy logic model of regenerative braking factor [45].

road grade) as shown in Figure 2.4.

k =


0.5× v/5 v < 5m/s

0.5 + 0.3× (v − 5)/20 v ≥ 5m/s

(2.4)

2.4.3 Hybrid Approach for EV Energy Consumption Rate Estimation

In the proposed hybrid approach, the model variables are carefully selected based on the EV’s phys-

ical model (as described in Section 2.4.1 and Section 2.4.2.) instead of blindly exhausting a long

list of variables and their combination [40]. Then, a multi-linear regression (MLR) model is em-

ployed to calibrate the corresponding coefficients. On the other hand, the proposed approach excels

in real-time performance but is more adaptive to different driving conditions without significantly

compromising the model accuracy, when compared to the knowledge-based approach (e.g., [41]).

The latter may require a large effort to measure the related parameters and calibrate the coefficients

for the electric vehicle in a specific condition.
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Based on the battery power equations (Equations (2.1) – (2.3)) and the characteristics of regen-

erative braking system discussed above, two types of “hybrid" regression models are proposed for

EV energy consumption rate estimation. For simplicity, we assume the transmission efficiency ηt

and motor efficiency ηm as constants.

A Type I hybrid energy consumption model is formulated as Equation (2.5), which simply con-

siders the regenerative braking factor as a linear function of vehicle’s speed, or k ∝ v. Therefore,

Pest = l0 + l1v cos(α) + l2v sin(α) + l3v
3+l4va+ l5v

2 cos(α) + l6v
2 sin(α) + l7v

4 + l8v
2a

(2.5)

For comparison, we also applied the Type I hybrid energy consumption rate model to the subsets

of data partitioned according to Equation (2.4), i.e., v < 5 m/s and v ≤ 5 m/s, and calibrated the

coefficients, respectively. But it is noted that further investigation needs to be conducted to evaluate

the impacts of the speed threshold.

In the Type II model, we considered the regenerative braking factor being related to not only vehi-

cle’s speed but also other influential factors, including acceleration, road grade and jerk. Based on

the fuzzy logic model provided by [46], we estimated the regeneration factor using our field driving

data. Further dependency tests showed that jerk may not be a significant indicator. Therefore, the
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type II MLR model includes all the variables as shown in Equation (2.6):

Pest =l0 + l1v cos(α) + l2v sin(α) + l3v
3 + l4va+ l5v

2 cos(α) + l6v
2 sin(α)

+ l7v
4 + l8v

2a+ l9va cos(α) + l10va sin(α) + l11v
3a+ l12va

2 + l13vα cos(α)

+ l14vα sin(α) + l15v
3α+ l16vaα

(2.6)

2.5 Experimental Setup and Results

We used the hybrid models proposed in the ealier section (i.e., Equation (2.5) and Equation (2.6)) as

initial model and applied R software [47] to further variable selection (both forward and backward),

parameter calibration and regression diagnosis. To quantify the predictive accuracy of the proposed

models, we adopted the Mean Absolute Scaled Error (MASE) [46] as a metric in this chapter.

Then, a comparison of key statistics was conducted between different EV energy consumption rate

estimation models, including the proposed hybrid models, a polynomial regression model from Yao

et al. [40] and a knowledge-based model proposed by Wu et al. [41].

2.5.1 Variable Selection and Model Calibration

Regression diagnosis tests have been conducted to detect outliers and assumption check including

normality, co-linearity and heteroskedasticity. Prior to parameter calibration for the proposed mod-

els, both the Akaike Information Criterion (AIC) [48] and Bayes Information Criterion (BIC) [49]

are applied to independent variable selection in order to avoid any redundant predictor and eliminate
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Table 2.2: Parameter calibration results of Type I energy consumption rate with the entire dataset.

Variables
Type I hybrid energy consumption rate

model coefficients
p-value

Intercept -3.146 < 2× 10−16

v cos(α) -0.940 < 2× 10−16

v sin(α) -1.237 < 2× 10−16

v3 – –
va -1.521 < 2× 10−16

v2 cos(α) 4.104× 10−2 < 2× 10−16

v2 sin(α) 3.289× 10−2 5.03× 10−11

v4 −4.4427× 10−5 < 2× 10−16

v2a – –
Adjusted R2 0.677

Table 2.3: Parameter calibration results of Type I energy consumption rate with the split datasets.

Variables
Type I model coefficients on
subset v < 5 m/s (p-value)

Type I model coefficients on
subset v ≥ 5 m/s (p-value)

Intercept -3.287 (< 2× 10−16) -8.176 (< 2× 10−16)
v cos(α) – –
v sin(α) – -1.297 (< 2× 10−16)
v3 -0.013 (< 2× 10−16) –
va -1.817 (< 2× 10−16) -1.575 (< 2× 10−16)

v2 cos(α) – –
v2 sin(α) -0.118 (< 1.47× 10−5) 3.593× 10−2 (1.36× 10−9)

v4 – 2.653× 10−5 (< 2× 10−16)
v2a – –

Adjusted R2 0.840 0.652

the multi-collinearity effect. The equations for AIC and BIC are presented in the following:

AIC = −2 log(likelihood) + 2p (2.7)

BIC = −2 log(likelihood) + p · log(n) (2.8)
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Table 2.4: Parameter calibration results of Type II energy consumption rate with the entire dataset.

Variables
Type I hybrid energy consumption rate

model coefficients
p-value

Intercept -3.037 < 2× 10−16

v cos(α) -0.591 3.32× 10−16

v sin(α) – –
v3 −1.047× 10−3 3.32× 10−16

va -1.403 < 2× 10−16

v2 cos(α) 2.831× 10−2 1.03× 10−10

v2 sin(α) – –
v4 – –
v2a −7.980× 10−2 1.60× 10−5

va cos(α) – –
va sin(α) -1.490 1.13× 10−5

v3a 3.535× 10−3 5.60× 10−9

va2 -0.243 < 2× 10−16

vα cos(α) -1.279 < 2× 10−16

vα sin(α) – –
v3α 6.484× 10−4 < 2× 10−16

vaα 0.998 4.79× 10−4

Adjusted R2 0.729

where p is the model’s degrees of freedom; n is the number of observations. We select those models

that minimize these scores.

1) For Type I hybrid energy consumption rate models:

As described earlier, there are two forms of Type I hybrid energy consumption rate models de-

veloped that regard the regenerative braking factor as a linear function of instantaneous speed,

with or without further splitting the dataset based on certain threshold of vehicle’s speed (5

m/s in this study). The parameter calibration results for Type I hybrid energy consumption

rate models in both forms are summarized in Table 2.2 and Table 2.3, respectively. As can be

seen from both tables, the independent variables (including the intercept) after selection are

all statistically significant at the significance level of 0.5.

29



2) For Type II hybrid energy consumption rate models:

The methodology of parameter calibration for Type II model is consistent with the one applied

to Type I models, and the results are summarized in Table 2.4. Similar to Type I models, all

the independent variables after selection are statistically significant (i.e., p-value is smaller

than 5%)

2.5.2 Metrics for Model Accuracy Evaluation

In order to properly quantify the performance of the proposed energy consumption rate estimation

model, the Mean Absolute Scaled Error (MASE) is adopted in this study to measure the forecast ac-

curacy. The MASE was proposed by Hyndaman and Koehlers [46] as a generally applicable relative

error measurement without the issues raised by the other measurements, e.g., the Mean Absolute

Percentage Error (MAPE). Although MAPE has been widely used in many previous studies, it is

not suitable for sample data whose value is close to zero. In this study, however, there are quite a

few trivial samples which can be well handled by MASE as shown in Equation (2.9).

MASE =
1

n

n∑
t=1

(
|Et − E′t|

1
n−1

∑n
i=2 |Ei − Ei−1|

)
(2.9)

where Et is the measured energy consumption rate; E′t is the estimated energy consumption rate;

and n is the number of observations in the real-world data sample.

2.5.3 Comparative Results and Discussion

To better understand the performance of the proposed hybrid energy consumption rate estimation

models, we select the polynomial regression model based on [40] and the knowledge-based model
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Table 2.5: Comparison results of forecast accuracy between models.

Fitted model Accuracy (MASE)

Type I hybrid energy consumption rate model 2.12
Type I separate hybrid energy consumption rate model on data subsets 1.46
Type II hybrid energy consumption rate model 1.75
Polynomial regression model 8.67
Wu et al.’s model 19.78

introduced by Wu et al. [41] for comparison. In order to ensure the consistency in comparison, all

the procedures for statistical diagnoses and analyses are identical across different models. Based on

the statistical results shown in Table 2.2 thru Table 2.4, the statistical results of our three proposed

hybrid models all show better fitness for EV’s energy consumption rate estimation in comparison

to the pure polynomial regression model and Wu’s model. More importantly, all the three proposed

models largely improve the forecast accuracy in energy consumption rate estimation compared to

other existing models (see Table 2.5). The MASE values of three proposed hybrid energy consump-

tion rate model have 75.5%, 83.2% and 79.8% improvement respectively in forecasting accuracy

in comparison to the purely polynomial regression approach proposed by Yao’s model. There are

89.3%, 92.6% and 91.2% improvement respectively over Wu’s model with the suggested vehicle’s

parameters values in [41].

2.6 Summary and Discussion

In this chapter, we developed a hybrid approach to estimate the energy consumption rate for EVs,

which provides variables with actual physical meaning instead of exhaustive method used in conven-

tional data-driven approaches. Compared to knowledge-driven models, the hybrid model needs less

calibration and exhibit better real-time performance. The proposed two types of hybrid energy con-
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sumption rate models are calibrated and validated with real-world driving data. Statistical analyses

show that proposed hybrid models have better goodness of fit. More specifically, our approach can

achieve approximately 70 – 80% higher accuracy in terms of MASE than the polynomial regression

models with combinations of speed and acceleration up to the 3rd order each. Better performance

(around 90% improvement) is witnessed when compared to the knowledge-based model.
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Chapter 3

Prediction-based Eco-Approach and

Departure at Signalized Intersections

1234In this chapter, we investigate three approaches for instantaneous vehicle speed prediction in urban

intersections. A Prediction-based Eco-Approach and Departure (PEAD) is developed as a velocity

advisory system that makes full use of activity information of preceding vehicle. Such information

can be acquired via vehicle-to-vehicle (V2V) communication (if the preceding vehicle is a CV),

onboard sensors (e.g., radar), or even infrastructure-based assistance (e.g., roadside camera). Using

the approaching Signal Phase and Timing (SPaT) information and future states of the preceding

vehicle predicted by Radial Basis Function Neural Network (RBF-NN) based forecasting model,

the enhanced EAD algorithm provides an eco-friendly speed trajectory in the presence of preceding

traffic and queues at intersections. The dataset from the Next Generation SIMulation (NGSIM)

program [50] have been applied for model training and system performance evaluation.
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3.1 Introduction

It is well known that vehicle fuel consumption and emissions are directly related to a vehicle’s speed

trajectory [16]. Unlike driving on freeways, traffic streams on arterial roads can be interrupted by

traffic signals. The frequent stop-and-go maneuvers and associated accelerations in the arterial driv-

ing lead to excessive fuel consumption and GHG emissions. Such effects are more prominent when

a vehicle approaches an intersection during a red phase and has to decelerate from cruising speed

to a full stop, idle to wait for the green phase, and then accelerate to depart from the intersection.

Knowledge of SPaT information has been proven to be significantly effective in terms of improving

fuel economy for arterial driving [16, 51]. With the recent advances in Connected Vehicle (CV)

technology, it is promising to develop advanced driving assistance systems (ADAS) such as EAD

application to improve energy efficiency for traveling along signalized intersections. Asadi et al.

[10] adopted a Model Predictive Control (MPC) approach to obtain a sub-optimal cruise speed to

achieve timely arrival at green lights, thus minimizing the idling time and stops at red phase along

a signalized corridor. Another study utilized dynamic programming (A-star algorithm) to find the

most fuel-efficient speed trajectory through a fixed time control signalized intersection [52]. A

multi-stage optimal control approach in [18] adds the estimated queue dissipation time and location

at the intersection as constraints. Yang et al. [11] developed an ECO-CACC algorithm with con-

sidering queue effect to minimize the fuel consumption when vehicles proceed through signalized

intersections. In [53], authors incorporated individual driver characteristics into the design of ad-

vanced driver assistance system for signalized intersections.
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Eco-Approach and Departure (EAD) at signalized intersections was initially developed to take

full advantage of signal phase and timing (SPaT) and Geometric Intersection Description (GID)

information via wireless communications to provide eco-friendly driving suggestions (e.g., speed

profiles) as vehicles approach signalized intersections. A series of EAD applications were designed

in recent years for both fixed-time signals and actuated signals [20, 51, 54–56]. However, the

aforementioned studies were applied and conducted real world experiments in traffic-free condi-

tion. Therefore, when considering the real-world deployment of the EAD application, it is benefi-

cial to further explore the dynamic states from preceding vehicles and incorporate it into trajectory

planning process. Forecasting vehicle speed trajectory in urban arterial is a challenge task as the

vehicle’s maneuvers may be affected by various dynamic factors, e.g. signal status, traffic, driver’s

experience, weather and etc. A number of recent effort has been made to incorporate the vehicle

speed prediction to achieve optimal energy management strategy of hybrid electric vehicle [57–59].

3.2 Background

3.2.1 Existing Eco-Approach and Departure Applications

Eco-Approach and Departure (EAD) has been considered as a promising eco-driving strategy for

vehicles traveling in an urban environment, where signal phase and timing (SPaT) information is

well utilized to guide the vehicles passing through the intersection in a most energy efficient man-

ner. The existing EAD applications have addressed the problem of a single vehicle approaches a

fixed-timing signal whose phase sequence and duration are predetermined, and thus the advisory

speed trajectory can be deterministically defined with the available SPaT and GID information. The
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Figure 3.1: Human-machine interface for the EAD system without the predictive model at differ-
ent traffic conditions: (a) no preceding vehicle, the interface displays the advisory speed, the SPaT
information, and the distance to the approaching intersection; (b) with preceding vehicle, only dis-
plays the SPaT information and the distance to the approaching intersection, control is handed over
to humans.
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EAD application for fixed-time signals has shown 10% – 15% reduction on fuel consumption and

emissions in microscopic simulation models [51] and 13% – 14% saving from real world testing

[54]. An enhanced EAD application has shown satisfactory results for congested urban traffic con-

ditions in a fully connected environment [55]. Extended efforts have been made to develop an EAD

application for actuated signals [56]. Most of the existing EAD studies focused on the interaction

between the subject vehicle and the traffic signals [20, 54–56]. Those applications work well under

light traffic conditions, but are not effective in congested traffic, especially when there are preceding

vehicles or queues. Figure 3.1 shows a rule-based strategy to deal with preceding vehicles. When

there is no preceding vehicle ahead (within the detection range) in the same lane, the target speed

estimated from the EAD algorithm is then displayed on the artificial dashboard. When radar detects

a preceding vehicle in the near front, the display of target speed is turned off to avoid any distraction.

With such a heuristic strategy, the EAD application may not work effectively in congested urban

traffic, especially when there is often a preceding vehicle within the detection range. To address this

issue, we need to consider both preceding traffic and signal information in the EAD application de-

velopment in order to achieve desired system performance even under congested traffic conditions.

3.2.2 State-of-the-art Approaches for Vehicle Movement Prediction

Accurate and reliable prediction of vehicle speed trajectory is an important component in many

Intelligent Transportation Systems (ITS) applications, particularly for safety and environmental re-

lated applications. It is a challenging task as the vehicle speed trajectory may be affected by various

dynamic factors, e.g. signal status, surrounding vehicles’ maneuver, and perhaps interruption from

pedestrians. In the literature, various approaches for vehicle speed prediction have been investigated

and evaluated [60–67]. In general, the existing vehicle speed prediction strategies can be categorized
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into two major classes: model-based approaches and data-driven approaches. The model-based ap-

proaches predict the vehicle speed trajectory based on pre-defined model structures such as Constant

Speed Model (CS), Constant Acceleration Model (CA), Constant Yaw Rate and Acceleration Model

(CYRA) [60]. However, the underlying dynamics of human cognition, decision making and exe-

cution of drivers and vehicle systems are extremely complex and these simplified models may not

be applicable [61]. On the other hand, data-driven approaches have recently been well investigated

since they show more flexibility and applicability in representing system dynamics. Good examples

of effective data-driven approaches for vehicle speed trajectory prediction include Non-Parametric

Regression (NPR), Gaussian Mixture Regression (GMR) and Artificial Neural Networks (ANNs)

[62–65]. In [63], the defined maneuver recognition algorithm selected the best vehicle trajectory

that minimizing a cost function by comparing the current maneuver to the pre-defined trajectory set

in the highways. Considering the requirement for large sampled vehicle trajectories and complexity

of maneuver recognition in urban areas, it is challenging to apply it in the real world urban traffic.

Gaussian Mixture Regression (GMR) is another promising parametric method to approximate or

predict vehicle trajectories by calculating a conditional probability density function that consists of

a weighted linear combination of Gaussian component densities [64]. Artificial Neural Networks

(ANNs) have been proven to be an effective method for accurately forecasting vehicle speed and

position, due to their strong capability of capturing the complex and nonlinear dynamics [65–67].

A comparative study of major parametric and non-parametric approaches for vehicle speed predic-

tion on highways indicates that ANNs outperform all the other methods in terms of both predictive

accuracy and applicability [65].
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3.3 Short-Term Vehicle Speed Trajectory Prediction

3.3.1 Learning-based Vehicle Speed Forecasting Models

A reliable and accurate prediction on preceding vehicle’s state is essential for efficiently apply-

ing EAD strategy in congested urban traffic conditions. As aforementioned, a number of studies

have evaluated various time series prediction approaches for predicting segment/link-level vehicles’

speeds or under the highway scenarios. However, to the best of our knowledge, none of them have

discussed the prediction performance for microscopic urban driving. The real time prediction of

vehicle second-by-second speed trajectory along the signalized corridors is much more challenging

due to the various disturbances from signals, traffic queues and pedestrians. Other than the vehicle

speed prediction at a macroscopic level using traffic condition, historical traffic data as inputs which

are usually not applicable for real time implementation, we aim at developing a direct time series

forecasting model with vehicle second-by-second speed trajectory detected by onboard sensor (i.e.

radar) as inputs. The historical speed horizon of the input and forecasting horizon of the output

are both three time steps (i.e., 3 seconds) for training and testing the speed forecasting models.

In this study, we implement a Radial Basis Function Neural Network (RBF-NN) [68] for vehicle

speed forecasting and compare its performance with other well-known nonlinear regression models

like Gaussian Processes (GP) and Multi-Layer Perceptron Neural Network (MLP-NN) for different

driving scenarios. The general RBF-NN based vehicle speed predictor has a feed-forward neural

network framework with one hidden layer in which the nodes have radial transfer function as shown

in Figure 3.2. The network input is a vector containing the preceding vehicle’s historical speed

trajectory of last 3 seconds, and the output is predicted speed trajectory within a 3-second horizon.
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Figure 3.2: RBF-based vehicle speed predictor structure.

The implemented RBF-NN is a three-layer feed-forward networks with K hidden nodes. A ra-

dial basis function needs to be pre-defined for each hidden node to activate neurons in the hidden

layer. Here, we apply Gaussian function as the activation function for the RBF-NN, formulated as:

ϕj(x) = exp
[
− (x− µj)T Σ−1

j (x− µj)
]

(3.1)

yk(x) =
M∑
j=1

wkjϕj(x) + bkj (3.2)

where φ(j) is the activated function of node j; x is the input vector for node j; wkj is the output

weights and bkj is the constant bias; µj and Σj are the mean vector and covariance matrix of the

j(th) Gaussian function. The mean µj represents the center and Σj indicates the shape of the ac-

tivation function. Finally, the output of each node at the RBF-NN’s output layer is computed as a
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linear combination of the outputs of the hidden nodes.

An advantage of RBF neural network compared to Gaussian Process and MLP neural network

is that the efficiency on training based on two-stage procedure. The time complexity of training

Gaussian Process for prediction are exponential growth with the sample size which is quite an issue

when applied to large network in real time. MLP network could have more than one hidden layers

and it uses iterative technique and work globally while RBF network has only one hidden layer and

is based on non-iterative technique and acts as local approximation. Further, RBF network shows

more robustness to adversarial noise and easier generalization compared to MLP neural network.

In the first stage of RBF-NN training, the parameters of the basis function are set to model uncon-

ditional data density. The centers of our trained RBF network are determined by fitting a Gaussian

mixture model with circular covariance using the Expectation-Maximization (EM) algorithm. The

second stage of training determines the weights between the hidden layer and the output layer by

using Moore-Penrose generalized pseudo-inverse which overcomes many issues in traditional gra-

dient algorithms such as stopping criterion, learning rate, number of epochs and local minima. The

structure of RBF-NN is optimized by pruning the network based on 5-fold cross validation in this

study. Due to its shorter training time, forecasting accuracy and generalization ability, RBF-NN is

our selected approach for real-time vehicle speed forecasting in urban driving.

3.3.2 Data Descriptions

The NGSIM data collected from an arterial segment on Peachtree in Atlanta, Georgia are used for

training and testing the vehicle speed forecasting models and evaluating the performance of the

proposed Prediction-based EAD system. There are 5 lanes and 4 intersections in the study corridor.
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The NGSIM Peachtree dataset includes the spatial and temporal information of all the vehicles as

well as the traffic light information of four signalized intersections along the arterial segment from

12:45 p.m. to 1:00 p.m. and 4:00 p.m. to 4:15 p.m. on November 8, 2006 [50]. For data preparation,

we randomly selected 70% of the real world data set for training and the rest 30% for testing. The

SPaT information is also obtained for each signalized intersection based on the phase start/end

time provided in the data. To develop accurate and reliable prediction of vehicle speed trajectory,

we extract speed trajectory of each individual vehicle second by second by vehicle ID. Then, we

utilized a sliding window to partition the time series dataset into a number of segment pairs with

finite lengths. For each pair of segments, one is the past segment and the other is the future segment.

This enables us to utilize the historical speed trajectory to predict the future speed trajectory within

a pre-defined prediction horizon. The total sample size for training the vehicle speed forecasting

model is 9878; and for testing is 4234. In addition, the traffic signal status and distance to the

stop-bar jointly impact the driver behavior when approaching a signalized intersection. Therefore,

we classify the predicted speed trajectories into three groups based on different driving scenarios.

In Scenario 1, the vehicle is approaching the intersection far from the stop-bar with the red signal

phase; In Scenario 2, the vehicle is close to the stop-bar but current signal phase is still red; In

Scenario 3, vehicle approaching the intersection with green signal phase. The classified vehicle

speed trajectories are used for developing and evaluating the vehicle speed forecasting models in

each scenario, respectively.

3.3.3 RBF Model Architecture and Calibration

The RBF network comprises a typical three layers: input, hidden and output. Each neuron of the

hidden layer represents a kernel or basis function. Here, we apply Gaussian function as the basis

42



function to account for the non-linearity and the Gaussian function responds only to a small region

of the input space where the Gaussian is centered. The key to a successful forecast vehicle speed

trajectory based on RBF network is to find suitable centers for each Gaussian function, which is

characterized by two parameters: center (µj) and peak width (Σj) as shown in Equation (3.1). The

output from the jth Gaussian neuron for an input speed measurement xi can be obtained by Equation

(3.2). The RBF hidden layer is fully connected to the output layer by the size of the weight coef-

ficient, wkj and the constant bias bkj . The weights wkj are adjusted to minimize the mean square

error of the forecasting outputs. There are two sets of parameters (the centers and the widths) in

the hidden layer and a set of weights in output layer are adjusted, and the RBF neural network has

a guaranteed learning procedure for convergence. The calibrated RBF network consists 15, 10, 15

neurons in hidden layer for each aforementioned driving scenario, respectively. For scenarios I and

III, calibrated center is a 15 by 3 matrix, peak width is a vector with length 15, weights of hidden

layer is a 15 by 3 matrix and bias is a 3 by 1 vector. For scenario II, calibrated center and weights’

dimension are both 10 by 3, peak width is 10 by 1 and bias is 3 by 1. The details of calibrated pa-

rameters of the developed RBF-network can be accessed in the supplement material of this chapter.

To generate the short-term forecasting vehicle trajectory, one of the developed RBF networks is

called based on the current driving scenario at each time step to provide a 3-sec vehicle future speed

trajectory as illustrated in Figure 3.3. The solid black line is an example vehicle trajectory and the

colored short lines represent our RBF-based short-term speed forecasting results over time. Fig-

ure 3.3 also shows the developed RBF-based vehicle speed forecasting model can provide reliable

prediction based on the historical speed profile.
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Figure 3.3: Vehicle speed forecasting results with 3 second prediction horizon using RBF-NN.

3.3.4 Evaluating the Performance of Vehicle Speed Forecasting Models

The evaluation and comparison of the vehicle speed forecasting models based on three different

nonlinear regression methods (RBF network, MLP network, Gaussian Process) are conducted using

real world driving data collected in urban traffic (NGSIM Peachtree data). The program was written

in MATLAB and evaluated on a computer with i7 CPU @ 2.80GHz and 16 GB memory.

The parameters for nonlinear regression models were selected by K-fold (K = 5) cross validation.

For the MLP network, we selected the log-sigmoid function as the nonlinear activation function and

trained by a back-propagation algorithm. The optimal network structure of MLP network includes

two hidden layers with 20 neurons in the first hidden layers and 10 neurons in the second. The Root

Mean Square Error (RMSE) is also adopted in this study to measure the time series forecasting
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Table 3.1: Comparative results of vehicle speed forecasting models based on different methods

Performance RBF-NN MLP-NN GP

RMSE (ft/s)
Scenario I 4.3 5.8 5.6
Scenario II 1.7 3.7 3.2
Scenario III 4.9 6.1 5.5

Training time (s)
Scenario I 0.03 1.6 0.9
Scenario II 0.5 2.1 63.5
Scenario III 0.3 1.7 22.6

Forecasting time cost (s)
Scenario I 1e-4 0.1 0.1
Scenario II 1e-1 0.03 0.2
Scenario III 1e-1 0.02 0.2

accuracy, defined as:

RMSE =

√∑
N

(y − ŷ)2/N (3.3)

where N is the number of measurements, y and ŷ indicate the actual value and predicted value,

respectively. A summary of the comparative results of vehicle speed forecasting models based on

RBF-NN, MLP-NN and GP can be seen in Table 3.1 in terms of their forecasting accuracy and

computational cost for both training and testing. RMSEs of the predicted vehicle speed trajectories

based on RBF-NN with respect to the ground truth under three driving scenarios are 4.3 ft/s, 1.7

ft/s and 4.9 ft/s, respectively. For all three driving scenarios, RBF-NN speed forecasting model out-

performs the other two approaches: MLP-NN and GP in terms of prediction accuracy. Although in

scenario III, RMSE shows that GP and RBF-NN perform similarly well, it is quite time consuming

on training a GP based forecasting model for large dataset. It is noted that the time cost for training

GP is significantly higher than training MLP-NN or RBF-NN in Scenarios II and III, because it

is cubically increased with respect to the size of the measurements. The forecasting speed repre-

sents for a given vehicle trajectory, how long it takes the trained vehicle speed forecasting model
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to return the predicted results. As shown in Table 3.1, the forecasting time for RBF-NN is about

10−3 to 10−4 s; for MLP-NN is about 10−1 to 10−2 s and for GP is about 0.1 s. RBF network

has the highest forecasting speed among the three forecasting models which makes it much more

promising for real time applications. Therefore, we selected RBF-NN as our forecasting model to

predict the preceding vehicle’s speed trajectory which is applied to Prediction-based EAD system.

Figure 3.4 illustrates the predicted average speed within the prediction horizon of 3 seconds based

on three different forecasting model vs. the ground truth under three driving scenarios, respectively.

As shown in Figure 3.4, RBF-NN is able to provide reliable results with satisfactory prediction

accuracy for each driving scenarios. Although all three forecasting models: RBF-NN, MLP-NN

and GP show similar performance for Scenario III, RBF-NN has much better prediction results for

Scenario I and II, compared to MLP-NN and GP.

3.3.5 Summary

The comparative validation results in of short-term forecasting methods indicate that the proposed

RBF-NN model outperforms MLP-NN and GP models in terms of accuracy and computation time

for predicting preceding vehicle’s speed trajectory under different scenarios. Based on SPaT and

GID information as well as predicted states of preceding vehicle.
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Scenario I

Observations 

(a) Scenario 1: Red signal phase; Distance to intersection > threshold

Scenario II

Observations 

(b) Scenario 2: Red signal phase; Distance to intersection< threshold

(c) Scenario 3: Green signal phase

Figure 3.4: Results of the predicted vehicle speed at different driving scenarios (black line: ground
truth; red line: the predicted average speed within a 3-second horizon using RBF-NN; cyan starred
line: prediction results from MLP-NN; and dark blue line: prediction results from GP).
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Figure 3.5: Prediction-based EAD system architecture.

3.4 Enhanced Trajectory Planning Algorithm (EVTPA) with the Con-

sideration of Preceding Traffic

3.4.1 System Architecture

In this section, our goal is to develop an enhanced EAD application that is applicable in relatively

congested urban traffic. The overall architecture of the proposed Prediction-based EAD applica-

tion is shown in Figure 3.5. The proposed system acquires various information from multiple data

resources: SPaT and GID information from DSRC-equipped signal controller at the intersection,

subject vehicle dynamics from on-board diagnostics (OBD) port, subject vehicle positions from on-

board GPS receiver and activity data of preceding vehicle either from V2V communication if it is an

DSRC-equipped vehicle or from on-board radar detection if it is an unequipped vehicle. In order to
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get preceding vehicle’s second-by-second future states within the prediction horizon, a RBF neural

network forecasting model is developed considering its benefits in terms of predictive accuracy, ef-

ficiency and applicability for real time implementation. This Enhanced Vehicle Trajectory Planning

Algorithm (EVTPA) is able to provide an eco-friendly speed trajectory in both light traffic and rel-

atively congested traffic conditions based on the above acquired information and reliable prediction

of preceding vehicle’s future states. A Human-Machine Interface (HMI) is designed to inform driver

a number of items such as vehicle’s current speed, vehicle’s revolutions per minute (RPM), SPaT

information, vehicle’s distance to intersection and the target speed calculated from EVTPA with the

consideration of preceding traffic. As we highlighted in the flow chart, incorporation of real-time

prediction of preceding vehicle’s state into vehicle dynamic management (i.e. speed, acceleration)

is the key contributions of this chapter.

3.4.2 Formulation of the Enhanced Trajectory Planning Algorithm (EVTPA) Model

The EVTPA model was developed to address the situation where there exist mixed connected and

conventional preceding vehicles. Two situations are considered in designing the desired trajectory

for the subject vehicle in terms of both safety and fuel economy. If the vehicle is approaching

the intersection during the red phase, the SPaT information and predicted preceding queue end

location are utilized to design the optimal trajectory to avoid unnecessary idling and unnecessary

acceleration/deceleration. If the preceding vehicle not in a queue or our subject vehicle approaching

with a collision risk, we apply Gipps’ model [23] as show in Equation (3.4) to conduct safe and
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energy-efficient car following mode with smoothed trajectory.

vn(t+ τ) = min


vn(t) + 2.5anτ

(
1− vn(t)

vdn

)√
0.025 + vn(t)

vdn

bnτ +
√
b2nτ

2 − bn [2 (xn−1(t)− sn−1 − xn(t))− vn(t)τ − vn−1(t)2/b]


(3.4)

Where τ is the reaction time; vn(t) and vn−1(t) are the speed of the following vehicle n and the

leading vehicle n− 1 at time step t, respectively; vdn is the vehicle n desired speed; an is the vehicle

n’s maximum acceleration; bn and b are the most severe braking that the driver of vehicle n wishes

to undertake and the expected leading vehicle maximum deceleration, respectively. The proposed

EVTPA is illustrated by the overall flow diagram in Figure 3.6. When the proposed EAD system

is triggered in relatively congested urban traffic, location of the end of queue with respect to the

subject vehicle is estimated based on the predicted preceding vehicle trajectories. A virtual stop line

is defined as a buffer space (i.e. length of vehicle) behind the preceding queue end. VP and VS are

preceding vehicle speed and subject equipped vehicle speed, respectively. Further, d is the distance

of the subject vehicle to the stop bar at the signalized intersection. To predict time delay and queue

effect on the preceding vehicle, the first thing we need to estimate is whether the vehicle is going

to join the queue or not. Figure 3.7 indicates the method we applied to determine whether or not

the preceding vehicle will join the queue. The discharge process has been shown to be fairly stable

compared to the arriving process. A vehicle’s discharge pattern is observed to be close to uniformly

distributed, leading to a relative constant discharge rate of the queue. Therefore, a queue dissipation

rate w and vehicle spacing headway ∆hq were calibrated using the collected historical data. Based

on the traffic counts k and the calibrated queue spacing, we could estimate the queue length ŷb in
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Figure 3.6: Prediction-based EAD system architecture.
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Figure 3.7: The proposed methodology for determining if the preceding vehicle will join the queue
at the approaching intersection.
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Equation (3.5). The travel time for the preceding vehicle and the dissipation shockwave w to reach

the location could be obtained by Equations (3.6), (3.7), respectively.

ŷb = k×∆hq (3.5)

vc:c+∆T · (tb − tc) = d1 − xc − ŷb (3.6)

w ·
(
tw − Tng

)
= ŷb (3.7)

where tc represents the current time step, vc:c+∆T is the current average forecasting speed of the

preceding vehicle in short time horizon ∆T , tb is the time step when preceding vehicle reach the

queue end location, tw is the time step when dissipation shockwave reaches the queue end location.

As it is shown in Figure 3.7, if tb < tw, which indicates the preceding vehicle reach the queue

end before the dissipation shockwave, then the preceding vehicle will be part of the queue in the

current cycle. Otherwise, the dissipation shockwave reaches the location before the preceding vehi-

cle indicates the queue will be discharged already at the time when preceding vehicle approaching

the intersection. Therefore, we could predict the distance to the virtual stop bar L∗ and Tdelay for

Prediction-based EAD to avoid preceding queue effect as follows:

L∗ = xc + vc ×∆T +
(vc+∆T − vc)

2
∆T +

v2
c+∆T

2d
+ Lbuffer (3.8)

Tdelay = Tg +
d1 − L∗

w
(3.9)
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where, vc is the current speed and vc+T is the last forecasting speed within the time horizon; Lbuffer

is the distance buffer to the preceding queue end considering the physical length of a vehicle plus a

safe margin in the car following model; d1 is the current distance to the actual stop bar.

The EAD trajectory planner takes the time delay (Tdelay) caused by the preceding queue and dis-

tance to the estimated virtual stop line (L∗) as the inputs to generate a trajectory that minimizing

the fuel consumption and emission. At each time step, the vehicle trajectory planning algorithm

also predict the time to collision (tcol) based on the preceding vehicle’s movement to guarantee

safety in the planned maneuver. If the subject vehicle is under the risk of collision in the near fu-

ture, car following mode will take over to guide the driver through the intersection while keeping

safety distance from the preceding vehicle. The transitions between EAD trajectory planner and car

following mode enable the proposed EVTPA to maximize fuel savings and environmental benefits

without compromising the safety. With the computed virtual stop line and time delay at the signal-

ized intersection, we choose the optimal acceleration and deceleration based on Equations (3.10)

– (5.3) that define a trigonometric function of the velocity with constraints of the vehicle traction

power, preceding vehicle’s states, and riding comfort. The developed EVTPA based on piecewise

sinusoidal acceleration/deceleration profiles was proposed to ensure that the subject vehicle ensures

that the subject vehicle reaches the virtual stop line after the time delay caused by the preceding

vehicle in order to avoid any impact from the downstream queue

v =


vm+vc

2 − vm−vc
2 cos(mt) t ∈

[
0, πm

)
vm t ∈

[
π
m ,∞

) (3.10)
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where vc is the current speed and vm is the speed limit from preceding traffic, m is the parameter

that defines the acceleration and jerk profile. Equation (3.10) generates the proposed sinusoidal

speed profile. In this study, the maximum acceleration (amax) is 2.5 m/s2 and a maximum jerk

(jmax) is 10 m/s3. Then, m is selected as the maximum value that could meet the driving comfort

and safety.

m = min

(
2amax

vm − vc
,

√
2 jmax

vm − vc

)
(3.11)

The time length of the acceleration period is π/m , i.e., a half cycle. The distance da that the vehicle

travels is:

da =

∫ π
m

0

[
vm + vc

2
− vm − vc

2
cos(mt)

]
dt =

π

m
· vm + vc

2
(3.12)

Therefore, the minimum travel time of subject vehicle to reach the virtual stop line (queue end) at

the intersection is:

tmin =
π

m
+
L∗ − da
vm

(3.13)

where L∗ is the distance away from the virtual stop line.

3.4.3 Validation of the Trajectory Planning Algorithm with Traffic

In this study, we only consider the straight movement through the intersection. In this case, we take

all the northbound through movement vehicles in the NGSIM Peachtree dataset as preceding vehi-

cles (185 vehicles in total) after filtering out the trajectories on the side streets. Then, three different

types of subject vehicles (baseline vehicle, EAD without prediction vehicle, EAD with prediction

vehicle) are simulated as driving behind that preceding vehicle through signalized intersections for

further comparison. More specifically, the baseline vehicle is the subject vehicle that is simulated
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(a) Time-space trajectories

(b) Speed profiles

Figure 3.8: A comparison of different driving strategies.

based on the car following strategy (i.e., Gipps’s car following model in this study). For the EAD

without prediction case, the vehicle switches from EAD to car following state if the relative dis-

tance to the preceding vehicle is less than a threshold (i.e., 70 ft) to guarantee safety. The EAD with

prediction vehicle is the subject vehicle equipped with the proposed prediction-based EAD system.

It is noted that the preceding vehicles’ trajectories were generated from real world driving data in

NGSIM and were used as the inputs to the proposed prediction method. Figure 3.8 compares the
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estimated trajectories and speed profiles from different models in response to the trajectory of an

example preceding vehicle. It illustrates how the proposed prediction-based EAD system reduces

unnecessary idle time and speed oscillation, while keeping a safe distance from the preceding ve-

hicle when driving through signalized corridors. As shown in Figure 3.8, the EAD system without

prediction can reduce unnecessary acceleration and deceleration compared to the baseline when the

subject vehicle is far from the preceding. However, without prediction of the preceding vehicle’s

activity, the subject vehicle may lead to a sudden deceleration to a very low speed (<5 ft/s) or even

a full stop due to constraints from the preceding vehicle. In contrast, the prediction-based EAD sys-

tem can enable the subject vehicle to drive through the signalized intersection in a much smoother

maneuver based on the prediction of the preceding vehicle’s activity and the queue end. This can

significantly reduce the fuel consumption and emissions by avoiding unnecessary idling and further

smoothing the speed profile. In Figure 3.9, we summarize the speed distributions of EAD with

prediction vehicles and EAD without prediction vehicles over the total 185 test vehicle trajectories.

There is a significant drop on the percentage of idling or low-speed (<5 ft/s) scenarios for vehicles

with the prediction-based EAD system in Figure 3.9(a) compared to EAD without prediction ve-

hicles in Figure 3.9(b). Meanwhile, the percentage of vehicles driving at high speed (i.e. speed

larger than 40 ft/s) is significantly reduced. Those findings imply the proposed prediction-based

EAD system is able to further reduce unnecessary idling, accelerations and decelerations even in

the congested urban traffic.

To quantify the effectiveness of the proposed EAD system in terms of energy savings and emis-

sions reduction, the U.S. Environmental Protection Agency’s MOtor Vehicle Emission Simulator
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Figure 3.9: Impact of the proposed prediciton-based EAD system on vehicle speed distribution.

58



Table 3.2: Fuel consumption and pollutant emission comparison evaluation conducted using motor
vehicle emission simulator (MOVES Model)

Vehicle Trajectory Planning
HC

(g/mile)
CO

(g/mile)
NOX

(g/mile)
CO2

(g/mile)
Energy

(KJ/mile)
PM2.5

(mg/mile)

Baseline Vehicle 0.44 8.08 1.14 689 9586 26.7
EAD without prediction 0.43 7.67 1.06 675 9384 23.3
EAD with prediction 0.41 6.85 0.81 662 9207 15.5
Saving in % (baseline) 5.2% 15.3% 28.3% 4.0% 4.0% 41.7%
Saving in % (EAD without prediction) 3.1% 10.8% 23.3% 1.9% 1.9% 33.4%

(MOVES) model [69] is applied. The MOVES model is the state of art emission simulator devel-

oped by the U.S. Environmental Protection Agency (USEPA). The model is designed to estimate

energy consumption and emissions for mobile sources on a macroscale, mesoscale or microscale.

The second-by-second Vehicle Specific Power (VSP) can firstly be calculated based on the vehi-

cle’s speed trajectory and road grade information. Then, the operating mode (OpMode) distribution

over 23 bins for running exhaust emissions can be derived from a function of VSP, speed and ac-

celeration values. Finally, with the OpMode distribution, the energy consumption and emissions

of all the vehicle trajectories are estimated based on the emission factors from MOVES database.

Based on the MOVES model, Table 3.2 shows the energy and environmental benefits of the total

185 vehicle trajectories generated by the proposed prediction-based EAD system, compared to the

baseline and EAD without prediction, respectively. Results show that the subject vehicles equipped

with proposed prediction-based EAD system has average 4.0% and 1.9% improvement in terms

of energy savings with respect to baseline and EAD without prediction, respectively. In addition,

significant reduction in air pollutant emissions of the prediction-based EAD-equipped vehicle can

be observed from Table 3.2. The emissions of HC, CO, NOx, CO2 and PM2.5 per mile in the

prediction-based EAD equipped vehicles are 5.2%, 15.3%, 28.3%, 4.0%, 4.0% and 41.7% less than

the baseline vehicles, respectively. It turns out that the proposed prediction-based EAD system also
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reduce of 3.1% HC, 10.8% of CO, 23.3% of NOx, 1.9% of CO2 and 33.4% of PM2.5 per mile

compared to EAD without prediction. The prediction-based method also shows its advantage in

safety performance. For the EAD without prediction system, the drivers may need to frequently

switch from EAD mode to their own decision. This may lead to long perception/reception time and

cause potential sharp braking or even accident. The prediction module would provide a smoother

trajectory in the EAD-car following transition and enhance the safety.

3.5 Summary and Discussion

This chapter describes a prediction-based EAD system for real-time implementation that enables the

driver to travel through a signalized intersection in a safe and eco-friendly manner in urban traffic.

The comparative validation results indicate that the proposed RBF-NN model outperforms MLP-

NN and GP models in terms of accuracy and computation time for predicting preceding vehicle’s

speed trajectory under different scenarios. Based on SPaT and GID information as well as predicted

states of preceding vehicle, the proposed EAD algorithm can provide a smooth and energy-efficient

trajectory, considering the preceding traffic and possibly queues at intersections. Numerical simu-

lation results show that the proposed system is able to save 4.0% of energy and reduce air pollutant

emissions by 4.0% – 41.7% compared to conventional vehicles (simulated by Gipps’ car-following

model). It turns out that the prediction-based EAD system saves 1.9% energy and reduces 1.9% to

33.4% air pollutant emissions compared to EAD without prediction in congested traffic condition.
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Chapter 4

An Advanced Simulation Study of an

Integrated Vehicle-Powertrain

Eco-Operation System for Electric Buses

In this chapter, a complete and novel simulation framework of integrated vehicle/powertrain

eco-operation system for electric buses (Eco-bus) is designed and presented with embedded co-

optimizing the vehicle dynamics and powertrain (VD&PT) controls. A comprehensive evaluation

of the proposed system on mobility benefits and energy savings has been conducted at various

traffic conditions. A deep neural network is developed to provide online optimal energy efficient

trajectory with high computational efficiency and it can quickly react to dynamic changes in sur-

rounding environment. Further, a dynamic queue prediction model is designed for improving the

system performance when exists the downstream traffic. Simulation results are presented to show-

case the superiority of the proposed simulation framework of the Eco-bus compared to the baseline
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bus which is calibrated using real-world bus dataset, particularly in terms of mobility and energy

efficiency aspects.

4.1 Introduction

The advancement towards vehicle connectivity and autonomy offers many potentials and opportuni-

ties in developing innovative eco-driving systems and applications to leverage the energy efficiency.

Specifically, a very promising example is eco-driving at signalized intersections, where the signal

phase and timing (SPaT) information is shared with vehicles to optimize the vehicle dynamics,

avoid the unnecessary or abrupt acceleration/deceleration, and reduce the idling period [12, 70, 71].

From a broader perspective, the positive impacts of eco-driving applications can be attributed to

the highly predictable location and the high penetration of signalized intersections that may require

vehicles to make complete stops.

Within this scope, the energy efficiency of transit buses have large potentials for improvement,

as compared to standard passenger cars, since they are initially designed to make much more fre-

quent and predictable stops, such as the loading/unloading of passengers at bus stops. In addition,

the bus routes are commonly designed in densely populated areas, which also gives rise to a higher

probability of encountering traffic jams. Therefore, a significant amount of energy savings can be

anticipated with the connected eco-driving, provided that the operating state of the preceding ve-

hicle can be shared and communicated to effectively optimize the vehicle dynamics. Moreover,

electric vehicles (EV) generally have better energy efficiency in the urban areas than the rural areas

thanks to the regenerative braking, which slows down the vehicle via an energy recovery mechanism
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to convert the kinetic energy back to the electric energy. Therefore, an accurate and robust control

of the EV powertrain can maximize the energy restored and further boost the energy efficiency. In

this mechanism, the electric motor works in the generator mode to recover energy that would be

otherwise lost to the brake discs as heat, and this excessive electric energy is used to recharge the

battery pack, making electric vehicles better off in terms of energy efficiency, compared to those

with combustion engines in the event of frequent deceleration and stops, such as a traffic jam.

However, early development and deployment of connected eco-driving technology mainly focused

on optimizing vehicle dynamics (VD) [15, 17, 72, 73] and powertrain (PT) [74] operation inde-

pendently, and therefore there exists untapped potential to further improve vehicle fuel efficiency

through a simultaneous optimization of both VD&PT control. Therefore, this chapter describes an

advanced simulation framework of an integrated vehicle-powertrain eco-operation solution for an

electric bus with state-of-the-art Connected and Automated Vehicles (CAV) technologies, aiming at

improving vehicle energy efficiency and reducing tailpipe emissions. The overall simulation frame-

work incorporates a two-layer vehicle optimal trajectory planning module that seamlessly integrates

a graph-based trajectory planning algorithm and a deep neural network, with the simulation settings

and parameters calibrated using real-world electric bus data from Riverside Transit Agency (RTA)

bus trajectories. The optimal trajectory can be generated with the proposed innovative VD&PT

eco-operation control module embedded in a microscopic simulation tool – PTV VISSIM [75], and

its energy-saving performance is validated with different test scenarios against the baseline driving

strategies.
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Figure 4.1: System framework

4.2 System Framework

Connected and automated vehicles (CAV) have the potential to excel at efficient driving because of

their increased situational awareness and ability to execute more complex maneuvers more precisely

[74]. In order to comprehensively optimize the operation maneuver of electric buses to improve the

fuel efficiency, this chapter describes an advanced electric bus simulation framework integrating ve-

hicle dynamics and powertrain operations. Specifically, this framework is established with real-time

optimal trajectory planning under (VD&PT) control interacting with a calibrated environment using

real-world data. The overall simulation framework develops traffic network modeling, embedded

vehicle dynamic control, and real-world data calibration with PTV VISSIM. In the simulation en-
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vironment, a programable energy-efficient speed trajectory can be generated, optimizing with many

parameters and data after the initial calibration process, including signal phase and timing (SPaT)

information from upcoming intersections, the state variables of the preceding vehicle, and the ve-

hicle’s dynamics in the network. The optimized trajectory is generated with the innovative vehicle-

powertrain eco-operation control module that we developed and embedded in a VISSIM application

programming interface (API). A desirable energy-efficient speed trajectory through multiple signal-

ized corridors can be optimized with many parameters and data after the calibration process, includ-

ing the signal phase and timing (SPaT) information of the upcoming intersection, the state variables

of the preceding vehicle and the Eco-bus itself in the network, etc. This trajectory is generated with

the proposed innovative vehicle-powertrain eco-operation control module embedded in the VISSIM

automated program interface (API).

Figure 4.1 illustrates the system framework of the advanced simulation framework for developing

the connected Eco-Operation system for electric buses. In this framework, the baseline bus con-

trol is based on the embedded car-following logic in VISSIM, and its acceleration and deceleration

behavior has been calibrated to match real-world acceleration/deceleration versus speed profiles of

RTA bus trajectories. In addition, both the powertrain characteristics and the efficiency map are

generated from the real-world testing data. To evaluate the specific energy consumption, a sim-

plified electric bus model with a powertrain-related function of speed, acceleration and road grade

is developed and applied to a built-in graph-based trajectory planning algorithm. This integrated

mechanism will be used to evaluate the energy consumption of both the baseline bus trajectory and

the integrated Eco-Bus trajectory. The simplified electric bus model which is a powertrain-related
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function of the speed, acceleration and location-specific road grade is used to compute the energy

consumption cost on the built graph of vehicle dynamic state transition.

In addition, a signal control module was developed to implement SPaT messages from signalized in-

tersections along the simulation corridor based on the real-world signal timing sheet obtained from

the City of Riverside. In the developed external driver model, the SPaT messages is obtained within

the dedicated short-range communications (DSRC) range [3] and decoded into signal phase and

countdown information. The vehicle dynamic control module contains a two-layer vehicle optimal

trajectory planning: 1) a graph-based trajectory planning algorithm and 2) deep neural networks

(DNN) [76]. Specifically, the first layer of trajectory planning algorithm is based on a graph model,

which takes the energy consumption as the cost function to optimize the transit path. The second

layer employs a DNN to expedite the calculation of the optimal target speed of an Eco-bus for the

next time step. Then the output external driver model can effectively reinforce an energy-efficient

trajectory for an electric bus. Similarly, this advanced simulation framework is able to generate

the optimized output driver model for any user-specified traffic conditions and vehicle powertrain

characteristics, which makes this framework very convenient to further evaluate any customized

EV eco-operation system interfacing with the traffic network, via this integrated vehicle-powertrain

approach.
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4.3 Simulation Study

4.3.1 Simulation Tools

In this study, PTV VISSIM [75] is employed as a microscopic traffic simulation tool for traffic

network modeling, bus characterization, External Driver Model.dll development with integrated

vehicle-powertrain optimal trajectory planning using the VISSIM API, as well as Eco-bus mobility

and energy performance evaluation. As a leading-edge microscopic traffic simulator, VISSIM is

capable of modeling private transport, commodity transport and road- or rail-bound public transport

down to pedestrians, simulating the wireless communication network, and calibrating with real-

world data. In addition, VISSIM provides two types of add-on programming interface, namely the

Component Object Model (COM) and the External Driver Model DLL. Specifically, COM interface

is written in script that can be used to work as an Automation Server, modify the underlying simu-

lation models, access the model outputs, and provide advisory longitudinal and lateral maneuvers.

However, limitations exists on directly controlling the driving behavior in the simulation, as well as

a high computation load while accessing a large scaled network with many vehicles under control.

In this study, we used the External Driver Model DLL Interface of VISSIM to replace the inherent

driving behavior model by a fully user-defined behavior embedded in the vehicle dynamic control

module.

The External Driver Model DLL Interface of VISSIM is developed to access signal information

and sensor measurements, it is also capable of integrating an innovative VD&PT control system to

obtain the most energy efficient bus trajectory through multiple signalized intersections. The vehicle
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Ottawa

BS6: Uni. NS 
Chicago

BS7: Uni. FS 
Cranford

Figure 4.2: Simulated network on University Ave with signal control and bus stops.

dynamic control module, as shown in Figure 4.1, is implemented in a DLL written in C++. During

a simulation execution, VISSIM calls the External Driver Model DLL code for the targeted electric

bus in each simulation time step, which is able to obtain the current vehicle state, determine its next

optimal speed, and then pass this updated vehicle state back to VISSIM.

4.3.2 Simulation Network Model

The real-world traffic network used in this study is a 3-mile signalized corridor along University

Ave in Riverside, CA with its westbound beginning from the Riverside downtown and its eastbound

ending in Canyon Crest Dr, as shown in Figure 4.2. The simulated network consists of eleven

signalized intersections and seven bus stops on the eastbound bus route (see Figure 4.2). Based on

the real-world signal timing sheets at each intersection from the city of Riverside, we decoded the

information to design the Signal Controller with the consistent SPaT message. The transit buses
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differ from the private vehicles or heavy-duty trucks in a sense that their trajectories are not only

associated with the traffic light and the recurrent congestion, but they also need to comply with

the specific bus stop schedule from Riverside Transit Agency (RTA). Therefore, the arrival time is

estimated at each bus stop along the RTA bus EB route based on its specific schedule on two main

stops. Then, the Public Transport module in VISSIM ID calibrated to match the assigned arrival

time at each bus stop along the simulated network. In addition, the bus acceleration/deceleration

profile in the simulation is also calibrated using real-world data from RTA bus trajectories. In

summary, the network is well calibrated using the real-world signal controls, traffic inputs and bus

trajectories data. Therefore, the results and observation from the proposed simulation framework

should accurately represent the mobility and energy efficiency performance of an Eco-bus with the

integrated VD&PT control.

4.3.3 Simulation Scenarios

To gain an in-depth insight into the integrated vehicle dynamic and powertrain Eco-operation per-

formance, a variety of traffic conditions were simulated under different system settings. Here, we

used volume-to-capacity (v/c) ratio to quantify the congestion level based on Highway Capacity

Manual [77]. The traffic volume with the real-world traffic count is categorized as the Light Traffic

condition with v/c ratio as 0.35. The other three traffic conditions are No Traffic, Moderate Traffic

and Heavy Traffic condition with v/c ratio as 0.17, 0.7 and 1, respectively. Note that for Heavy

Traffic case the actual traffic in the network is less than the input traffic demand in the OD matrix,

as vehicles may be blocked out of the network at the first intersection due to over-saturation. For

each simulation scenario, 10 runs were executed with a simulation duration of 3,600 seconds. All

experiments are carried out using a computer with Intel i7 CPU with 2.80 GHz and 16 GB RAM.
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4.4 Powertrain Model for EVs

In the energy consumption model for the electric bus powertrain, we assume the instantaneous

vehicle speed is v and it is operating under the traction mode, then the motor speed ω can be written

as

ω = n · v (4.1)

where n is the “lumped" gear ratio calibrated from the real world data.

Considering only a vehicle’s longitudinal motion governed by Newton’s second law of motion [74],

the acceleration of the vehicle depends on the traction/brake force, the rolling resistance force im-

pacted by road grade, and the aerodynamic drag

ma = F −
(
mg sin θ + µmg cos θ +

1

2
CDρaAv

2
i

)
(4.2)

wherem is the vehicle mass (kg), g is the gravity constant, θ is the road slope (rad), µ is the rolling

resistance coefficient, CD is the aerodynamic drag coefficient, ρa is the air density (kg/m3) and A

is the vehicle frontal area (m2).

The above equation also indicates the critical acceleration rate when the vehicle is coasting (i.e.

F = 0):

acoast = −g sin θ − µg cos θ − 1

2m
CDρaAv

2
i (4.3)
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When the vehicle is under coasting or braking mode, i.e. a ≤ acoast, we assume the fuel consump-

tion rate is a constant Qi which equals to the consumption rate while idling.

When the vehicle is under traction mode a > acoast, the traction force based on motor torque τ

(in Nm) is formulated as

F = ητn (4.4)

where η is the overall efficiency of powertrain. We can derive the torque expression in the steady-

state (a = 0) in terms of speed and acceleration as:

τ =
1

ηn

(
ma+mg sin θ + µmg cos θ +

1

2
CDρaAv

2

)
(4.5)

The energy consumption of the electrical motor can be derived based on the motor speed, torque

and motor efficiency map.

As an electric vehicle is capable of converting kinetic energy into electric energy that can recharge

the battery during braking, the regenerated braking power is formulated as

Wreg = τv · ηwhηfdηmotηbatt (4.6)

where ηwh is the wheel drive efficiency, ηfd is final drive efficiency, ηmot is motor efficiency, and

ηbatt is battery efficiency. The efficiency map is reconstructed from a real-world electric bus data

from RTA.
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4.5 Dynamic Queue Prediction

4.5.1 Queue Location and Time Forecasting

When driving at signalized arterials, the vehicle’s motion trajectory is largely associated with the

signal phase and timing but it is also very likely be constrained by its preceding vehicle’s movement

and the traffic ahead at the intersection, especially in the rush hours. Therefore, a reliable and ac-

curate prediction on preceding vehicle’s future state in the sense of both short-term speed profile as

well as the its future state of position and time in the preceding queue are crucial for enabling the

subject vehicle driving with minimum fuel cost in the real-world urban traffic. Although a number

of approaches have been conducted to retrieve the queue length or time delay based on loop detec-

tors or connected vehicle technologies and probe vehicles, it always be operated in a retrieving way.

To estimate the queue length or delay of a cycle, they required certain measurements of the queue

in that cycle such as queuing propagating and discharge time at the loop detector, the last vehicle in

the queue position or the full trajectory of the probe vehicle. However, all these measurements may

not be available for the upcoming cycle and these approaches ignore the fact that the subject vehicle

and its preceding vehicle may also within the queue. In this sense, a reliable and real time forecast

on the location and time of its preceding vehicle joins the queue and departure are critical from the

subject vehicle motion planning perspective.

In this section, we introduced a lane-level queue forecasting model of location and time of a vehicle

joins and discharge in the queue based on time headway measurements from advanced loop detec-

tors and fitted discharge rate from the historical data. The forecasting accuracy could be largely
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Figure 4.3: Time-distance discretized into cell regions, where each blue line represents a single vehi-
cle trajectory traveling through signalized corridors, and the horizontal red and green line segments
indicate the signal phase over time.

improved if there exists connected vehicle trajectory in the cycle which enables real time adjust-

ments. The proposed forecasting model makes no prior assumptions on the uniform vehicle arrivals

which is hardly the case for collected approaching trajectories at the signalized intersection from

real world.

Spatial-temporal partition

To develop accurate and reliable prediction of the location and time the vehicle joins the queue at

a certain intersection during a single cycle, we need to specify the spatial and temporal region the

forecasting model applied. The vehicles trajectories through four consecutive northbound signalized

intersections are visualized in Figure 4.3. In this study, we focused on forecasting queue location

and time of an approaching vehicle cycle by cycle. Therefore, overall studied spatial and temporal

domain can be partitioned into several cell regions as show in Figure 4.3 (i.e. cell (i, j) represent
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Figure 4.4: Queue shockwave and vehicle critical points.

the temporal region at signal cycle based on the signal cycles and spatial region based on the links

between intersections). As shown in Figure 4.3, there are total four links in the studied arterial region

which defines the region between each two consecutive signalized intersections, as represented as

link {1, 2, 3, 4}. For each link, one complete signal cycle starts from the beginning of a red phase

till the end of the consecutive yellow phase, shown as cycle {1, 2, 3, ...,9}.

Identification of vehicle’s critical points in the queue

After partitioning the spatial and temporal domain into the proper cell regions, we need to identify

the critical points for all the individual vehicle that represents the vehicle state in the queue within

each cell region. To be more specifically, the location (in terms of the distance to the stop bar) and
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time of a vehicle meet the propagating queue (represented as red dots in Figure 4.4 as well as the

location and time for that vehicle discharge from the queue (represented as green dots in Figure

4.4 are two critical points to determine the vehicle’s approach and departure state at the queue.

In this study, we considered a vehicle joining the queue from the moment it decelerates to under

a specific idling speed threshold at its approaching process to an intersection. Here, we chose 5

feet/s as aforementioned speed threshold. Therefore, the first time step within the queue and its

corresponding location defined as the Type I critical point (Ta, ya), which represents the state of the

vehicle in queue at approaching process. The time step ta of each individual vehicle is obtained by

the following equation:

Ta = min {t|vi(t) < vidl, vi(t−∆t) > vidl&ya < d1} (4.7)

Where vi(t) is the instantaneous speed of the vehicle i at the time step t, vidl is the aforementioned

idling speed threshold, âĹĘt is the step size, ya is the corresponding location at the moment of join-

ing a queue at cycle n, d1 is the location of the stop bar at the approaching intersection.

The Type II critical point of the departure process of a vehicle in the queue is defined as the moment

when queue discharge propagating to the vehicle’s idling position, represented as (Tb, yb). The time

step tb is accessible based on the following condition:

Tb = max {t|vi(t) < vidl, vi(t + ∆t) > vidl&yb < d1} (4.8)

Where yb is the corresponding location at the moment vehicle i discharge from a queue in cycle n.

75



Figure 4.5: Schematic of proposed forecasting method.

4.5.2 Methodology Overview

Firstly, we introduced a forecasting model on the location (in terms of distance to the stop bar) and

time of a vehicle joining the queue as well as its discharge time based on measurements only from

advanced loop detectors and signal phase and timing (SPaT) information of the approaching inter-

section. As shown in Figure 4.5, the advanced loop detector was placed at the location d0 to collect

the vehicle counts, vehicle instantaneous speed (v0) and the time headways (th) between vehicles at

the loop detector. In this study, we set the advanced loop detector for each lane at the distance 300

feet from the stop bar (d1 − d0 = 300 ft ≈ 91.5 m).
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The formation of our proposed forecasting model is based on Lighthill-Whitham-Richards (LWR)

shockwave theory. The shockwave formatting rate for cycle n is represented as vn1 and the shock-

wave dissipation rate for cycle n is represented as w, as it is shown in Figure 4.5.

The discharge process has been shown to be fairly stable compared to the arriving process. Vehi-

cle’s discharge pattern is observed to be close to uniformly distributed, leading to a relative constant

discharge rate of the queue. Therefore, a queue dissipation rate w and vehicle spacing headway ∆hq

could be calibrated using the collected historical data. Based on the extracted Type II critical points

and the start time of the green phase at the current cycle, the shockwave dissipation rate could be

calculated based on the following equation:

wn =
(dj − yb)(
Tb − Tng

) (4.9)

w =

∑n
i=1wi
n

(4.10)

Where wn is the shockwave dissipation rate for cycle n, dj is the location of the stop bar of the

intersection j, yb is the location of the vehicle at the Type II critical point at cycle n.

Therefore, we could compute the discharge time for a vehicle in the queue as follows:

ŷb = dj − n×∆hq (4.11)
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T̂b = Tg +
dj − ŷb
w

(4.12)

We assumed for the current time step, the number of vehicles queuing at the approaching inter-

section is available. Between vehicle spacing at the queue ∆hq was calibrated using the collected

historical data in order to indicate the position of the queue end respect to the subject vehicle.

Since the free flow speed for urban driving is usually much less than on the freeway and it is also

very relevant to configuration and location-dependent speed rules. Therefore, we calibrated the free

speed vf at Peachtree using the trajectories from all the vehicle’s traveling from northbound. To

predict the trajectory of the preceding vehicle, first thing we need to estimate is whether the vehicle

is going to join to queue or not. The strategy is the same as indicated in Figure 3.7 , which we pre-

sented earlier in the last chapter. Based on the traffic counts and the calibrated queue spacing, we

could estimate the location of the preceding vehicle in the queue ŷb according to Equation (4.11).

The travel time for the preceding vehicle and the dissipation shockwave w to reach the location

could be obtained by Equations (4.13), (4.14), respectively.

vc · (tb − tc) = ŷb (4.13)

w · (tw − tc) = ŷb (4.14)

where tc represents the current time step, vc is the current speed of the preceding vehicle, tb is the

time step when preceding vehicle reach the queue end location, tw is the time step when dissipation

shockwave reaches the queue end location.
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As it is shown in Figure 3.7, if tb < tw, which indicates the preceding vehicle reach the queue

end before the dissipation shockwave, then the preceding vehicle will be part of the queue in the

current cycle. Otherwise, the dissipation shockwave reaches the location before the preceding vehi-

cle indicates the queue will be discharged already at the time when preceding vehicle approaching

the intersection.

The limitation of the fixed location sensor is that it only provides the aggregate information and

temporal information such as vehicle counts, time headways. The lack of spatial information from

the measurements may sometimes lead to unsatisfactory performance of the forecasting model.

With the recent advent of connected vehicle technologies, a connected vehicle could also serve as

a mobile sensor as it provides detailed trajectories at the signalized intersection. Therefore, a pre-

cision measurement on critical points of connected vehicle could correct the predicted shockwave

rates and time headways, resulting in a reduction in the forecasting error of critical points state for

vehicles cycle by cycle in real time.

In Figure 4.5, the connected vehicle’s trajectory is represented as solid black lines and the con-

ventional vehicle’s trajectory is represented as dashed blue ones. We could extract accurate mea-

surements of the critical points A and B (see Figure 4.5) from the connected vehicles which could

correct the shockwave propagation rate and disperse rate and spacing to make better forecasting

results. At the situation that there is no input from connected vehicles, we then assumed a constant

shockwave speed v1 which was calculated as based on the average headway from previous cycle

and traffic counts so far at the current cycle.

79



Assume the current time step is tc and our subject vehicle is following a preceding vehicle whose

trajectory is represented in yellow shown in Figure 4.5. The aim of our proposed forecasting model

is to provide a prediction on the Type I and Type II critical points of the preceding vehicle based

on the onboard sensor measurements, road side unit measurements and SPaT from I2V communi-

cation. The onboard radar sensor could detect the preceding vehicle’s speed and location and our

developed vehicle speed profile predictor could predict its future movement with the confidential

5 secs time window. Considering the case that the preceding vehicle is approaching a signalized

intersection with a distance to the loop detector as shown in Figure 4.5. In Figure 4.5, the yellow

line represents the preceding vehicle’s trajectory. The solid part is the trajectory detected by the

onboard radar sensors. Assume the current time step is tc and the current position and speed of the

preceding vehicle measured by our onboard radar detection is (xc, vc). We used the average speed

in the prediction window and its distance to the loop detector to forecast its arriving time at the loop

detector based on the Equation (4.15).

tl =
d0 − xc
vc+5

+ tc (4.15)

where tl is the forecasted time the preceding vehicle passing the advanced loop detector. v(c + 5)

is the average speed of the future 5 seconds speed trajectory from the speed predictor we developed

in (Fei et al 2017). Based on the time gap between the predicted arriving time of the preceding

vehicle and the current time step, we could roughly estimate the number of vehicles between the
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loop detector and the preceding vehicle based on the assumption of uniform arrival rate.

n2 =
tl − tc
∆th

+ tc (4.16)

Where ∆th is the average time headway from the previous cycle. Then, we could predict the posi-

tion of the preceding vehicle based on the number of vehicles in queue ahead of it.

We observed there exists a short time deceleration period before the vehicle joining the end of

queue. We assume that deceleration time period before joining the queue is ∆T = 3 s and the vehi-

cle has a constant deceleration rate a. Based on the measurement of the time headway and vehicle

count, we did a briefly measurement of the

ŷa = ŷa−1 −∆hd (4.17)

vc · T +
1

2
a∆T 2 = ŷa (4.18)

T̂a = tc + T (4.19)

Where ŷ(a− 1) is the position of the last vehicle ahead in the queue, ∆hd is the average spacing

between vehicles joining the queue, ∆T is the deceleration period and vc is the current speed of the

preceding vehicle, tc is the current time step, T̂a is the forecasted time for vehicle joining the queue.

The dynamic queue prediction accuracy can be further improved with at least one present CV in

the same cycle. The effect of connected vehicles for improving the performance of the proposed
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Table 4.1: Performance of the proposed queue location and time forecasting model

Accuracy
Time joining

queue (second)
Location joining

queue (feet)
Time departure

(second)
Location departure

(feet)
Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2

Without CAVs 1.68 1.98 5.66 6.05 2.21 2.15 5.02 6.42
With CAVs 1.59 1.71 3.85 3.41 1.40 2.14 3.69 3.16
Improvement 5.4% 13.6% 32.0% 43.6% 36.7% 0.5% 26.5% 50.8%

queue forecasting model is further investigated in the simulation results. Here, 100% penetration

rate is not a necessary requirement for our proposed approach.

4.5.3 Numerical Experiments

Evaluation on Queue Location and Time Forecasting Model

The performance of the vehicle queue state forecasting model was tested based on real world field

test data (NGSIM Peachtree data). The lane-level vehicle queue state forecasting was conducted for

the two through movement lanes in the northbound.

The accuracy of the proposed forecasting model is measured by the mean absolute error (MAE)

of forecasted location and time of vehicle joining the queue and discharge location and time com-

pared to the observations, which is defined as

MAE =

∑N
i=1 |ŷ − y|
N

(4.20)

where N is the number of observations, ŷ is the predicted value andy is the observed value. Table

4.1 summarizes the results of the proposed vehicle queue state forecasting model. In Table 4.1, we

also compared the performance of the forecasting model with only loop detector measurements and
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Figure 4.6: Detailed view of the forecasted and the observed vehicle states in the queue (red circle:
ground truth of the vehicle states joining the queue; green circle: dissipation states of vehicles in
the queue; blue star: prediction results of vehicles joining and departing the queue)

the model with corrections from CAVs. MAE of the forecasted results at the distance of 300 feet

without CAVs for each lane are around 1.7 – 2.2 sec for time and around 5 – 6 feet for location.

And the forecasting results with the correction from CAVs are around 1.4 – 2.1 sec for time and

around 3.2 – 3.9 feet for location. Regarding the improvement from CAV correction, the forecasting

accuracy could achieve 0.5% – 36.7% improvement on time and 26.5% – 50.8% on location.

Figure 4.6 gives a detailed view of the forecasted results from this proposed model. The

red circle is the ground truth of the Type I critical points of vehicle that indicates the state when

vehicle joining the propagation queue and green circle is the ground truth of the Type II critical

points that implies the dissipation state of vehicle in queue. And the star is our forecasting results

for both Type I and Type II critical points. It has been showed the proposed queue forecasting model
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Figure 4.7: Queue end forecasting error of a vehicle approaching the intersection

could provide reliable results with satisfying prediction accuracy for various driving condition and

arrival rate.

As shown in Figure 4.7, when the preceding vehicle approaches the signalized intersec-

tion, the prediction of its queue states (time and location of vehicle joining and departure of the

queue) can get dynamically improved with the updated information. We dynamically update the

queue end prediction per second based on the loop detector measurements and potential connected

vehicle trajectories via wireless communications. The forecasting accuracy of queue end state re-

spect to our host vehicle is dependent on the calibrated departure rate and spacing as well as fore-

casting result on preceding vehicle future position in queue. Before the preceding vehicle passes

the loop detector, the arrival rate before the preceding vehicle is estimated under the assumption

of uniform distribution. The estimated queue end state of the preceding vehicle converges after it

passes through the loop detector until a connected vehicle’s queue state further correct it afterwards.
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Figure 4.8: Average acceleration and deceleration before and after calibration.

4.6 Simulation Evaluation and Analysis

This subsection presents results of the default bus acceleration/deceleration profile, the bus schedule

calibration, and the sensitivity analysis of the VD&PT controlled Eco-Bus performance in terms of

mobility and energy savings under various traffic conditions.

4.6.1 Calibration Results

Figure 4.8 compare the bus average acceleration and deceleration profile over speed, before and

after performing calibration with real-world RTA bus data. It is demonstrated that the simulated ac-

celeration/deceleration profile under the default bus characteristics in VISSIM pretty much violates
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Table 4.2: Route 14 EB stops along the University Avenue.

Stop Name Latitude Longitude
Estimated

Arrival Time
Estimated

Departure Time
Distance from

Previous Stop (m)
Simulated

Arrival Time

University FS Brockton 07:28:00 (Actual)
East University NS Lemon 33.980889 -117.372455 7:30:44 7:30:54 660

University NS Park 33.977343 -117.364859 7:34:02 7:34:12 804 7:31:47
University NS Victoria 33.976519 -117.363105 7:34:55 7:35:05 182 7:33:14

University FS Eucalyptus 33.975493 -117.364859 7:36:35 7:36:45 384 7:34:18
University FS Kansas 33.975538 -117.356839 7:37:36 7:37:46 220 7:35:32
University FS Ottawa 33.875565 -117.349528 7:39:20 7:39:30 404 7:38:00

University NS Chicago 33.975545 -117.349528 7:40:34 7:40:44 276 7:38:46
University FS Cranford 33.975603 -117.343839 7:42:47 7:42:57 528 7:40:40

Iowa FS Blanie 7:48:00 (Actual) 1240

Route travel time 0:08:45 0:08:53
Route travel time (min) 8.8 8.9
Percentage Difference 1.5%

the real-world conditions. After fitting the bus characteristics settings in an iterative manner, much

more acceleration/deceleration profile can be generated comparing to the real-world bus.

Based on the RTA Route 14 time table available on [78], we first identified the Time Points (i.e., key

bus stop for planning the schedule) that bracket our test route, which are University @ Brockton

(western) and Iowa @ Blaine (eastern). By looking up the time table, we realized the scheduled

arrival times at these two Time Points are 07:28 a.m. and 07:48 a.m., respectively, for the simula-

tion period (i.e., between 07:00 a.m. and 08:00 a.m.). The bus departure time and average speed (or

total route travel time) were then calibrated to match with the associated bus schedule. Table 4.2

summarizes the calibration results where the difference in departure time is 10 second and the total

route travel time is off by only 1.5%, which is considered to be acceptable.
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4.6.2 Energy Consumption Evaluation

The energy consumption factor (EF, energy consumption in unit distance, KJ/mile) can be obtained

by:

EF =
Σn
i=1ΣTi

t=1energyi,t

Σn
i=1ΣTi

t=1VMTi,t
(4.21)

where energyi,t is the energy consumption rate for vehicle i at time t, in KJ, and VMTi,t is the

vehicle miles traveled for vehicle i at time t.

The boxplot and error bars of the average energy consumption of baseline bus and Integrated

Vehicle-Powertrain Eco-bus (VPEO-bus) over different traffic congestion levels are shown in Fig-

ure 4.9(a). It illustrates the energy consumption of the VPEO-bus are significant lower than baseline

bus in all the traffic conditions. The average energy consumption of VPEO-bus are 878 KJ/mile,

881 KJ/mile, 887 KJ/mile and 942 KJ/mile in no traffic, light traffic, moderate traffic and heavy

traffic condition, respectively. However, the average energy consumption of the baseline bus are all

above 1200 across different traffic conditions.

4.6.3 Mobility Analysis

The mobility benefits are quantified by average speed of vehicle, provided as

v̄ =
Σn
i=1ΣTi

t=1VMTi,t

Σn
i=1ΣTi

t=1V HTi,t
(4.22)

where, VMTi,t = = vehicle miles traveled for vehicle i at timestep t;

V HTi,t = = vehicle hours traveled for vehicle i at timestep t According to Figure 4.9(b), as the
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Figure 4.9: Comparative results of the VPEO bus and the baseline bus at various traffic conditions
including no traffic (v/c: 0.17), light traffic (v/c: 0.35), moderate traffic (v/c: 0.7), and heavy traffic
(v/c: 1.0): (a) the average energy consumption, and (b) the average speed.

traffic congestion level increases, average speed of the Eco-bus is decreasing with a larger variance.

Overall, the average speed of Eco-bus is higher than the baseline bus with higher mobility benefits

when traffic condition is lighter.

4.6.4 Improvements

A summary of the energy efficiency improvements of VPEO-bus under VD&PT control with dy-

namic queue prediction is shown in Table 4.3. In Table 4.3, we can see that the Percentage Energy

Savings (column 3) between the VPEO-bus and the baseline is in the range of 18% to 27%, under

various traffic conditions and the penetration rate of CAVs in the traffic stream. The improvements

on energy efficiency are kept within a stable range of around 19% to 24% with no other CAVs

presented, showcasing the its robust performance and good adaptability under all traffic conditions.

With presenting 20% penetration rate of CAVs in the traffic stream, there are additional 2.0% to

8.2% of energy savings resulting from improved performance of queue dynamic prediction.
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Table 4.3: Comparative Results on Energy Savings for VPEO-bus

Traffic level (volume-
to-capacity (v/c) ratio)

Penetration rate
(PR) of CAVs

% savings
CAV extra

improvement (%)

No traffic (0.17)
0% CAVs 21.7

3.3
20% CAVs 25.0

Light traffic (0.35)
0% CAVs 20.6

5.7
20% CAVs 26.3

Moderate traffic (0.7)
0% CAVs 18.7

8.2
20% CAVs 26.9

Heavy traffic (1.0)
0% CAVs 24.0

2.0
20% CAVs 26.0

4.7 Summary and Discussion

This chapter describes an advanced simulation framework of the integrated vehicle/powertrain eco-

operation system for an Eco-bus. The comprehensive results under different traffic scenarios show-

case the superiority of the proposed Eco-bus simulation framework compared to a conventional bus,

particularly in terms of increased mobility and energy efficiency.
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Chapter 5

Anomaly Detection in Traffic with

Partial Connectivity

1234The research presented in this chapter aims to develop and simulate an innovative agent-based,

lane-level hazard prediction application called Lane Hazard Prediction (LHP) based on partially-

available vehicle trajectories data collected from an V2V environment. In addition, the correspond-

ing driver response model was simulated to estimate the effectiveness of the LHP application under

various penetration rates. The results of the research shows the potential for LHP to significantly

improve the mobility and safety for both individual LHP users and the entire traffic system. The

LHP application identifies the position of a downstream lane-level hazard based on a spatial and

temporal data mining and machine learning technique. It then guides the application-equipped ve-

hicles with suggestions for proper lateral maneuvers far ahead of the hazard to avoid a traffic jam.

This guidance provides the vehicle driver with a suggestion to either change lanes (out of the hazard

lane) or maintain the current lane to avoid getting into the hazard lane.
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5.1 Introduction

Traffic accidents have been increasing over the past two years and are one of the leading causes of

non-natural fatalities in the United States [79]. The conventional method of detecting an accident

or hazard is based on either fixed-location sensors (such as loop detectors), crowdsourced roadway

data, or vehicle onboard sensors (e.g. radar, LiDAR). However, these approaches may not be ef-

fective in reducing traffic congestion and potential collision risks, due to their constrained detection

range in space and time, or the fact that they only provide partial/road-level information regarding

the hazard. In recent years, connected vehicle (CV) technology has been rapidly emerging world-

wide as a method to enhance roadway users’ safety and mobility, while reducing fuel consumption

and emissions. For example, several V2V applications have already been identified by the U.S. Na-

tional Highway Traffic Safety Administration (NHTSA) as possible candidates to improve roadway

safety [80]. Nevertheless, most of these applications require a certain level of market penetration

to be effective. A variety of V2V-based applications have been proposed and developed in various

projects. Examples of such efforts in the U.S. including:

· Connected Vehicle Reference Implementation Architecture (CVRIA) [6], which summarizes

a large number of CV applications developed under the U.S. Department of Transportation

(USDOT);

· Safety Pilot model deployment program [81];

· Dynamic Mobility Application (DMA) program [82];

· Applications for the Environment: Real-time Information Synthesis (AERIS) program [4].
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Figure 5.1: Framework of lane hazard prediction application

In addition to V2V activities in the U.S., the European Union, Japan, and other countries have

also been actively supporting research on V2V technology [83–85]. To date, a few research efforts

have been conducted using simulation to evaluate the effectiveness of V2V and V2I warnings/alerts

about an event or hazard information on the highways in the assumption of the hazard message

can be directly accessed through V2V and V2I communication [86, 87]. Liu et al. [88] discussed

the potential of using variations of instantaneous driving decisions to understand the occurrence of

extreme event such as crash or hazard. Given the partial availability of vehicle trajectory informa-

tion, a reliable hazard prediction model is needed to enable the safety and mobility benefits when a

hazard occurs.
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5.2 Framework

The framework of the proposed LHP application is shown in Figure 5.1. The developed LHP appli-

cation contains four major modules:

· Mobile Crowdsourced Sensing: This module obtains the position, speed, and direction in-

formation of CVs downstream within the communication range, with respect to the host

application-equipped vehicle through V2V network communication. It then partitions the

spatial and temporal domain in the traffic network into lane-level longitudinal segment cells

and time slices, performing integration over multiple time steps.

· Feature Extraction: Using the cell-based CVs’ information in the spatial and temporal do-

main, this module identifies the key factors that are deemed to be representative and critical

for detecting a potential downstream hazard or abnormality in traffic.

· Lane Hazard Pattern Recognition: This module runs locally for each partitioned cell and

outputs a binary hazard flag (1: hazard exists, 0: no hazard) every 20 seconds. The lane

hazard pattern recognition module provides prediction on a lane-level hazard position and

its associated longitudinal bound with a resolution of 30 meters, which is the longitudinal

segment length for each cell.

· Lane Recommendation: Based on the lane-level hazard prediction results, this module sug-

gests a lane change out of the hazard lane for LHP-equipped vehicles. Alternatively, it sug-

gests that the vehicle keep moving in the current, non-hazard lane when approaching the

hazard location to avoid joining the associated queue behind it.
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Figure 5.2: Illustration of scaling and partitioning on an example network

5.3 Lane Hazard Prediction Model

To perform lane-level hazard prediction, the traffic network was partitioned into spatial lane-level

cells (30 meters long). The data integration and temporal resolution for the developed LHP applica-

tion was 20 seconds. The information (e.g. lane-level position, speed, and direction) obtained from

CVs over the V2V network were accumulated at a rate of 0.05 Hz, integrating over 20 seconds at

each cell. The binary hazard predictor ran locally for each cell, which facilitated its adaptability

to different geographic locations and the scalability to a larger scope. Patterns were observed that

could potentially identify unusual collective behaviors for vehicles approaching the hazard location.

By combining the knowledge of traffic engineering with a data-driven approach, a total of eight

features were identified as input variables for the binary logistic regression-based LHP model. For

each cell (i, j) in the traffic network (where i represents the longitudinal position, and j indicates

the lane number), measurements were considered from the ego-cell as well as its adjacent cells in

both the upstream and downstream segments, as shown in Figure 5.2.

The vehicle maneuvers within a cell were categorized into five classes:

· M1 – Through maneuver including both entry and exit
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· M2 – left lane change out of the cell

· M3 – right lane change out of the cell

· M4 – right lane change into the cell

· M5 – left lane change into the cell

The input features considered for the algorithm included:

· The average speed of all vehicle travel across the cell during the 20-second time interval,

calculated by the ratio of vehicle miles traveled to vehicle hours traveled

· The average speed ratio between the cell and across all the lanes at the same/upstream adja-

cent/downstream adjacent longitudinal segment

· The percentage of through maneuvers in the cell and lane changes into and out of the cell

· The entropy of vehicle maneuvers, which captured the diversity of all maneuvers in the cell.

The entropy attained its minimum value of zero when all the vehicle maneuvers were from

the same category, and its maximum value when all the vehicle maneuvers were uniformly

distributed over different categories.

The log it function constrains the values of landslide susceptibility index of the model in the range

[0, 1] (the index threshold was set as 0.75). The logistic regression-based LHP model is described

in Equation (5.1):

log it (Pij) = ln

(
Pij

1− Pij

)
= β0 + β1 × V ij + β2 ×

vij
vi

+ β3 × vij + β4 × vij

+ β5 ×
m1

m
+ β6 ×

m2 +m3

m
+ β7 ×

m4 +m5

m
+ β8 ×

n∑
i=1

mi

m
log
(mi

m

) (5.1)
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Table 5.1: Parameters calibration results of the LHP model

Variable β0 β1 β2 β3 β4 β5 β6 β7 β8

Coefficient -2.43 -2.24 -2.21 -2.23 -2.25 -1.90 0.88 -0.03 -0.17

Therefore, the probability of a hazard in cell (i, j) can be obtained by

Pij =
1

1 + exp (− logit (Pij))
(5.2)

Where,

V ij is the average speed of cell (i, j);

V i is the average speed across all the lanes of longitudinal segment i;

V i−1 is the average speed across all the lanes of upstream adjacent longitudinal segment i− 1;

V i+1 is the average speed across all the lanes of downstream adjacent longitudinal segment i+ 1;

mi is the number of maneuvers at cell (i, j), belonging to predefined maneuver type i;

m is the total number of maneuvers at cell (i, j);

n is the number of maneuver types;

βk is the parameters’ coefficients.

The parameters calibration results of the proposed Lane Hazard Prediction model based on logistic

regression approach is shown in Table 5.1.
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5.4 Lateral Driver Response Model

Using the output of the LHP algorithm, the lateral, lane selection, and driver behavior of LHP-

equipped vehicles could be modified to avoid a hazard. This guidance is performed when a hazard

flag is activated downstream of the ego-vehicle’s current position in the same lane, within the V2V

communication range (assumed in this work to be 2,000 meters). In addition, the upstream LHP-

equipped vehicles in the other lanes would be guided to stay in the current non-hazard lane until

they passed the hazard position.

5.5 Prediction Evaluation and Simulation Setup

This section introduces the method for prediction evaluation, simulation tools, network model, and

scenarios for a comprehensive analysis of the LHP application.

5.5.1 Lane Hazard Prediction Evaluation

The LHP evaluation was conducted with respect to prediction accuracy, efficiency, and application

effect on safety and mobility. The LHP application provided a lateral maneuver decision based on

the results of a lane-level hazard prediction model. Both effectiveness and efficiency of the proposed

LHP application were evaluated under different levels of penetration rate and traffic conditions.

In this study, the receiver-operating characteristic (ROC) curve and the area under the curve (AUC)

were used to evaluate the performance of the developed LHP model [89]. The ROC curve illus-

trated the tradeoff between the true positive rate and the false positive rate of the binary logistic
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regression-based LHP model. The closer the ROC curve got to the top left corner of the graph,

with a larger AUC number, the better the LHP model performed in terms of predicting a hazard,

with limited false positives. The AUC for random guessing was 0.5 with the ROC curve following

the diagonal. The reaction time of the LHP model, defined as the time in seconds from the point

when the hazard occurred to the point when the first accurate prediction was triggered, was used as

a measure of efficiency. In addition to evaluating the performance of the hazard prediction model,

the LHP application’s effectiveness in terms of safety and mobility were also assessed. The safety

performance of LHP-equipped vehicles, unequipped vehicles, and the overall traffic was analyzed

using a conflict frequency measure of effectiveness. The average speed measure of effectiveness

was used to evaluate the mobility performance, provided as Equation (4.22):

5.5.2 Simulation Tools

PTV VISSIM [75] was used in this study as the microscopic traffic simulation tool for traffic net-

work modeling, development of the LHP application using an application programming interface

(API), and evaluation of individual vehicles and the overall traffic system performance. As a state-

of-the-art microscopic, timestep-oriented, and behavior-based traffic simulation tool, VISSIM is

capable of simulating a large-scale road network and wireless communication network and cali-

brating the traffic flow and speed with real-world data. In addition, VISSIM provides an add-on

programming interface, Component Object Model (COM), which was used in this study to modify

the underlying simulation models, access model outputs, and override default vehicle behaviors.

For safety performance evaluation, the Surrogate Safety Assessment Model (SSAM) [90] was used

as a post-processing model to perform safety evaluation by analyzing vehicle trajectory data (.trj

98



(a) (b)

Figure 5.3: Road network of I-270N in real world and VISSIM.

files) generated from VISSIM. In SSAM, the safety performance was assessed through measured

conflict potentials, considering both the risk of longitudinal collisions (rear-end conflicts) and lateral

collisions (lane change conflicts).

5.5.3 Simulation Network Model

The real-world network used in this study was a 17-mile stretch of Interstate 270 (I-270) North, in

Ohio, with seven on-ramp/off-ramp pairs (see Figure 5.3). The longest segment located between

the second on-ramp/off-ramp pair was selected, and an accident event was created to test LHP

performance. The speed limit on I-270N is 70 mph, and the traffic demands are well calibrated

with real-world data from the Traffic Count Database System (TCDS) by the Ohio Department of

Transportation [91].
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5.5.4 Simulation Scenarios

To gain in-depth insight into the developed LHP application performance, simulation tests were

conducted under various V2V penetration rates. V2V market penetration rate is expected to take

several years to achieve a significant level. A full penetration rate (i.e., 100%) enables the LHP ap-

plication to attain the most accurate traffic measurements, leading to higher prediction accuracy and

shorter reaction times. However, since 100% penetration is not currently available, the sensitivity

analysis over different penetration rates is meaningful. The application provides solid performance,

even at lower penetration rates, as discussed in the results section.

The simulation test was performed on a three-mile stretch of road, and the simulation duration was

1,800 seconds. The LHP-equipped vehicle percentage was set to 9% out of the total V2V-equipped

vehicles. This percentage corresponds to Honda’s market share. Therefore, three types of vehicles

ran in the simulation network: 1) LHP- and V2V-equipped vehicles; 2) V2V-equipped vehicles; and

3) conventional vehicles. Conventional vehicles do not have V2V communications capability, and

their behavior follows VISSIM default lane change and car following models. V2V-only vehicles

exchange real-time information (e.g., speed, lane-level position, etc.) with other V2V vehicles with-

out the onboard application. LHP-equipped vehicles exchange information via V2V, perform hazard

predictions, and change (or maintain current) lanes to avoid hazards downstream. Seven levels of

penetration rate (0, 5%, 10%, 20%, 50%, 80%, and 100%) V2V-equipped vehicles were evaluated

(in which LHP-equipped vehicles accounted for 9% of the above penetration rate levels). Both user

benefits and system benefits were evaluated in terms of mobility (average speed difference) and

safety (conflict frequency difference) under different penetration rate. Ten simulation runs for each
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Figure 5.4: ROC curve of LHP under different penetration rates.

simulation setting were conducted.

5.6 Results and Discussion

This section presents the evaluation of LHP application from three aspects:

1) Prediction analysis in terms of accuracy and efficiency of the developed LHP model

2) Safety analysis of LHP-equipped and unequipped vehicles

3) Mobility analysis of LHP-equipped and unequipped vehicles

5.6.1 Prediction Performance

As previously described, ROC curves and associated AUC values were used to assess the accuracy

of the developed lane hazard predictor. In addition, the reaction time of LHP was used as the key
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Figure 5.5: Reaction time of LHP under different penetration rates.

index to evaluate the algorithm efficiency. The results of sensitivity analysis for different levels of

penetration rate are shown in Figure 5.4 and Figure 5.5. With a 100% penetration rate of connected

vehicles, the LHP algorithm provided the best performance with 0.98 AUC. Other results were as

follows (see Figure 5.4):

As for the application efficiency, the average reaction time of LHP was less than 60 seconds across

the penetration rates between 20% and 100% (see Figure 5.5). However, there was a rapid increase

in reaction time at the 5% penetration rate, with larger variation. This result may be caused by a

noisy measurement due to the low number of vehicles equipped with LHP at the 5% penetration

rate. Therefore, LHP was proven to be highly efficient and reliable at a penetration rate as low as

20%. At lower penetration rates, such as 5% or 10%, the LHP application can be considered a lane

advisory system.
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(a)

(b)

Figure 5.6: Sensitivity analysis of penetration rate on mobility benefits: (a) user benefits and (b)
system benefits.

5.6.2 Mobility Performance

Mobility performance was quantified by the average speed, which was calculated using Equation

(4.22). The comparative results in terms of user benefits and system benefits were obtained using
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the average speed relative ratio (%), as denoted in Equations (5.3) and (5.4), respectively.

MOEe −MOEus
MOEus

× 100% (5.3)

whereMOEe is the metric of equipped vehicles (i.e. average speed of equipped vehicles); MOEue

is the metric of unequipped vehicles (i.e. average speed of unequipped vehicles)

MOEoa −MOEbl
MOBbl

× 100% (5.4)

whereMOEoa is the metric of overall vehicles with LHP scenarios; MOEbl is the metric of overall

vehicles with 0 penetration rate as the baseline.

The boxplot and error bars of the average speed relative ratio in terms of V2V penetration rates

are shown in Figure 5.6. According to Figure 5.6, average speed improvements (up to 7%) for

LHP-equipped vehicles were witnessed across all penetration rates. When the penetration rate was

high enough (i.e., greater than 10%), the improvement tended to be stable, with much less variation.

Considering the system mobility benefits, the average speed relative ratio of overall vehicles com-

pared to the baseline (penetration rate of 0) varied between -0.2% and 0.7%. Overall, the applied

LHP model had negligible effects on the system-level mobility, regardless of the penetration rates.

5.6.3 Safety Performance

The rear end and lane change conflict frequency were selected to assess vehicle safety performance.

The decrease in conflict frequency implied an improved safety performance. The comparison of
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(a)

(b)

Figure 5.7: Sensitivity analysis of penetration rate on safety benefits: (a) user benefits and (b) system
benefits.

LHP-equipped and unequipped vehicles was quantified with a rear end conflict frequency relative

number, as denoted in Equations (5.3) and (5.4). As shown in Figure 5.7, significant user benefits

in terms of safety could be achieved across all simulated penetration rates.
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The average conflict frequency difference was decreased by a factor of 32.8% – 68.1%. The user

benefits in terms of safety achieved the highest point at a penetration rate of 100% and the lowest

at a 5% penetration rate. The results were more stable at higher penetration rates. As indicated

in Figure 5.7, positive effects on system benefits in terms of safety were also witnessed across all

penetration rate levels. The average conflict frequency ratio varied between -1.4% and 3.0%. The

conflict frequency was significantly reduced from both user and system perspectives under different

penetration rate. The significant improvement in safety performance may have resulted from the

fact that the LHP application enabled equipped vehicles to avoid sharp speed drops upstream in the

hazard lane and encouraged lane change behavior earlier and in a smoother manner.

5.7 Summary and Conclusions

In this chapter, an innovative V2V-based lane-level hazard prediction algorithm and corresponding

driver response model called Lane Hazard Prediction (LHP) was developed and evaluated. Re-

sults of a comprehensive simulation study showed that the LHP application could provide highly

accurate lane-level prediction of a downstream hazard within tenths of seconds after it occurred,

by crowdsourcing V2V communications information. The LHP application provided lateral ma-

neuver guidance to LHP-equipped vehicles. A detailed simulation study was performed to assess

the effectiveness of the proposed LHP application in terms of safety and mobility benefits. Results

demonstrate that LHP-equipped vehicles may gain significant mobility and safety benefits without

compromising the mobility and safety performance of the overall traffic. An attractive feature of

the proposed LHP application is that accurate prediction within seconds and noticeable benefits in

safety and mobility can be achieved, even under a relatively low V2V penetration rate.
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Chapter 6

Bi-Level Optimal Edge Computing

Model in Connected Vehicle

Environment

1234This chapter describes a Bi-level Optimal Edge Computing (BOEC) methodology to maximize

both the vehicle mobility benefit and energy saving without compromising safety perspective. We

first develop an optimal merge sequence and merge time scheduling model by crowd sourcing initial

state of vehicles, clustering vehicles based on their potential conflict at the merge point and solving a

Mixed-Integer Linear Program (MILP). We evaluate the effectiveness of the proposed MILP-based

optimal scheduling model by comparing it with the existing rule-based FIFO model in terms of

mobility and sustainability. We then determine the optimal vehicle trajectories to guarantee vehicles

meet the assigned merge time with the lowest energy cost. For the vehicle trajectory planing, we

propose three different approaches (a closed-form heuristic model, a quadratic programming model
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and a graph based model) on energy consumption map based on the trade off between computation

efficiency and optimality.

6.1 Background

The increasing transportation activities and traffic jam have led to significant effect on social and

economic issue. In 2014, congestion caused urban Americans to travel an extra 6.9 billion hours

and purchase an extra 3.1 billion gallons of fuel for a congestion cost of $160 billion [92]. The bot-

tlenecks such as ramp merging and intersections in the transportation system not only lead to huge

economic and mobility cost, but also have side effect on increasing air pollutant emissions, energy

consumption and the risk of collision. Intersection coordination control receives a lot of research in-

terest. In recent years, research effort has been made to develop centralized management system to

coordinate vehicles [93]. In [94], a reservation-based intersection coordinator is proposed that uses

the multi-agent pair of vehicles on a collision course and decides actions for assigning a particular

time interval when vehicles approach the intersection. With vehicle pre-defined paths at the inter-

section, [95] and [96] transform the nonlinear and non-convex problem into a linear programming

formulation accounting for signal-free autonomous intersection control in terms of conflict free and

capacity of the intersection. However, the energy saving and air pollutant emission reduction are

not mentioned in these coordination systems.

On-ramp merging is another topic that attracts significant research attention. On-ramp merging has

been approached by designing cooperative ramp metering [97, 98] and local cooperative maneuver

when vehicles approach the merge zone [93, 99, 100]. Ramp metering has been widely used in
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California to regulate the traffic flow of on-ramp vehicles when they merge into the highway. Other

than the traditional pre-timed ramp metering algorithm based on historic traffic data [101], some

advanced ramp metering algorithms have been developed using the vehicle connectivity. A coop-

erative ramp metering is proposed in [97] to take the advantage of the enabled cooperation among

vehicles to form a platoon in the CAVs environment. Yang et al. [98] presents a ramp metering

control based on reinforcement Q-learning to enhance the capacity of merging section. However,

with the ramp metering approaches, the undesirable idling at on-ramp merge point is still not fully

avoidable. The stop-and-go pattern at the ramp metering results in large air pollutant emissions and

energy consumption and have the side effect on vehicle safety due to the speed gap between the

highway vehicle and on-ramp vehicle when on-ramp vehicle starts off from the ramp metering. The

existing traffic management is mainly cloud-based system [102]. However, cloud computing may

not always be the best strategy for real-time applications such as cooperative on-ramp merging. To

address the real time on-ramp merging control, we leverage the edge computing approach [103] that

can efficiently access and process resources at the particular point/location in the vehicular network,

e.g., roadside unit (RSU).

6.2 System Framework

In this section, we present the proposed BOEC architecture for on-ramp merging coordination and

eco-driving. Figure 6.1 illustrates the framework and overall structure of the proposed BOEC model,

which consists of a vehicle crowd sourcing module and a bi-level edge computing module. We par-

tition section of the road within V2I communication range into two zones: the sequencing zone and

the control zone.
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Figure 6.1: Flow diagram and framework of bi-level optimal edge computing for on-ramp merging

The first-level edge computing, i.e., the first level optimization, takes place in the sequencing zone

to cluster the connected vehicles into groups and to obtain optimal merge sequence and merge time.

First, we use RSU to collect vehicle information including position, speed, heading, lane infor-

mation upstream with respect to the merge point. We then assign each vehicle into an associated

cluster group based on its state and potential conflict at the merge point. We formulate the problem

of on-ramp merging scheduling as a Mixed-Integer Linear Program (MILP) [104]. The formulated

optimization problem is periodically solved for the clustered vehicles in the sequencing zone using

IBM CPLEX solver [105]. The corresponding outputs (vehicle merge sequence and assigned merge

time) are used in the second-level edge computing.

The second-level edge computing, i.e., the second level optimization, is realized in the control

zone following merge sequence and merge time assignments to compute the optimal speed trajec-
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tory for the connected vehicles in terms of energy efficiency and air pollutant emission reduction.

In the second-level edge computing, we propose three different approaches: a closed-form heuristic

model, a quadratic programming model and graph-based shortest path model. In the control zone,

vehicles travel with the optimal energy-efficient trajectory following the merge sequence and merge

time.

6.3 Optimal Vehicle Merge Scheduling by Edge Computing

In this section, we describe our proposed Mixed-Integer Linear Programming model for optimal

scheduling and a simple reservation-based first-in-first-out (FIFO) policy approach for performance

comparison.

The reservation-based FIFO policy approach takes initial state of the connected vehicles when they

enter the sequencing zone and calculates the earliest estimated arrival time at the merge point. This

approach then dynamically adjusts vehicle merge time by filling up a reservation table scaling by

the safety headway before vehicle enters the control zone. The reservation management is based

on FIFO policy. Although this approach can reduce the conflicts at the merge point with low com-

putational cost, it limits the potential of maximizing the vehicle throughput at the merge point and

enlarges the transmission burden in the V2I communication network.

To obtain optimal merge sequence and merge time for the clustered vehicles to further improve

the travel throughput and maximize the mobility benefit, we formulate the problem as a Mixed In-

teger Linear Program (MILP) [104] to minimize total travel time for both mainline vehicles and

111



on-ramp vehicles. As described in Equation (6.1), the attributes of each connected vehicle CVi

(1 ≤ i ≤ n) contains vehicle ID, vehicle position, vehicle speed, speed limit, distance to the merge

point, lane number, the time vehicle entering to the sequencing zone and the earliest merge time at

the merge point calculated based on the speed limit.

1) Vehicle Attributes:

CVi = {i, xi, vi, vmax, di, li, t0,i, tmerge,min,i} (6.1)

2) Decision Variables: Optimal merge time of the vehicle at merging point

tmerge,i, tmerge,j , i ∈ {1, 2.........n1}, j ∈ {1, 2.........n2} (6.2)

3) Objective function and optimization problem:

min J = min Σn1
i=1(tmerge,i − t0,i) + Σn2

j=1(tmerge,j − t0,j) (6.3)

4) Constraints:

tmerge,k > tmerge,min,k (6.4)

tmerge,k1 − tmerge,k2 ≥ theadway1 (6.5)

tmerge,i − tmerge,j ≥ theadway2

or tmerge,j − tmerge,i ≥ theadway2

(6.6)
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where n1 and n2 are the number of the mainlane vehicles and the number of on-ramp vehicles,

respectively; t0,i is the time mainline vehicle i entering to the sequencing zone; t0,j is the time

on-ramp vehicle j entering to the sequencing zone; k ∈ {1, 2.........n1} or k ∈ {1, 2.........n2};

k1, k2 ∈ {1, 2.........n1} or k1, k2 ∈ {1, 2.........n2}; theadway1 is the time headway between the

adjacent merging vehicles on same lane and can be different for the mainlane vehicles and the on-

ramp vehicles; theadway2 is the time headway between adjacent merging vehicles on different lanes.

The constraints assure the safety and the traffic rule as well as vehicle acceleration/deceleration ca-

pability. The first constraint (Equation (6.4)) ensures that vehicle will not violate the speed limit

through the merge zone. The other two constraints (Equation (6.5) and Equation (6.6)) are based

on the assumption that no overtaking is allowed for vehicles in the same lane and ensure the safety

headway for both vehicles on the same lane and vehicles between the mainlane and the on-ramp.

We choose different headway based on whether vehicles are traveling on the same lane or not. For

the same lane vehicles, they can potentially formulate a platoon with much shorter headway that is

taken into consideration in our optimization problem.

The formulated problem intends to provide the optimal merge time tmerge,i for the involved main-

line vehicle and the optimal merge time tmerge,j for the involved on-ramp vehicle to minimize their

travel time through the merge zone. Therefore, the objective of the MILP problem is to minimize

the total travel time for all the involved vehicles through the merge zone. The optimal merge se-

quence and merge time of the connected vehicles at the merge point guarantee the overall difference

between the sequencing zone entering time and the assigned merge time is minimized without com-

promising any safety perspective or the traffic rule.
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To mathematically interpret and solve the discontinuity in the last constraint (Equation (6.6)), ad-

ditional binary variables have been introduced, which we refer to the big-M method [106]. We can

transform the last constraint into a 0-1 binary linear programming problem such that if one of these

two inequalities is true the other one is always redundant. For this purpose, we introduce new binary

variable Bi,j and a constant M . Then, the Equation (6.6) can be converted to Equation (6.7):

tmerge,i − tmerge,j +MBi,j ≥ theadway2

tmerge,j − tmerge,i +M(1−Bi,j) ≥ theadway2

(6.7)

where Bi,j is either 0 or 1, and M is a large enough constant to make the theadway2 + |tmerge,i −

tmerge,j | negligible compared to it. We set M to 2000 in our formulated optimization problem.

vn(t+ τ) = min

{
vn(t) + 2.5anτ

(
1− vn(t)

vdn

)√
0.025 +

vn(t)

vdn
,

bnτ +
√
b2nτ

2 − bn[2(xn−1(t)− sn−1 − xn(t))− vn(t)τ − v2
n−1(t)]

} (6.8)

6.4 Optimal Vehicle Trajectory Planning

Once the optimal merge sequence and the optimal merge time become available, we need to ef-

ficiently plan vehicle speed trajectory online in order to assure the assigned merging time at the

merge point while minimizing the overall energy consumption. In this section, we propose three

different planning approaches to obtain vehicle trajectory through the control zone. Different ap-

proaches can be applied under different scenarios or for different goals according to the trade off
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Figure 6.2: Heuristic vehicle speed trajectory planning

between computation efficiency and optimality. The first vehicle trajectory planner is based on a

closed-form heuristic model combined with the Gipps’ car-following model (see Equation (6.8))

to constrain the vehicle headway relative to its preceding vehicle. The second trajectory planner

is formulated as a quadratic programming (QP) optimization problem to minimize the L2-norm of

the control input (acceleration/deceleration rate). Finally, we propose a Graph-based optimization

approach using Dijkstra’s algorithm to find the minimum energy cost path with constraints that di-

rectly optimize energy consumption while following the assigned merge sequence and merging time

from the first-level edge computing without compromising safety.

6.4.1 Heuristic Vehicle Trajectory Planning

Once the merging time is assigned to each vehicle, we determine whether a vehicle can keep the

current speed vi or needs a acceleration/deceleration to follow the assignment based on its current

state attributes. If the arrival time at the merge point using current speed is larger than the remaining

time to the assigned merging time, vehicle needs to accelerate to meet the goal and vice versa. We

assume vehicles have the constant acceleration/deceleration rate till they reach their desired cruise

speed that enables their remaining travel time to the merge point equal to the time difference be-
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tween their merging time to the merge point tmerge,i and the current time t0 as shown in Figure 6.2.

A closed-form analytical vehicle trajectory solution can be obtained as follows:

Vehicle attribute: CVi = {i, vi, vlim, di, t0,i, amin, amax, tmerge,i}

Using Figure 6.2, we can obtain



vcruise,i = vi + a∆t1

vi∆t1 +
1

2
a∆t21 = din

vcruise,i(∆t−∆t1) = di − din

(6.9)

which can further derive

∆t1 =
a∆t±

√
a2∆t2 − 2a(−vi∆t+ di)

a
(6.10)

where ∆t = tmerge,i− t0,i; ∆t1 is the acceleration time from the initial speed vi to the cruise speed

vcruise,i; din is the travel distance within the acceleration period ∆t1; a = amax or amin is the

constant acceleration rate or deceleration rate.

Therefore, the cruise speed for both acceleration-cruise pattern and deceleration-cruise pattern can

be obtained from Equation (6.9) and Equation (6.10) as follows:
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MILP-based optimal 
vehicle sequence and 
assigned merging time 

scheduling
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If time 
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Yes

Car following mode

Figure 6.3: Flow diagram of heuristic vehicle trajectory planner

Acceleration-cruise pattern, if tmerge,i < t0 +
di
vi

:

vcruise,i = vi + a∆t−
√
a2∆t2 − 2a(−vi∆t+ di) (6.11)

Deceleration-cruise pattern, if tmerge,i > t0 +
di
vi

:

vcruise,i = vi + a∆t+
√
a2∆t2 − 2a(−vi∆t+ di) (6.12)

The flow diagram of the heuristic vehicle trajectory planner is shown in Figure 6.3. Given the op-

timal sequence and merge time from the first-level edge computing and vehicle’s current attribute,
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vehicle can keep its current speed vi as cruise speed to the merge point if tmerge,i = t0 +
di
vi

. Oth-

erwise, we determine vehicle’s driving pattern and compute the vehicle speed trajectory based on

Equation (6.11) or Equation (6.12).

The Gipps’ car following model [23] is applied as a subsystem to guarantee safety perspective

as described in Equation (6.8), where τ is the reaction time (can be very small); vn(t) and vn−1(t)

are the speed of the following vehicle n and the leading vehicle n − 1 at time step t, respectively;

vdn and an are the desired speed and the maximum acceleration of vehicle n; bn and b are the most

severe braking that the driver of vehicle n wishes to undertake and the expected leading vehicle

maximum deceleration, respectively.

6.4.2 QP-Based Optimal Trajectory Planning

It has been proven that the vehicle energy consumption highly relies on the acceleration/deceleration

and speed profile [107]. The optimization problem becomes a constrained nonlinear program-

ming problem. Solving that constrained nonlinear programming problem using energy consumption

model as the objective function is quite challenge. The nonconvexity and high nonlinearity usually

lead to great computational cost and hardly feasible for real-time microscopic vehicle maneuver

application. Therefore, in this study, we formulate the problem as minimizing the L2-norm of the

control input (acceleration/deceleration rate) to provide a feasible trajectory based on quadratic pro-

gramming method.
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Vehicle dynamic equations are as follows:


xi(tk+1) = xi(tk) +

vi(tk+1) + vi(tk)

2
∆t

vi(tk+1) = vi(tk) + ai(tk)∆t

(6.13)

The convex objective function can be expressed by setting H as positive definite matrix and f as

zero vector in general form:

min ΣaTi Hai + fai (6.14)

subject to

xi(tmerge,i) = di (6.15)

0 ≤ vi(tk) ≤ vlim (6.16)

amin ≤ ai(tk) ≤ amax (6.17)

|xi(tk)− xj(tk)| ≥ dheadway (6.18)

xi(t0) = xini,i (6.19)

vi(t0) = vini,i (6.20)

where ai is the control input (acceleration/deceleration rate); di is the current distance to the merg-

ing point; tmerge,i is the optimal merge time at the merge point; ∆t is time step; xini,i and vini,i

represent the vehicle’s initial state; dheadway is the safety distance between vehicles; vlim is the road

speed limit; amin and amax are vehicle minimum acceleration rate and maximum acceleration rate,

respectively.
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Figure 6.4: Graph-based optimal trajectory planner illustration

6.4.3 Graph-Based Optimal Trajectory Planning

As described earlier, the object of the proposed second-level edge computing is to minimize ve-

hicle energy consumption through control zone till they reach the merge point with their assigned

merge time. The energy consumption is a nonlinear function that mainly depends on vehicle type,

speed, acceleration/deceleration and road grade. Solving that constrained nonlinear programming

problem using energy consumption model as the objective function is quite challenge and hardly

feasible for a real-time vehicle microscopic maneuver application. To enable optimization of the

energy consumption model while enhancing the computation efficiency, we propose a graph-based

optimal trajectory planning approach with constraints on total travel time, total travel distance, max-

imum capable acceleration/deceleration rate and final speed at the merge point. To formulate this

graph-based model, we first discretize the system states, e.g., 0.5 sec time step and 0.5 m/s speed res-

olution, and balance the data resolution against the computation cost. The state transition diagram

is illustrated in Figure 6.4. At each node of the proposed directed graph G = (V,E), we assign a
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unique 3-D coordinate (t, x, v) that describes the dynamic state of the vehicle, where t ∈ [t0, tmerge]

is the time (in second), x ∈ [0, d] is the distance to the merge point (in meter) and v ∈ [0, vl] is

the speed (in m/s), where vl is the speed limit in this graph. For each time step, the feasible nodes

for the next state is determined by the current state and constraints from speed limit, maximum

power and capability of braking system. There is an edge transit from the state (ti, xi, vi) to state

(ti+1, xi+1, vi+1) with a cost as the energy consumption during this state transition process. We

assume the road grade satisfies a predefined function of distance g(di:i+1) as shown in Equation

6.21.

θ = g(di:i+1) = arcsin
2(di+1 − di)

(vi+1 + vi) · δt
(6.21)

where di is the distance to the merge point at time step i; δt is the time step scaling factor.

At this point, the fuel consumption minimization problem is converted into a problem to find the

shortest path from the source node N(0, X, Vs) to the destination node N(tmerge, 0, Vf ) in the di-

rected graph G = (V,E). We apply Dijkstra’s algorithm to solve this single-source shortest path

problem with non-negative cost. Figure 6.4 illustrates an example of the optimal speed transit tra-

jectory in terms of energy consumption through the control zone while satisfying all exogenous and

endogenous constraints. The proposed algorithm is able to deal with more complicated problem

with longer time period/distance and higher time/location resolution efficiently, as the time com-

plexity of Dijkstra’s algorithm is O(log(N) · E), where N is the source node number and E is the

number of edges.
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Figure 6.5: Simulation software components and interface block diagram

6.5 Experiment Setup and Test Scenario

This section describes experiment design setups and test scenarios.

6.5.1 Simulation Setup

In this section, the microscopic traffic simulation SUMO (Simulation of Urban Mobility) [108] is

used to evaluate the performance of the proposed BOEC model by interfacing with the movement of

each individual vehicle. Figure 6.5 illustrates the interaction among the traffic simulator SUMO, the

developed BOEC model and the energy consumption simulator MOVES [69]. We assume that the

penetration rate of connectivity is 100%. We access the connected vehicle information in the net-

work and develop three advanced API modules (vehicle clustering, vehicle optimal scheduling and

vehicle optimal trajectory planning) to achieve optimal on-ramp merge coordination in connected

vehicle environment through the Traffic Control Interface (TraCI) in SUMO. These API modules
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acquire vehicle information such as speed, position, acceleration/deceleration and entering time to

determine the clustered group for coordination maneuver. Then, the optimal merge sequence and

merge time for the involved vehicles are periodically computed using CPLEX optimization solver

before vehicles enter the control zone. The API for motion planning provides the energy efficient

vehicle trajectory in the control zone following the assigned merge sequence and merge time with-

out compromising safety. These control inputs are sent back to SUMO to model each individual

vehicle movement through on-ramp merging. In the simulation, we assume the speed limit on the

highway is 108 km/h and on the on-ramp is 72 km/h. The maximum acceleration or deceleration

are 2.5m/s2, −2.5m/s2, respectively. In addition, vehicle trajectories and road elevation map gen-

erated by SUMO are used as inputs to MOVES model to evaluate the energy consumption and air

pollutant emissions. The mobility benefits are quantified by average travel time and average speed

of the vehicles which is the same format as provided in Equation (4.22). All experiments are carried

out using a computer with Intel i7 CPU with 2.80 GHz and 16 GB RAM.

6.5.2 Energy Consumption Model and Evaluation Metrics

The MOVES model is utilized here to estimate energy consumption and emissions. The evaluation

metrics chosen for effectiveness analysis on the environmental influences includes emissions of

HC, CO, CO2, NOX , PM2.5 and energy consumption. The energy consumption factor (EF,

energy consumption in unit distance, KJ/mile) can be obtained by:

EF =
Σn
i=1ΣTi

t=1energyi,t

Σn
i=1ΣTi

t=1V HTi,t
(6.22)
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Figure 6.6: An example of the assigned merge time difference using the MILP-based model and the
FIFO-based model

where energyi,t = is the energy consumption rate for vehicle i at time step t, in KJ. V HTi,t = is

the vehicle hours traveled for vehicle i at time step t.

6.6 Experimental Results and Performance Comparison

In this Section, we first compare our proposed MILP-based optimal scheduling algorithm with the

traditional FIFO-based approach in terms of vehicle mobility benefit. We then evaluate the overall

energy consumption and air pollutant emissions by using three different vehicle trajectory planning

algorithms. Total 290 vehicles and 207 vehicles have been released from west bound of the highway

and the on-ramp, respectively.
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Table 6.1: Performance comparison between the optimal MILP-Based scheduling model and the
FIFO-based approach

Average through time
on mainline (sec)

Standard Deviation
Average through time

on-ramp (sec)
Standard Deviation

FIFO-based 13.03 1.12 12.67 0.94
MILP-based 10.27 0.48 10.09 0.13

Relative improvement (%) 21.2% 20.4%

6.6.1 Simulation Validation of the Proposed MILP-based Optimal Scheduling

Figure 6.6 shows an example of a clustered vehicles with the merge time and merge sequence dif-

ferences assigned by the MILP-based model and the FIFO-based model. The blue dots indicate the

assigned merge time for each individual vehicle using FIFO-based reservation table and the green

stars show the assigned optimal merge time by the proposed MILP-based method. The arrows indi-

cate the time assignment difference with red for mainline vehicles and black for on-ramp vehicles.

It is obviously observed that the merge sequence of vehicles using MILP-based model is different

from that using FIFO-based model with some vehicles on the mainline sacrifice their merge time to

achieve the group travel time saving and mobility benefits. The statistical comparison analysis of

the MILP-based optimal scheduling model and the FIFO-based model is shown in Table 6.1. The

average travel time on the mainline by the MILP-based model is 10.27 sec that achieves 21.2% im-

provement compared with FIFO-based reservation model. On-ramp vehicles can also improve their

throughput time by 20.4% using the proposed MILP-based optimal scheduling model. In addition,

the standard deviation of the MILP-based model is much smaller compared with FIFO-based model,

which leads to more reliable performance.
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Table 6.2: Fuel consumption and pollutant emission comparison evaluation conducted using motor
vehicle emission simulator (MOVES Model)

Vehicle Trajectory Planning
HC

(g/mile)
CO

(g/mile)
NOX

(g/mile)
CO2

(g/mile)
Energy

(KJ/mile)
PM2.5

(mg/mile)
Ave Time cost

(sec)

Graph Based Method 0.029 0.86 0.11 53.4 743.34 2.9 4.6
Quadratic Programming Based Method 0.025 0.54 0.13 58.8 818.33 1.6 0.01

Analytical Solution (Baseline) 0.079 2.43 0.38 106.88 2238.42 7.7 0.00014
Improvement (%) of Graph Based Method 62.6% 64.4% 71.7% 66.8% 66.8% 61.5%

Improvement (%) of QP Based Method 68.7% 77.6% 65.3% 63.4% 63.4% 79.4%

6.6.2 Simulation Validation of the Proposed Vehicle Trajectory Planner

Based on the MOVES model, Table 6.2 shows the energy and environmental benefits of the total

497 vehicle trajectories generated by three trajectory planning approaches proposed. It is obvious

that both QP-based and graph-based optimal trajectory methods can significantly improve the en-

ergy saving and air pollutant emissions. Compared with the baseline analytical solution, QP-based

optimal solution and graph-based optimal solution improve average energy saving by 63.4% and

66.8%, respectively. In addition, significant air pollutant emission reduction can be observed from

Table 6.2. The emissions of HC, CO, NOx, CO2 and PM2.5 per mile using QP-based model are

68.7%, 77.6%, 65.3%, 63.4% and 79.4% less than the baseline model, respectively. Table II also

shows that the proposed graph-based optimal trajectory model can reduce 62.6% of HC, 64.4% of

CO, 71.7% of NOx, 66.8% of CO2 and 61.5% of PM2.5 per mile compared with the baseline ana-

lytical model. The average computation cost for a 400 meter trajectory planning using Graph-based

model, QP-based model and a heuristic solution are 4.6 sec, 0.01 sec and 0.1 mili-sec, respectively.
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6.7 Summary and Discussion

In this chapter, we described a Bi-level Optimal Edge Computing (BOEC) model for on-ramp merg-

ing to maximize overall vehicle mobility benefits and energy saving while optimizing air pollu-

tant emissions. Our key contributions are: 1) developing an edge computing scheme based on

V2I/I2V communication; 2) improving vehicle throughput and average speed by grouping vehicles

and periodic mixed-integer linear program optimization; 3) updating the heuristic vehicle trajectory

planning approach by introducing a sub-system of car-following model; 4) developing a quadratic

programming based optimal trajectory model that guides vehicle merging coordination with the

minimum air pollutant emissions; and 5) developing a graph based optimal trajectory model that

guides vehicle merging coordination with the minimum energy consumption. Microscopic simu-

lation results demonstrate that the proposed MILP-based optimal merge sequence and merge time

scheduling can save the travel time on both mainline and on-ramp by 21.2% and 20.4%, respec-

tively, compared to the FIFO-based reservation approach. The comparative validation results of

vehicle trajectory planning algorithms indicate that the proposed QP-based trajectory model and

graph-based optimal trajectory model outperform the heuristic baseline model in terms of energy

saving by 63.4% and 66.8%, respectively. Both QP-based and graph-based trajectory planning mod-

els can reduce air pollutant emissions by 61.5% – 79.4% compared to the baseline approach. It turns

out that the computational cost of these three vehicle trajectory planning approaches can satisfy the

objective of the real time performance.
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Chapter 7

Conclusions and Future Work

1234

7.1 Conclusions

This dissertation has presented a variety of connected eco-driving technologies with learning, pre-

diction and anomaly detection models in a connected vehicle environment with advanced machine

learning algorithms. It involves the development of innovative electric vehicle energy consump-

tion estimation models, vehicle speed trajectory prediction algorithms, integrated vehicle dynamic-

powertrain-environment prediction systems for energy efficient trajectory planning, lane hazard pre-

diction algorithms and their corresponding lane selection models, as well as optimal edge computing

on cooperative on-ramp merging techniques. These proposed technologies have been evaluated us-

ing either microscopic traffic simulations or data from the real wrold.

With the advancement of vehicle connectivity and autonomy, connected eco-driving techniques with

prediction, learning and edge computing provide new opportunities for real-world energy efficient
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semi-autonomous driving. In both urban arterials and highway networks, vehicles and infrastruc-

tures that interact in both a mixed or a fully connected vehicular network can significantly improve

the overall traffic performance in terms of safety, mobility and environmental sustainability, thanks

to the optimal scheduling and the group-wide coordination.

In Chapter 2, an innovative electric vehicle energy consumption model has been developed for

enabling the real-time eco-driving algorithm for electric vehicles considering the regenerative brak-

ing effect. By introducing a hybrid modeling approach that provides variables with actual physical

definition instead of the exhaustive method used in the conventional data-driven approaches, the

knowledge-driven variable selection and the data-driven statistical methods are synthesized together

to further improve the estimation accuracy. The proposed energy consumption models can be easily

integrated into eco-driving algorithms while taking the regenerative braking effect into account.

The work in Chapter 3 fills the gap in many of the existing eco-driving algorithms, including the

conventional EAD algorithms which are not flexible enough to handle interactions with other traf-

fic, road grade, and downstream vehicles. Machine learning techniques are applied to predict the

future trajectories of preceding vehicle given its historical trajectories and some scene context. By

integrating the prediction results into the trajectory planner, the developed Prediction-based EAD

algorithm provides an eco-friendly speed trajectory, which also takes the presence of preceding traf-

fic and queues at intersections into account. The trajectory obtained with the proposed prediction

algorithm is able to offer an additional 2–34% energy savings and emission reduction when com-

pared to the EAD algorithm without prediction.
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Chapter 4 has presented a complete and novel simulation framework of an integrated vehicle/powertrain

co-operation system for electric buses (Eco-bus), which performs a co-optimization on the vehi-

cle dynamics and powertrain (VD&PT) controls. Specifically, the overall simulation framework

incorporates a two-layer vehicle optimal trajectory planning module that seamlessly integrates a

graph-based trajectory planning algorithm and a deep learning based trajectory planning algorithm.

This optimal trajectory planning module is able to interact with the environment calibrated using

real-world data from the city of Riverside and the Riverside Transit Agency (RTA). It is shown that

the deep learning based EAD algorithm can achieve a good balance between solution optimality

and computational efficiency. Furthermore, a dynamic queue prediction algorithm in the connected

vehicle environment is developed to better plan the bus trajectory for energy savings. A comprehen-

sive evaluation of the proposed system on mobility benefits and energy savings has been conducted

across various traffic conditions.

Chapter 5 has showcased a Lane-Hazard Prediction (LHP) application that can detect lane-level

hazards effectively and efficiently. LHP can also assist drivers to take a lane change if the vehicle is

approaching a detected hazard. Specifically, a machine learning approach is proposed and perform

feature extraction in the spatial-temporal domain, which achieves a sustainable and highly accurate

lane-level prediction of a downstream hazard within tenths of seconds. The LHP application then

guides the vehicle with suggestions for proper lateral maneuvers far ahead of the hazard to avoid a

traffic jam. Results demonstrate that LHP-equipped vehicles enjoy significant mobility and safety

benefits without compromising the mobility and safety performance of the overall traffic.
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Chapter 6 has investigated the edge computing technology for the group-wide vehicle coordina-

tion. A Bi-Level Optimal Edge Computing (BOEC) methodology is developed to maximize the

vehicle mobility and the energy saving benefit by optimizing the vehicle coordination and motion

planning methodologies. For the on-ramp scenario, the first-level edge computing is applied to the

road side unit (RSU) that collects data from the connected vehicle. Additionally, this first-level

edge computing can dynamically assign each vehicle an associated cluster group based on its state

and potential merging conflict, and it also periodically solves their optimal scheduling sequence

and arrival time at the merge bottleneck for the clustered vehicles. Once the clustered vehicles re-

ceive their assigned arrival time at the merge point, the second-level edge computing determines the

optimal vehicle trajectory to guarantee vehicles meet the assigned arrival time with the minimum

energy cost. It is shown that the computational cost of vehicle trajectory planning approaches can

satisfy the objective of the real time performance and can significantly reduce energy consumption

and average travel time.

7.2 Selected Paper and Patent Coverage

The research work presented in this dissertation has resulted in the following publications:

1. F. Ye, P. Hao, X. Qi, G. Wu, K. Boriboonsomsin, and M. J. Barth, “Prediction-based Eco-

approach and departure at signalized intersections with speed forecasting on preceding vehi-

cles," IEEE Trans. Intell. Transp. Syst., no.4, vol.20, pp.1378-1389, 2019.

2. F. Ye, J. Guo, K.-J. Kim, P. Orlik, H.-J. Ahn, S. D. Cairano, and M. J. Barth, “Bi-level Optimal

Edge Computing Model for On-ramp Merging in Connected Vehicle Environment," in Proc.
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30th IEEE Intell. Vehicles Symp. (IV’19), Paris, France, 2019.

3. F. Ye, P. Hao, G. Wu, K. Boriboonsomsin, and M. J. Barth, "An Advanced Simulation Frame-

work of an Integrated Vehicle-Powertrain Eco-Operation System for Electric Buses,"in Proc.

30th IEEE Intell. Vehicles Symp. (IV’19), Paris, France, 2019.

4. G. Wu, F. Ye, P. Hao, D. Esaid, K. Boriboonsomsin, and M. J. Barth,"Deep Learning-based

Eco-driving System for Battery Electric Vehicles," in the National Center for Sustainable

Transportation Publications, May 2019.

5. Z. Zhao, Z. Wang, G. Wu, F. Ye, and M. J. Barth,"The State-of-the-Art of Coordinated Ramp

Control with Mixed Traffic Conditions," in Proc. 22st Int. IEEE Conf. Intell. Transp. Syst.

(ITSC), Auckland, New Zealand, 2019, under review.

6. F. Ye, G. Wu, K. Boriboonsomsin, Matthew J. Barth, S. Rajab, S. Bai, “Development and eval-

uation of lane hazard prediction application for connected and automated vehicles (CAVs),"

in Proc. 21st Int. IEEE Conf. Intell. Transp. Syst. (ITSC), Maui, HI, 2018, pp. 2872–2877.

7. F. Ye, P. Hao, X. Qi, G. Wu, K. Boriboonsomsin, and M. J. Barth, “Prediction-based Eco-

approach and departure strategy in real traffic environment," in Proc. Transp. Res. Board

96th Annu. Mtg., Washington, DC., 2017.

8. F. Ye, G. Wu, K. Boriboonsomsin, Matthew J. Barth, “A hybrid approach to estimating electric

vehicle energy consumption for Eco-driving applications," in Proc. 19th Int. IEEE Conf.

Intell. Transp. Syst. (ITSC), Rio de Janeiro, Brazil, 2016, pp. 719–724.

The commercialization office of UC Riverside and Honda R&D America Inc. have jointly

filed a patent application for the proposed Lane Hazard Prediction (LHP) application described
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in Chapter 5. In addition, Mitsubishi Electric Research Laboratories (MERL) has filed a patent

application for the work in Chapter 6.

7.3 Future Work

While this dissertation has presented contributions to various aspects of integrating predictive mod-

els with energy-efficient driving algorithms, and it has also addressed concrete challenges in the

mixed traffic and anomaly traffic in connected vehicle environments, there are still several direc-

tions in which further research could be conducted that built upon the results presented in this work.

· Predictive Powertrain Optimization

The several different predictive models proposed in this dissertation are all developed and in-

tegrated for improving the performance of vehicle dynamics. The future work will be focused

on integrating the prediction on preceding traffic with the powertrain-level optimization. The

energy efficiency is expected to be further improved with the help of this predictive powertrain

optimization.

· Vehicle Future Trajectory Prediction Considering Social Interactions

The several predictive models of vehicles’ future motion presented in this dissertation are all

developed based on a sequence-to-sequence modeling approach, in which the future trajectory

prediction of a vehicle is based on its historical trajectory and some scene context. This can

be further improved by considering the traffic context and interactions between vehicles that

also affect the motion of vehicles in traffic.
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