
UCLA
UCLA Previously Published Works

Title
Using mobile phone data to reveal risk flow networks underlying the HIV epidemic in 
Namibia

Permalink
https://escholarship.org/uc/item/4vh9m7h3

Journal
Nature Communications, 12(1)

ISSN
2041-1723

Authors
Valdano, Eugenio
Okano, Justin T
Colizza, Vittoria
et al.

Publication Date
2021

DOI
10.1038/s41467-021-23051-w
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vh9m7h3
https://escholarship.org/uc/item/4vh9m7h3#author
https://escholarship.org
http://www.cdlib.org/


ARTICLE

Using mobile phone data to reveal risk flow
networks underlying the HIV epidemic in Namibia
Eugenio Valdano 1, Justin T. Okano1, Vittoria Colizza2, Honore K. Mitonga 3 & Sally Blower 1✉

Twenty-six million people are living with HIV in sub-Saharan Africa; epidemics are widely

dispersed, due to high levels of mobility. However, global elimination strategies do not

consider mobility. We use Call Detail Records from 9 billion calls/texts to model mobility in

Namibia; we quantify the epidemic-level impact by using a mathematical framework based on

spatial networks. We find complex networks of risk flows dispersed risk countrywide:

increasing the risk of acquiring HIV in some areas, decreasing it in others. Overall, 40% of

risk was mobility-driven. Networks contained multiple risk hubs. All constituencies (admin-

istrative units) imported and exported risk, to varying degrees. A few exported very high

levels of risk: their residents infected many residents of other constituencies. Notably, pre-

valence in the constituency exporting the most risk was below average. Large-scale networks

of mobility-driven risk flows underlie generalized HIV epidemics in sub-Saharan Africa. In

order to eliminate HIV, it is likely to become increasingly important to implement innovative

control strategies that focus on disrupting risk flows.
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Twenty-six million people live with HIV-infection in sub-
Saharan Africa (SSA)1. In this region, HIV epidemics are
generalized and populations are highly mobile2–4. How-

ever, global HIV elimination strategies do not take mobility into
consideration. Multiple phylogenetic and epidemiological
studies5–12 of HIV in SSA have shown the importance of mobility
for the dispersal of HIV, and the effect of mobility on HIV
transmission. Individuals travel and have sex partners who live
outside their home communities. Therefore, high levels of mobi-
lity can change who is at risk of infection, who transmits infection
and where transmission occurs. Due to the difficulty of collecting
data on mobility at a large spatial scale, previous studies5–12 have
focused on small geographic areas. Here, we study the impact of
mobility on a high-prevalence HIV epidemic in SSA at the
national level. We use a large-scale mobility network (constructed
using Call Detail Records (CDRs) from mobile phones) that spans
an entire country: Namibia (Fig. 1a). Worldwide, Namibia has one
of the worst HIV epidemics; in 2017, the most recent survey found
HIV prevalence to be ~15% in women and ~8% in men 15–49
years old13. HIV treatment has been rolled out in all countries in
sub-Saharan Africa, and coverage levels are now high13–15. The
effect of HIV treatment on transmission is now well known16–18.
Here, our objective is to obtain an understanding of the effect of
mobility on HIV transmission. Therefore, we conduct a retro-
spective analysis, and evaluate the effect of mobility on Namibia’s
HIV epidemic a decade ago, before HIV treatment was widely
available. Our results lead to a new conceptual understanding of
the dynamics of generalized HIV epidemics in SSA. We discuss
the importance of our results for guiding current HIV elimination
strategies.

Namibia has a population of ~2.5 million people, and the
second lowest population density in the world. The country is
divided into three administrative levels: 14 geographic regions, 54
provinces, and 121 constituencies. Due to its economy, Namibia
has a highly mobile population. The economy is heavily depen-
dent on mining, fisheries, large-scale farming and high-end
tourism19. This has led to a system of circular migration of labor
to mines, ports, farms, urban areas, and tourism nodes. Both
women and men move around the country seeking employment;
the most recent data show that ~70% of Namibians, 15 years or
older, are economically active19.

CDRs have an unmatched potential to measure population
movements, and have been shown to be a key tool for retro-
spective analysis20. Over the past decade, CDRs have increasingly

been used in health research20–31; particularly to model the geo-
graphic spread of infectious diseases32, most recently SARS-CoV-
222,28. In these studies, population mobility networks are modeled
by using algorithms to aggregate large datasets of CDRs into
Origin-Destination (OD) matrices. The CDRs that we use have
previously been used by Ruktanonchai and colleagues to evaluate
the impact of mobility on malaria transmission in Namibia29, and
to design novel malaria elimination strategies30,33. We use the OD
matrix that they constructed34; it contains aggregated CDRs from
9 billion calls/texts made from 1.19 million unique SIM cards over
a 12-month period (October 2010 to September 2011) in
Namibia29. The CDRs had been aggregated using an algorithm
that accounts for the time spent by each individual in each con-
stituency. In the OD matrix, rows specify the constituencies where
individuals live, columns specify the constituencies they visit, and
the entries/coefficients in the matrix specify weights. The weights
are estimates of the average amount of time residents of one
constituency spent in another constituency over 1 year. It is not
possible to construct gender-specific OD matrices, because CDRs
are collected anonymously. Therefore, we used the same OD
matrix for both genders. To check whether this was an appropriate
assumption we conducted two analyses. First, we determined
whether one gender was more likely than the other to have owned
or used a mobile phone. Second, we determined if there were
gender differences in travel behavior.

A mobility network based on CDRs only reflects the mobility
of individuals who use mobile phones. By 2012, 93% of Nami-
bians (18 and older) were using mobile phones; therefore, the
mobility network that we use reflects the mobility of a very high
percentage of the population. Namibians who did not use mobile
phones, in comparison with those who did, were more likely to
live in very rural areas, have a low level of education, be unem-
ployed, and older than 55. The movements of these individuals
(who constitute 7% of the population) are not included in the
mobility network. Conversely, the movements of some non-
residents (e.g., tourists or business travelers)—if they had bought
a local SIM card—are included in the mobility network. Given
that Namibia had a population of 1.34 million individuals (15 or
older)35 and a very high percentage of the population were using
mobile phones (with some owning more than one SIM card36),
relatively few of the 1.19 million SIM cards in the database would
have been owned by non-Namibians. Consequently, the move-
ments of non-residents would have had little effect on the
mobility network.

Fig. 1 Geography of Namibia and mobility network. aMap of Namibia. Red dots indicate main cities and towns. The names of the five largest cities appear
in black. Region names appear capitalized in orange. Names of bordering countries appear in orange in bold. National park areas are indicated in green,
water bodies in light blue. National borders appear in black. Main road (thick) and secondary roads (thin) are indicated in brown. b Map of mobility
network, constructed from CDRs, based on an OD matrix constructed by Ruktanonchai and colleagues34. Red lines show travel between constituencies.
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We use an approach based on modeling spatial networks to
determine the effect that mobility had on the risk of acquiring,
transmitting, and dispersing HIV in the time before treatment
was made widely available. We conceptualize HIV epidemics as
spatial networks consisting of communities that import and/or
export risk; communities are interconnected by groups of indi-
viduals moving, on a temporary basis, between them. Mobility is
specified by the OD matrix. A community imports risk if their
residents are at-risk of being infected with HIV by residents of
other communities. Risk can be imported into a community by
either of two mechanisms: (i) their uninfected residents visit other
communities and acquire HIV, or (ii) HIV-infected residents of
other communities visit and transmit HIV. The greater the flow
of imported risk to a community, the more vulnerable the com-
munity is to the risks posed by the other communities. The most
vulnerable communities are called in-flow risk hubs. A commu-
nity exports risk if their residents have the potential to infect
residents of other communities. Risk can be exported from a
community by either of two mechanisms: (i) their HIV-infected
residents visit other communities and transmit HIV, or (ii)
uninfected residents of other communities visit and acquire HIV.
The greater the flow of exported risk from a community, the more
“risky” the community is to the other communities. The most
risky communities are called out-flow risk hubs.

In our spatial network modeling framework, each node
represents a constituency, and each link represents a mobility-
driven risk flow between two constituencies. Risk flows are gen-
der-specific: the risk of acquiring HIV for women depends upon
the prevalence of HIV in men, and the risk of acquiring HIV for
men depends upon the prevalence of HIV in women. Our fra-
mework enables us to quantify and visualize countrywide net-
works of mobility-driven risk flows, determine the drivers of risk
flows, detect in-flow and out-flow risk hubs, and find the geo-
graphic location of every risk hub in Namibia. The residents of
constituencies that are in-flow risk hubs are at the greatest risk of
acquiring HIV from individuals, who live outside their con-
stituency. The residents of constituencies that are out-flow risk
hubs have the highest probability of transmitting HIV to indivi-
duals, who live outside their constituency. A mathematical
description of the spatial risk flow networks is given in the
methods.

Results
Gender and mobility. We did not find gender differences among
adults in Namibia in the ownership of mobile phones (84.3%
(women), 84.2% (men)), the usage of mobile phones (93.0%
(women), 92.8% (men)), or in the frequency of phone calls and
texting (Supplementary Table 1). We did find that women (15–49
years old) were slightly less likely to have taken overnight trips
than men: 37% of women versus 43% of men (Supplementary
Table 2). However, similar proportions (18%) of each gender took
trips that lasted for more than a month.

The effect of mobility on changing risk. The mobility network
(Fig. 1b, which is a visualization of the OD matrix), shows that
the population of Namibia was highly mobile, and both short and
long distance trips were common. On average, residents spent
2.6 months per year outside their home constituency between
October 2010 and September 2011, although there was con-
siderable geographic variation, ranging from approximately
1–6 months (Fig. 2a and Supplementary Fig. 1). As a result of the
specific travel patterns, many of the constituencies were highly
connected (Fig. 1b). In 2010, there were 107 constituencies in
Namibia; 11 of these are not represented in the mobility network

because, due to a low population density, they lacked cell phone
towers.

To conduct our analyses, we needed to estimate the prevalence
of HIV in women and men at the approximate time that the
CDRs were collected. However, the first estimate of HIV
prevalence in Namibia, based on a representative sample of the
population, was based on data collected in 201337. At that stage of
the epidemic, HIV prevalence was relatively stable38. Therefore,
we made the parsimonious assumption that prevalence did not
change substantially between 2010 and 2013. In 2013, the average
prevalence in women and men (aged 15–49 years old) was 17 and
11%, respectively37. However, there was considerable geographic
variation: ranging from 6 to 39% in women (Fig. 2b), and from 0
to 24% in men (Fig. 2c). Notably, the prevalence patterns were
considerably different for men and women.

The connectivity-prevalence matrix (Fig. 2d) shows the effect
that the mobility network (Fig. 1b) had on changing the risk of
acquiring HIV for men. Data below the diagonal show the
proportion of men who spent time in constituencies, where the
prevalence of HIV in women was higher than in their home
constituency; these men potentially increased their risk of
acquiring HIV. Data above the diagonal show the proportion of
men who spent time in constituencies, where the prevalence in
women was lower than in their home constituency; these men
potentially decreased their risk of acquiring HIV. Data along the
diagonal show the proportion of men who spent the majority of
their time in their home constituency, and in other constitu-
encies, where prevalence in women was similar to that in their
home constituency. The level of risk for these men essentially did
not change. We found similar results for women (Supplementary
Fig. 2). Taken together, our results imply that there were
substantial mobility-driven risk flows, for both genders, among
different areas of Namibia in the time before treatment was
widely available.

Risk flow networks: risk importation. We found that all con-
stituencies imported risk to some degree. Imported risk for
men, and the mechanism by which it was imported, is shown in
Fig. 3a: orange data show the risk that was imported into each
constituency due to travel by its uninfected male residents,
green data show the risk that was imported into each con-
stituency due to visits from HIV-infected women, who lived in
other constituencies. Stacked values (orange plus green data)
show the total amount of risk that was imported into each
constituency. Constituencies in Fig. 3a are ordered based on
HIV prevalence in women: from the lowest (6%) to the highest
(39%). Supplementary Fig. 3 shows similar results, as in Fig. 3a,
for women.

We defined in-flow risk hubs as constituencies that were in the
top 40% of constituencies in terms of imported risk: 38
constituencies were risk hubs. Each risk hub has a different
amount of risk flowing into it; the greater the in-flow of risk, the
more important the constituency is as a risk hub. Some
constituencies (e.g., Oshakati East: blue dot, Fig. 3a) were in-
flow risk hubs for men, primarily because they were visited by
HIV-infected women who lived in other constituencies (green
data). Other constituencies (e.g., Kongola: red dot, Fig. 3a) were
in-flow risk hubs for men, primarily because of travel by their
uninfected male residents (orange data).

The in-flow risk network for men in Oshakati East (Supple-
mentary Fig. 4) shows which constituencies the female visitors
were from, and the magnitude of the in-flow of risk from each
constituency. Risk was imported because many of the female
visitors were from constituencies, where HIV prevalence in
women was higher than in Oshakati East.
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Fig. 2 Spatial relationships for mobility and HIV prevalence. a Cartographic map showing the average proportion of time (over a year: 2010–2011)
residents spent outside their home constituencies. b HIV prevalence map showing geographic variation in prevalence in women (15–49 years old) at the
level of the constituency in 2013. c HIV prevalence map showing geographic variation in prevalence in men (15–49 years old) at the level of the
constituency in 2013. d Matrix showing the proportion of time (over a year) that men in Namibia spent in each prevalence “class”, as a function of the
prevalence class of their home constituency. Prevalence refers to prevalence in women. The matrix is color-coded to show the fraction of time spent in the
destination constituency. A logarithmic scale is used, ranging from 0.1 to 100%.

a) b)

Fig. 3 Importation of risk. a Histogram showing the importation of risk for men into each constituency. The y-axis shows the value for imported risk; a
mathematical definition of imported risk is given in the methods (Eq. 5). The numbers on the x-axis refer to specific constituencies; the key code is given in
Supplementary Table 4. Constituencies are ordered by increasing HIV prevalence in women: from 6 to 39%. The constituency of Oshakati East is labeled with a blue
dot, the constituency of Kongola with a red dot. Orange data show the risk for men that was imported into each constituency due to travel by their uninfected male
residents. Green data show the risk for men that was imported into each constituency due to visits from HIV-infected women, who lived in other constituencies. The
stacked value represents the total amount of imported risk. b Chord diagram showing the in-flow risk network for men in Kongola; the lines represent risk
importation due to uninfected male residents of Kongola visiting other constituencies. The thickness of the lines is proportional to the amount of imported risk.
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The in-flowrisk network for men in Kongola (Fig. 3b and
Supplementary Fig. 5) shows which constituencies its male
residents visited, HIV prevalence in women in those constitu-
encies, and the magnitude of the in-flow of risk from each
constituency. Even though prevalence in women in Kongola was
extremely high (26%), risk was imported because male residents
of Kongola visited a constituency (Katima Muliro Urban), where
prevalence in women was even higher, 39% (Fig. 3b).

Risk flow networks: risk exportation. We found that all con-
stituencies, as well as importing risk, exported risk to some
degree. Exported risk for men, and the mechanism by which it
was exported, is shown in Fig. 4a: orange data show the risk (for
men) that was exported from each constituency due to visits from
uninfected men who lived in other constituencies, green data
show the risk (for men) that was exported from each constituency

due to travel by their HIV-infected female residents. Stacked
values (orange plus green data) show the total amount of risk (for
men) that was exported from each constituency. Constituencies
in Fig. 4a are in the same order as in Fig. 3a. Supplementary Fig. 6
shows similar results, as in Fig. 4a, for women.

We defined out-flow risk hubs as the top 40% of constituencies
in terms of exported risk: 38 constituencies were risk hubs. Each
risk hub has a different amount of risk flowing out of it; the
greater the out-flow of risk, the more important the constituency
is as a risk hub. Notably, only a few out-flow risk hubs exported a
great deal of risk. Windhoek West (blue dot, Fig. 4a) was the most
important exporter of risk for men, even though prevalence in
female residents of Windhoek West was well below the national
average (12% vs. 17%). Windhoek West was the most important
out-flow risk hub, because it was a very important mobility hub
and many of the male visitors to Windhoek West were from
constituencies, where prevalence in women was lower than 12%.

a) b)

c) d)

Fig. 4 Exportation of risk. a Histogram showing the exportation of risk for men from each constituency. The y-axis shows the value for exported risk; a
mathematical definition of exported risk is given in the methods (Eq. 5). The numbers on the x-axis refer to specific constituencies; the key code is given in
Supplementary Table 4. Constituencies are ordered as in Fig. 3a. The constituency of Windhoek West is labeled with a blue dot, the constituency of Rundu
Urban with a red dot. Orange data show the risk for men that is exported from each constituency due to visits from uninfected men who lived in other
constituencies. Green data show the risk for men that is exported from each constituency due to travel by their HIV-infected female residents. The stacked
value represents the total amount of exported risk. bMap showing the out-flow risk network for men; risk is due to HIV-infected female residents of Rundu
Urban (represented by the red dot) visiting other constituencies. c Chord diagram showing the out-flow risk network for men; risk is due to uninfected male
residents of other constituencies visiting Windhoek West. d Map showing the out-flow risk network from Windhoek West (red dot). The thickness of the
orange lines is proportional to the amount of exported risk.
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Rundu Urban (red dot, Fig. 4a) is an example of an out-flow
risk hub for men where risk was exported due to the travel
behavior of their HIV-infected female residents (green data).
Rundu Urban (Fig. 4b) exported risk to many constituencies, near
and far; risk was exported because prevalence in women in Rundu
Urban was much higher (26%) than in the constituencies the
women visited. Other constituencies (e.g., Windhoek West) were
out-flow risk hubs for men, primarily because they were visited by
uninfected men who lived in other constituencies (orange data).
The out-flow risk network from Windhoek West (Fig. 4c, d)
shows which constituencies the male visitors were from, HIV
prevalence in women in those constituencies, and the magnitude
of the out-flow of risk to each constituency.

Mobility-driven risk of acquiring HIV. We used our risk flow
networks to calculate the average overall annual risk of acquiring
HIV in Namibia, subdivided into three components: risk due to
localized transmission in an individuals’ home constituency, risk
due to visiting other communities, and risk due to residents of
other communities visiting an individuals’ home constituency.
We define localized transmission as transmission between resi-
dents of the same constituency, when they are in their home
constituency. We found that the majority of the risk (60%) was
due to localized transmission, 25% of the risk was due to visiting
other communities, and 15% of the risk was due to residents of
other communities visiting an individuals’ home constituency.
Overall, ~40% of the total risk was due to mobility-driven
transmission. We obtained similar results for men and women.

Identifying the geographic location of risk hubs. Figure 5a
shows the geographic location of all out-flow risk hubs. The red
data show the top 10% of constituencies in terms of exported risk,
i.e., the most important out-flow risk hubs. Five of these risk hubs
are constituencies that are very close together in the central part
of the north, the other five risk hubs are widely dispersed
throughout the country.

Figure 5b shows the geographic location of all in-flow risk hubs
in Namibia. The red data show the top 10% of constituencies in
terms of imported risk, i.e., the most important in-flow risk hubs.
Several of the important in-flow risk hubs are close to important
out-flow hubs in the central part of the country in the north, and
in the Zambezi region in the northeast. Notably, two constitu-
encies are very important as both in-flow and out-flow risk hubs:
Oshakati East and Ondangwa, neighboring constituencies in the

north (the only constituencies shown in red in both Figs. 5a
and 5b).

Discussion
The effect of treatment on generalized HIV epidemics in SSA is
well known16–18. Previous studies have made important con-
tributions to our understanding of the impact of mobility on
transmission at the community level5–12. However, very little is
known about the effect of mobility—at the population level—on
these generalized epidemics. Here by reconstructing the state of
the HIV epidemic in Namibia a decade ago (before treatment was
widely available) and using CDRs to model population-level
mobility, we were able to evaluate the effect of mobility on an
HIV epidemic at the national-level. Using a modeling framework,
we discovered that a combination of high levels of mobility,
substantial geographic variation in prevalence, and specific travel
patterns, had generated complex risk flow networks that spanned
Namibia. The networks dispersed risk throughout the country:
increasing risk in some areas, decreasing risk in others. All con-
stituencies were vulnerable to the in-flow of risk, some more than
others. Some risk flows were between constituencies that were
close together, others were between constituencies that were
geographically very far apart. All constituencies posed some
degree of risk to other constituencies. A few constituencies were
extremely risky; the most risky was Windhoek West, where
prevalence was slightly less than the national average. Our results
show that mobility has been extremely important for the acqui-
sition, transmission, and dispersal of HIV in Namibia: overall,
~40% of the total risk of acquiring HIV was driven by mobility.
More importantly, taken together, our results provide a new
conceptual understanding of generalized HIV epidemics in SSA:
i.e., they should be understood as large-scale complex networks of
mobility-driven risk flows. Our results imply that, to eliminate
HIV, it will be essential to design new control strategies that focus
on disrupting these risk flows.

Many other countries in SSA have similar characteristics to
Namibia: substantial geographic variation in the prevalence of
HIV, a highly mobile population, and circular migration.
Therefore, spatial risk flow networks are likely to exist in these
countries, and throughout SSA. Networks will be country-spe-
cific: they will depend upon the mobility level of the population,
the geographic variation in HIV prevalence, and the degree to
which travel patterns link high-prevalence and low-prevalence
areas. The importance of mobility on HIV epidemics can be
expected to vary by country39,40.

a) b)

Fig. 5 Geographic location of risk hubs. aMap showing the risk hubs for exported risk, i.e., the out-flow risk hubs. The top 10% of constituencies, in terms
of exported risk, are shown in red. The next 10% are in yellow, the next 10% in light purple, and the next 10% in blue. b Map showing the risk hubs for
imported risk, i.e., the in-flow risk hubs. The top 10% of constituencies, in terms of imported risk, are shown in red. The next 10% are in yellow, the next
10% in light purple, and the next 10% in blue.
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HIV treatment both increases survival, and prevents onward
transmission16–18. HIV treatment in Namibia, as in other coun-
tries in SSA, was rolled out based on geographically targeting
high-prevalence areas41; high-prevalence areas are defined as
Hot-Spots. Hot-Spots were disproportionally allocated treatment.
This targeting strategy was based on two assumptions, that: (i)
risk was localized, and (ii) the highest prevalence areas were the
areas of greatest risk. However, we have found that these two
assumptions did not hold in Namibia; a substantial proportion
(40%) of the risk was not localized, and high-risk areas (e.g.,
Windhoek West) were not always high-prevalence areas. There-
fore, the geographic targeting strategy that was employed did not
target several of the areas in Namibia, where the risk of acquiring
and transmitting HIV was the greatest.

Our results provide qualitative insights into the effect that
treatment had on the Namibian epidemic. Treatment would have
disrupted the risk flow networks. In the targeted high-prevalence
areas that were important out-flow risk-hubs, the structure of the
risk flow networks would have spatially dispersed the beneficial
effect of treatment on reducing transmission. This would have
decreased both localized transmission and transmission in many
other constituencies in Namibia. In the targeted high-prevalence
areas that were not important out-flow risk-hubs, only localized
transmission would have decreased.

Our results have important policy implications for the design of
HIV elimination strategies in Namibia. The country has made
considerable progress in controlling its HIV epidemic. Progress
has been the result of political leadership, an effective community-
centered approach to interventions, and the strategic expansion of
treatment services. There are many preventative modalities that
are currently being used successfully in HIV interventions in
Namibia: e.g., pre-exposure prophylaxis, medical circumcision,
and condoms41. The Government began nation-wide imple-
mentation of the “Treat All” policy in April 2017. This policy
recommends providing treatment to all HIV-infected individuals,
and removing treatment eligibility requirements. By 2017, the HIV
treatment program in Namibia was doing extremely well: ~83% of
all HIV-infected adults in Namibia were on treatment13, a level of
coverage among the highest in Africa42. The Government’s cur-
rent goals are to reach UNAIDS’ 2030 treatment targets for
elimination and to achieve treatment equity41 with respect to
geography, age, and gender targets (especially for young women).
UNAIDS’ goals for 2030 are to have 95% of HIV-infected indi-
viduals diagnosed, 95% of the diagnosed on treatment, and 95% of
treated patients with viral suppression43. Our new understanding
of the generalized HIV epidemic in Namibia suggests that, in
order to eliminate HIV, control strategies will need to take into
account the riskiness, and vulnerability, of constituencies. To
design effective strategies, it will be necessary to identify the
current mobility network; therefore more recent data on CDRs in
Namibia need to be collected. Then, by expanding the metho-
dology that we have presented in this study to include treatment,
the current risk flow networks and the risk hubs can be identified.
We recommend developing strategies that preferentially target the
most important in-flow and out-flow risk hubs in the country.
Within in-flow risk hubs, it is most important to target uninfected
residents; within out-flow risk hubs, it is most important to target
HIV-infected residents.

There are limitations to our study, both with respect to the data
that we have used and the assumptions that we have made. We
have made the parsimonious assumption that HIV prevalence did
not change substantially between 2010 (the year the CDRs were
collected) and 2013 (the year the prevalence data were collected).
Although this assumption cannot be verified, it is supported by the
fact that UNAIDS prevalence estimates for Namibia did not
change significantly over this three year time period38. CDRs are

always anonymized and therefore OD matrices cannot be dis-
aggregated on the basis of gender or any other demographic
factors44. In our study, as in all previous studies that have used
CDRs to model population-level mobility20–31, we assumed that
neither phone ownership, usage, or travel behavior differed sub-
stantially between genders. The data that we have presented have
shown that phone ownership and usage and length of trips did not
differ by gender. However, men traveled slightly more frequently
than women, and we do not know whether there were gender
differences in the origins and destinations of trips. Therefore, it is
possible that women and men had different mobility networks. If
true, this could potentially have changed which of the con-
stituencies were risk hubs. However, it would not have changed
our central conclusions: (i) that mobility has been extremely
important for the acquisition, transmission, and dispersal of HIV
in Namibia, and (ii) that our results present a new conceptual
understanding of generalized HIV epidemics in SSA. The CDRs
used to construct the OD matrix show that there was seasonal
variation in mobility. However, it is not necessary to model sea-
sonal changes in mobility as HIV transmission occurs throughout
the year. Even a substantial seasonal variation in transmission
would have a negligible impact (over a year) on prevalence; this is
because prevalence is an order of magnitude higher than inci-
dence. Finally, our study focuses on identifying spatial networks of
risk flows in a generalized epidemic where the vast majority of
transmission is through heterosexual sex. We have not modeled
spatial networks of risk flows among men who have sex with men.
These networks could be included in future studies.

Many countries in SSA, including Namibia, have very mobile
borders45,46, therefore it is essential to develop more complex
spatial network models that can be used to evaluate the effect of
intra-country and inter-country mobility on generalized HIV epi-
demics throughout SSA. Many in-flow and out-flow hubs in
Namibia are close to the Angolan border (Fig. 5a). HIV prevalence
along the border (in adults aged 15–49 years old) is substantially
lower in Angola (5–6%)47 than in Namibia (9–32%). This suggests
that the out-flow of risk from Namibia would have been greater
than the in-flow of risk from Angola. Consequently, Namibia would
have had more of an impact on the HIV epidemic in Angola, than
Angola would have had on the HIV epidemic in Namibia.

We propose that high levels of mobility may be reducing the
effectiveness of current epidemic control strategies in SSA.
UNAIDS’ HIV elimination strategy is based, in large part, on the
assumption that a high coverage of treatment will reduce inci-
dence to an extremely low level. Four large-scale clinical trials
were set up to test this premise: the ANRS 12249 TasP study in
South Africa48, the SEARCH study in Kenya and Uganda49, the
HPTN 071 (PopART) study in South Africa and Zambia50, and
the Ya Tsie study in Botswana51. The first three of these trials
failed to show a reduction in incidence, and the Ya Tsie study
showed a modest decrease of ~30%51. We suggest that the high
level of mobility in these countries could have been an important
factor that contributed to the failure of these trials. High inci-
dence rates in the areas of study could have been maintained due
to the importation of risk. This could have occurred due to
uninfected residents of communities in the study area visiting
communities outside the study area, or due to HIV-infected
residents of other communities visiting communities in the study
area. As HIV approaches elimination, mobility-driven transmis-
sion is likely to become increasingly important. This has already
been seen in elimination campaigns for polio52 and malaria53;
high levels of mobility have led to the continuous introduction of
new infections into areas, where localized transmission had
already been stopped or reduced to extremely low levels. Mobility
may also become a substantial barrier to the elimination of HIV
in SSA.
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Methods
Assessing gender bias in mobility. To determine whether there was gender bias
in mobile phone ownership or usage we analyzed data collected in 2012 in Namibia
in the 5th round of the Afrobarometer surveys36. To determine if there were gender
differences in travel behavior, we analyzed data (stratified by gender) from the 2013
Namibian Demographic and Health Survey (NDHS)37 on the number of overnight
trips that had been made in the previous 12 months (between 2012 and 2013), and
on the number of those trips that had lasted more than a month.

The Afrobarometer surveys are conducted in 37 African countries36. The survey
utilizes a multistage clustered stratified sampling design to generate a representative
sample of the population, 18 years and older. It collects public opinion data on a
country’s economy, governance, and society. The survey also collects data on
ownership and usage of mobile phones.

The 2013 NDHS utilized a two-stage cluster design to collect a representative
sample of Namibia’s population37; clusters were georeferenced. Demographic and
behavioral data were collected from 14,499 individuals in 9849 households.
Participants who were 15 or older were tested for HIV infection. Each individual’s
test results were linked to their demographic and behavioral data. The overall
response rate was high: 92% for women, 85% for men. Participation in HIV-testing
(in 15–49 year olds) was also high: 83% for women, 74% for men.

HIV prevalence mapping. We used data from the 7731 individuals (aged 15–49
years old) who were tested for HIV in the 2013 NDHS37 to construct the gender-
specific prevalence maps for Namibia: Fig. 2b (women) and Fig. 2c (men). Pre-
valence was estimated, and maps constructed, using R v. 3.6.3 (packages “survey”
and “sp”).

Calculating prevalence-connectivity matrices. We combined the OD matrix
with the prevalence data to construct the gender-specific prevalence-connectivity
matrices. These matrices are shown in Fig. 2d (men) and Supplementary Fig. 2
(women). Each matrix was calculated by using the data in the OD matrix to
determine the time spent in each constituency. The prevalence data for women
were used to construct the prevalence-connectivity matrix for men; the prevalence
data for men were used to construct the prevalence-connectivity matrix
for women.

Modeling spatial networks of risk flows. To model these networks, we used three
sources of data: (i) the OD matrix, (ii) HIV prevalence data37, and (iii) Census
data35. We define risk as the probability that a new sex partner, who is a resident of
constituency i, is infected with HIV. If the population is not mobile, the risk to one
gender simply equals the prevalence of HIV in the opposite gender. If the popu-
lation is mobile, risk is calculated as described below.

The effective population size ðn̂iÞ and the effective HIV prevalence ðp̂i; q̂iÞ are
calculated. The effective population size ðn̂iÞ is the expected number of individuals
present in a constituency at a given time. The effective HIV prevalence ðp̂i; q̂iÞ is the
expected prevalence of HIV in men and women, respectively, in a constituency at a
given time.

n̂i ¼ ∑
j
njAji; ð1Þ

p̂i ¼
∑
j
pjnjAji

n̂i
; ð2Þ

q̂i ¼
∑
j
qjnjAji

n̂i
; ð3Þ

where

lreli ¼ li
ri
;

ni represents the size of the resident population of constituency i.
Aij represents the average proportion of time a resident of constituency i spends

in constituency j (measured over a year); by construction ∑
j
Aij ¼ 1.

pi, qi represent the HIV prevalence in men and the HIV prevalence in women,
respectively, among the resident population of constituency i.

The total risk for women, ri, is then calculated; ri is the probability that when a
woman, who is a resident of constituency i, meets a new male sex partner, he is
infected with HIV. The total risk for women in constituency i is defined as follows:

ri ¼ ∑
j
Aijp̂j ð4Þ

The total risk can be broken down into three distinct contributions, which make
up the right-hand side of Eq. (5):

ri ¼ li þ ∑
j≠i
tFji þ vFji ; ð5Þ

where

li local risk for women. This is the probability that a woman, who is a resident
of constituency i, meets a new sex partner, she is in her home constituency, and the
partner is infected with HIV and a resident of the same constituency i.

tij risk for women due to their travel. This is the probability that a woman, who
is a resident of constituency j, meets a new sex partner while visiting constituency i,
and the partner is infected with HIV and a resident of constituency i.

vij risk for women due to travel of HIV-infected men who are residents of
other constituencies. This is the probability that a woman, who is a resident of
constituency j, meets a new sex partner in her home constituency, and the partner
is infected with HIV and a resident of constituency i.

li ¼
Aii

� �2
pini

n̂i
; ð6Þ

tij ¼ Ajip̂i; ð7Þ

vij ¼
piniAijAjj

n̂j
: ð8Þ

Note that inserting Eqs. (6, 7, 8) in Eq. (5) leads to Eq. (4). By swapping p for q
the risks for men can be calculated.

The relative impact of a risk on any specific constituency can be defined in
terms of the relative impact on the total risk:

lreli ¼ li
ri
; ð9Þ

trelij ¼ tij
rj
; ð10Þ

vrelij ¼ vij
rj
; ð11Þ

For instance, trelij = 0.3 means that 30% of the risk in constituency j comes from
constituency i, in terms of risk type t.

The risk networks are specified in terms of the flows of risk (tij and vij) between
constituencies, where constituencies are the nodes in the network. A link from
constituency i to constituency j always represents a flow of risk from constituency i
to constituency j. Constituency i increases the risk in constituency j by adding tij
and vij to rj. Clearly either tij or vij or both can be zero, if no flow of risk occurs.

The risk flow networks are weighted and directed networks. Weights are
specified in terms of the amount of risk that a link carries. The direction of risk
flows is not always the same as the direction of the mobility fluxes that generate
them. It is the same direction for v, which flows from constituency i to constituency
j through individuals going from constituency i to constituency j (see the presence
of the term Aij in Eq. (8)). It is the opposite direction for t, which flows from
constituency i to constituency j through individuals going from constituency j to
constituency i (see the presence of the term Aji in Eq. (7)). In this latter case, risk in
constituency j increases as its residents travel to other constituencies and risk
getting infected there.

Risk was calculated using Python 3 and standard libraries (numpy v1.19,
pandas v1.2).

Calculating risk importation and exportation. The in-strength of a node in a
weighted, directed network is the sum over the weights of its incoming links. We
define risk importation as the in-strength of a node in the networks. Therefore, the
risk importation into each node is:

tINi ¼ ∑
j≠i
tji; ð12Þ

vINi ¼ ∑
j≠i
vji: ð13Þ

The out-strength of a node in a weighted, directed network is the sum over the
weights of its outgoing links. We define risk exportation as the out-strength of a
node in the networks of relative impacts:

tOUTi ¼ ∑
j≠i
trelij ¼ ∑

j≠i

tij
rj
; ð14Þ

vOUTi ¼ ∑
j≠i
vrelij ¼ ∑

j≠i

vij
rj
: ð15Þ

Notably, tOUTi , vOUTi can be larger than one. For instance, if constituency i
generates 60% of type-t risk of j, and 50% of type-t risk of k, then its risk
exportation, tOUTi is equal to 1.1.

We calculated the risk flows for each node/constituency in the networks; the
values are shown in Supplementary Table 3 for women and Supplementary Table 4
for men. These values were also used to construct the histograms shown in Fig. 3a,
4a and Supplementary Figs. 3 and 6.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The 2010–2011 Namibian mobility data in the form of a geographic origin-destination
adjacency matrix are freely available at: https://doi.org/10.1371/journal.pcbi.1004846.
s00234. The 2013 Namibian Demographic and Health Survey (NDHS) data (Individual
recode and HIV test results recode) are available for non-commercial use to registered
users at: https://dhsprogram.com/data/dataset/Namibia_Standard-DHS_2013.cfm. The
2011 Namibia Population and Housing census data is freely available for non-commercial
use to registered users at: https://nsa.org.na/microdata1/index.php/catalog/19.

Code availability
Code used to carry out these analyses is available in a Github repository: https://github.
com/eugenio-valdano/namibia_hiv_risk; https://doi.org/10.5281/zenodo.465129554.
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