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ABSTRACT 

A calculation is made of the interaction of a beam of particles in an 

accelerator with the radio-frequency cavity that provides the accelerating 

mechanism of the machine. A Hamiltonian for synchrotron motion is employed 

that make a possible the simultaneoua solution of Maxwell' a equations a.n~ the 

Vlaaov equation, eo that a self-consistent distribution of particles in synchrotron 

phase space is determined. 

The effective voltage on the cavity due to the beam of charged particles 

is of the order of magnitude of the product of the total circulating current in the 

accelerator and the shunt impedance of the rf cavity. It haa the net effect o£ 

producing a total voltage on the cavity which is both less than the applied voltage, 

and shifted in phase with respect to it. The increase in the etable phase angle 

required so the particles will remain in phase with the accelerating radio 

frequency is calculated. The decrease in total voltage and increase in stable 

phase angle, result in a decrease in stable phase space available for acceleration, 

and convenient expressions are given for these quantities in terms of parameters 

of the accelerator. It ie shown that the consequences of the induced voltage may 

be alleviated by increasing the voltage applied to the cavity. 

I··. 

l·x .. 
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I. INTRODUCTION 

~ 

Aa a beam of charged particles circulates in an accelerator, it may 

pass through one or~ore radio-frequency cavities. At least one of the cavities 

is usually driven e-'Lternally and provides the accelerating electric field that 

bunches the beam azimuthally. We shall show in the following treatment of the 

interaction of a ctvarpd-particle beam with an externally driven rf cavity that 

the particles induce a periodic voltage on the cavity, which from consideration 

of Lenz • a law always opposes the particle motion. The particles lose energy to 

the induced field and must therefore shift in phase relative to the applied voltage, 

in order to gain more energy per turn. In this manner, particles that are phase-

stable adjust their net energy gain to remain in step with the applied radiofrequency. 

•This work was done under the auspicee of the U.S. Atomic Energy Commission. 

It is based in part on the thesia submitted by one author (V. K N.) to the University 

o~ California in partial fulfilment of the requirements for the Ph. D. degree in physics. 

~ 
Permanent address: Ohio State University, Columbus, Ohio. 
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The phase shift of the distribution reduces the stable phase area just as if the 

modulation rate were correspondingly increased. 

This effect has been treated by different authors. 1• 
2 

Although small in 

exiating machines. it will become a problem in accelerators with circulating 

currents of several amperes. The action of a beam passing repeatedly through 

the r£ cavity is not unlike the action of bunched electrons in a klystron. A 

periodic voltage is induced across the gap, and we shall see in the following 

treatment that this voltage can be large. The effect is enhanced because Fourier 

coefficientl of the particle distribution are large for the reeonance harmonic. 

If the cavity in question is the accelerating device, or if it is merely maintaining 

the beam (no modulation), beam and cavity are precisely in resonance. 

Transverse particle motion is neglected. We simultaneously solve 

Maxwell' a equations and the Vlasov equation, thus obtaining a self ... consistent 

distribution of particles in synchrotron phase space. In Section U we develop 

expression• for the induced voltage and effective electric field as functions of the 

Fourier components of the particle distribution in azimuth. These expressions 

are then employed in the Hamiltonian for synchrotron motion (Section IliA), and 

in Section lliB we solve the Vlasov equation for the particle distribution. The 

Hamiltonian formalism is that of Symon and Sessler, 3 and the notation closely 

follows that of Nielsen and Seesler. 4 
In Section IV we present a solution that ia 

valid when there ie no modulation of the rf, and when longitudinal space ... charge 

effects are neglected. 

The problem specified by the complete Hamiltonian is treated in Section V. 

Certain integrations that cannot be performed analytically are encountered, and 

results are given in graphical form. A simple expression is derived for the 
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ratio of applied to total voltage, which is a function of the operating parameters 

of the machine. The only parameter of the rf cavity entering into the results 

is the shunt or input impedance, which may be determined experimentally. 

Numerical examples are given in Section VC, and Section VD is devoted to the 

problem of maximizing phase flux. 

The paper is summarized in Section VI in a way that should allow the use 

of the results without a careful study of the body of the paper. 

An rf cavity will have an effect on a beam of particles even if it is not 

externally driven. The influence oi such a cavity on the stability of a coasting 

particle beam will be considered in the third paper of this series. 
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11. INDUCED VOLT AGE AND EFFECTIVE ELECTRIC .FIELD 

The rf cavity is taken to be located with the center o£ the gap at 

9 = 0. We ehall use cylindrical coordinates (r, 8, &) exclusively in this 

paper. The gap haa a width d which may be expressed in terms of the half 

angle of the gap e1 = d/Z.R, where R is the radius of the accelerator. We 

assume that the electric field E is (to good approximation) constant in r and z, 

over the region of the gap in which particles move. 

We take the beam current density c::irculating at a radius R. as 

where (&)O is the average angular frequency of the bunch. The assumption that 

the beam has negligible cro•s-sectional area is merely convenient. Becauae of 

the assumed uniformity of E. a current with a small spread in r and z would 

(Z..l} 

lead to the same results as the current given by Eq. (2.1). Expanding N ( 6 - (&)
0
t) 

in a Fourier series gives 

(Z..Z) 

The coefficients a and b are not time-dependent and may be evaluated at n n 

t = o giwin·g.: 

1 
1r 

a = f N ( 6) coa n9 dB 
n 

'It 

(Z..3a) 

1 
.'It 

b = 
ju 

N ( 6) sin n9d8 n 'R 
(Z..3b) 



-7- UCRL-9326 

The nth Fourier component ol the current at 6 = 0 is obtained from Eqs. (Z.l) 

and (Z. Z): 

(l.4) 

If the rf cavity has a natural frequency n w0 , the Fourier component 

of the current that exhibits this frequency ·mll be precisely in resonance with the 

cavity. This Fourier con'lponent will thus induce a voltage 180° out of phase with 

the current. Other Fourier components of the current will induce voltage 

components whose phase is 11ot simply related to the phase of the current. W'e 

shall consider only the voltage induced by the resonance component of the current, 

and define the sbu.nt impedance, z. of the rf cavity by Z = - V ( 9 = 0) fr (9 = 0), n rl.n 
where -V ia the voltage inducedl:by 1 . 5 Since V (8 = 0) = Eo11(8 = 0) d, where n n n u 

Ee (9 = 0) is the azimuthal electric field acroas the gap, we have 

E6 (e = o) = -
and consequently 

Ee (B = O) = -

z 
d 

I (9 = 0) n 

It should be emphasized that the cavity mode excited by the current is, in this 

calculation, the same as that being driven externally. 

We have in Eq. (Z.6) an expression for the induced electric field in terms 

of the Fourier coefficients of the particle distribution. An effective electric 

field will now be found from Eq. (Z.6) so that it may be inserted into the Vlasov 

(l.S) 

(Z. 6) 

equation to complete the calculation. Following the standard formalism, we 

decompose the electric field across the gap into standing waves around the azimuth 

of the machine. Thus we expand E8 in a Fourier series and keep only the nth 
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harmonic. Thi• Fourier decompoaition brings in a factor of Z sin n 91/ 11n which 

is approximately 29 1/" = d/wR. Thus, for the nth harmonic of the electric 

field, we have 

Zew
0 

E =-n 

The effective electric field is found bydecomposing E into traveling waves, n 

and lkeeping only the wave traveling with the particles. 

It will be convenient in what follows to introduce a new angle variable. 

Following the notation o£ Nielsen and Sessler;4 

(2.7) 

(Z.8) 

This substitution transforms the calculation into a coordinate system rotating with 

angular velocity n w0 . The arbitrary addition of n is conventional. In terms 

of this new variable our effective electric field becomes 

t:= [ a cos + + b sin ~1 . n n (Z.9) 
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III. PARTICLE DISTRIBUTION IN SYNCHROTRON PHASE SPACE 

For the remainder of this calculation, we follow closely the development 

of Ref. 4. So far, the externally-applied voltage, Y, has not entered the 

calculation. The frequency of V need not be CN0/Ztt, but will generally be an 

Uft·~a'l.J multiple n of this value, so that the cavity is operating on the nth 

harmonic of the particle circulation frequency. It is possible to decompose this 

voltage into traveling waves as was done with the beam-induced electric field. 

In this way, the abrupt loss or gain of energy by a particle as it crosses the 

cavity gap is replaced by a continuous change as the particle travels around the 

machine. We define the phase of the voltage wave such that a particle at phase 

q, gains energy at the rate eV sin 4> per turn. Clearly, from this definition, the 

angle + is the phase of the particle relative to the phase of V. If the frequency 

of the cavity fc is constant, a particle at q) = 3Tr/2 is riding the trough of the 

wave, while a particle at 4> = Tr/2. is riding the crest of the wave. For constant 

fc we shall call the particle at ' = Tr the synchronous particle. Particles at 

other phase angle + will be oscillating back and forth in the trough about the 

value q, = 1r. Modulation o£ the cavity frequency displaces the synchronous 

particle to a position +
8 

such that it gains energy at the rate eV sin cp
8 

per turn. 

The phase angles of the noneynchronous particles now oscillate about cp
8

• 
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A. Hamiltonian for ~chrotron Motion 

Follo'Wing Symon and Ses eler, 3 we define an action variable w , that is 

canoni<:ally conjugate to 

w= 

q, as 

E !" 
dE 

I 
,.~E 

f (E) 
P. 

0 

where E is the energy of the particle, and f is the instantaneous particle 
p 

frequency. The introduction of w allows us to write a single-particle 

Hamiltonian in terms of canonically conjugate variables. Each particle gains 

an amount of energy per turn given by 

6E = e V sin + + 2.11' e R e 
Since the energy gain is 

6E = f 6 w = p 
dw -
dt 

we have the first-order differential equation for w, 

dw/dt = e V sin cp + 2.n e R t 
The angle variable, + obeys the equation 

dct>/ dt = n d8 / dt :: 2. vn (f - f ) , p a 

where £
8 

is the frequency of the sync:hronoue particle. A change of variable 

(3.1) 

(3.2.) 

(3.3) 

defined by W = w - w 
8 

allows the use of a Hamiltonian for W .. + motion of the form: 

'}/,(W, 4>) = trn (f !!:_ ) W?. + e V cos + - ZweR redcp + w 
8 

4> + ?.1ren U(lfl). 
dE 

8 
j 

The last term gives the forces due to longitudinal space-charge effects. In the 

first term, !d.f/dE is to be evaluated at the synchronous energy. Thie approximate 
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form of the Hamiltonian is derived in Ref. 4, and the derivation will not be 

repeated h.ere. When Eq. (2. 9) is used, the Hamiltonian becomes 

~(W, cp) = 'lfn (f !!!_) w2 + e V cos + + w + + 21fen U(4>) 
dE 8 

s 

z 
- e w0 Z [an sin + - bn cos +1 . 

B. Solution of the Vlasov ~uation 

Having obtained a Hamiltonian in which the forc:ea are functions of the 

spatial distribution of particles, we are in a position to determine a atationary 

d.istribudom function + (W, +)that obeys the Vlaeov equation 

a -¥ .!.!:. + a~ !!. ~ = 0 • 
aw dt a <P dt 

A particular solution is a distribution ~ (W, +),~~is constant within a certain 

bounding curve Wb(cp) and zero outside. By Liouville~ s theorem, density in 

(3.4) 

(3.5) 

phaee space is a constant of the motion, which is determined in this instance by the 

injector of the machine. Although a uniform density is an idealization, it is a 

reasonably valid assumption for most injection devices. The solution may be written 

~ (W, q,) = (I a [ I wb (cp) I - jwj} • (3.6) 

in which (1 ill the number density in w - <I> space and a is the step function 

which iS unity for positive argument and zero otherwise. With this form for 

~. Eq. (3.5) yields 

6(Wb-W) [I"):/ + &?(dWb l = 0' 
. 8<f; 8 w dct> J 

which is satisfied for W + Wb. The term in brackets ie zero for W = Wb if we have 

?:1 [ Wb(+), + 1 = constant. (3. 7) 

Equation (3.4) may then be used to determine Wb(<f>), the bounding curve o£ the 

distribution of particles in synchrotron phase space. 
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IV. SOLUTION IN THE ABSENCE O.F FR.EQUENC Y MODULATION 

Before solving the complete problem specified by the Hamiltonian, 

Eq. (3.4), we shall treat a somewhat simpler situation that arises in particle 

storage rings. Consider a stationary distribution of particles in the absence 

of cavity modulation. Particle• are being held at a constant energy and not nce4i 

accelerated. The rf voltage merely provides stabilizing potential troughs and 

compensates for any energy losses. For simplicity, longitudinal space charge 

effects will be neglected here. Using Eqs. (3. 7), and (3.4), without the space-

charge and modulation terms, we have the following equation for the boundary of 

·our distribution: 

1IU (f df ) 
dE 

8 

z l 
W b + e V cos q, - e w0 Z [ a

11 
sin • - bn cos q,} = C, 

where C is a constant. For the present, we shall discuss the problem below 

(4.1) 

transition energy, where df/dE is positive. A slight modification of the treatment 

is necessary for negative d.f/dE, which will be considered subsequently. 

We define the new quantities 

(4.Z) 

where 

(4.3) 

and 

(4.4) 

Since the impedance of the cavity may be determined experimentally, we 

can now solve for Y b in terms of the operating parameters of the machine and the 

Fourier coefficients of the distribution. It will then be possible to calculate a n 

and bn as self-consistent functions of (1, K, and t by performing the integrals 

indicated in Eq. (Z.3a-b). 



'. 

·11- UCRL-93Z6 

The definitions introduced by Eqa. (4.2), (4.3) and (4.4) allow us to write 

Eq. (4.1) for the boundary curve as 

1/Z Ybl + (1 + bn t) coa + - an t sin+ = C 

or 

(4. 5) 

Constant C is selected so as to include the maximum area within the bounding 

curve. It can easUy be chosen in this simple case without resorting to topological 

methods. U the reaction of beam an4 cavity were neglected, we would have 

Yb = .ri: [ C - cos +ll/Z. The separatrix, or closed curve which includes 

maximum area, is obviously obtained by setting C equal to 1. Our distribution in 

Y .. + space is then bounded by the curve Y b = l sin +/Z. The distribution extends 

from + = 0 to + = Z w and is centered at + = w. 

When g =F 0 , we may define an angle 'l which represents the shift of 

the total voltage wave relative to the driving voltage. 

Let 

and 

a s 
n tan '1 = __,;;.;......_ 

1 + b s n 

so that u represents the phase of a partiele relative to the total voltage. By 

arguments analogous to those above we may determine C so as to obtain the 

expreasion 

- 2 2 l. 1/4 1/Z Yb(u) = I Z [ (1 + b t) + a ; l (1 cos u) • 
n n -

(4.6) 

(4.7) 



'• 

UCRL-932.6 

The distribution extends from u = 0 to u = 2 w. It has been ahiftec.t by an angle 

~ and the area has been changed by a factor [ (1 1 b s)z. + az. ~Z.ll/4• We 
·-· n n 

introduce the quantity 0 by the definition 

Thil phase shift cannot be compensated by altering the phase of V, bec:auee the 

angle 'l ia the phaae of the synchronous particle relative to the applied voltage. 

(4.8) 

It will be convenient to calculate the Fourier coefficients by integrating 

over an,gle u rather than over 8. The density u 8 of particles in (W - 8) space 

ia related to the density u in (W - +l space by u 9 = nO'. Taking this relationship 

into account, we finc:l: 

The Fourier coefficient an may then be written: 

a = ·­n ~ 

Z.na -Kw 

1r 
•.r 

I 
I 

,/ -· 

(4.9) 

Since Y b (u) is an even function, we may use the relation between u and 4» to obtain 

4n<J 
a =-- cos 'l 

n Kw ]

'If 

Y b (u) cos u du • 

0 

When Eq. (4. 7) for Y b (u) is employed, the integral is easily evaluated, with the 

result: 

By a similar manipulation, we obtaiu 

b = - (i6 n a /3K n) n112 
sin t'1 • 

n 
From Eqs. (4.11) and (4.12) we may eliminate a and b in Eqs. (4.6) 

n n 

and (4.8). We may then solve tl)e resulting simultaneous equations for (2:.' ahd 

tJ to obtain: 

(4.10) 

(4.11) 

( 4.12) 
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0 = • 1/2. B
2 + [ 1 + 1/4 .84} 1/Z 

cos '1 = 0 

B = 16na e 
3wK 

= 
16 n 0' e w0 Z 

211' KV 
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(4.13a 

(4.131: 

(4.14) 

Examination of the Hamiltonian Eq. (l.4) reveals the physical meaning of the 

phase shi!t. Eliminating space-charge and modulation terms, and using the 

definition of ~. we write: 

~(W, {I) = 1m(£~ ) w2 + e V (1 + b ~) cos + .. e V a ; sin + . 
dE n n 

(4.15) 

s 

From the equation of motto&, dW/dt = - a <7//b+, we have 

.!!. = e V ( 1 + b 6) sin + + e V a ~ cos +• 
~ n n 

(4.16) 

which is zero for the synchronous particle. Therefore, the synchrohous phase-angle 

is given by 

tan +8 = -
a t n 

1 + bn t 
= - tan '1. 

The synchronous particle gains energy from the applied rf at a rate 

6E = e V sin ( 1r .. '1) 

in order to compensate for losses to the induced voltage and maintain w at a 

constant value. 

(4.17) 

(4.18) 

From Eqa. (4. 7) and (4.13) we see that the induced voltage has the effect of 

reducing the height (and therefore the total area) of the stable region of (W - +) 

phase-space. 1/Z When this area is reduced by the factor 0 , the total number 

of particles that can be held in stable phase is also reduced by this factor. This 

number of particles can be found from 
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Nt =1 N( 8)d8, (4.19) 

which may be expressed in terms of an integral over u as 

Nt = Zna/K iv 1/2 Yb (u) du =( 16 na/K) 0 • (4.20) 

The quantity nl/2. takes on the value 1/2 when the phase is shifted by an angle 

'1 of 78°. For B = 0, 0 is unity, and 0 approaches zero as B approaches 

infinity. The phaae shift '1 approaches tr/1. in this limit, and for small values of 

B we have ~Lrsin'l.::W.. B. 

Perhaps more appropriate to storage schemes and beam stacking is the 

situation above traneition energy. When df/dE is negative, we must redefine 

Kby 

K
2 = Ztrn/ ev (£ ~) 

dE 
8 

which modifies the <y b equation so that 

- 1/Z Yb
2 

(+) + ( 1 + b t) cos cp - a t sin + = C • n n 

A tranaf:rmation + = ~ + 1r restores this expression to the original form 

z 
1/Z '!'A b ( lfJ) + (1 + b e) cos ~ - a g sin ~ = C . n n 

The analysis proceeds Just as above, with the distribution shifted in phase by an 

angle n. The stable phase area is reduced by the same factor ol/Z given by 

Eq. (4.lla-b). 

(4.21) 

(4. 22) 
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V. SPACE-CHARGE AND FREQUENCY MODULATION 

We now turn our attention to the complete Hamiltonian of Eq. (3.4). 

Although we could proceed analytically in Section IV, we must resort to 

numerical computations in the general case. A limitation on the validity of the 

treatment arises from the fact that, when longitudinal space-charge effecu are 

included, the theory is valid only below the transition energyj this failure is 

discussed in detail in Ref. 4. When the apace-charge term is neglected (as 

in certain special cases below), the theory is also valid for elf/dE negative. 

Although apace-charge effects constitute a problem separate from the cavity 

interaction, they are included in order to present a complete theory. 

A. Equation for the Seeratrix 

_Again following Ref. 4, we replace the term Z 1r enU(+) in Eq. (3.4) by the 

approximate expression 4wez nz a g I W(q>)I/R, where g = 1 + lJn (Z Ci/wa). The 

subscript b will be omitted in the remainder of this paper, it beina uncleratoocl that 

W and Y always refer to values on the boun4ary. The cross-sectional radius 

of the beam, a, enters the calculation only t~rough the factor g. The height of 

the accelerator vacuum tank ia here indicated by Q in order to conform to the 

notation of Ref . .£. With this alteration, the complete Hamiltonian of Eq. (3~4) 

becomes 

qjr W(+). 4'1 = 1fn (f . df ) w2 + w
8 

+ + e v (1 + b ~) cos + 
~ dE n 

8 

·eVan~•incp+4we2nzug IWI/R. (,.1) 

Evidently the phale shift '.1 may be defined as in the previous section by Eq. (4.6). 
I 

~~, In terms of 'l and 0 as defined by Eq. (4.8), the Hamiltonian takes the form 

Hi W'(cj>). +l 
eVO 

= ~(£ df )2 
eVil dE s 

with u again equal to (cp + 'l). 

·~} 

W'" 

~--·'--. evn 

2 2 
(u-;)+cosu+ 4 1re wag 

eV n R 
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We see that 0 represents the ratio of the total peak voltage on the 

cavity to the peak voltage, V, in the absence of the beam. It turns out that this 

calculation is most easily carried out in terms of V t = a V, which yields expressions 

for 0 and 1'1 as functiona of Vt and the operating parameters of the machine. 

Using V t as an independent variable is logical as well as convenient, since it is 

certainly the quantity of physical intere1t. However, tbil procedure necessitates 

one change in notation, namely we must redefine K as 

(£ .!!! ) 
d.E 

8 

and introduce two new quantities: 

1/Z 

and 

r= 
eVt 

Space-charge effecu are completely contained in A, while r contains the 

frequency modulation. These definitions allow us to write the equation for the 

boundary of the stable-phase area in the convenient form 

&1/l yZ (u) + {7 A I y (u) I + C08 u + r u = c. 

(5.3) 

(5.4a) 

(5.4b) 

Solving for Y results in 

Y = /"Y fA + ( A Z + C - coo u - r u} l/Z} (5.5) 

The evaluation of the constant C is not as simple aa before. There are two 

values of u for which dY/du vanishes £or any value of the constant. These are 

with 

Tr/1. < u < w , 
I (5.6) 
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and u 1 = 1r - u
8

• The first of these represents the phase of the synchronous 

particle, while u 1 gives one extreme of the stable-phase region. The value of 

the constant that gives the separatrix is then found by setting Y (u1) equal to 

zero. The value obtained in this manner is C = cos u 1 + r u 1• For A = 0, 

dY/du is undefined at u 1, but for non-zero b. the separatrix has zero slope at 

this point. The other end of the stable phase region is located at u 2 > u
8 

such 

that COS Uz + r Uz ::: COS u 1 + r u 1. At u 2, the Separatrix hae finite slope if 

A is different from zero. Parenthetically, the ends of the stable-phase region 

have peculiar shapes that are due to approximations in the apace-charge theory. 

Space-charge effects at the ends of the bunch are not accurately treated. 

We now see that the energy gain per turn is independent of 0. From the 

equation of motion, F.q. (3. Z), we have for the synchronous particle in the absence 

of induced voltage .fr
8 

= eV sin +so in which +so ia the synchronous phase angle 

U' the induced electric field is zero. We then define r O = sin +10 = w
8
/eV. 

When the induced electric field is included in the Hamiltonian, it can be shown that 

" = e Vt sin u , • s (5.7) 

which because of Eqs. (5.4b) and (5.6) and ~he relation Vt ::: av, is just equal to 

eV sin +ao· This result is not surprisingg because otherwise the particles would 

soon be completely out of phase with the external voltage and no stationary distribution 

could exist. The maximum total number of particles in the accelerator ia 

-
appreciably affected by 0, and thus the total phase flux changes. This quantity i8 

defined by 

:f = Nt "s ' (5.8) 

and will be discussed in more detail later. 
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B. Phase Shift. and Total Volta@e 

Although explicit analytic expressions for an and bn cannot be found 

in this general case, we can o~ain simple expressions !or Sl and. 'l in terms 
; 

oi two integrals. From Eq. (Z. 3a .. b) we can again derive 

and 

b =­n 
ln u -
K'ft' 

[ Y l+l sin+ do(> 

-'If 

The integrals are functions of A and I' and cannot be performed analytically. 

If we introduce the quantities I A (for later use), 15 • and Ic by these definitions: 

IA(r,A) = jz{-A ~[A 2 
+coo u1 + ru1- cos u- ru 1/z]} du; 

ul 

ls (r, A) = £2 
{- A + [A 

2 + coa u 1 + I\',1 - coo u • ru 1 /Z J } sin tt d.u; 

ul 

Ic (r.A) = !2 
{.A+ [ JA.

2 + co• u1 + ru1 - cos u- ru]
1
fz_}coo u du; 

ul 

(5.9) 

(5.10) 

we may expresa an and bn in terms of IC and 15. These integrals have been 

evaluated numerically and are plotted in Figs. 1. Z, 3, and 4. Our definition of IA 

differs from that of Ref. 4 by a !actor z -lIZ • 
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In terms of these quantities we have 

a = -n 
l(}nu 
Kn 

b = ... z. fT n a ( - sin 'l Ic + cos 11 15) • 
n K 11' 

Proceeding as in the previous section we may solve to obtain 

0 = [(DIS+ 1)1. + Dz.lc21 -1/Z 

and 

where 

Die 
tan f1 = -

Dis+ 1 

z.fYee Col.lo z n (J 

D = = za w0 z 
n KVt 

UCRL-93Z6 

When r and A are zero, we have Is = 0 and Ic = - (4/3)y'T. 

These results reduce to Eq. (4.13a- b) in this limit. If r is not zero, the angle 

(5.11) 

(5.1Za) 

(5.1Zb) 

(5.13) 

1'1 still represents the difference in phase between the total voltage and the applied 

voltage. There is no simple relationship such aa Eq. (4.18) between 11 and the 

energy-gain per turn. Instead, the energy-gain per turn is not affected by the 

~u-ded voltage. From Eq. (5.1Za) we have the ratioL Vt/V as a function of Vt. 

We might then choose a desired value for the total voltage and stable-phase angle 

from which r and A can be calculated. Then from Eq. (5.1 Za), together with 

the graphs of Ic and 15 • we may determine the necessary applied voltage. A 

criterion for selecting the stable phase angle will be given shortly. 
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r 
MU-19918 

Fig. 1 . The Fourier cosine transform Ic (r, .A) of the 
stable phase region (Eq. 5.10) as a function of r 
which characterizes the rate of frequency modulation 
for A= 0, 1 and 2, where A characterizes the effect 
of longitudinal space charge. 
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r 
MU-19919 

Fig. 2. The Fourier cosine transform Ic (r ,A) of the stable 
phase region (Eq. 5.10} as a function of r which 
characterizes the rate of frequency modulation for 

A = 3, 4, 5, 6, 7, and 8, where A characterizes the 
effect of longitudinal space charge. 
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r 
MU-19920 

Fig. 3. The Fourier sine transform Is (r, .A) of the stable 
phase region (Eq. 5.10) as a function of r which 
characterizes the rate of frequency modulation for 
A = 0, 1, 2, and 3, where A characterizes the effect 
of longitudinal space charge. 
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1.0 
r 

MU-19921 

Fig. 4. The Fourier sine transform Is (r, A) of the stable 
phase region (Eq. 5.10) as a function of r which 
characterizes the rate of frequency modulation for 

·A = 4, 5, 6, 7, and 8, where A characterizes the effect 
of longitudinal space charge. 
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Although Eq. (5.1 Za) is the import ant result of the calculation, the 

equation does not give a clear picture of what is actually happening. Examination 

of Fig. 5 may be helpfuL The total voltage wave is shifted to the left by an 

amount , and the amplitude ie reduced by the factor 0. In the absence of induced 

voltage, the synchronous particle would ride at a phase angle +ao and gain energy 

at the rate eV sin +so per turn. When we •~turn onu the induced voltage, the 

synchronous particle must move to a phase us relative to the total voltage-wave. 

This angle i8 determined by the relation V sin +so = Vt sin u
8

• The synchronous 

particle is now at a phase 4>
8 

= u
8 

- '1 relative to the applied voltage. The over-all 

result ia a reduction in the bucket area, which is caused by an increase in the 

energy per turn taken from the rf. This increase has the same effect as a 

corresponding increase in the modulation rate. Aa the strength of the beam-cavity 

interaction increases, perhaps through a larger shunt impedance, the angle cp
8 

approaches tr/2., and the stable phase area approaches zero. The phase shift 

'I also approaches zero in this limit. 

In Fig. 6 we have plotted Q and than '1 for ir
8 

= 0.3 eV,., Notice that the 

abscissa in Fig. 6 is /0 D, which is proportional to·.:.v-V~:~iber:thaniVJ7.:Vfancftbs:is.a. fundial 
t 

only of the operating parameters. The method involved in obtaining theae curves 

ie quite tedious, and they are presented only as an illustration. Equ~ba (5.12.) ie 

more easily used for numerical computation. We see that the limiting value of 

Vt is 0.3 V = w
8
/e. Since the phase shift "' goes to zero in the limit of infinite 

D. we have u
8 

= q.
8 

in this limit. 

All the parameters in D, with the possible exception of a, are well-known. 

The density in W - 6 space at injection may be found from 

N1 N. f. 
1 1 na = = (5.14) 

lTrAW 

'· 

\ 
'· ~ \ 

.~ 
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Fig. 5. Applied voltage wave and total voltage -Y.L~ 
the phase angle q, for phase shift 11 = 'TT/10 

UCRL-932-6 ·--

MU-19922 



0.9 

0.7 

0.6 

0.4 

0.2 

0.1 

-28- UCRL-9326 

1:4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 
.0.''2 D 

Fig. 6. The ratio of total peak voltage Vt to peak applied 
voltage V, and lhe tangent of the phase shift 11 as 
function of n /~n (Eqs. 5.12a and 5.13). The 
abscissa contains the operating parameters of the 
machine and is directly proportional to the shunt 
impedance of the cavity. The energy-gain per 
turn is 0.3 V. 

MU-19923 
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where £1 is the frequency at injection, A E is the energy epread, and N1 is 

the number of particles injected per turn. The following numerical examples of 

two quite d~fferent accelerators illustrate the possible magnitudes of D. 

C. Numerical Examples 

.A. a first example we take the Bevatron. The configuration of the rf 

cavity in the Bevatron is that of a drift tube. The ahunt impedance of the drift 

tube has not been measured but has a theoretical value of about 3000 ohms at the 

high-energy end of the acc~erating cycle. 5 'fhe peak applied voltage is ZZ kv, with 

an energy of 15 kev per turn being imparted to the particles. Using the experi­

mentally determined total number of particles, Nt' we may use the relation for 

the total number of particles in the accelerator 

Nt = !:fl nO' IA ( r,A), (5.15) 
K 

to solve for nu rather than calculating it from Eq. (5.14). When the value of 

(1 found in this manner is inserted into Eq. (5.13) for D, we find 

D= 
Nt e w0 z 

1'f Vt I A 

In solving Eq. (5.15) for n a, we have assumed that the particles are uniformly 

distributed over the entire stable-phase area. This is an idealization, because 

(5.16) 

the stable phase area is probably not uniformly filled in this machine, and the 

approximate value of D obtained from Eq. (5.16) is slightly leas than the accurate 

value. 

We use Nt = ZXl011 , which is typical for this machine, and 

w0/ZTr = Z.5X10
6 

see -l. lf we make the assumption (borne out by the result) that 

Vt is nearly equal to V, we find that the sine of the stable phase angle is 0.68. 



-30- UCRL-93Z6 

From Fig. 7, for A. :: 0 and r ::: 0.68, we find I A= 1. Ins;e;r.tfng these values 

into Eq. (5.16) for D. we obtain D = 0.021. From Figs. 1 and 3 we find 

lc = - 0.51 and Is :: 0. 7. When these values are employed in Eq. (5.1 Za.), the 

result is Vt = 0. 986 V ::: Zl. 7 kv. The effects of the induced voltage are evidently 

small for this current. 

The transverse space-charge limit for the Bevatron has been estimated 

13 and found to correspond to 10 particles, or a circulating current of 4 amp. 

Let us suppose that 1013 particles are circulating in this machine and that it is 

desired to maintain the total voltage at ZZ kv with an energy gain of 15 kev per turn. 

Again using Eq. (5.16), we find D = 1. From Eq. (5.1Za) we now obtain 

Vt :: 0.57 V. It will then be necessary to apply a peak voltage of 39 kv to the 

cavity in order to maintain a total voltage of Z kv. This may not be an in­

surmountable difiiculty, but may require a much larger rf power input. The 

additional power necessary to apply the higher voltage will depend upon the 

circuitry of the external power supply and its coupling to the rf cavity. 

6 1 Our second example is the Cambridge electron accelerator. ' The 

numerical results in this example will be approximate, because Liouville's 

theorem does not hold when the particles lose energy by radiation. The density 

o£ particles in phase space ie therefore not a constant in time. V{e have further 

assumed that the phase-space density is uniform within a bounding curve 

Wb (cl>). which is not true during the accelerating cycle of this machine. Even in 

this situation, the principles underlying our theoretical calculation remain valid. 

The theory should yield results that are accurate to within SO% if we correctly 

approximate a. We use the technique of the previous example and determine the 

phase density from Eq. (5.15). Determining (] in this manner replaces the actual 

particle distribution with a region of phase-apace of uniform density, and adjusts 

the density of particles in this region eo ae to give the correct total number of 

particles. 
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There are 16 rf cavities operatina on the 360th harmonic of the 

particle circulation frequency. Each cavity has a ehunt impedance eetimated 

at 10 megohms and a peak voltage of 1 Mw. At an energy of 5 Bev the incoherent 

radiation amounts to an energy loss of Z Mev per turn. If, as proposed, the 

particles gain 0.8 Mev per turn, the stable-phase angle must be such that 

r = Z.S/16, or 0.175. From Fig. 7 we find that lA = 4, and from Figs.nud4 we lind. 

lc = - 1.94 and 15 = 0.68. The total number of particles is expected to be 1011 • 

and the circulation frequency i8 1.32. Me. Eq. (5.16) yields D = 0.105, and with 

the use of F...q. (5. lZ.a) we find that an applied voltage of 1.09 Mv:cts. nec,es~a:r;y to 

maintain a peak voltage of 1 Mv on each rf cavity. 

Let us coneider the effects of the induced voltage in this machine when 

the particle energy reaches 7 Bev. At this energy, the ene~gy-loss per turn due 

to incoherent radiation reaches 8 Mev. Thie losa necessitates a stable-phase angle 

such that r is at least 0.,5. Assuming that there are still 10 11 particles in the 

accelerator, we may repeat the calculation to find that an applied voltage of 

l.ZS Mv is necesaary to maintain a total voltage of 1 Mv. 

In the total voltage in this machine is not maintained at a high level, 

particles will be lost from the stable-phaee region. A reduction in Nt will 

lower the value of D, and thus tend to reduce the magnitude of the induced voltage. 

The ultimate result of the beam-cavity interaction should then be a loss of 

particles from the beam at the high-energy end of the accelerating cycle. 
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D. Maximum Phase flux 

Normally one attempts to operate an accelerator so as to maximize the 

total phase llux: 

From Eq. (5.15) we obtain the expression: 

.! :: li n a e Vt r I A (r, A) • 
K· 

(5.8) 

(5.17) 

Thus for fixed a and a given Vt, we must maximise rIA (r,A). This can be 

done by using the curves (Figs. 7 and 8) for IA vs. r. For A. = 0 we get the 

well-known result that the maximum occurs at r = 0.43. 1 
As A increase to..~ity, 

the optimum r falls to about 0.3 and remains fairly constant at this value as 

A increases to 10. 

It is of interest that A is directly proportional to u, and therefore when 

the longitudinal space charge is considered, there also exists an optimum u that 

maximizes the phase flux. If we solve Eq. (5.4a) for a and employ the result 

in Eq. (5.17) for j, we obtain 

1 = /]R [<33 (f ~),;;; Jl/2 rA I A (I' ,A) . 

K e n w 

We may, for fixed r and Vt, find a value, Am' which maximizes l. The 

problem is to maximize A IA(r,A.), which may be accomplished by inspection 

(5.18) 

of the curves of Figs. 9 and 10. For example, when r = 0.309, we find Am= 1.3. 

while for r = 0.453 a value of 1.6 is found. As r increases to a value of 

0. 7, A increases to about 1. 8. The optimum a is then found from 
m 

a = m 
R -
lg 

(5.19) 
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r 
MU-19924 

Fig. 7. The area I A (r, A) of the stable region of Y - <j> 
space (Eq. S.l(J) as a function of r which 
characterizes the rate of frequency modulation for 
A = 0, 1, and 2, where A characterizes the effect 
of longitudinal space charge. 
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r 
MU-19925 

Fig. 8. The area lA (r, A) of the· stable region of Y - cp , 
space (Eq. 5.10) as a function of I' which 
characterizes the rate of frequency modulation 
for A = 3, 4, 5, 6, 7, and 8, where A ch?Lracterizes 
the effect of longitudinal space charge. 
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8 10 
A 

MU-19926 

Fig •. 9. · The area lA (r, A) of the stable region of 
Y - cj> space (Eg. 5.10) as a function of A 
which characterizes the effect of longitudinal 
space charge for r = 0, 0.309, and 0.453, 
where r characterizes the rate of frequency 
modulation. For .A > 5, the dependence is 
approximately A -1. 
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1.10 

1.00 

0.90 

8 10 
A 

MU-19927 

Fig. 10. The area IA (r ,A) of the stable region of 
Y - cp space ·(Eq. 5.10) as a function of A which 
characterizes the effect of longitudinal space charge 
for r = 0. 588 and 0. 707' where r ~haracterizes 
the rate of frequency modulation. For A ) 5, the 
dependence is approximately A -l 
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Since the longitudinal space charge is a more reatrictive effect at the 

' beginning of the acceleration cycle than at other times, we shall employ the 

nonrelativistic expression for f di./dE in Eq. (5.19) to determine am· U we 

neglect the change of radius with energy, it is clear that this nonrelativistic 

expression is 

(£.2! ) 
dE s 

= 

for particles of mass m 

(j = m 

1 

(Zn R)Z m 

circulating at a radius R. Equation (5.19) then becomes: 

[ J 
1/2 

(en :~3 ~ (5.20) 

The factor g is always of the order of unity. For a. typical proton machine, with 

d f 19 -1 -1 Vt of the or er of 50 kv and n = 10, we ind that u m ~ 10 Mev aec • Thill 

is a density slightly greater than the capability of most injectors currently in use. 
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VI. SUMMARY 

We have considered a beam of particles which passes through an 

externally driven rf cavity in an accelerator. The particles induce a back 

voltage across the cavity gap, and an expression is developed for this voltage 

as a funt:tion of the Fourier coefficients of the particle distribution in azimuth. 

Clearly this voltage depende upon the total number of particles Nt and the~ 

azimuthal distribution as well as upon the shunt impedance of the rf cavity. 

Describing the motion of particles by a Hamiltonian, we proceeded to find 

a self-consistent distribution of particles in synchrotron phase-space. The 

Hamiltonian is strictly valid only for a fixed magnetic guide field, because of the 

aaeumption that the particle frequency is not an explicit function of time. This 

assumption is inherent in the definition of the ai:tion variable w. As pointed 

out by Nielsen and Sessler, 4 if the variation of the magnetic field is slow compared 

with the synchrotron oscillation of the particles, the inetantaneoue solution to the 

Vlaeov equation is the same as that for a fixed fielcl. It may also be true that the 

azimuthal distribution of the particles varies slowly with time. If the characterbtic 

time for this variation is very much longer than a period of the applied rf, it is 

a good approximation to assume that the distribution ia constant. 

The effects of induced voltage are to reduce the total voltage Vt acroas 

the cavity gap, and to shift its phase relative to the applied voltage V. The 

ratio of these is given by Eq. (5.1Za): 

with D given by Eq. (5. 13 ). In Eq. (5.13) the quantity a is the number -density 

of particles in synchrotron phase space, and may be found from Eq. (5.14). A rough 

approximation for D ia given by Eq. (5.16). The integrals lc and 15 are plotted 

in Figs. 1 - 4. 
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Since the area of stable phase-space is proportional to the square root of 

the total voltage, this area is reduced by the presence of the back-voltage. It ia 

further reduced by another cons$quence of the reduction of the total voltage; 

namely, that the stable-phase angle must shift toward 'fr/Z. so that the energy-

gain per turn remains constant. The total number of particles that can be accelerated 

is given by Eq. (5.15). The quantity I A is plotted in Figs. 7-10. It is a function 

of I', the sine of the stable-phase angle, and decreases as the stable phase-angle 

moves toward n/Z. 

We see from. Fig. 6 that the ratio Vt/V increases as the quantity a.l/Z D 

decreases. This quantity is proportional to zy-l/Z. These difficulties may 

therefore be alleviated by increasing the applied voltage and (or) decreasing 

the shunt impedance Z. The shunt impedance is directly proportional to the Q of 

the cavity, which euggesta that high-Q cavities may create some problems in high-

current accelerators. We have not considered the effects of the induced voltage 

on the trapping efficiency of the rf system, but they may be important enough 

to preclude acceleration schemes in which the applied voltage rises slowly. 

By the technique developed in this paper, one may easily calculate the effect 

on the beam of a cavity not driven externally. Such cavities might be present for use 

at some stage of the accelerating procese. They have an effect on the beam 

even if their external power is turned off. 
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lllg. 1. The .Iii'ourier cosine transform Ic (r .A) of the stable phase region 

(Eq. 5. 10) as a function of r' which characterises th~trate of frequency 

modulation for A = 0, 1 and Z, where A. characterbes the effect of 

longitudinal space charge. 

Fig. Z. The Fourier cosine transform Ic (I" ,A) of the stable phase region 

(Eq. 5.10) as a function of r Which characterizes the rate of frequency 

modulation for A = 3, 4, 5, 6, 7, and 8, where A charuterizea the effect 

of longitudinal space charge. 

Fig. 3. The Fourier sine transform 15 (r, A) of the stable phase region 

(Eq. 5.10) ae a function of r which characterizes the rate of frequency 

modulation for A = 0, 1, 2, and 3, where A characterizes the effect of 

longitudinal space charge. 

Fig. 4. The Fourier sine transform 15 (I" ,A) of the stable phase region 

(Eq. 5.10) as a function of r which characterizes the rate of frequency 

modulation for A = 4, 5, 6, 7, and 8, where A characterizes the effect 

of longitudinal space charge. 

Figo 5. Applied voltage wave and total voltage vs the phase angle + for 

phase shift 'l = 11/10. 

Fig. 6. The ratio of total peak voltage Vt to peak applied voltage V, and the 

tangent of the phase shift 'l as function of ri/ZD (Eqs. 5.12a and 5.13). 

The abscissa contains the operating parameters of the machine ancl is 

clirectly proportional to the shunt impedance of the cavity. The energy-gain 

per turn is 0.3 V. 
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Fia. 7. The area I A (r, A) of the stable region of Y - q, space (Eq_. 5.10) 

as a function of r which characterizes the rate of frequency modulation 

for A = 0, 1, and 2, where A characterizes the effect of longitudinal 

space charge. 

Fig. 8. The area I A (r, A) of the stable region of Y - + space (Eq. 5. 10) 

as a function of r which characterizes the rate of frequency modulation 

for A. = 3, 4, 5, 6, 7, and 8, where A charactel"izes the effect of 

longitudinal space charge. 

Fig. 9. The area I A (r, A) of the stable region of o Y - <f> apace (Eq. 5.1 0) 

as a function of A which characterizes the effect of longitudinal space 

charge for r = 0. 0.309, and 0.45l, where r characterizes the rate 

of frequency modulation. For A .> 5, the dependence is approximately 

-1 A . 

Fig. 10. The area lA (r,A); of the stable region of Y - cp space (Eq. 5.10) 

as a function of A. which characterizes the effect of longitudinal space 

charae for r = O.S88 and 0. 707, where r characterizes the rate of 

frequency modulation. For .A > 5, the dependence is approximately A -l. 
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