
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

NARRATIVE INSTRUMENTS: AI-BASED PLAYABLE MEDIA
FOR STORYTELLING

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTATIONAL MEDIA

by

Max Kreminski

September 2022

The Dissertation of Max Kreminski
is approved:

Prof. Noah Wardrip-Fruin, Chair

Prof. Michael Mateas

Prof. Gillian Smith

Prof. Edward Melcer

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Max Kreminski

2022

Table of Contents

List of Figures vi

Abstract x

Dedication xii

Acknowledgments xiii

1 Introduction 1

2 Background 9
2.1 Retellings . 10
2.2 Story Sifting . 17
2.3 Creativity Support Tools . 21
2.4 Deficiencies of Appropriated Instruments 26

2.4.1 Overwhelm . 26
2.4.2 Directionlessness . 28
2.4.3 Toward Solutions . 31

3 Felt 32
3.1 Related Work . 34
3.2 System Description . 38
3.3 Case Studies . 42

3.3.1 Starfreighter . 42
3.3.2 Cozy Mystery Construction Kit 44
3.3.3 Diarytown . 47

3.4 Discussion . 49
3.4.1 Authoring Sifting Patterns . 49
3.4.2 Debugging Story Sifters . 50
3.4.3 Coupling Sifting and Simulation 52

3.5 Conclusions and Future Work . 53

iii

4 Why Are We Like This? 55
4.1 Related Work . 58
4.2 Architecture . 62

4.2.1 Storyworld State Database . 65
4.2.2 Action Definitions . 69
4.2.3 Author Goals . 71
4.2.4 Action Suggestions . 76
4.2.5 Autonomous Actions . 78
4.2.6 Storyworld Investigator . 79
4.2.7 Transcript . 81

4.3 Playtesting . 84
4.4 Discussion . 86

4.4.1 Story Sifting . 86
4.4.2 Simulation Design . 87
4.4.3 Author Goals . 89
4.4.4 Effect Handlers . 91

4.5 Conclusions and Future Work . 93

5 Winnow 95
5.1 Related Work . 97
5.2 Motivation . 97
5.3 System Description . 99

5.3.1 Incremental Execution . 101
5.4 Use Cases . 104

5.4.1 Autonomous Incremental Sifting 104
5.4.2 Interactive Incremental Sifting 107
5.4.3 Retrospective Sifting . 109

5.5 Performance . 110
5.6 Discussion . 112

5.6.1 Pool Management Strategies . 112
5.6.2 Modeling Causality . 114
5.6.3 Decoupling Sifting and Simulation 115
5.6.4 Conjunction and Disjunction . 115

5.7 Conclusions and Future Work . 116

6 Loose Ends 118
6.1 Related Work . 120
6.2 System Description . 122

6.2.1 Storytelling Goals Tracker . 124
6.2.2 Action Suggestion Generator . 127

6.3 Interaction Examples . 129
6.3.1 Discovering New Storytelling Goals 130
6.3.2 Discovering Thematic Conflicts 131

iv

6.3.3 Resurfacing Dormant Plot Threads 132
6.3.4 Interleaving Parallel Plot Threads 132

6.4 Evaluation Procedure . 133
6.5 Evaluation Results . 135

6.5.1 Directionlessness Is Mitigated . 135
6.5.2 Coauthorship Is Preserved . 136
6.5.3 Goal Alignment Is Unexpected and Fun 137
6.5.4 Evaluators Found Loose Ends Easy to Use 137
6.5.5 Some Players Want Prose-Level Suggestions 138
6.5.6 Storyworld Inconsistencies Stand Out 139
6.5.7 Common Feature Requests . 140

6.6 Conclusions and Future Work . 140

7 Conclusion 142
7.1 Looking Forward . 143

7.1.1 Integrating Disparate Symbolic Models of Storytelling 143
7.1.2 Developing Sifting Heuristics . 145
7.1.3 Neurosymbolic Approaches to Storytelling Support 145
7.1.4 Learning from Players . 147
7.1.5 Evaluation . 148

7.2 Final Thoughts . 151

Bibliography 152

v

List of Figures

2.1 A screenshot of the first installment of the episodic retelling Alice and

Kev [9], which interleaves text with screenshots from The Sims 3 to tell

the story of a homeless family in the game. 12

2.2 A diagram of Ryan’s proposed curationist architecture for interactive

emergent narrative systems, showing the different roles that users or

computational systems could play within the story-making process and

highlighting the distinction between simulated storyworld and emergent

narrative. Source: Ryan [99, p. 243]. 19

2.3 A screenshot of the Legends Viewer interface showing information about

a particular “site” in a player’s imported storyworld, including a log of

events (filtered by event type) that took place there. Source: cartogra-

phersguild.com forum post by user “nitus”. 20

vi

3.1 A moderately complicated Felt sifting pattern that will match a sequence

of two betrayals perpetrated by the same impulsive character, with no

other actions perpetrated by the same character (but arbitrarily many

other events) in between. 40

4.1 The main WAWLT interface, with the running transcript of the story

so far in the upper left, action suggestions in the upper right, and the

storyworld investigator on the bottom, focusing on a specific simulated

character. 56

4.2 An overall system diagram of WAWLT, showing the important modules

and data flows. Pink subsystems (action definitions and the storyworld

state database) consist of inert data; blue subsystems (author goals, sug-

gested actions, autonomous actions, and the storyworld investigator) act

on this data; and the transcript emerges from player actions over the

course of play. Subsystems depicted in this diagram are discussed in

greater detail in sections 3.3.1-3.3.7. 61

4.3 An example WAWLT action definition. 68

4.4 The WAWLT author goal selection interface. 72

vii

4.5 The WAWLT action suggestion interface, showing the current top five

next possible actions for players to choose among to enact and add to

their transcript. Possible actions are scored according to the current,

player-set author goals (e.g., “involve character (Bella) in plot,” “escalate

tension between value (progress) and value (order).”) 75

4.6 The WAWLT storyworld investigator interface, showing a portion of a

character information card. 75

4.7 The WAWLT transcript editing interface. Bold text in the transcript is

system-generated, non-bold text is authored by the players. 83

5.1 A visualization of Winnow incrementally executing the breakHospitality

sifting pattern over a sequence of events in which a character Yann en-

ters town and is first shown hospitality by, then harmed by, two other

characters: Eve and Jake. As the structured events on the left are added

to the database of storyworld state one by one, the pool of active partial

pattern matches evolves as shown in the middle and explained on the

right. 102

6.1 The Loose Ends user interface. 123

6.2 Based on events that were added to the story to complete two establishGrudge

goals, Loose Ends has automatically discovered and surfaced a suggestion

for another author goal (the bondOverSharedDislike goal) to spin off a

new plot thread initiated by these events. 130

viii

6.3 As the player considers an action that would advance one of their the-

matic goals but undermine another, the impact of the action on both

thematic goals is highlighted, making the conflict apparent. 131

ix

Abstract

Narrative Instruments: AI-Based Playable Media for Storytelling

by

Max Kreminski

Creativity has been proclaimed as a grand challenge for research in both artificial in-

telligence (in the form of computational creativity) and human-computer interaction

(in the form of creativity support tools). Storytelling is an exemplary creative domain:

stories are complex creative artifacts in which many different facets—including theme,

plot, character, and narration—must all be brought into alignment for the story as a

whole to succeed. Consequently, the development of intelligent narrative technologies

represents an excellent way to improve our understanding of creativity as a computa-

tional problem. In this dissertation, I discuss my work on the use of AI to provide

plot-level creativity support for creative writing—particularly through the implementa-

tion of story sifters, which can interactively or autonomously identify sites of narrative

potential within large corpuses of potentially narratable events. By crafting human-

playable narrative instruments (systems that can be played to produce narrative, much

like musical instruments can be played to produce music) based on story sifting tech-

nologies, I illustrate how AI can help players refine vague high-level plot ideas into

coherent narrative throughlines—resulting in a new form of playful AI-supported co-

creative writing, with design implications for AI-based creativity support tools in a wide

variety of creative domains.

x

xi

To the shardfolk

xii

Acknowledgments

The research presented in this dissertation would not have been possible without support

from a great many people. There’s no way I could ever name everyone who helped me

to complete this work in some way, but I’ll endeavor to mention some of those to whom

I owe special thanks here.

My friends in the Seabright Camerata are some of my favorite people in the

world, and discussion with them inspired many of the ideas in this dissertation. In

particular, Kate Compton was a significant influence on my decision to go to grad school,

cleared the way for my focus on playful creativity, and hosted the first gatherings of what

would eventually become the Camerata. Jacob Garbe was my first close collaborator in

the Expressive Intelligence Studio, a major supporter of my story sifting work, and he

gave me a cursed sword. Jason Grinblat and Cat Manning provided valuable outside

perspectives on my research and were key contributors to my theoretical outlook on

emergent narrative. Tamara Duplantis was a primary influence on my adoption of

the narrative instruments metaphor. Barrett Anderson and Jasmine Otto hosted so

many structured activities. Nic Junius and Isaac Karth were my housemates and close

collaborators throughout my time at UCSC. And of course, Melanie Dickinson, my

closest friend and collaborator, made integral contributions to basically every aspect of

my research. (Now that I’m done, Mel, it’s all ———————————— from here.)

To every one of these people I owe an unimaginable debt.

My labmates and predecessors in the Expressive Intelligence Studio played a

xiii

massive role in shaping the intellectual environment within which this work was con-

ducted, and I am grateful to have known all of them. Besides those already listed, I

owe particular thanks to Chris Martens, James Ryan, Ben Samuel, and Gillian Smith,

both for their support and for establishing many of the direct foundations for my

work. Thanks also to the many other EISers, former EISers, and honorary EISers I’ve

worked with or come to consider friends—including Devi Acharya, Morteza Behrooz,

Alex Calderwood, Mirjam Eladhari, Cyril Focht, Kyle Gonzalez, Katie Green, April

Grow, Rehaf Jammaz, Shi Johnson-Bey, Maxwell Joslyn, Jordan Magnuson, Stacey

Mason, Peter Mawhorter, Alex Mayben, Stella Mazeika, John Murray, Mark Nelson,

Beth Oliver, Joe Osborn, Johnathan Pagnutti, Aaron Reed, Adam Smith, D. Squinkifer,

Anne Sullivan, Adam Summerville, and Henry Zhou. And a huge thanks to my advisors,

Noah Wardrip-Fruin and Michael Mateas—not just for all their guidance and support

over the years, but also for establishing and fostering EIS as a close-knit and welcoming

research community.

Who else? So many others. Thanks to my committee members, Gillian Smith

(again!) and Eddie Melcer, for guiding the direction of my dissertation work. Thanks

to many other current and former members of the Computational Media community

at UCSC—particularly Raquel Robinson, James Fey, Jared Pettitt, Asiiah Song, Katy

Grasse, Josh McVeigh-Schulz, Katherine Isbister, and Jim Whitehead—for your friend-

ship, support, and/or general camaraderie at key moments during my Ph.D. Thanks to

my CMPM 201 cohort, who set the ideal tone for my grad school experience. Thanks

to my fellow department community managers—past, present, and future—for helping

xiv

to make the department what it is today. Thanks to all of my wildcat comrades, who

reminded me that a better academy is possible. Thanks to my friends and allies in the

broader research community—especially Lea Albaugh, Rogelio Cardona-Rivera, Mike

Cook, Matthew Guzdial, Antonios Liapis, Emily Short, and Stephen Ware. Thanks

to my early research mentors at USC—Heather Desurvire, Scott Fisher, Josh McVeigh-

Schulz (again!), and Dennis Wixon. And thanks to the many members of the Stochastic

Labs community for their support during my residency—I couldn’t imagine a better

environment in which to finish up my dissertation work. I’m at once certain and ter-

rified that I’m leaving out a bunch of very important people, but thanks also to all of

my friends, collaborators, mentors and comrades throughout my whole life to date—I

couldn’t have gotten here without you.

Finally, thanks to my family—Ed, Tina, and Adri—for their unwavering sup-

port through [gestures vaguely] all of this. What a time it’s been, huh?

Now for the formalities. This dissertation reproduces portions of the following

previously published material:

• Max Kreminski, Melanie Dickinson, and Noah Wardrip-Fruin. Felt: a simple story

sifter. In International Conference on Interactive Digital Storytelling, 2019. [50]

• Max Kreminski, Melanie Dickinson, Michael Mateas, and Noah Wardrip-Fruin.

Why Are We Like This?: Exploring writing mechanics for an AI-augmented sto-

rytelling game. In Proceedings of the 2020 Conference of the Electronic Literature

Organization, 2020. [47]

xv

• Max Kreminski, Melanie Dickinson, Michael Mateas, and Noah Wardrip-Fruin.

Why Are We Like This?: The AI architecture of a co-creative storytelling game.

In Proceedings of the Fifteenth International Conference on the Foundations of

Digital Games, 2020. [48]

• Max Kreminski, Melanie Dickinson, and Michael Mateas. Winnow: A domain-

specific language for incremental story sifting. In Proceedings of the AAAI Con-

ference on Artificial Intelligence and Interactive Digital Entertainment, 2021. [46]

• Max Kreminski and Michael Mateas. Toward narrative instruments. In Interna-

tional Conference on Interactive Digital Storytelling, 2021. [56]

• Max Kreminski, Melanie Dickinson, Noah Wardrip-Fruin, and Michael Mateas.

Loose Ends: A mixed-initiative creative interface for playful storytelling. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, 2022. [51]

The co-authors Noah Wardrip-Fruin and Michael Mateas directed and super-

vised the research which forms the basis for this thesis. The co-author Melanie Dickinson

was the co-designer and co-developer of Why Are We Like This?, created the Why Are

We Like This? system diagram featured in Chapter 4, and contributed to the design of

Felt, Winnow, and Loose Ends.

xvi

Chapter 1

Introduction

It is a truth universally acknowledged that creativity can be difficult. Complex

creative artifacts are overconstrained: a single, seemingly innocuous creative decision

may have effects that ripple far outward, with unforeseen and potentially disruptive

consequences on apparently unrelated aspects of the artifact you’re trying to create.

Possibility spaces of creative artifacts are vast: because so many creative decisions can

be made in so many different combinations, it’s often intractable to systematically search

the space of possible creative artifacts, meaning you have to “guess and check” to see

if a set of creative decisions will ultimately pan out to produce a successful artifact.

Evaluating creative work is a challenge in its own right: artists commonly report feeling

too close to their own work to view it objectively, and unclear or conflicting priorities

can make it difficult for even outsiders to judge whether a creative artifact is successful.

And it’s easy to become creatively blocked in myriad ways: you might gaze upon the

blank page or canvas and find yourself unsure where to start; feel undermined by the fear

1

that others will judge your creation negatively; arrive at an impasse, unable to reconcile

two incompatible requirements on the artifact you’re trying to make; feel overwhelmed

by the urge to throw out what you’ve already done and start over from scratch; or

otherwise find yourself unable to make progress on a creative task.

Due to its difficulty, as well as to the immense possible value of successful

creative work, creativity has been proclaimed as a grand challenge for research in both

artificial intelligence and human-computer interaction: the former in the form of com-

putational creativity, or the construction of systems that behave in ways humans deem

creative [19], and the latter in the form of creativity support tools (CSTs), or software

tools that support human creative practices [112].

Yet creativity is also playful. People actively seek out opportunities to express

themselves creatively: playing a musical instrument, for example, remains a popular

and culturally well-regarded hobby. Meanwhile, some audiences find joy and value in

even the faulty outputs of imperfect computationally creative systems. These audi-

ences may put substantial effort into the repair of flawed or incomplete creative ar-

tifacts produced by machines, whether by manually resolving physical implausibilities

in machine-generated knitting instructions [111] or by heavily editing the incongruous

outputs of a large language model into coherent novel-length stories [127]. The frequent

co-occurrence of creativity and play suggests a promising way forward for those who

want to ease the difficulty of creative work: perhaps, if we could leverage and draw out

the aspects of creativity that people find inherently enjoyable, the difficulty of creativity

might fade into the background—or at least become bearable enough to unlock entire

2

new forms of creative practice.

Storytelling, which admits both difficulty and playfulness, is an exemplary

creative domain. Narrative is overconstrained: the component parts of any nontrivial

narrative (including plot, theme, character, and narration) are extensively intercon-

nected, and small changes to one aspect of a narrative can significantly alter how other,

apparently unrelated aspects of the narrative are received. Narrative possibility spaces

are vast: compiling even a simple narrative planning domain to a plot graph can yield

a graph containing tens of millions of nodes and hundreds of millions of edges [131],

and the size of the possibility space balloons even further when one factors in other

possible creative decisions, such as word choice. Evaluating narrative is challenging:

what makes a good story remains a subject of active debate among narratologists, and

different readers prioritize different facets of narrative in their evaluation of narrative

quality. And of course, writer’s block is a well-known and widely feared phenomenon

among creative writers, frequently discussed in writing guides [65, p. 177] [36, p. 14–15]

alongside strategies for mitigating its effects.

Nevertheless, the construction of narrative is also frequently pursued for fun—

for instance by the players of simulation-driven interactive emergent narrative (IEN)

games, including the Sims series, Dwarf Fortress, and Stellaris. The storytelling play

practices that have emerged around these games suggests that some players actively

seek these games out for the creativity support that they can provide, with the goal of

computationally supported storytelling in mind [57, 59]. Therefore, the study of these

systems—and their use by players as CSTs—is likely to give insight into the conditions

3

under which creative play is successfully enabled or supported by computationally cre-

ative systems. These systems may also function as the kind of creativity support tools

that Nakakoji [85] refers to as “skis”: CSTs that, through their design, enable new kinds

of creative experiences that were not previously possible.

I propose to investigate these systems as an emerging genre of creativity

support software, similar to the genre of casual creators proposed by Compton and

Mateas [21] and investigated more fully in Compton’s dissertation [22]. Though many of

the systems around which these storytelling behaviors originally emerged were marketed

as games, I propose that these systems can more usefully be viewed as the embryonic

form of an adjacent category of playable media, which I refer to as narrative instru-

ments [56]. Like musical instruments, narrative instruments require a player to operate

them; afford certain expressive possibilities through their design while discouraging oth-

ers; may be played more virtuosically by more practiced players; may be played solely

for the player’s own enjoyment, or for a wider audience; are often played as part of a

larger ensemble, in concert with other instruments; and may be modified or creatively

misused by their players to achieve novel or unexpected effects.

Why instruments? I take inspiration in the use of this analogy from sev-

eral other scholars who have tried to characterize what makes instruments special—

distinguishing them from tools on one side and from toys on the other. Writing in the

context of CSTs, Nakakoji [85] contends that a creativity support system may be more

of an instrument than a tool if it is often used playfully and if its designers prioritize the

creation of a particular user experience over maximal efficiency. Tanaka [123] further

4

unpacks the distinction between instruments and tools, suggesting that musical instru-

ments succeed not by maximizing the efficiency of musical creation, but by contributing

a particular desirable “personality” or “voice” to the music they are used to create:

The term tool implies that an apparatus takes on a specific task, utilitarian
in nature, carried out in an efficient manner. A tool can be improved to be
more efficient, can take on new features to help in realizing its task, and can
even take on other, new tasks not part of the original design specification.
In the ideal case, a tool expands the limits of what it can do. It should be
easy to use, and be accessible to a wide range of naive users. Limitations or
defaults are seen as aspects that can be improved upon.
A musical instrument’s raison-d’etre, on the other hand, is not at all utili-
tarian. It is not meant to carry out a single well defined task in the way that
a tool is. Instead, a musical instrument often changes context, withstanding
changes of musical style played on it while maintaining its identity. A tool
gets better as it attains perfection in realizing its tasks. The evolution of
an instrument is less driven by practical concerns, and is motivated instead
by the quality of sound the instrument produces. In this regard, it is not
so necessary for an instrument to be perfect as much as it is important for
it to display distinguishing characteristics, or “personality”. What might be
considered imperfections or limitations from the perspective of tool design
often contribute to a “voice” of a musical instrument.

Therefore, though research in CSTs often aims to create CSTs that are general-

purpose, I argue that instruments of expression may actually succeed or fail on the basis

of the characteristic voice they provide. From the narrative instruments perspective,

the perceptibility of an instrument’s grain in the stories that it is used to create marks

not a failure of generality, but a success of voice. Meanwhile, per Wardrip-Fruin [128],

despite their playable nature, instruments are also distinct from the form of playable

media known as toys. For Wardrip-Fruin, the key distinguishing feature of instruments

is that they “seek a lyric engagement”: they invite expressive use, and are meant to

be used for expression first and foremost. It is here that instruments cease to resemble

5

toys, which might or might not be used for expressive purposes—whereas if you pick up

an instrument, the odds are good that you have some sort of expressive use in mind.

For the remainder of this dissertation, I will base my definition of instruments

on both Tanaka’s and Wardrip-Fruin’s. In my view, both a characteristic voice and a

primarily lyric mode of engagement are key distinguishing features of instruments as

playable media. I do not intend to assert that narrative instruments must necessarily

be used for live performance, nor do I intend to assert that narrative instrument play

must be targeted at an audience other than the players themselves—indeed, musical

instruments themselves do not always need to be played in live performance or for an

audience. However, I do hope that the term “instrument” also carries some of the

connotations of how musical instruments are used socially: for instance, that learning

to play an instrument may take some time; that instrument-play may be a deeply

skilled and socially valued activity; that instruments are often played alongside other

instruments; and that instruments are often modified by their players with specific

expressive goals in mind.

Adopting this perspective raises three major research questions in the areas of

computational creativity and creativity support tools.

• RQ1. In what ways do existing systems that are used as narrative instruments

succeed and fail at providing their users with creativity support?

• RQ2. What new technical capabilities would we need to develop to address the

deficiencies of existing narrative instruments?

6

• RQ3. What new human-facing interfaces would we need to construct to in-

tegrate these new technical capabilities into playful computationally supported

storytelling practices?

Correspondingly, the contribution of this dissertation is threefold. First (in

Chapter 2), I characterize a design space of narrative instruments, positioned between

games and tools as a form of playable media that are played with the explicit goal of

producing narrative—just as musical instruments are played with the explicit goal of

producing music. I also introduce overwhelm and directionlessness as key deficiencies

of existing systems that would require new technical capabilities to address. Second,

I present two technical systems—Felt (Chapter 3) and Winnow (Chapter 5)—that ad-

vance the state of the art in story sifting, or the automatic computational recogni-

tion of possibilities for narrative development, with the aim of enabling solutions to

the problems of overwhelm and directionlessness. And third, I present two narrative

instruments—Why Are We Like This? (Chapter 4) and Loose Ends (Chapter 6)—that

incorporate these story sifting technologies to enable a new form of playful computation-

ally assisted creative writing, focused on the development of high-level plot structure

through AI-generated plot point suggestions that are guided by player-specified story-

telling goals. Because the development of new story sifting technologies influenced the

design of new narrative instruments and vice versa, I interleave the presentation of these

sifters and instruments to preserve the chronological order and cause-and-effect logic of

their development.

7

Altogether, my research process is one of iterative building-to-understand [78]

and research through design [133]: operating on an initial hypothesis, I first construct

a system that probes a particular design space, then reflect on the results. Insights

from this reflection are incorporated into the development of the next system, and this

process is repeated indefinitely to arrive at a progressively better understanding of a

design space. In this dissertation, the iterative cycle of system design and reflection is

most evident in chapters 3 through 6, which chronicle the successive development of

two pairs of systems, incorporating more and more insights from previously developed

systems into the design of each new system in sequence.

8

Chapter 2

Background

In this chapter, to contextualize my work, I present some brief background on

three areas of scholarship from which my research heavily draws. I first discuss existing

scholarship on retellings, or narrative artifacts that players construct based on their

experiences with interactive narrative systems or games, and argue that the creation of

retellings represents an emerging form of computationally engaged storytelling practice

that leverages interactive narrative systems for the creativity support that they can

provide. I then discuss the potential use of story sifting technology, which automatically

extracts storyful material from vast simulated storyworlds, to provide additional support

for player creativity in the areas where existing interactive narrative play experiences

fail to do so. Finally, I present a brief overview of creativity support tools—a class of

software intended to support human creative practices—and highlight a relative dearth

of creativity support tools that support storytelling at a structural, rather than surface,

level.

9

Based on this background, I then describe two key deficiencies of existing sys-

tems that have been appropriated as narrative instruments from a creativity support

perspective. These deficiencies are overwhelm and directionlessness. The effort to ad-

dress these deficiencies while preserving the desirable qualities of earlier appropriated

narrative instruments motivates the remainder of the work presented in this dissertation.

2.1 Retellings

Retellings, as defined by Eladhari [26], are narrative artifacts created by play-

ers as recountings of their play experiences. Eladhari considers retellings to be a “fourth

layer” of interactive narrative, augmenting the System-Process-Product (SPP) model

proposed by Koenitz [43]—in which the player’s emergent narrative experience is typi-

cally taken as the third, or Product, layer. For Eladhari, the existence of player retellings

of experiences with a particular interactive narrative system may be taken as evidence

that players found these experiences compelling, and—by extension—as an indicator

that the system in question is successful. Moreover, Eladhari also proposes that ana-

lyzing corpora of player retellings could help researchers better understand and critique

interactive narrative systems. For our purposes, however, the reason to study retellings

is slightly different: we believe that they provide evidence of player practices around

interactive emergent narrative games that are deliberately expressive and authorship-

oriented, even when the systems from which the retellings “emerged” were not originally

intended to be used as part of a larger storytelling practice. In support of this thesis,

10

we consider several recent developments of Eladhari’s initial proposal for the study of

retellings, and highlight how each contributes to an understanding of at least some

retellings as carefully and deliberately crafted narrative artifacts, produced by players

who set out to make use of interactive narrative systems primarily as storytelling tools.

(This thesis is also at least partly supported by Eladhari’s initial proposal, which focuses

on a particularly lengthy and virtuosic episodic Sims 3 retelling titled Alice and Kev [9]

(Figure 2.1) as a canonical example of a retelling that merits further study.)

Larsen [66] further clarifies the nature of retellings by distinguishing them from

afterstory, or the residual impression of story left by a play experience in the player’s

mind, before it is crafted into a concrete retelling. This terminological distinction is im-

portant for clarifying exactly what constitutes a retelling, but it also calls into attention

the work that players do in crafting retellings beyond simply playing and allowing a

story to emerge. Much as Ryan [99] has argued, Larsen’s work supports the thesis that

the direct result of play is not in any meaningful way an “emergent narrative”: rather,

it consists of raw material—laden with narrative potential—that must be refined into a

narrative through the act of (re)telling. The process of narrativization involves decisions

about both story (which events are presented) and discourse (how to present them), and

in retelling creation, it falls to the human player to make these key decisions, using the

afterstory resulting from gameplay as a guide.

Additionally, Sych [122] argues that some retellings—labeled as critical retellings—

represent instances of players using retelling as a means to highlight and reflect on flaws,

inadequacies, or awkwardnesses in the underlying interactive narrative system. In the

11

Figure 2.1: A screenshot of the first installment of the episodic retelling Alice and
Kev [9], which interleaves text with screenshots from The Sims 3 to tell the story of a
homeless family in the game.

12

context of other retelling studies, what stands out about critical retellings in particular

is the introduction of irony as an explicit expressive goal of retelling, and the deliberate

leveraging of interactive narrative systems to produce moments of humor or incongruity

that the system did not intend. For critical retelling, the tellability of the player-crafted

narrative derives in part from the fact that the player was able to get the interactive nar-

rative system to produce a result that is funny, jarring, or otherwise unusual. Successful

subversion of the IEN system makes for a more compelling story.

Finally, Kreminski et al. [57] and Murnane [84] both examine the process by

which retellings are constructed and arrive at an understanding of extrapolation as

essential to retelling construction. In what Kreminski et al. term extrapolative nar-

rativization, players who write stories based on gameplay experiences use the events

of gameplay as represented within the computational system as a source of consistent

truth and do not explicitly deviate from these events in the stories they write—but they

also use these events as jumping-off points for further imagination of detail, adding

elements to written stories that go beyond the level of detail modeled in the game’s

computational systems. For instance, in retellings based on the science fiction grand

strategy game Stellaris, players often mention random events in which leaders gain cer-

tain traits (such as the “Substance Abuser” trait) during gameplay—but they also tend

to embellish these events by narrating connections between these and other gameplay

events that are unrelated within the game’s systems, for instance describing how an

admiral’s participation in a large and brutal space battle has led them to substance

abuse as a means of coping with the severe destruction they witnessed. Though both

13

gameplay events (the trait gain and the large battle) actually occurred in the game sys-

tems, the character’s mental state and the associated causal connection between these

events is entirely invented by the player during the process of narrativization. Grinblat

et al. [38] concur with this analysis, framing the process of narrative construction by

players of narrative sandbox games as a process of repair. Based on this understanding,

Kreminski and Mateas [54] argue that the IEN systems that are most often used for

retelling represent progress toward a form of authorship play: one of the three styles of

interaction that were introduced by Louchart and Aylett [70] to characterize different

approaches to interactive storytelling. Of these three modes, authorship play is the one

that places the greatest amount of creative responsibility on the player.

These recent developments in the study of retellings suggest that the con-

struction of retellings represents an emerging form of computationally engaged writing

practice, making deliberate use of IEN games for the creativity support that they can

provide. Despite the diversity and sophistication of existing player story construction

practices around IEN games, however, these games frequently fail to support player sto-

rytelling among all but the most diehard players. These games have been successfully

repurposed by these dedicated players as storytelling tools, but learning to use them for

storytelling effectively can be a difficult and time-consuming process. From a creativity

support perspective, The Sims presents users with a relatively approachable set of tools

for controlling the behavior of its simulated characters, but (as Ryan [103] has noted),

it still does not fully embrace authorship play as its primary goal; for instance, it does

not give the player the ability to generate new desires for their Sims at will, nor does

14

it allow players to sift past the mundanities of daily routine in order to quickly locate

especially compelling bits of narrative material.

Simultaneously, many other simulation-driven IEN games (such as Crusader

Kings II, Stellaris, and especially Dwarf Fortress) have come to resemble the equivalent

of Photoshop for mixed-initiative storytelling. They present the player with a dizzy-

ing array of complex menus, offer little built-in tutorialization, and provide extensive

(perhaps excessive) control over a wide variety of fine-grained options, at the cost of

learnability, scaffolding, structure, and support. In essence, neither The Sims nor other

simulation-driven interactive emergent narrative games treat player storytelling as a

first-class activity. There is no built-in support for construction of an artifact of play, or

a concrete artifact summarizing the events of the play session [41], and few if any of the

story-making mechanics that Ryan [99] would describe as curatorial affordances: built-

in tools for bookmarking, reframing, elaborating on, or otherwise crafting a narrative

artifact around storyworld events. Instead, it is left almost entirely up to the players

to capture and refine the story that emerges through interaction. Even in games like

Crusader Kings II that offer automatic capture of a chronicle of all storyworld events,

which may assist players in recalling and filtering the events that have transpired in

a play session for presentation in a story, there is still nothing much to do with this

information within the game itself: narrativization of this chronicle is an activity to be

pursued by the player using primarily external tools, if they elect to pursue it at all.

In Tanenbaum’s terms [124], these games offer little if any inbuilt support for player

selection of “which events should be portrayed”, and no support for player selection

15

of “how to present the details of the narrative”, in a narrative artifact capturing some

facet of the emergent story.

Moreover, many simulation-driven IEN games persist in a tradition of identi-

fying the player strongly with a player character : a particular storyworld entity over

which the player assumes more or less direct control, and through whose perspective

most or all player-facing displays of information about the storyworld are filtered. This

is appropriate for what Ryan [104] refers to as ludus play, in which the player pursues

a goal given to them by the system, but is excessively limiting for paidia play, in which

the player is primarily concerned with exploring the space of possibilities in an autotelic

or non-goal-directed way. And, as Compton and Mateas [21] have argued, the “intrin-

sically pleasurable” mode of creativity that defines creativity-oriented play experiences

is characterized in large part by its autotelic nature.

Players in games like Stellaris have repeatedly expressed a need for tools to

support player storytelling. For instance, at various times, players have demanded a

summary screen that can be used to view major accomplishments in the life of an in-

game character1; described the use of external tools to keep track of in-game events as

essential to their enjoyment of the game2; requested tools for building custom start-

game scenarios, with story creation in mind3; and even created elaborate custom mock-

ups of in-game screens chronicling character biographies4. The frequent recurrence
1https://www.reddit.com/r/Stellaris/comments/avd1uz/we_should_see_a_summary_screen_

on_leader_death
2https://www.reddit.com/r/Stellaris/comments/aygl4j/stellaris_is_fantastic_for_

storytelling
3https://www.reddit.com/r/Stellaris/comments/azbd5k/could_we_get_a_galaxy_editor_so_

we_can_make_our
4https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_

16

https://www.reddit.com/r/Stellaris/comments/avd1uz/we_should_see_a_summary_screen_on_leader_death
https://www.reddit.com/r/Stellaris/comments/avd1uz/we_should_see_a_summary_screen_on_leader_death
https://www.reddit.com/r/Stellaris/comments/aygl4j/stellaris_is_fantastic_for_storytelling
https://www.reddit.com/r/Stellaris/comments/aygl4j/stellaris_is_fantastic_for_storytelling
https://www.reddit.com/r/Stellaris/comments/azbd5k/could_we_get_a_galaxy_editor_so_we_can_make_our
https://www.reddit.com/r/Stellaris/comments/azbd5k/could_we_get_a_galaxy_editor_so_we_can_make_our
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories

of these requests on player forums indicates a real demand for curatorial and other

narrativization-oriented affordances in IEN play. And even virtuosic retelling creators

like Robin Burkinshaw (who made Alice and Kev, the key case study discussed in Elad-

hari’s original retellings paper and probably the most well-known Sims retelling) have

felt the need to mod the games they use in order to make them better at supporting

storytelling. Burkinshaw’s Meaningful Stories mod pack for The Sims 4 [10] makes

a variety of changes to the game’s simulation, with particular focus so far on making

the simulation’s handling of character emotion “smarter, subtler, and more varied”,

and with future changes planned to the handling of character autonomy, memory, and

whims. This essentially represents a case of a skilled player of an instrument deliberately

modifying the instrument in order to change its voice.

2.2 Story Sifting

What can we do to make simulation-driven IEN play experiences more ap-

proachable, usable, and supportive as narrative instruments, especially to casually cre-

ative users? There are many possible approaches, but one particularly promising strat-

egy centers on story sifting, an approach introduced by Ryan as part of his broader “cu-

rationist” approach to the development of emergent narrative systems. Though Ryan’s

recent work on curationism (especially the generative podcast Sheldon County) has fo-

cused primarily on the automatic generation of stories without a human operator in the

loop, narrative instruments suggest an alternative purpose for curationist techniques:

histories

17

https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories
https://www.reddit.com/r/Stellaris/comments/bq5e9j/suggestion_leader_biographies_histories

namely, to provide players with sifting-based tools that help them make narrative sense

of and locate narratively potent material within a rich simulated storyworld, without

requiring simulation designers to compromise the richness of the simulation (and thus

risk compromising emergence as well) for the sake of legibility.

Ryan et al.’s 2015 paper “Open Design Challenges for Interactive Emergent

Narrative” [101], although it did not use the term “story sifting” directly, represents a

key milestone in the development of story sifting as an approach. In this paper, Ryan

poses four major challenges for future IEN research, including two that are directly

pertinent to story sifting technologies: “story recognition”, dealing with the automatic

identification and extraction of narratively potent “storylike event sequences” from sim-

ulated storyworlds, and “story support”, dealing with the use of these sequences once

they are recognized—for instance by presenting them to the user directly, or “nudging”

the simulation to extend these sequences in particular ways, as is done in The Sims

2 [8, 87].

Ryan’s dissertation [99] further develops his ideas on the subject, including

by introducing the term “story sifting” and by directly addressing Mateas’s critique of

emergent narrative as “just one damn thing after another”. Sifting for Ryan represents

an important part of the answer to this critique, because—in Ryan’s view—the things

produced directly by emergent narrative systems are not meant to be understood as

full-fledged narratives in their own right. Rather, these outputs represent corpuses of

narrative material, which must be narrativized through a process of sifting (to extract

narratively potent event sequences) and narration (which assembles discrete chunks of

18

Figure 2.2: A diagram of Ryan’s proposed curationist architecture for interactive emer-
gent narrative systems, showing the different roles that users or computational systems
could play within the story-making process and highlighting the distinction between
simulated storyworld and emergent narrative. Source: Ryan [99, p. 243].

narrative material into a particular telling). This process consists of multiple distinct

stages, and each of these stages can be performed by either a computational system or

a human. For this reason, the “curationist architecture” Ryan proposes (Figure 2.2)

represents a compelling meta-blueprint for the creation of narrative instruments, which

can be designed either to assist human operators or to perform tasks autonomously at

each stage of this process.

Sifting tools operated by human users have been used as narrative instruments

in several different contexts. The third-party Dwarf Fortress tool Legends Viewer [61]

and its Dwarf Grandpa extension [32] both present their users with story sifting af-

fordances, as does the “wizard console” component of the Bad News assemblage [109].

To date, the approachability of these tools has generally been limited; the Bad News

19

Figure 2.3: A screenshot of the Legends Viewer interface showing information about a
particular “site” in a player’s imported storyworld, including a log of events (filtered by
event type) that took place there. Source: cartographersguild.com forum post by user
“nitus”.

wizard console requires the user to write Python code, while the Legends Viewer inter-

face (Figure 2.3) presents the user with a dizzying array of tabs and filtering options

for inspecting different aspects of the storyworld state. Further iteration on design is

required to make sifting approachable to non-hardcore users.

Story sifting is just one possible technical design choice for supporting player

creativity in a story-making context. However, it seems like a good match for the

challenges facing players who enjoy constructing retellings based on IEN gameplay to-

day, as documented in (for instance) Reddit threads requesting additional curatorial

affordances in games like Crusader Kings II and Stellaris. Moreover, notable player-

20

authors like Tim Denee (creator of the popular webcomic-style Dwarf Fortress retellings

Bronzemurder and Oilfurnace) have described sifting as an important part of their sto-

rytelling process [77]. As a result, the further development of sifting technology seems

like a promising direction to explore with the goal of creating a wider range of narrative

instruments in mind.

2.3 Creativity Support Tools

Existing scholarship on creativity support tools (CSTs), or computational tools

intended to support human creative practices [112], may have potential utility for the

design of narrative instruments. For instance, Resnick et al. [96] have proposed a set

of design principles for CSTs, including “low threshold, high ceiling, and wide walls”,

which are likely to be desirable properties for narrative instruments as well; Carroll et

al. [14] have proposed a standard evaluation index for CSTs, the use of which is further

explored by Cherry and Latulipe [15]; and both Frisch et al. [31] and Chung et al. [16]

have surveyed a number of existing CSTs, including some targeting the domain of story-

telling, that may provide inspiration for the development of narrative instruments. Of

particular note within this literature, due to the emergence of many notable narrative in-

struments from the game AI research community, may be scholarship on mixed-initiative

co-creative processes involving AI systems and humans working together toward a shared

creative goal [24, 68]. Although this body of literature contains valuable insights into

the nature of creativity and how tools can be designed to support it, it also tends to

21

assume that creativity is fundamentally goal-directed in nature, prioritizing professional

users’ ability to use a CST to efficiently produce desirable outputs over the experiential

aspects of using the tool or the characteristic grain (if any) of artifacts that the tool

is used to create. As a result, existing knowledge about the design of CSTs may not

always be directly applicable to the development of narrative instruments, which often

prioritize creating a certain user experience or producing a certain voice over productive

efficiency in the conventional sense.

As a partial corrective to the tendency to assume goal- and output-directedness

in the CSTs literature, Compton and Mateas [21] introduce casual creators as a cate-

gory of creativity support tools that specifically aim to support autotelic and playful use.

Compton also further develops the idea of casual creators in her dissertation [22]. Casual

creators prioritize creating a subjective sense of ease, pleasure, and expressiveness in the

user over providing users with maximally precise creative control of the output artifacts

they produce. In playful storytelling contexts, experience may be more important than

output; for this reason, casual creator design patterns may be of particular use when

designing narrative instruments intended to produce a specific user experience through

their design. However, not all of the specific experience goals associated with casual

creators need be embraced by all narrative instruments: for example, narrative instru-

ments intended to facilitate especially deep engagement might inherently require more

practice to learn to use well, and therefore might legitimately reject creating a sense

of ease in the user as a design goal. Reflective creators [55], which retain the process-

over-product focus of casual creators but prioritize the development of what Schön [110]

22

calls reflective practice in the user over creating a sense of ease and pleasure, may repre-

sent one alternative source of design inspiration for these more depth-oriented narrative

instruments.

Most existing creativity support tools for creative writing can be divided into

those that primarily aim to support the authoring of narrative structure and those that

primarily aim to support the authoring of surface text. In the former category, Samuel

et al.’s Writing Buddy system [107] presents players with a beat-based authoring envi-

ronment that allows them to move back and forth between constructing a plot outline

made of dramatic exchanges between characters in a simulated storyworld (tagged with

the high-level actions they accomplish, from a library of system-defined action types)

and passages of prose narrating the characters’ actions. Actions are gated on characters’

motivation to perform these actions, and may change characters’ motivations when they

are performed; character motivation is tracked and updated by the system to ensure

characters do not perform actions they would have no motivation to perform. Writing

Buddy also provides players with optional writing prompts and goals that they might

want to achieve, the latter of which can be recognized as fulfilled by the system when

the plot outline contains an appropriate set of beats. Additionally, several planning-

based tools—including Stefnisson and Thue’s Mimisbrunnur [119]—attempt to provide

creativity support for the authoring of story outlines by providing a mixed-initiative

graphical user interface to a narrative generation planning algorithm.

Tools that support the authoring of surface text, meanwhile, typically make

use of language models. One of the earliest tools based on this approach, Swanson and

23

Gordon’s Say Anything [121], provides a turn-taking-based co-creative writing interface

in which the user can type a sentence, then choose one of a number of system-suggested

next sentences (drawn from a large corpus of sentences based on similarity to the most

recent user-written sentence) to continue the story. The Creative Help system [98] ex-

tends the Say Anything model of human/computer creative writing collaboration by

enabling users to choose where in the story to insert system-suggested sentences (break-

ing from the strict turn-based model of Say Anything) and allowing users to modify

the system-provided text. Botnik’s Predictive Writer [6] uses a finer-grained language

model to generate predictions at the word level (rather than at the level of complete

sentences) and allows the user to provide their own corpus of input, allowing them to

influence what kinds of suggestions the tool will provide. Sloan [115] and Manjavacas et

al. [72] report on the use of fine-grained character- or word-based language models for

creativity support in the creative writing process, while Chung et al. [17] and Singh et

al. [114] present systems that integrate these language models into more sophisticated

mixed-initiative writing interfaces that offer affordances beyond mere continuation of

user-written prompt text. In all of these cases, language models tend to be useful

for introducing unexpected new plot directions or evocative bits of language, but the

generated text usually needs to be edited by a human author—often at a fairly fine-

grained level—to maintain coherence. Similar results were also found in Calderwood

et al.’s small user study of a language model-based creativity support tool for creative

writing [11]. Per Samuel et al. [107] and Kybartas and Bidarra [62], this weakness in

language model-based systems stems from the fact that even the most sophisticated

24

language models do not construct a higher-level semantic representation of the story

under construction, and therefore cannot understand the larger-scale implications of lo-

cal creative decisions—leaving it up to the human operator to reconcile inconsistencies

in the generated text.

Altogether, both structure-focused and surface text-focused CSTs for creative

writing are effective at supporting users in coming up with new ideas for narrative

threads, whether through the suggestion of discretely modeled character actions (in

structure-focused tools) or of unstructured text completions (in surface text-focused

tools). Historically, neither category of tools has been able to effectively support users

in keeping track of existing threads, though structure-focused tools that make use of

social simulation and story sifting to track and surface character motivations have re-

cently made considerable progress in this direction. Meanwhile, neither category of tools

currently provides much in the way of support for tying up narrative threads and bring-

ing a story to a satisfying conclusion. Additionally, due to fundamental technological

limitations in the current generation of language models, there is no clear route forward

for surface text-focused tools that aspire to provide this form of support. Therefore, my

primary interest for short-term future work is in the development of structure-focused

storytelling technologies that provide support for resolving stories in a satisfying way.

25

2.4 Deficiencies of Appropriated Instruments

Having surveyed past work in several areas relevant to narrative instruments,

we can now identify two key weaknesses of existing systems that have been appropriated

as narrative instruments in the past.

2.4.1 Overwhelm

The first of these weaknesses is overwhelm. Interactive emergent narrative

games such as Dwarf Fortress and Crusader Kings II are notorious for presenting play-

ers with overwhelming amounts of information, making it difficult to locate the most

compelling possibilities for narrative development. Simultaneously, existing language

model-based narrative instruments use a model of interaction in which the user can

“say anything” [121] and the range of AI responses is similarly open-ended, creating

difficulties similar to the fear of the blank canvas [59]: when anything can be written,

what should you write? Users of these latter systems may therefore sometimes experi-

ence limited agency, in the sense of the word described by Wardrip-Fruin et al. [130]:

though the set of available options for what to write next is very large, users are not

necessarily reliably “entice[d ...] to desires” for what should happen next in the story

by the system’s continuations.

Story sifting aims to mitigate the difficulty of overwhelm by assisting players

in locating the sites of greatest narrative potential within vast chronicles of simula-

tion or gameplay events. However, it has not yet been made approachable to casual

26

storytellers, such as the players who write stories about their experiences in emergent

narrative games. For instance, in the simulation-driven interactive theater experience

Bad News [109], story sifting is carried out by the “wizard”: a skilled human opera-

tor of the underlying Talk of the Town simulation engine, who is familiar enough with

the simulation engine’s datastructures and affordances to compose Python code that

inspects the state of the simulation to locate interesting narrative material in real time.

Moreover, the wizard is only one of two human operators required to make Bad News

function as an experience, suggesting that sifting in the context of Bad News is such an

all-consuming task as to require a dedicated “wizard” operator working in partnership

with the player-facing “actor” role. It would thus be unrealistic to expect most casual

storytellers to put in the time and energy necessary to become proficient with a sifting

toolset akin to the Bad News wizard’s, especially when the goal of introducing sifting

into the storytelling process is to mitigate overwhelm.

Additionally, early approaches to story sifting are limited in their scalability.

In particular, sifting as an approach is currently reliant on libraries of human-written

story sifting patterns that describe groups of interrelated events which tend to make

for compelling narrative building blocks. When the goal is to construct a story sifter

that can recognize a wide variety of potentially interesting emergent microstories (and

thus to get as much storytelling value as possible from the open-endedness of emer-

gent narrative simulation), human authors thus need to create large numbers of sifting

patterns—one pattern for each unique form of emergent microstory that the sifter aims

to recognize. Authoring these patterns can be time-consuming and error-prone, espe-

27

cially when they are specified in terms of a general-purpose programming language like

Python. Moreover, when these patterns make direct use of low-level simulation engine

APIs, they run the risk of breaking when the simulation engine is changed in some

way, creating a significant maintenance burden for story sifters that target a simulation

engine which is under active development. Consequently, there are considerable difficul-

ties associated with applying näıve forms of story sifting to the rich emergent narrative

simulation engines that are most often used for the construction of retellings.

2.4.2 Directionlessness

Beyond overwhelm, systems that are currently used as narrative instruments

also tend to suffer from the weakness of directionlessness. This is because, broadly

speaking, even systems that provide help in finding and pursuing interesting short-term

suggestions offer little assistance in crafting a coherent plot at a high level. Consequently,

players of games like The Sims (a conventional simulation-driven interactive emergent

narrative game) and AI Dungeon (a storytelling game backed by a large language model)

must exert considerable effort to keep the story moving in a single consistent direction:

in The Sims, the events of play rarely if ever cohere into a recognizable high-level plot

structure from a traditional narratological perspective [105], while in AI Dungeon, the

language model that provides suggestions on how to continue the story tends to drive

the plot in obviously “surreal” directions unless constantly checked by the player [40].

Thus, despite the pleasure of “coaxing a good story out of the system” [105] in these

games, the experience of storytelling-oriented play in these existing systems tends to

28

be one of constantly teetering on the edge of total incoherence—an experience which

can swiftly prove exhausting if sustained for any length of time. Ultimately, it is the

directionlessness of these systems that leads to the products of emergent narrative games

being viewed by some as “just one damn thing after another” [99, p. 4].

To the extent that existing systems have been able to avoid this difficulty,

they have generally done so by deliberately designing for a descent into emergent chaos

to mark the natural endpoint of a player story. In Dwarf Fortress, for instance, the

details of individual player stories can vary substantially, but most retellings share a

common and highly recognizable arc: a fortress is established, faces several minor set-

backs, nevertheless gradually grows in size and ambition, and suddenly collapses when

a minor error or overreach provokes a spiral of catastrophe. This prototypical arc lends

Dwarf Fortress retellings a characteristic texture, and when Dwarf Fortress is viewed

as a narrative instrument, the common destiny of most fortresses seems to be treated

by players as a desirable aspect of the instrument’s voice. However, this acceptance of

the inevitability of emergent chaos also limits the range of stories that Dwarf Fortress

players can use their instrument to tell, and many stories constructed without the aid

of emergent narrative games follow very different narrative templates. Consequently, if

our aim is to develop a wide range of narrative instruments, each with their own char-

acteristic voice, we will need some solution to the problem of directionlessness besides

just allowing system-generated twists to accumulate until the story as a whole collapses

under their weight.

In the quest to develop AI systems that can help human storytellers overcome

29

directionlessness, story sifting again seems like a potentially promising approach. A

system that can reason about all of the events that have taken place in a story so far

seems especially well-placed to discover latent, incompletely developed high-level narra-

tive structures (such as plot threads, character arcs, and themes) that could guide the

longer-term development of the story if brought to the storyteller’s attention. However,

early sifters are limited in their ability to support the development of high-level struc-

ture by their purely retrospective nature: because they can only reason about events

that have already taken place, they are not generally able to recognize complex partial

narrative structures that merit future development, nor can they be directly leveraged

to suggest future events which would advance or complete latent narrative structures.

In Bad News, this limitation was worked around by framing the player’s role in terms

of the retrospective discovery of microstories that had already played out to completion

(centered around a deceased character and their relationships with their contemporaries

in a small American town). However, in most emergent narrative contexts, the respon-

siveness of the simulation engine to player actions in the middle of a story is key to

assisting the development of unexpected stories that still feel rooted in the player’s sen-

sibilities. Therefore, in developing a mode of mixed-initiative storytelling that draws

inspiration from retelling construction around emergent narrative games, it seems nec-

essary to augment early approaches to story sifting with some ability to reason about

how past events are related to future possibilities.

30

2.4.3 Toward Solutions

What can be done to address these deficiencies in future narrative instruments?

The remainder of this dissertation represents my answer to this question. Specifically,

I present two pairs of projects, each of which aims to mitigate one of the two key

weaknesses we have identified here. First I present Felt and Why Are We Like This?

(Chapters 3 and 4), which aim to mitigate overwhelm while leaving the issue of direc-

tionlessness to future work. Second I present Winnow and Loose Ends (Chapters 5 and

6), which extend the technical capabilities and user interface affordances introduced by

Felt and Why Are We Like This? to mitigate directionlessness as well.

31

Chapter 3

Felt

The problem of story sifting involves the selection of events that constitute

a compelling story from a larger chronicle of events. Often this chronicle is generated

through the computational simulation of a storyworld, whose output consists of a pro-

fusion of events, many of which are relatively uninteresting as narrative building blocks.

The challenge, then, is to sift the wheat from the chaff, identifying event sequences

that seem to be of particular narrative interest or significance and bringing them to the

attention of a human player or interactor.

Ryan, who introduced the term “story sifting” [99]—as well as its predecessor,

story recognition1—has identified story sifting as one of four major challenges [101] cur-

rently facing work in the domain of interactive emergent narrative. Emergent narrative,

which Ryan characterizes as the approach taken by many of both the greatest successes

and failures in the area of story generation, remains an area of interest for interac-
1As distinct from the natural language understanding term “story recognition”, which refers to the

identification of embedded story content in natural language text.

32

tive narrative design [64,71] and narrative generation [1, 63] communities. Despite this

ongoing interest in emergent narrative approaches, however, story sifting has received

relatively little attention to date.

There has also been a recent wave of interest in retellings [26,57,59]—the sto-

ries players tell based on their play experiences in interactive narrative games—and in

how design elements of games can facilitate and frustrate the player’s creative process.

From this perspective, story sifters could be viewed as mixed-initiative creativity sup-

port tools [68] that help players narrativize their play experiences by surfacing sites of

potential narrative interest as they emerge.

One goal of the Bad News project [109] was to learn lessons about story sifting

needs that could be applied to the design of a computational system that performs story

sifting. Unfortunately, a computational story sifter that incorporates the learnings from

Bad News has yet to materialize. At the same time, our own recent work has involved

the design and development of several interactive emergent narrative projects, and we

have increasingly found ourselves making use of approaches that resemble story sifting,

especially in designing interactive narrative systems that position the human interactor

as a narrative co-author. For this reason, we developed a simple story sifter geared

primarily toward use in a mixed-initiative context—a system that assists players in the

process of narrativizing their play experiences by helping them locate sites of potential

narrative interest in a larger simulated storyworld.

Our system, Felt, implements a variation of one of the approaches to story

sifting discussed by Ryan, namely that involving the human specification of interesting

33

event sequences. In order to ensure that our human-specified event sequences are gen-

eralizable, we implement them not as literal sequences that must be matched exactly,

but as sifting patterns: queries that seek out ordered sets of events matching certain

criteria, with the possibility that other events may be interspersed between the events

that are matched. In the remainder of this chapter, we discuss related work in story

sifting and adjacent areas; elaborate on the design of Felt; present three design case

studies of in-development interactive narrative projects that make use of Felt; and dis-

cuss what we have learned from the design, development and application of Felt about

story sifting in general.

Many of the design decisions that went into Felt are näıve. This is by design: at

each turn, we attempted to do the simplest possible thing that had a reasonable chance

of realizing our design intent. It is our hope that Felt functions as a computational

caricature [117] of a query language-based story sifter, oversimplifying where necessary

to ease development while still containing fully realized versions of the key features that

are needed for the system to serve as an effective argument for the value of our approach.

3.1 Related Work

Ryan’s original chapter introducing the term “story recognition” [101] provides

a partial list of existing systems that do something similar to story sifting, including

The Sims 2 [80], which recognizes sequences of events that match the early steps of

pre-authored “story trees” and nudges the simulation engine to promote the completion

34

of the story tree [8,87]. Also of note is the Playspecs [91] system, which applies regular

expressions to the analysis of game play traces. Samuel et al. have made some use of

Playspecs in a narrative-focused context in Writing Buddy [107] and in the analysis of

Prom Week playtraces [106].

Several systems discussed in Ryan’s dissertation [99] also make use of story

sifting. Foremost among these is Sheldon County, a generative podcast set in a listener-

specific simulated American county. In Sheldon County, a sifter called Sheldon operates

over a chronicle produced by the Hennepin simulation engine to recognize, extract and

narrativize (in the form of podcast episodes) sequences of events that match certain

human-defined sifting patterns. These patterns are defined as chunks of procedural

Python code that search for candidate events and then bind relevant aspects of these

events (such as the perpetrator of a crime) to pattern-specific variables. This approach

is similar to the approach we use in Felt. In Sheldon, however, authoring a sifting

pattern requires knowledge of both the Python programming language and the specific

data structures used within the Hennepin engine, and even simple pattern definitions

are often lengthy due to the verbosity of the procedural code used to implement them.

The “wizard console” in Bad News [109] provides an expert human interactor

(the “wizard”) with a view into the underlying simulation of a small American town.

Behind the scenes of the main performance, the wizard uses the console to seek out nar-

ratively potent information about the state of the storyworld, and—in real time—relays

this information to a human actor who is performing as one of the town’s simulated

inhabitants. The wizard console is essentially a Python interpreter that enables the

35

wizard to examine the state of the simulation data structures. As such, it provides

little computational support for story sifting, although the wizard may make use of

a set of helper functions intended to make common sifting tasks easier. The wizard

console makes no attempt to realize sifted stories as prose, leaving it largely up to the

human actor to decide how to leverage the information gathered through sifting, and—

like Sheldon—requires familiarity with both Python programming and the particulars

of the underlying Talk of the Town simulation engine [100] to use effectively.

Dwarf Grandpa [32], an extension to the Legends Viewer interface for browsing

Dwarf Fortress [5] world data, makes use of story sifting to extract and narrativize the

lives of certain notable characters from the game world. Dwarf Grandpa performs story

sifting exclusively in a backwards-looking manner, rather than attempting to sift in

real time as the simulation runs, and performs only fully automatic sifting, without

a human in the loop. Unlike many existing sifters, Dwarf Grandpa also performs the

natural language generation needed to automatically present sifted stories as human-

readable prose.

Caves of Qud’s [30] biography generation system for notable historical char-

acters [37] also makes use of story sifting. Biographies are generated by selecting a

sequence of random actions for a character to perform, then running sifting patterns

over these random events to retroactively justify each action with an in-world reason.

Where no pre-existing reason for an action can be located, new facts about the world are

generated on the fly to produce a working rationalization. Like Dwarf Grandpa, Qud’s

biography generator operates fully automatically and realizes sifted stories as prose.

36

Rules-based simulationist narrative generation systems often provide some way

for events to be directly dependent on or make direct reference to past events, and

therefore have some similarity to story sifting. Here we include systems such as Comme

il Faut [82], the rules-based “social physics” system that underlies the social simulation

game Prom Week [81], and Versu [28]. In both of these systems, characters may act

in ways that are directly dependent on the presence or absence of a set of past events

that meet a set of specified criteria—essentially a sifting pattern. This can arguably

be viewed as a form of “internal story sifting”: these systems recognize patterns of

relevant past events, but only for internal use, and without surfacing the fact that a

given pattern was recognized to the audience directly. In Ryan’s terms, these systems

lack story support: the presentation of system-recognized stories to an audience.

Prom Week in particular complicates this evaluation somewhat by presenting

players with a list of all of the “social facts” that contribute to a given character’s

evaluation of the present social situation. Social facts are often directly tied to past

events that have played out within the simulation. Arguably, the surfacing of these

relevant past events to the player could be considered to be a form of story support,

especially if the player is viewed as a co-author alongside the system rather than a mere

experiencer of a totally system-curated story. However, in this case, narrativization of

the sifted events does not occur within the system; it occurs totally within the player’s

head, if it occurs at all.

More generally, to describe an approach as making use of story sifting, it is

arguably necessary for the underlying plot generation technique to be one that produces

37

a profusion of events, including many mundane events about which the audience does

not necessarily care. Many approaches to story generation that allow events to directly

reference past events have some similarities to sifting-based approaches, but aim to

exclusively produce narratively interesting events that are worthy of being surfaced

to the audience. This includes many planning-based techniques [93, 132]. Similarly,

certain plan recognition techniques bear some resemblance to story sifting and have

been applied to an interactive narrative context [12]; however, plan recognition tends to

focus specifically on determining the goals of a particular storyworld agent, while story

sifting has a much wider range of associated aims. We recognize that these approaches

may have much to offer the developers of sifting-based systems, but we do not include

them under the label of “story sifting” here.

3.2 System Description

Felt is a query language-based story sifter coupled with a rules-based simulation

engine. Events that have transpired in the storyworld are stored in the database as

entities, and users of the system write queries—which we, following Ryan, refer to as

sifting patterns—to identify scenarios and sequences of past events that might make for

good narrative material. A sifting pattern is defined in terms of a set of logic variables to

bind—effectively “slots” or “roles” into which certain database entities, such as events

or characters, can be substituted—and a set of relations between these logic variables,

which constrain the values that each variable is allowed to take. A sifting pattern could

38

specify, for instance, that eventA must be an instance of the betray event type; that

eventA must have taken place before eventB; that both events must have the same

protagonist, a character char; and that char must have the impulsive trait. The

system will then consult the database and return a list of all possible combinations of

variable bindings for the pattern as a whole.

In designing a Felt storyworld, users combine sifting patterns with several other

features to define actions. The structure of actions is directly inspired by the structure

of rules in Ceptre [73], a linear logic programming language for specifying interactive

simulationist storyworlds. An action consists of a sifting pattern; an optional weighting

function that decides how likely it is that this action should be performed, given a

set of bindings for the logic variables defined in the sifting pattern; and a function that

constructs an event object representing this action, which will be added to the database if

this action is chosen to be performed. A minimal event object contains an autogenerated

timestamp, which can be compared with the timestamps of other events to determine

which happened first; a short string identifying its event type; and a template string into

which the values of bound logic variables are substituted to produce a human-readable

description of the event. It may also contain zero or more effects, which describe any

other updates that must be made to the database if this event is accepted as part of the

history of the storyworld, and possibly other properties on a case-by-case basis, such

as the ID of an earlier event that was a direct cause of this event. Because actions

are added to the database as events, Felt’s story sifting features can be used to run

sifting patterns over the history of everything that the simulated characters have said

39

(eventSequence ?eventA ?eventB)
[?eventA "eventType" "betray"] [?eventA "actor" ?char]
[?eventB "eventType" "betray"] [?eventB "actor" ?char]
[?char "trait" "impulsive"]
(not-join [?char ?eventA ?eventB]

(eventSequence ?eventA ?eventMid ?eventB) [?eventMid "actor" ?char])

Figure 3.1: A moderately complicated Felt sifting pattern that will match a sequence
of two betrayals perpetrated by the same impulsive character, with no other actions
perpetrated by the same character (but arbitrarily many other events) in between.

and done.

By convention, in the projects we describe here as case studies, actions come

in two flavors. Internal (or reflection) actions describe a character reflecting on past

events. These actions typically generate “intent tokens” or “motive tokens”, which

represent a character’s intent to act on a particular interpretation of these events in

the future. External actions describe a character acting on a previously formed intent.

These actions typically consume intent tokens and update the state of the world in

some outwardly visible way. This separation ensures that intent tokens can be both

produced and consumed in multiple different ways: many possible actions that produce

the same type of intent token can serve as the motivation for many possible actions that

all consume the same type of intent token, opening up the space of possible cause/effect

relationships between events. Additionally, in an emergent narrative system where

actions are the player’s primary window into what is happening in the simulated world,

separate reflection actions help make it clear to the player that sifting patterns are

at work behind the scenes, and that character behavior is meaningfully influenced by

the history of past simulation events—sometimes in complex or sophisticated ways.

40

This is one way in which we hope to address another of Ryan’s four design challenges

for interactive emergent narrative [101], namely that of story support: once a storyful

sequence of events has been recognized, how should this be surfaced to the player? It

also helps to ensure that we do not fall victim to the Tale-Spin effect [129] by failing to

surface the interesting technical capabilities of our interactive narrative system to the

player in a compelling way.

Internally, Felt uses the DataScript library [94] to store and query simulation

state, including the history of events that have transpired within the simulated world.

Felt sifting patterns translate directly into queries against a DataScript database, and

are written in a minimal query language that desugars to a subset of Datalog, a simple

logic programming language. DataScript provides facilities for storing, updating, and

querying state as a set of simple facts of the form [e a v]; each fact represents an

assertion that the database entity with integer ID e has an attribute named a with

value v. A DataScript database is an immutable value: all operations that “update”

the database in fact create a fresh copy of the database with the desired modifications,

leaving previously stored versions of the database intact and unchanged. This property

can be leveraged to snapshot the complete Felt simulation state and run queries against

these snapshots while allowing the main copy of the simulation state to continue evolv-

ing, which we have found helpful during debugging. It has also enabled us to implement

several features, described in section 4.2, that rely on the ability to perform actions in

a speculative mode and easily undo them if they lead to unwanted consequences.

DataScript also provides several other useful features that assist with the au-

41

thoring of sifting patterns. not-join query clauses enable testing for the non-existence

of an entity that meets a certain set of criteria; this feature is frequently used to specify

sifting patterns in which two target events must not be separated by any interced-

ing events involving the same protagonist. Rules bundle groups of query clauses that

are commonly used together under a common name; for instance, an (eventSequence

?eventA ?eventB) rule may simultaneously specify that both eventA and eventB re-

fer to event entities and mandate that eventA must precede eventB. Rules may also

be recursive, allowing for the implementation of a (causalRelationship ?eventA

?eventB) rule that will match not just direct causes but also indirect causes (sepa-

rated by one or more intermediate stages of causation) of eventB.

3.3 Case Studies

3.3.1 Starfreighter

Starfreighter [44] is a small prototype of a procedural narrative game in which

the player captains a small starship in a procedurally generated galaxy, completing odd

jobs to make a living while managing the needs of a small crew. The primary intent

of this game was to test whether parametrized storylets [58]—atomic units of narrative

content that, like Felt actions, are equipped with slots, preconditions, and effects—

could be used to produce compelling emergent story arcs for procedurally generated

characters.

It was in the context of this game that we began to develop the earliest version

42

of Felt. Like Felt, Starfreighter stores a chronicle of past events (framed as a sequence

of “memories” accessible to the characters who participated in each event) and pro-

vides features for architecting storylets that refer directly to sequences of past events

that meet certain criteria. As a result, Starfreighter storylets can contain instances of

characters reflecting on sequences of past events, such as the circumstances that led

them to leave their home planet or the evolution of their ongoing relationship with

another character. Whenever the player completes a storylet, Starfreighter evaluates

the sifting patterns of all other storylets to identify which ones it would currently make

sense to present to the player, then chooses from this pool via simple weighted ran-

dom selection—essentially using story sifting to implement a form of what Short terms

salience-based narrative [113].

The early version of Felt used in Starfreighter differs significantly from the ver-

sion we present in this chapter. Most importantly, sifting patterns in this early version

of Felt were not authored in terms of a true query language, but in terms of an ad-hoc

collection of functions that retrieved entities from the game state in specific predefined

ways. One notable consequence of this design decision was that, although storylets were

equipped with sifting patterns that could bind a set of logic variables to appropriate

values, the system would make no attempt to unify these variables with one another,

meaning that there was no guarantee of being able to find all of the possible instantia-

tions of a sifting pattern at any given time. Additionally, the authoring of new content

became bottlenecked on the development of new functions that enabled the authors of

sifting patterns to ask specific questions about the game state, forcing content authors

43

to either learn how to write these often-complicated functions themselves (requiring

deep knowledge of how the game state was structured) or else wait for the game’s lead

developer to implement the functions they had requested. Finally, because there was no

straightforward way to get all of the possible instantiations of a sifting pattern in the

context of the current game state, debugging was consistently difficult; in particular,

if a sifting pattern was repeatedly failing to match a set of values for which it ought

to succeed, the nondeterministic nature of sifting pattern resolution made it difficult

to determine why. These difficulties led us directly toward the development of a more

sophisticated version of Felt, which has helped to alleviate each of these issues in later

projects.

3.3.2 Cozy Mystery Construction Kit

Cozy Mystery Construction Kit (CMCK) [45] is a prototype AI-supported

collaborative storytelling play experience (inspired by collaborative storytelling tabletop

games like Microscope [97] and The Quiet Year [4]) in which two players collaborate

with a computational system to write a mystery story about a small cast of simulated

characters. CMCK was the first prototype in the line of systems that would later

produce Why Are We Like This? and Loose Ends, which are described in chapters 4

and 6 respectively. CMCK uses Felt as a simulation engine for characters that sometimes

perform actions autonomously and sometimes are directed to perform certain specific

actions by players. It also uses Felt to help players locate and build on sites of narrative

interest, such as a growing jealousy or resentment between two characters or a building

44

conflict between two values—for instance, comfort and survival.

Of the case studies presented here, CMCK is the most explicitly focused on

using story sifting to provide creativity support by recognizing emerging story structures

as they unfold and suggesting elaborations on emergent patterns and themes. Several

Felt features are especially useful in this context. Clear separation of actions that

produce and consume “intent tokens” or “motivation tokens” enables players to ask the

system questions about character motivation: for instance, “Who had a motive to harm

this character?”, or “What motives might this character currently want to act on?”

This can be particularly useful when writing mystery stories. Because DataScript query

evaluation is highly optimized, many Felt sifting patterns can be run over the database

at once to provide players with a wide variety of suggestions as to what characters might

reasonably do next. Additionally, because sifting patterns provide explicit slots for the

characters and events they concern, CMCK can give players an interface that lets them

filter action suggestions by specifying the values of one or more variables in advance.

This enables players to (for instance) get a list of actions that a particular character

might currently want to perform, or a list of actions that any character might want to

perform in response to a particular past event.

Since the DataScript database in which Felt stores simulation state is an im-

mutable value, CMCK can allow players to perform actions in a speculative mode, run

queries against the updated database to decide whether they like the effects of these

actions, and easily roll back to a previous database state if they do not. Immutability

may also be leveraged to facilitate a sort of planning or goal-directed search over actions:

45

because Felt actions (like planning operators) are defined in terms of preconditions and

effects, search over Felt actions can be used to locate speculative future worlds where

some specified set of conditions holds true. This can then be used to present users

with an interface in which they specify a scenario they would like to bring about in the

storyworld, and the system searches for a sequence of actions that might realize this

scenario. We did not implement this feature in CMCK, but it would not be difficult to

do so in the future.

Another potential Felt-enabled feature that we discussed in the context of

CMCK involves the automatic surfacing of “almost actions”: dramatic actions that

are almost possible, but currently invalid due to a small number of unmet precondi-

tions. This feature concept was directly inspired by the feature with the same name in

Writing Buddy [107], and would have leveraged Felt’s per-action weighting functions to

judge how dramatically significant a given action would be if performed. However, in

practice, our initial näıve implementation plan for this feature (involving the procedural

generation and parallel checking of many variants of each action’s precondition set, with

different preconditions omitted in each variant to locate a wide variety of nearly-possible

instances of each action) turned out to be too computationally intensive to be feasible

in Felt alone. It was only our later work on Winnow, discussed in chapter 5, that would

make this feature feasible.

CMCK is also notable for its use of story sifting to highlight character per-

sonality and subjectivity through sifting-driven reinterpretation of events. Each CMCK

character holds several randomly selected values drawn from a pool of eight possible

46

values, and these values are used in sifting patterns to influence how characters will

interpret certain event sequences. Consider, for instance, a sequence of events in which

a character forbids anyone from using the kitchen until a crime that took place there

has been thoroughly investigated. A character who values comfort above all else may

evaluate this sequence of events very differently than a character who values safety.

Much as Terminal Time [79] narratively spins historical events to cater to the audi-

ence’s ideological biases, and Caves of Qud’s biography generation system [37] retroac-

tively decides how to interpret the motivations behind a character’s randomly generated

actions, CMCK characters engage in retroactive interpretation of events through the

sifting of their own stories, one another’s stories, and the stories of the world around

them. Moreover, in CMCK, the differential interpretations that result from this process

of sifting serve as the main driver of character conflict. In this sense, CMCK could be

viewed as an instance of AI-based game design [25,126] in which the AI process at the

heart of the play experience is a story sifting engine.

3.3.3 Diarytown

Diarytown is a prototype game in which players craft diary entries about their

real life and watch as the described experiences are creatively enacted, extrapolated on,

and respun through the lens of a simulated, personalized town.

In Diarytown, Felt is primarily used to recognize story patterns in a player’s

diary entries over time, allowing the game to surface to the player different possible

interpretations of things that have happened within their life. This underpins one of

47

the project’s primary design goals, of facilitating playful, generative reflection on one’s

life. Whenever a story pattern is recognized, Diarytown surfaces it to the player as a new

scenery object within the simulated town. The player can then interact with this scenery

object to view the recognized story, and can choose to edit the object’s appearance and

placement, or even to remove it from the town entirely if they reject the interpretation of

their life’s events that it represents. Multiple recognized story patterns that share many

of the same attributes (for instance, a common focal character) might be collapsed over

time into a single, larger scenery object, and these objects may thus gradually take on

the role of symbols of larger patterns within the player’s life (for instance, a monument

to the player’s ongoing relationship with a particular friend).

Players craft diary entries by composing terms from a symbolic action library

consisting of actions, connectors, and modifiers designed to reflect common actions in a

person’s everyday life. Some are optionally parametrized with character names, places,

and other reference nouns, which the player defines during play. The parametrized

nature of Felt actions make it ideal for representing elements of these complex diary

entries as simulation actions.

Felt is also being used to simulate autonomous town activities and background

characters that are partially conditioned on player-entered actions and character defini-

tions. This integration of player-defined and autonomous actions allows us to playfully

extrapolate on a player’s account of their daily life, and leverage the expressive affor-

dances of emergent narrative (which generally requires a large number of events to sift

through) even when there are relatively few player diary entries.

48

In the context of the Diarytown project, Felt was introduced to four high-

school-aged research interns, three of whom had some prior programming experience

(primarily in Java) and one of whom had none. At the end of a single day of instruction,

all four interns were able to author new actions (including sifting patterns) on their own.

Within a week, they had authored 85 new actions without expert intervention.

3.4 Discussion

3.4.1 Authoring Sifting Patterns

When adopting an approach to interactive narrative that makes integral use of

story sifting, the design and development of sifting patterns becomes part of the content

authoring pipeline. As such, we made it one of our design goals for Felt to make the

authoring of sifting patterns as easy and approachable as possible. As a result of this

focus on approachability, we initially intended to provide sifting pattern authors with

a large library of preauthored functions for accessing the database in certain specific

ways, and thereby to avoid creating a situation in which sifting pattern authors had to

learn how to interact directly with the complicated network of relationships between

game entities.

In practice, however, we soon found that it was very difficult to anticipate in

advance the full range of questions that a sifting pattern author might want to be able

to ask about the game state. This made it near-impossible for us to create an adequate

library of preauthored functions. As a result, we found ourselves turning instead toward

49

the path of giving sifting pattern authors access to a “real” query language. Query

languages are designed for flexibility, enabling the user to ask a wide variety of questions

about the game state on an as-needed basis—including questions that no one specifically

anticipated ahead of time.

It may, at first glance, seem counterintuitive that authoring can be made more

approachable by presenting content authors with a query language they must learn.

However, as argued by Nardi [86] and evidenced by the widespread success of the Tracery

language [20] among users with little or no prior programming experience, people are

generally quite good at learning simple formal languages when the language is tied to

a task they want to perform. This is especially the case when a gentle on-ramp to

query authoring is available: novice content authors may start off using pre-composed

sifting patterns without modification, graduate to making slight modifications of these

pre-composed patterns, and eventually gain sufficient facility with the query language

to author their own sifting patterns from scratch. Our success with having high-school-

aged research interns on the Diarytown project write sifting patterns with little training

supports the hypothesis that users can learn to write sifting patterns in a simple query

language fairly quickly when they are provided with a robust library of examples to

copy, paste, and modify.

3.4.2 Debugging Story Sifters

Another advantage of using a database with a full query language to store

game state is that it greatly simplifies the process of debugging, enabling developers

50

and content authors to write and run queries against the live database at any point.

This stands in sharp contrast to the debugging experience in Starfreighter, where the

opacity of the ad-hoc game state data structures made it difficult to explore the game

state when trying to track down the reason for a sifting pattern’s failure or misbehavior—

especially for content authors, who had particular difficulty learning how different parts

of the game state related to one another.

DataScript query evaluation is computationally inexpensive. This makes it

tractable to get a list of all sifting patterns that are currently succeeding, including

all possible sets of variable bindings that they could use, simply by running all of the

available sifting patterns against the database in quick succession. This can significantly

speed up debugging by making it visible at a glance whether or not a particular instan-

tiation of a sifting pattern is currently possible, saving a substantial amount of time

that a developer might otherwise have to spend manually testing sifting patterns they

are attempting to debug.

Moreover, the DataScript queries that underlie Felt sifting patterns are parti-

tioned into distinct clauses, which can be evaluated against the database individually

or in subgroups as well as in the context of a complete query. We took advantage of

the structured nature of our sifting patterns to implement a debugging helper function

we refer to as whyNot. This function takes a sifting pattern as an argument, and can

optionally also be supplied with a partial set of variable bindings for the pattern’s logic

variables. It then tests each clause of the sifting pattern in isolation, then each subgroup

of clauses, until it identifies the set of clauses that are currently causing the pattern to

51

fail. This information can then be reported to the pattern’s developer, potentially sav-

ing them the work of manually stepping through the pattern line by line to identify why

it is not succeeding when it ought to be.

3.4.3 Coupling Sifting and Simulation

Felt was developed as a sifting engine coupled with a simulation engine. The

primary reason for this was convenience. At the time of Felt’s development, we were

largely attempting to sift the outputs of storyworld simulations in which character ac-

tions were gated on complex precondition checks against simulation state. Because sets

of preconditions that enable actions, like Felt sifting patterns, can easily be represented

as small logic programs, it made sense to incorporate Felt’s existing pattern-matching

capabilities into our simulation designs as the language for defining action preconditions

as well. This also made it easy for us to write character actions that are preconditioned

on sequences of past events—actions which can represent characters reflecting on, inter-

preting, and responding to events that have transpired in the past. The ease of writing

these reflective actions directly influenced the design direction of our later narrative

instruments, especially Why Are We Like This? (as discussed in chapter 4).

Strictly speaking, it is possible to make full use of Felt’s story sifting features

without making any use of its simulation capabilities. Sequences of events can be gener-

ated by an external process and then added to the database in a Felt-compatible form,

enabling the authoring of sifting patterns that operate over these externally generated

events—and in fact, several of our later projects (such as Loose Ends, as discussed in

52

chapter 6) generate event sequences to sift without also using Felt as a simulation engine.

As our sifting work increasingly moved toward the sifting of action sequences generated

by simpler simulation engines, we largely stopped using the simulation capabilities of

Felt, and developed a preference for simulation engines and sifters to be defined sepa-

rately. This preference is reflected in our later work on Winnow (as discussed in chapter

5), which is a standalone sifter without built-in capabilities for simulation.

3.5 Conclusions and Future Work

By making sifting patterns easier to author quickly, in large numbers, and for

novice authors, Felt enables the development of larger and more sophisticated sifting-

based computational narrative systems. This, in turn, allows us to create simulation-

driven narrative instruments that incorporate sifting as a solution to the problem of

overwhelm. In chapter 4, we present Why Are We Like This?, a narrative instrument

that incorporates Felt for this purpose.

More generally, it is our hope that, by presenting this system, we will encourage

the development of a wide variety of approaches to story sifting. The query language-

based approach we explore here is only one of many possible approaches, and we have

only presented a first step toward the realization of our own preferred approach. We

also hope that the existence of a “reference” story sifter will inspire the design of new

kinds of interactive narrative experiences based on story sifting technology—particularly

experiences that use sifting to provide creativity support for the human interactor in a

53

collaborative storytelling context.

54

Chapter 4

Why Are We Like This?

Why Are We Like This? (abbreviated WAWLT) is an AI-supported digital

storytelling game, previously reported on in [47] and [48], and based on the Felt system

discussed in chapter 3. In WAWLT, one or more players (ideally two) work to construct

a story in a pastiche of the cozy mystery genre, supported by an AI system that serves to

provide players with inspiration and keep the story moving forward, even when players

are unsure what should happen next.

WAWLT ’s setting is grounded in the familiar context of academic research,

dealing with a small community of researchers who are temporarily stranded during

a symposium at a remote venue. Over the course of a play session, because different

characters have access to different story sifting patterns that they use to make narrative

sense of the world, characters end up telling themselves different stories about the events

that have transpired in the world so far—and, therefore, end up acting in conflicting ways

based on their conflicting evaluations of the same evidence. The closed environment of

55

Figure 4.1: The main WAWLT interface, with the running transcript of the story so far
in the upper left, action suggestions in the upper right, and the storyworld investigator
on the bottom, focusing on a specific simulated character.

56

the symposium venue acts as a pressure cooker, exacerbating initially minor tensions

between characters until a variety of plausible motivations exist for characters to commit

severe crimes.

WAWLT represents an example of AI-based game design [25] inspired by the

study of existing player storytelling practices [26, 57] in simulation-driven games like

Dwarf Fortress [5], The Sims 2 [80], and Crusader Kings II [92]. We particularly

set out to provide creativity support features that would help players overcome four

major barriers to creativity documented in [59]: fear of the blank canvas; fear of judg-

ment; writer’s block; and perfectionism. Further design inspiration was drawn from

tabletop storytelling games like Microscope [97] and The Quiet Year [4], and from the

AI-augmented improvisational theater experience Bad News [109], of which we wanted

to create a “home version” that a small number of amateur players could set up and

play through on their own without any special training.

The main contribution of this chapter is a computational caricature [117] of an

AI architecture that enables a mixed-initiative co-creative storytelling play experience.

Like other caricatures, our architecture is intended first and foremost to clearly present

a central claim about the design space of co-creative storytelling games: that machines

should support player storytelling practices by providing players with intelligent plot

direction suggestions, drawn from an ongoing social simulation and guided by player

utterances in a machine-understandable intent language. Secondarily, we also aim to

provide readers with a small number of reusable abstractions that might be generally

applicable in other, similar systems.

57

In the remainder of this chapter, we first describe our AI architecture at a

high level, through the lens of an idealized vision of a typical WAWLT play experience.

We then describe the key subsystems in our overall AI architecture and the roles of

these subsystems in producing the desired player experience of co-creative storytelling.

Throughout these sections, for illustrative purposes, we draw comparisons between our

AI architecture and several other simulation-based storytelling architectures, including

Ensemble [108], Versu [28], Ceptre [73], and Tale-Spin [83]. Finally, we discuss the

results of early playtesting and possible directions for future development.

4.1 Related Work

The current iteration of WAWLT was conceived first and foremost as an ana-

logue to tabletop storytelling games, which attempt to provide scaffolding for a col-

laborative storytelling process between a group of human players. Microscope [97] in

particular offers a wide variety of creativity support features, particularly the palette—a

way for players to collectively negotiate what they do and do not want to see in the

story—and a recursive story structure that enables players to “dive deeper into” any

part of the story that they would like to further flesh out. The Quiet Year [4] involves

the collective production through play of a physical artifact, namely a map of the world

that the players have created, which players can take with them after play as a reminder

of the play session. And Archives of the Sky [95] provides mechanisms for structuring

character conflict around values held both by individual player characters and the larger

58

society in which they exist. All of these features have directly inspired design elements

in the current version of WAWLT.

WAWLT is a mixed-initiative co-creative system [68], and can be viewed as

a casual creator [21] for cozy mystery stories set in a particular context. Other ca-

sual creators for storytelling, such as Writing Buddy [107], and other mixed-initiative

co-creative systems intended to be used in a storytelling context, such as Mimisbrun-

nur [119], have provided valuable design inspiration for WAWLT, but have not fully

embraced the use of a fine-grained simulated storyworld in the way that we aim to here.

The same is true of co-creative writing processes driven by language models,

such as the Botnik Predictive Writer app [6], the Creative Help system [98], and the

writing practices described by Manjavacas et al. [72] and Sloan [115]. Moreover, lan-

guage model-based systems are particularly flawed from a creativity support perspective

due to their lack of an explicit world model. Because of this lack, they frequently go

off track or make suggestions that clearly contradict previous statements, forcing users

to spend time and energy repeatedly reminding them of established facts via prompt-

ing techniques. This distracts from the useful creativity support features they provide

(suggestions about “what happens next”) and exacerbates the problem of maintaining

consistency, which even experienced authors may already find difficult on their own.

WAWLT is built around story sifting in both its implementation and its de-

sign, making central use of the story sifting and simulation engine Felt [50]. Story

sifting approaches to emergent narrative attempt to address the challenges of narrative

generation through curation: by allowing a simulated storyworld to run, generating a

59

massive chronicle of mostly-uninteresting simulated events, and then searching within

this chronicle for patterns of narratively compelling events, it is possible to provide

players with compelling stories or microstories without baking knowledge of how to tell

a compelling story directly into the simulation engine itself. Story sifting, originally

known as “story recognition”, was first proposed as an open design challenge for in-

teractive emergent narrative by Ryan et al. [101], and further refined by Ryan in his

dissertation [99].

Several existing play experiences make use of story sifting technology in some

way, but none of them attempt to center story sifting as a player-facing game mechanic as

we aspire to in WAWLT. Dwarf Grandpa [32] runs sifting retroactively on the history of

a Dwarf Fortress world to pull out and highlight the stories of certain kinds of vampires.

Bad News [109], an interactive theater experience with both human and computational

components, involves a process of live sifting in which a human “wizard” (one of the

performers, rather than a member of the audience) interacts with a Python console to

pull out interesting information about the simulated storyworld in which the story is

set and feeds this information in real time to the human actor portraying the simulated

characters. Cozy Mystery Construction Kit [45], which we discussed in chapter 3, also

makes use of story sifting, but its design was less sifting-centric than that of WAWLT.

60

Figure 4.2: An overall system diagram of WAWLT, showing the important modules
and data flows. Pink subsystems (action definitions and the storyworld state database)
consist of inert data; blue subsystems (author goals, suggested actions, autonomous
actions, and the storyworld investigator) act on this data; and the transcript emerges
from player actions over the course of play. Subsystems depicted in this diagram are
discussed in greater detail in sections 3.3.1-3.3.7.

61

4.2 Architecture

To give a high-level overview of the WAWLT AI architecture and how the

various subsystems fit together, we will first present a brief walkthrough of an idealized

WAWLT play session. We will then elaborate on each of the indivdual subsystems in

sections 3.3.1-3.3.7.

At the start of the play session, two players sit down and generate a new

WAWLT scenario. The game generates a storyworld state database containing an initial

cast of characters and institutions and some basic relationships between them. It then

performs backstory simulation to quickly generate a history for the community as a

whole. This setup process is described in section 3.3.1.

Control is then handed off to the players, who are prompted to choose some

author goals (discussed in section 3.3.3) and a subset of all the characters at the sym-

posium to participate in the first scene. The players do not yet know anything about

the history of the storyworld and the preexisting relationships between the characters,

so they pick a couple of characters with interesting-sounding names and traits to par-

ticipate in the first scene. They also select a single author goal: “cast suspicion on

Vincent”, one of the two characters they selected.

The system prompts the players with five different action suggestions (dis-

cussed in section 3.3.4), many of which seem likely to motivate Vincent to pursue re-

venge against another character. This is because the suggestions are guided by the

author goals that the players have selected. The players deliberate for a bit about

62

which of these actions to perform, and eventually select an action in which Mikayla,

another character in the scene, makes a disparaging comment about Vincent’s research.

A terse system-generated description of this action is added to the transcript (discussed

in section 3.3.7), with an editable text box below it in which the players are free to

write their own more detailed description of this action. The action’s effects (discussed

in section 3.3.2) are also run, updating the storyworld state database.

The players decide they want to find out more about Mikayla and Vincent, so

they use the characters tab of the storyworld investigator (discussed in section 3.3.6)

to look up Mikayla’s and Vincent’s information cards. They discover that Mikayla and

Vincent are both doctoral students in the same lab, advised by a third character, Lea.

They also discover that Mikayla and Vincent had previously worked on a major project

together, but eventually both left the project over personal differences. This information

helps the players develop a clearer picture of the relationship between Mikayla and

Vincent up until this point, and allows them to write dialogue in their description of

the insult action that makes reference to these past events.

After selecting several more system-suggested actions for Mikayla and Vincent

to perform within this scene, the players decide that they have accomplished their

current author goal of casting suspicion on Vincent. They end the scene, and are

prompted to pick characters and author goals for a new scene.

In the meantime, other characters not participating in the first scene have also

performed a number of autonomous actions (discussed in section 3.3.5), guided partly

by the players’ author goals, but with a greater degree of randomness involved in action

63

selection. The players use the storyworld investigator to see what other events have

happened recently, and use this to guide their selection of participants and author goals

for the second scene.

The players also disagree briefly about whether the next scene should focus

on establishing a conflict between two characters (Alex and Rashida) or between two

values (comfort and safety). Eventually, they choose to compromise, selecting three

author goals: one goal that explicitly focuses action suggestions on the establishment

of a values conflict, and two goals that instruct the system to involve both Alex and

Rashida in the plot as much as possible.

Generally, as the players proceed from the start to the end of the play session,

they gradually shift from spending most of their time investigating the history of the

storyworld and opening up new loose ends to spending most of their time trying to pull

threads together and bring the story to a satisfying conclusion. The choice of author

goals from scene to scene closely follows this arc: early in play, many of the players’ goals

focus on escalating tension and introducing new points of contention between characters,

but in the last few scenes, the players select goals that steer action suggestions toward

reconciliation between characters instead.

The following subsections describe individual subsystems of the overall archi-

tecture in greater detail.

64

4.2.1 Storyworld State Database

The state of the WAWLT storyworld is stored in a DataScript [94] database

managed by the Felt [50] story sifting and simulation engine. Storyworld entities rep-

resented in the database include:

• Characters. A character has a name; a role, representing their job (e.g., “PhD

student” or “janitor”); two values drawn at random from a pool of ten; and several

other personality traits, which restrict the actions this character is willing and able

to perform.

• Relationships. A relationship entity stores one character’s view of another, in-

cluding both impressions formed of that character’s actions and role relationship

information (for instance, in the case of an advisor/student relationship or a mar-

riage). It also contains a numeric charge value representing the source character’s

overall attitude toward the target, with positive values reflecting a positive atti-

tude and vice versa. There are two relationship entities for every pair of characters,

one pointing in each direction.

• Impressions. An impression represents a source character’s evaluation of a tar-

get character based on a particular introspection event. It has a score, which

is summed together with the scores of other impressions between the same two

characters to produce an overall running evaluation of the target character by the

source. It also has a pointer back to its cause: the event that led to its creation. A

single relationship may only be defined by up to three positive and three negative

65

impressions simultaneously. Stronger impressions tend to displace weaker ones

over time.

• Projects. A project is an ongoing effort by one or more characters. It has a set of

contributors, a name, a numerical drama level representing its troubledness, and

some other detail information.

• Institutions. An institution is an organization with which characters can be

affiliated. These are mostly used in generation of character backstories during

backstory simulation.

• Events. An event is a record of an action performed by a character. It has at

minimum an event type drawn from the action definition; an actor, the character

who performed it; a short textual description; and a timestamp. It may also have

a number of tags.

At the beginning of each play session, a cast of 10 characters is initialized with

random names, roles, values, and personality traits. Each pair of characters is assigned

a random relationship charge value in both directions, for a fully connected character

affect graph. The established character roles are then used to probabilistically set role

relationships between particular characters where appropriate (“works for”, “advises”,

etc).

Backstory simulation using higher-level, lower-resolution action definitions is

then run to flesh out character life history and the shared intellectual and social history

of the community for several years prior to meeting at the symposium. This backstory

66

simulation draws from a pool of special actions, not available during gameplay, that

operate at a larger time scale. Examples of these actions include “graduate”, “join

institution”, “write paper together”, “publish a controversial book”, “take industry

position”, and “take leave to parent”. Such coarse-grained actions don’t make as much

sense in the context of a scenario playing out over the course of a few days, but they

help bootstrap rich social context quickly, and make the characters feel more real.

Backstory simulation is intended to mitigate the fear of the blank canvas [59]

in players by providing an interesting situation from the start, with many sites of po-

tential narrative interest for players to explore together and begin building their story

from. The generated backstory can also be referenced and queried at any time via the

storyworld investigator. Browsing backstory can be useful as inspiration for creating a

shared understanding of a persistent character, for sources of possible motivation for

surprising character actions, or for finding and fleshing out a character who is new to

the story so far.

After initial setup, all subsequent simulation actions (both chosen by players

and autonomously running in the background) draw from a finer-grained pool of ac-

tion definitions that make sense to happen in the course of a few days, on location at

the symposium. These actions operate on the same state database initialized by the

backstory simulation, gradually evolving it over the course of play.

67

Figure 4.3: An example WAWLT action definition.

68

4.2.2 Action Definitions

Character actions in WAWLT are defined as Felt actions. They have precondi-

tions, which take the form of Felt sifting patterns, and effects, which update the database

when the action is performed. When an action definition is registered, Felt precompiles

its sifting pattern to a Datalog query, which can later be run against the storyworld

state database to return all possible sets of parameter bindings for this action.

We draw a distinction between external actions, which involve characters acting

on the world outside of themselves, and introspection actions, which involve characters

reflecting on past events through the lens of a particular narrative frame. External

actions, for instance, might include actions like “discuss a shared value with Rashida”,

“insult Vincent”, or “sabotage Alex’s experiment”; introspection actions might include

actions like “speculate that Lea dislikes me” or “conclude that Mikayla is a mean per-

son.” Introspection actions often produce impressions that influence the introspecting

character’s attitude toward another character. By separating out character reasoning

into a category of first-class actions that players can observe and perform directly, and

that are added to the transcript for players to elaborate on within their stories, we hope

to expose character reasoning to the players explicitly—and, thereby, to mitigate the

Tale-Spin effect [129], in which a system is mistaken by players as less intelligent than

it actually is due to insufficient exposure of the internal processes.

Introspection actions bring story sifting—the process of matching and narra-

tivizing sequences of past simulation events—into the storyworld as a diegetic compo-

69

nent of how simulated characters make sense of the world around them. In this way,

story sifting plays a central role in WAWLT ’s implementation of character subjectivity.

Most introspection actions require that the first matched event in a sequence of

events took place within a certain window of recency. This helps ensure that characters

don’t suddenly decide to spend their time thinking about actions that took place a long

time ago, unless something (such as a special-case introspection action, without recency-

gating on matched events) specifically prompts a reevaluation of those past events in

particular.

Impressions define characters’ perceptions of other characters. One character’s

perception of another can be influenced by up to three positive and three negative

impressions simultaneously. Impressions are formed through introspection actions, and

have numerical strength values indicating how strongly (and in what direction) they

influence the holder’s perception of the target. The holder’s overall numerical “charge”,

or liking, toward the target is the sum of the scores of all the holder’s currently held

impressions of the target. Stronger impressions displace weaker ones upon formation,

so a character’s perception of another is generally defined by their strongest positive

and negative impressions of that character. Impressions can be communicated from one

character to another, albeit generally in weakened form, through gossip actions.

Impressions are WAWLT ’s answer to character knowledge modeling, which

is a common element of similarly simulation-driven narrative systems. Tale-Spin [83],

Talk of the Town [100], and Versu [28], for instance, all model character knowledge

phenomena at a fine-grained level, tracking per-character awareness of individual facts

70

about the world and allowing character knowledge to change substantially over time. In

WAWLT, however, we avoid modeling character knowledge phenomena directly due to

complexity. Instead, we assume that all characters know about every event as soon as

it transpires, but that most characters don’t care about most events until these events

somehow become directly relevant to them. Character knowledge is thus replaced in our

system by subjective impressions, which are substantially fewer in number and more

narratively consequential than granular facts about the world.

From a social simulation perspective, WAWLT also differs substantially from

previous similar systems in its handling of character motivation. Ensemble [108], for

instance, treats character motivations—volitions in Ensemble terminology—as transient

and implicitly derived, due to the system’s automatic re-computation of volitions after

every action. Our motivation model, in contrast, is more like Ceptre [73]’s “tokens”:

character motivations modeled as consumable “resources” in a linear logic framework,

produced by actions and persistent in the world state until explicitly consumed by

another action. Thus, motivations in WAWLT are both less transient and less implicit

(due to their production by explicit character actions, generally introspection actions)

than volitions in Ensemble and other, similar social simulation engines.

4.2.3 Author Goals

Author goals are intended to provide players with a compositional player intent

language [74] that they can use to explicitly communicate their current creative intent

to the system. This intent language is one of the main novel features in the WAWLT

71

Figure 4.4: The WAWLT author goal selection interface.

architecture, and—we argue—an important feature for mixed-initiative co-creative ar-

chitectures in general to support, due to its central role in enabling the system to respond

intelligently to changes in player intent on a moment-to-moment basis.

Author goals currently include the following:

• Involve character in plot as role

• Cast suspicion on character

• Dispel suspicion on character

• Escalate tension between character and character

• Defuse tension between character and character

• Escalate tension between value and value

• Defuse tension between value and value

• Introduce false lead

• Dismiss false lead

72

• Custom author goal: textual search query (weight)

Italics in goal names indicate parameter slots. For instance, if players want to focus on

actions involving a particular character, they can add this character to a character slot

in any goal that provides one. Alternatively, players can also leave this slot empty, in

which case the system will treat it as a wildcard that stands for “any character.”

The custom author goal option in particular allows players to specify finer-

grained constraints on action suggestions than would otherwise be possible. When

specifying a custom author goal, players can use a lightweight textual query language

to restrict action suggestions to actions that contain certain substrings in their taglines;

actions belonging to certain categories, such as “introspection actions” or “actions that

involve projects”; and to filter action suggestions in a variety of other ways. Players can

also specify the numerical weight that this custom author goal will contribute to any

matched actions. This textual search mechanism greatly expands the expressiveness of

the author goal language, but also requires the players to know what they’re looking for

and how it might be described in this system. Therefore, we expect that custom author

goals will be used more frequently later in gameplay sessions, and by players who have

a better sense of the space of all possible actions within the simulation.

Author goals are used to rank all currently possible actions in order to provide

players with action suggestions. Each author goal is associated with a heuristic function

that takes a possible action as an argument and returns a numerical score representing

the relevance of this possible action to this author goal. Whenever the system needs to

provide players with action suggestions, it first generates a list of all currently possible

73

actions, then evaluates these possible actions against the set of currently active author

goals. Every active author goal contributes a score to each possible action, and the list

of possible actions is sorted by the total combined score from all active author goals,

so that the most goal-relevant actions appear closest to the top of the suggestions list.

This provides players with support in navigating the space of currently possible actions,

which may contain hundreds of possible actions at any given point.

In addition to ranking action suggestions for characters participating in the

current scene, the system also uses author goals to guide the autonomous actions of

characters who are currently “in the background.” The process by which autonomous

actions are selected and performed is described in greater detail in section 3.3.5.

Author goals are also intended to help players negotiate their intent with one

another by making this intent explicit. Because players have to agree on the author goals

that they are entering into the system, and because they are prompted to adjust their

author goals at the start of every new scene, the system encourages players to regularly

discuss their intent with one another, and players may have to explicitly argue for the

things they want to have happen in the story. In this way, author goals can function

similarly to the “palette” mechanism in tabletop storytelling games like Microscope [97],

which requires players to explicitly discuss what they do and do not want to include in

the story they are creating together.

74

Figure 4.5: The WAWLT action suggestion interface, showing the current top five next
possible actions for players to choose among to enact and add to their transcript. Pos-
sible actions are scored according to the current, player-set author goals (e.g., “involve
character (Bella) in plot,” “escalate tension between value (progress) and value (order).”)

Figure 4.6: The WAWLT storyworld investigator interface, showing a portion of a
character information card.

75

4.2.4 Action Suggestions

The action suggestion interface displays the five most highly ranked possible

actions for characters who are involved in the current scene. Whenever the storyworld

state database is updated, WAWLT automatically recalculates which actions are cur-

rently possible. For each registered action definition, Felt executes the action’s compiled

Datalog query against the database, returning all possible sets of bindings for this ac-

tion, and instantiates a “possible action” for each set of bindings. This complete list

of possible actions is then used to drive both action suggestions for the players and

autonomous actions performed by characters in the background.

Action rankings are based primarily on the current author goals, each of which

contributes a positive score to possible actions that can be read as advancing this author

goal in some way—and, possibly, a negative score to possible actions that may be seen

as detracting from the realization of this author goal. Action rankings also take into

account the base weight specified in each action definition as an indicator of the action’s

base narrative significance, since players may find it confusing if relatively mundane

actions (e.g., “gossip about weather”) are ranked above more inherently dramatic actions

(e.g., “accuse of murder”). This base weight is multiplied together with the total score

from author goals to produce an overall score for each action, which is then used to sort

the list of possible actions and display the top five.

In the future, we may also expand the calculation of action scores to consider

other factors. For instance, in order to prevent the same few actions from appearing

76

as highly ranked suggestions over and over again, we may apply a ranking penalty to

instances of the last few actions that were performed. In the context of introspection

actions that involve a character ruminating about or reflecting on a particular set of past

events, we may also take into account the subjective significance of the matched events to

the character who is doing the rumination. Event significance calculation may consider

such factors as the recency of the matched event, the strength of the relationships

between the ruminating character and the event’s participants, and perhaps some of the

other factors suggested by the Indexter [13] model of event salience. These event salience

heuristics would likely begin to resemble generic sifting heuristics [99] as proposed by

Ryan, due to their basis in general-purpose models of why a sequence of events might

be perceived as an interesting story.

Possible actions in the action suggestion interface are displayed alongside some

details about why this action is currently possible. This includes a display of what

active author goals contribute to the surfacing of this action suggestion, and with what

strength; a short description of all the previous actions that partially caused this action,

with the ability to expand the causality trace backward (to view the causes of the causes,

and so on); and a short description of any other preconditions for this action, such as the

presence of certain character traits on the action’s protagonist, if any such preconditions

exist. Introspection actions are also clearly marked as such, to distinguish them from

external actions.

A search bar at the top of the action suggestion interface allows players to

use the same lightweight textual query language used in custom author goals to rapidly

77

filter action suggestions without having to add or update any author goals. If multiple

top action suggestions have equal overall scores, actions with the same score are shuffled

when suggestions are retrieved; we therefore also provide players with a “reroll” button,

which allows them to re-randomize the sort order of actions with equal weights, possibly

changing which actions are displayed in the suggestion interface.

4.2.5 Autonomous Actions

Action suggestions concern possible actions for characters who are active in the

current scene. However, characters who aren’t involved in the current scene can also

perform actions autonomously in the background. Like player-visible action suggestions,

autonomous actions are influenced by author goals. Autonomous actions, however, are

chosen via a weighted random selection process over some of the higher-scoring possible

actions for offscreen characters, rather than selected by the player directly. For efficiency,

autonomous actions reuse the set of calculated possible actions that are used to provide

players with action suggestions.

Autonomous actions are intended to help mitigate writer’s block by ensuring

that the storyworld will always continue to develop in significant ways, even if the players

can’t think of anything interesting to do in a particular scene. We are inspired here by

the design property of incrementality [59], which was found to be helpful in supporting

player storytelling in some existing simulation-driven games. After a scene, players can

use the storyworld investigator to check in on what the characters not involved in the

scene have been up to in the background, which might inspire new directions for the

78

story.

However, in practice, our playtesting (discussed in greater detail in the Playtest-

ing section of this chapter) found that autonomous actions were not especially effective

as a means of keeping the story moving forward in a coherent direction, based on the

frequency with which playtesters of WAWLT self-reported directionlessness. Conse-

quently, and in order to simplify the overall architecture of our systems, we removed

autonomous actions from Loose Ends, the successor system to WAWLT discussed in

chapter 6. The AI system in Loose Ends has an alternative means of asserting ini-

tiative over the direction of the storytelling process—namely through the autonomous

suggestion of new storytelling goals.

4.2.6 Storyworld Investigator

Playtesting of previous versions of WAWLT revealed that players needed a way

to proactively browse the full history of the simulated storyworld while writing their

stories. In response, we created the storyworld investigator, which provides players

with fine-grained tools for investigating the history and current state of the storyworld.

The investigator is divided into several tabs, each of which displays a complete list of

all instances of a certain type of storyworld entity—such as characters, relationships,

projects, institutions, and events—and lets the player view information cards containing

more detailed information about these entities.

Information cards are linked together with hyperlinks to enable rapid explo-

ration of the web of storyworld entities. For instance, while viewing the information

79

card for a particular character, links under the “Relationships” section allow rapid navi-

gation to information cards containing more detailed information about this character’s

relationships with other characters, including the events and impressions that played a

role in shaping each character’s perception of the other.

The storyworld investigator also provides a situations tab, which allows players

to make proactive use of story sifting to discover potential sites of narrative interest in

the storyworld. This tab is equipped with a number of premade parametrized sifting

patterns designed to help players locate emergent situations that might complicate the

story in interesting ways: for instance, relationships in which the two involved characters

have strongly incompatible assessments of one another, escalating cycles of revenge

between characters, or long-standing instances of jealousy. As with author goals, players

can leave these sifting patterns unconstrained or constrain them by specifying parameter

values, for instance to view only instances of jealousy that involve a particular character.

In general, we expected that players would make especially extensive use of the

storyworld investigator toward the start of a play session to familiarize themselves with

the world’s backstory, including the existing relationships between characters. We also

expected that players would frequently use the investigator when deliberating between

scenes about what situations they intend to explore next—primarily in order to discover

untapped or neglected sites of narrative potential (especially through the situations tab),

to explore autonomous actions performed by “out-of-focus” characters during the most

recently completed scene (especially through the events tab), and to learn more about

characters and other entities they might want to spotlight in the future.

80

Our expectations for investigator use cases were largely borne out in playtest-

ing, but the storyworld investigator was not used as extensively as we anticipated,

despite being one of the more work-intensive components of the overall WAWLT design

from both a design and engineering perspective. Additionally, the investigator did little

to limit the sense of directionlessness that playtesters of WAWLT experienced. Conse-

quently, and because Loose Ends features much less complicated simulation state than

WAWLT, we removed most features of the storyworld investigator from Loose Ends.

We retained a limited version of the characters tab (which shows only the basic traits of

each character, and does not show updates to character goals or relationship states in

real time) but folded it into the top of the transcript UI. We also folded the situations

tab into the author goals area via system-generated author goal suggestions: when the

AI system in Loose Ends detects a latent narratively potent situation, it proactively

suggests one or more new author goals related to the development of this situation,

which the player can either accept or reject.

4.2.7 Transcript

The transcript holds a running record of “the story so far”: short system-

generated summaries of all player-accepted action suggestions since the start of the

play session, interleaved with more detailed player-generated prose descriptions of these

actions. By the end of the play session, the transcript will constitute an “artifact of

play” [41] summarizing the events of play, much like the map in The Quiet Year [4] or

the board in Threadsteading [3].

81

By giving players a way to annotate events with their own descriptions, we aim

to provide support for extrapolative narrativization [57]: a player storytelling behavior

in which players seize on and elaborate minor details in the stories they tell about

their play experiences, regardless of whether these details are explicitly modeled in the

simulation. Free-text descriptions of events give players a place to decide for themselves

what aspects of an event are most important, and to establish and reference recurring

story elements that are not modeled in the computational system.

Player-generated prose descriptions of events are not read, interpreted or rea-

soned over by the system in any way. This allows players to flexibly “retcon”, or revise

their descriptions of past events to match an updated understanding of where the story

is going. Event description text remains editable indefinitely and doesn’t impact for-

ward simulation, so future actions cannot be invalidated by edits to the descriptions

of previous events. Allowing the system to read and respond to player-generated text

would compromise this flexibility: if player-generated text was incorporated into the

simulation directly, subsequent edits to a block of player-generated text might com-

promise the system’s interpretation of an event that was used as the foundation of a

running chain of causality between several additional events in the meantime.

By treating player-generated prose as opaque to the system, we also aim to dis-

tinguish WAWLT from co-creative writing systems based on language models, such as

Creative Help [98]. These systems treat prose-level suggestions as first-class while mak-

ing no attempt to model causality at the level of discrete events or overall plot structure.

We believe that these systems, although useful for injecting moment-to-moment “what

82

Figure 4.7: The WAWLT transcript editing interface. Bold text in the transcript is
system-generated, non-bold text is authored by the players.

83

happens next” suggestions that keep players from becoming completely stuck, fail to pro-

vide other, more important forms of creative support. In particular, because they lack

an explicit world model, these systems frequently issue suggestions that contradict pre-

viously stated facts about the world, exacerbating the existing problem of maintaining

consistency within a fictional world and distracting from the creativity support features

they do provide. We prefer to offload the difficult problem of maintaining consistency

to the computer, which can excel at this task given the right kind of architecture, and

free up the humans to focus on authoring prose. For the sake of clarity, we thus focus

the WAWLT AI architecture primarily on the provision of plot-structural or event-level

suggestions, grounded in an explicit world model whose consistency is maintained by

the system.

4.3 Playtesting

We conducted playtests with three solo players and two groups of paired play-

ers. Initially, each playtester was given a brief introduction to the project and the dif-

ferent parts of the user interface. Playtesters were then instructed to think aloud during

their interaction with the game for 5-15 minutes at the player’s discretion. Paired play-

ers engaged with a single instance of WAWLT simultaneously on a single computer,

under the same conditions as the individual playtesters.

Broadly speaking, we found that the current version of WAWLT already sup-

ports player creativity in some of the intended ways, and is capable of producing an

84

enjoyable play experience. Playtesters had little difficulty making use of the game’s

primary mechanics once they were introduced. All playtesters, even those who initially

struggled to make the pieces of their story fit together into a larger storyline, eventually

found themselves excited or curious to discover what would happen next in the story. All

playtesters also expressed overall enjoyment of the play process. Six of seven playtesters

(including all four paired playtesters and two of three solo playtesters) reported some

sense of ownership over the story they produced through play. Moreover, the paired

playtesters in particular expressed a great degree of enjoyment of the play experience;

desire to continue working on the story (to such an extent that they were vocally dis-

appointed that they could not continue at the conclusion of the playtest session); and

feeling that what happened in the storyworld was somehow “real”.

Nevertheless, there were also some significant points of confusion among play-

ers. Five players (including three of the four paired players) reported a sense of direc-

tionlessness at least once during the play process, suggesting that the system’s action

recommendations were not always sufficient to provide players with a sense of narrative

structure. In one paired-playtesters group, both players initially assumed that author

goals were intended primarily to be used by the system to filter and prioritize action sug-

gestions, without realizing that they were also intended to be used as a way to encourage

multiple simultaneous human players to negotiate intended story directions. Debriefing

after the playtest also indicated that three players (including both of the paired players

in one group) at some point forgot that the author goals existed, although the paired

players “rediscovered” the author goals when a minor creative conflict briefly emerged

85

between them.

The success of the paired playtesters in particular suggests to us that the

creativity support features we provide in WAWLT are, like their counterparts in tabletop

storytelling games, perhaps useful for individual players, but especially transformative

when helping to scaffold and structure co-creativity in a multiplayer context, where

negotiation between players regarding the content and direction of the story they intend

to tell becomes a central part of play. As a result, we have since begun to consider

WAWLT a multiplayer game primarily, while still aiming to support solo play as a

viable mode of use.

4.4 Discussion

4.4.1 Story Sifting

At an implementation level, story sifting in WAWLT is functionally identical

to precondition matching where some of the preconditions happen to involve sets of

related storyworld events. However, from a design perspective, story sifting is not

just precondition matching, but matching and applying a particular subjective narrative

frame to the matched events. The execution of sifting patterns produces a variety of

valid possible “readings” or interpretations of the same set of events, and even though

these interpretations may be mutually incompatible, it is up to another subsystem—or

to the player—to determine which readings to build a story around going forward. This

distinction between sifting and precondition matching is made clear in WAWLT ’s use of

86

sifting patterns to implement subjective character reasoning, but is also present in more

conventional sifting-based systems, such as Ryan’s Sheldon system [99]: many valid

sifting pattern matches are never promoted to a “real” part of the story, and a number

of aesthetic judgment calls are made by the system as to which ones will be included in

the story that gets told. Sifting patterns therefore bear some similarity to “rhetorical

devices” in Terminal Time [79], producing a particular reading of a set of events that

may be used or discarded depending on its suitability to the author’s current rhetorical

goals.

In this sense, we have found that story sifting can be viewed as a thematics for

narrating the operation of precondition matching, in the same sense that Agre argues

AI techniques in general tend to simultaneously provide “both a method for designing

artifacts and a thematics for narrating [their] operation.” [2] As in WAWLT, using the

language of story sifting to discuss what is functionally precondition matching can help

to inspire design approaches that might not have been considered otherwise, despite

their longstanding technical possibility.

4.4.2 Simulation Design

Ryan, in his dissertation [99], proposes two key design patterns for simulations

intended to support story sifting: causal bookkeeping, or explicit tracking of the causal

relationships between storyworld events; and contingent unlocking, or the use of action

preconditions that check for the existence of certain past events to support gradually

escalating event “storylines”, such as a “flirt” event between two characters unlocking

87

a “secret tryst” event between these same characters as a later possibility.

WAWLT makes extensive use of causal bookkeeping, albeit with a small twist.

In Ryan’s Hennepin simulation engine, causal relationships are tracked directly between

external actions taken by characters on the world, and actions may explicitly cause

other subsequent actions to be queued for later performance at the moment the first

action in a causal chain is performed. In WAWLT, however, we impose an authoring

convention that external actions never cause other external actions directly: instead,

external actions may cause introspection actions, which may in turn produce interpre-

tations that cause other external actions. In this sense, causality in WAWLT is more

frequently inferred after the fact (by characters performing introspection actions that

project a particular causal interpretation onto a set of matched past events) rather than

explicitly determined at the moment an action is performed (as with queuing of future

actions in Hennepin.) Nevertheless, we—like Ryan—find it useful for the system to

keep track of the causal relationships between actions, especially for the purposes of

debugging and exposing character motivations to players.

Contingent unlocking, meanwhile, is used extensively within WAWLT ’s sim-

ulation design, and differs from Ryan’s interpretation of contingent unlocking in few

ways if any. In particular, contingent unlocking enables plausibly gradual escalation

of conflict in the WAWLT storyworld from less to more dramatic interactions between

conflicting characters. Certain interpretation actions unlocked by repeated antagonism,

for instance, effectively enable one WAWLT character to adopt the attitude that “this

is the last straw”, unlocking a variety of retaliation actions that allow for the further

88

escalation of a simmering conflict between two characters who have vaguely disliked one

another for a while.

Notably, the design of the WAWLT simulation imposes a fairly high degree of

overhead on the authors of simulation actions, who must carefully compose preconditions

that make actions available only under appropriate circumstances. In our later work

on Loose Ends (as discussed in chapter 6), we moved away from a precondition-heavy

approach to action suggestion and instead used a more sophisticated formalism for

author goals to prioritize the most plausible action suggestions within a pool of all

possible action type/character combinations, even those that do not make much sense

from a causal perspective. This alleviates much of the burden of action authoring

but also results in less sensical action suggestions when exploring possible next actions

beyond a handful of top-ranked action suggestions, which players took note of in Loose

Ends playtesting. We believe it is likely that the appropriate level of causal modeling

for systems similar to WAWLT and Loose Ends falls somewhere between the levels of

detail used in these two systems.

4.4.3 Author Goals

Author goals were initially implemented via speculative execution of possible

actions. Under this formulation, every author goal included a Datalog query fragment

which could be executed against the simulation state database to determine the extent

to which the goal in question had been realized. Each possible action was executed

speculatively, producing one updated version of the simulation state database for each

89

action, and each author goal’s query was then run against the current and all specula-

tively updated versions of the database. By taking the difference between the number

of matches found for each author goal query before and after each possible action was

performed, a score was derived for each possible action indicating its overall suitability

to the current author goals. These scores were then used to rank the actions.

This approach provided substantial authorial leverage, as author goals imple-

mented in this way do not need to include any knowledge about what specific events are

possible in the storyworld: events can be judged as advancing or detracting from au-

thor goals based on their actual effects alone. However, although elegant, this approach

proved too inefficient to be practical with nontrivial numbers of actions and author

goals, so the current implementation of author goals instead uses heuristic functions to

evaluate possible actions. Each author goal’s heuristic function takes a possible action

as an argument and returns a numerical score indicating this possible action’s suitability

for this author goal. This makes goal evaluation more computationally tractable, but

entangles action authoring with author goal implementation in a way that substantially

decreases authorial leverage, frequently forcing action authors to modify the heuristic

functions of relevant author goals when they introduce a new action or make a sub-

stantial change to an existing action definition. The use of goal heuristic functions that

rely on action tags rather than specific action names to determine goal relevance has

somewhat mitigated this added authorial burden, because it is relatively easy to tag

new actions in such a way that they become “visible” to author goals that are already

looking for existing actions with these same tags, but this merely reduces the frequency

90

of the problem rather than eliminating it entirely.

In Loose Ends, we moved back toward speculative execution for the improved

authorial leverage that this model provides. This was made possible from a perfor-

mance perspective by a more sophisticated sifter known as Winnow (discussed further

in chapter 5). By maintaining a substantial amount of intermediate state about par-

tially fulfilled author goals, Winnow makes it possible to check candidate actions against

the complete pool of current author goals (to determine which author goals would be

advanced or cut off by each candidate action) much more quickly.

4.4.4 Effect Handlers

A wide variety of existing generative narrative systems, including planning-

based systems [93,132] and linear logic-based systems like Ceptre [73], define character

actions in terms of preconditions and effects. Action effects, in turn, are commonly

defined in terms of add and delete lists, which describe facts to add and delete from a

blackboard or database of logic sentences when an action is performed. Effects in Felt

actions are defined similarly, but Felt provides an additional layer of abstraction—called

effect handlers—over add and delete lists. Effect handlers are Felt’s implementation

of procedural effects, a feature of some planning-based systems (such as the system

driving NPC behavior in F.E.A.R. [90]) that allows for the implementation of dynamic

changelists. We found this feature to be particularly beneficial in our implementation

of WAWLT.

A Felt effect handler is a function, defined by the authors of a particular Felt

91

simulation domain, that takes in both the storyworld state database and some other

parameters, then returns a list of facts to add and delete from the database. Essentially,

effect handlers represent a way to make changes to the database in terms of the overall

effect you want to achieve (e.g., “create an advisor/student relationship between these

two characters”) rather than the specific individual facts you want to add and delete

from the database.

From a simulation implementation perspective, this separation between intent

and implementation allows for the construction of safer and cleaner interfaces for high-

level changes that frequently involve the simultaneous editing of many individual facts.

Robust effect handlers can be written to change all relevant individual facts consistently

whenever you make a specific kind of high-level change, so you don’t have to manually

enforce this through action authoring discipline or worry about forgetting some indi-

vidual changes within a larger changelist intended to achieve a particular overall effect.

This also greatly eases refactoring of how simulation updates are performed, since all

changes to individual facts take place through a smaller number of cleanly defined effect

handlers: actions are not permitted to change individual facts directly, they may only

invoke effect handlers.

Simultaneously, from an action authoring perspective, this separation between

interface and implementation allows action authors to use and reuse effect handlers

without knowing how they work exactly, shielding them somewhat from the internal

complexity of the database. We also found that, for action authors, a well-defined set

of effect handlers can effectively serve as a rapidly skimmable catalog of the kinds of

92

state changes that actions can make in the storyworld. This can serve to inspire the

design of new character actions by hinting at the possibility of introducing more ways

to flavorfully achieve each available effect.

Finally, because effect handlers are first-class functions that receive the entire

database as an argument, they are substantially more flexible than hand-authored literal

changelists, and are able to consider broader context when calculating the sets of specific

changes that ought to be made to individual facts when trying to achieve a specific

outcome in the database. For instance, consider the addImpression effect handler,

which is used to conditionally update the set of impressions influencing one character’s

evaluation of another. This complicated effect handler makes several queries against

the state of the database to determine whether or not it should even add the new

impression at all; which (if any) existing impressions it should displace to “make room”

for the new impression; and how the overall relationship between the characters should

be updated as a result. This effect handler, whose behavior is core to the WAWLT

social simulation, could not be replaced by a static changelist; the changelist of an action

that adds an impression to the database while obeying the elaborate rules governing

impression formation must necessarily be dynamic.

4.5 Conclusions and Future Work

In this chapter, we presented the AI architecture of Why Are We Like This?,

an AI-supported storytelling game intended to provide explicit support for the kinds

93

of player storytelling practices seen in many simulation-driven games. WAWLT makes

extensive use of story sifting, both to implement character subjectivity and to provide

players with tools for investigating the history and current state of the storyworld.

WAWLT ’s architecture is also intended as an argument for a central claim: that ma-

chines should support player storytelling practices by providing players with intelligent

plot direction suggestions, drawn from an ongoing social simulation and guided by player

utterances in a machine-understandable intent language, realized here in the form of au-

thor goals.

Broadly speaking, our preliminary playtesting of WAWLT supported the idea

that we were on the right track with regard to mitigating overwhelm. Players of WAWLT

were able to jump right into the storytelling process and found the system both usable

and fun, and the system-generated action suggestions struck an effective balance be-

tween generating suprising continuations and allowing players to retain a sense of own-

ership of the stories they created. However, playtesters’ frequent reports of uncertainty

as to where the story should go next suggested that we had not made much progress

on mitigating directionlessness. Preserving the successes of Felt and WAWLT while

also addressing their deficiencies in helping players create coherent longer-term story

structure became our primary goal for the next pair of systems we developed—Winnow

(discussed in chapter 5) and Loose Ends (discussed in chapter 6).

94

Chapter 5

Winnow

Story sifting (as implemented in our first sifter Felt, and used as infrastructure

for the implementation of our first narrative instrument Why Are We Like This?) is

demonstrably useful for mitigating the problem of overwhelm in simulation-driven inter-

active emergent narrative gameplay. However, as evident in our playtesting of WAWLT,

Felt-style sifting does little on its own to solve the problem of directionlessness, in which

players struggle to compose coherent longer-term story structures despite the provision

of short-term action suggestions by a sifting-based AI system. Additionally, certain de-

sirable architectural features of WAWLT -like narrative instruments (such as the ability

to discover almost actions, or narrative components whose preconditions are partially

but not fully met, and the ability to rank action suggestions via efficient speculative

execution of all possible next actions) cannot be implemented performantly atop Felt.

Our next sifter, Winnow, addresses both of these problems.

From the perspective of the directionlessness problem, existing sifters share

95

one major weakness: their fundamentally retrospective nature. In retrospective sifters

like Felt, microstories can only be recognized once they have run to completion, and

not while they are still in the process of playing out. Though a purely retrospective

approach to sifting enables some forms of play experiences well [109], it limits the

capacity of systems based on story sifting to reason about and intelligently foreshadow

future narrative possibilities. Anticipation of future narrative outcomes is essential to

how humans engage with stories [69]; in narrative generally, readers who anticipate

future outcomes may come to desire or dread these outcomes, and in narrative games,

players may act to increase or decrease the likelihood that anticipated outcomes will

occur. If a sifting-based system is only able to match events against narrative frames

retrospectively, its capacity to play into anticipation by procedurally foreshadowing

possible outcomes will be limited, as will its ability to make sense of player actions that

were performed with anticipated outcomes in mind.

Meanwhile, from a performance perspective, Felt struggles to support features

like almost action discovery and speculative execution because it fails to conserve infor-

mation about partial sifting pattern matches from one pattern execution to the next.

Consequently, each time Felt runs a sifting pattern, it has to inspect the entirety of

the storyworld state database to locate plausible bindings for every logic variable in the

pattern being executed—even if the storyworld state database has not changed at all, or

changed only minimally, since the last time this pattern was executed. Since almost ac-

tion discovery and speculative execution both involve the rapid execution of many very

similar story sifting patterns, these features could be made much more feasible from a

96

performance perspective if Felt was able to preserve partial information about plausible

logic variable bindings across multiple executions of similar or identical patterns.

Winnow is a domain-specific language for story sifting that simultaneously

addresses both of these issues by providing affordances for incremental sifting. Winnow

introduces clear acceptor-based semantics around the maintenance of partial sifting

pattern matches, which can be narrativized or exposed to a human user prior to their

completion. Additionally, where incremental sifting is not required, Winnow sifting

patterns can be compiled directly to Felt sifting patterns for Felt-equivalent performance

on retrospective sifting tasks. This enables the use of Winnow as a more human-friendly

syntax for the specification of Felt sifting patterns.

5.1 Related Work

See the Related Work section of chapter 3 for background on story sifting.

5.2 Motivation

Broadly speaking, prior attempts at story sifting share a major weakness when

applied to the challenge of prospective sifting in the context of a still-running simulation.

Because sifting patterns are conventionally written as descriptions of complete microsto-

ries, existing sifters have no way to anticipate (given a complete sifting pattern) whether

that pattern is likely to be fulfilled in the future or not.

Given a library of complete sifting patterns, we could perhaps enable prospec-

97

tive sifting by creating several partial variants of every complete pattern, each of which

matches a subset of events leading up to the complete pattern’s realization. However,

if these partial variants are hand-authored, then substantially more authoring effort

(both to create and maintain partial variants) is required per pattern. The temporally

unstructured nature of Sheldon and Felt sifting patterns makes it difficult to generate

partial pattern variants automatically, because the precise details of when certain con-

straints must hold are not necessarily clear from a complete retrospective pattern: for

instance, if a sifting pattern states that the perpetrator of a particular event must have

the “selfish” trait, does that character need to retain the “selfish” trait throughout the

entire event sequence, or is the character’s personality allowed to change before or after

certain pivotal events occur? And regardless of how partial pattern variants are created,

all of these variants must be re-run repeatedly to detect new partial matches every time

a new event occurs—necessitating the computationally expensive repeat evaluation of

numerous pattern constraints.

Winnow represents our solution to these difficulties. By imposing a temporally

divisible structure on sifting patterns, Winnow requires its users to clarify when exactly

in a pattern’s evaluation each constraint must hold. As a result, whenever a new

event occurs, Winnow only needs to check whether the event initiates any new partial

pattern matches (by matching the first temporal stage of a complete sifting pattern),

advances any already-tracked partial pattern matches (by matching the next temporal

stage of the relevant pattern), or invalidates any of these partial matches (by matching

a negative constraint in the relevant pattern). This dramatically reduces the amount

98

of computational work that needs to be performed per event, since only a small subset

of each pattern’s constraints must be evaluated when a new event occurs. Additionally,

it fully relieves users from the authoring burden of creating and maintaining partial

variants of complete sifting patterns by hand.

5.3 System Description

Winnow is an open source1 domain-specific declarative query language for in-

cremental story sifting. It is used to write sifting patterns. Each Winnow sifting pattern

describes a sequence of interrelated events that constitute a potentially interesting mi-

crostory and enables the computer to detect instances of this microstory as they emerge.

Here is an example Winnow sifting pattern, modeled after the “violation of

hospitality” Felt sifting pattern presented by Kreminski et al. [60]:

(pattern breakHospitality
(event ?e1 where

eventType: enterTown,
actor: ?guest)

(event ?e2 where
eventType: showHospitality,
actor: ?host,
target: ?guest,
?host.value: communalism)

(event ?e3 where
tag: harm,
actor: ?host,
target: ?guest)

(unless-event between ?e1 ?e3 where
eventType: leaveTown,
actor: ?guest))

1https://github.com/mkremins/winnow

99

https://github.com/mkremins/winnow

This pattern attempts to match a sequence of events in which a ?guest charac-

ter enters a town; is shown hospitality by a ?host character, who values communalism;

but then is harmed in some way by the ?host before the ?guest has a chance to leave

town.

As in Felt, identifiers prefixed by the ? character represent logic variables that

will be bound as the pattern is matched, and whose values must be consistent across the

match as a whole. A single complete match for the breakHospitality pattern would

include bindings for three event variables (?e1, ?e2 and ?e3) and for the characters

?guest and ?host.

The sequence of event clauses present in a sifting pattern’s body constitutes

the pattern’s kernel. A pattern seeks to match an ordered sequence of events corre-

sponding to its kernel, disregarding events that take place between kernel events unless

they match one of the pattern’s unless-event clauses (which can be used to invalidate

pattern matches if an event with certain characteristics intervenes between a specified

pair of kernel events).

Like Felt, Winnow is implemented in JavaScript and uses the DataScript li-

brary2 as its backend for data storage and Datalog query execution. In the DataScript

dialect of Datalog, facts are represented as RDF-like triples of the form [entity attribute

value]; each triple can be read as an assertion that the entity on the left (usually a

numeric ID) has an attribute whose name is given in the middle and whose value is

given on the right. All Winnow sifting patterns ultimately operate over facts of this
2https://github.com/tonsky/datascript

100

https://github.com/tonsky/datascript

form. Many simulation engines store events and other data as graphs of related entities,

with each entity structured as a JSON-like set of key/value pairs; these JSON-like data

formats can often be straightforwardly translated into sets of DataScript facts, so we

use these representations interchangeably in this chapter.

5.3.1 Incremental Execution

Winnow’s incremental execution mode revolves around the maintenance of a

pool of partial matches. Each Winnow sifting pattern is compiled to an acceptor that,

given a partial match (i.e., a set of logic variable bindings for the first N events of this

sifting pattern) and a new event to consider, performs one of several possible actions:

• Dies if this event matches an active unless-event constraint on this event se-

quence.

• Forks and accepts if this event matches the specification of kernel event N + 1

in the sifting pattern. The “parent” partial match is left unchanged (in case an

alternative means of advancing this partial match is later discovered), while the

“child” match has the new event (and associated logic variable bindings) pushed

onto it.

• Passes (i.e., remains unchanged) otherwise.

When a new event occurs, it is added to the database and checked against all

the active partial matches. Where applicable, these partial matches are then updated

101

based on the new event, and dead and completed partial matches are removed from the

pool.

Figure 5.1: A visualization of Winnow incrementally executing the breakHospitality
sifting pattern over a sequence of events in which a character Yann enters town and is
first shown hospitality by, then harmed by, two other characters: Eve and Jake. As the
structured events on the left are added to the database of storyworld state one by one,
the pool of active partial pattern matches evolves as shown in the middle and explained
on the right.

Figure 5.1 shows an example of incremental sifting pattern execution featuring

the breakHospitality pattern defined previously. This example demonstrates all the

core features of Winnow’s incremental execution mode:

• Events that advance partial matches (1, 3, 4, and 5) are accepted onto forks of

the matches they advance.

102

• Irrelevant events (2) do not change the pool of partial matches in any way.

• Events that match active unless-event constraints on partial matches (6) cause

those partial matches to be marked as dead and removed.

• When all of a partial match’s logic variables are bound (breakHospitality 134),

the match is marked as complete and removed from the pool.

• Partial matches (e.g., breakHospitality 1) remain in the pool after they are

advanced once (3) so that they can later be advanced again (5) in a different way.

• Events that might have advanced a partial match (7) are ignored if the partial

match that they might have advanced was previously removed from the pool.

To determine whether an event matches an event or unless-event clause in

the context of a particular partial match, Winnow translates the clause to a Datalog

query and runs the query against the database. For instance, in Figure 5.1, to deter-

mine whether event 3 matches the ?e2 event clause in the context of partial match

breakHospitality 1, Winnow executes the following query:

[3 "eventType" "showHospitality"]
[3 "actor" ?host] [3 "target" "Yann"]
[?host "value" "communalism"]

The results of this query are then used to establish bindings for the ?e2 and

?host logic variables in the new partial match breakHospitality 13.

When maintaining a large pool of partial matches, Winnow runs many of these

small queries per event—at least one per partial match, and more than one for each

103

partial match against a sifting pattern with active unless-event constraints. However,

the results of these queries are often very fast to compute, because the values of most

involved logic variables (including the ID of the event being tested and the values of

any previously-bound logic variables stored in the partial match) are already known.

Therefore, only a small number of facts need to be checked to establish possible bindings

for the variables that remain unbound.

5.4 Use Cases

5.4.1 Autonomous Incremental Sifting

Marie-Laure Ryan’s characterization of how baseball commentators narrativize

gameplay in real time [102] provides a strong motivating example for incremental sifting.

In Ryan’s analysis, commenting on a live baseball game involves a combination of looking

back at what has already happened and looking forward at what might happen in

the future, then weaving a narrative that seems coherent at the present moment while

speculating about likely future outcomes to create suspense. A system that seeks to fully

reproduce this kind of live gameplay commentary must therefore have some capability

to speculate about the future, in addition to the capability to retrospectively interpret

the past.

Consider Ryan’s analysis of the FATAL ERROR theme in the baseball com-

mentary she has selected for study. In a key moment, an outfielder forgets to flip down

his sunglasses; as a result, he fails to track and catch a fly ball, allowing a runner from

104

the opposing team to score. The broadcasters immediately narrativize this blunder as

a FATAL ERROR by projecting their narration forward to a possible future in which

the game is lost as a result. In Ryan’s words:

The emplotment of the game combines a retrospective interpretation with
the prospective evocation of a possible outcome. A whole game is projected
on the basis of the play just completed—a game in which the score stands
as it is, and the future adds nothing to the story.

A system that uses purely retrospective story sifting to make sense of game

events would not be able to generate this commentary live. A sifting pattern that

identifies game losses resulting from blunders could be used to narrativize the blunder

as a FATAL ERROR once the game has been completed; and a sifting pattern that

identifies blunders would be able to recognize this event as a blunder immediately; but

to link the blunder to the possibility of game loss before the game has actually concluded

requires prospective in addition to retrospective narrative intelligence.

The following Winnow sifting pattern expresses a variant of Ryan’s FATAL

ERROR theme—modified slightly to work with event data adapted from the Blaseball

API3 via the fan-created chronicler tool Datablase4, which allows for the easy retrieval

of historical Blaseball simulation output.

(pattern fatalError
(event ?gainLead where

(leadChange ?gainLead),
3Blaseball is a surrealist baseball simulation idlegame that mixes normal baseball game events with

strange occurrences (e.g., players being incinerated by rogue umpires); we use it here as a convenient
source of JSON-formatted simulated baseball gameplay data. Due to details of how Blaseball simulates
baseball gameplay, we have switched the focus of this pattern to be on a batter rather than an outfielder
who commits a blunder: Blaseball includes a humorous “strike out thinking” blunder that batters can
perform, but doesn’t simulate outfielders at sufficiently high fidelity to attribute a blunder to one
outfielder in particular.

4https://sibr.dev/apis

105

https://sibr.dev/apis

(teamHasLead ?gainLead ?team))
(event ?blunder where

event_text: ?text,
(includes? ?text "strikes out thinking"),
batter_id: ?blunderer,
batter_team_id: ?team)

(event ?loseLead where
(leadChange ?loseLead),
(not (teamHasLead ?loseLead ?team)))

(event ?loseGame where
event_type: GAME_OVER)

(unless-event ?e between ?gainLead ?blunder
where (leadChange ?e))

(unless-event ?e between ?loseLead ?loseGame
where (leadChange ?e)))

This pattern matches a sequence of events in which a team gains the lead over

their opponents; commits a serious blunder; subsequently loses the lead; and then loses

the game without ever regaining the lead. It employs several advanced Winnow features:

two custom Datalog inference rules, (leadChange ?event) and (teamHasLead ?event

?team), are used to identify events in which a particular team gained the lead over their

opponents; the DataScript built-in function includes? is used to determine whether

a string value contains a specific substring; and the not keyword is used to negate a

constraint.

When this pattern is executed incrementally while the game is still going on,

a partial match that has advanced as far as the ?loseLead event can safely be narrated

as a likely fatal error. Instead of waiting for the entire event sequence to be completed

before we can comment on the FATAL ERROR theme, we can comment speculatively

on the likelihood that the ?blunderer’s mistake has cost their team the win.

106

Additionally, if we note in the event database that we have chosen to spec-

ulatively comment on this event as a fatal error, we can make use of this in later

commentary to refer back to our own past commentary as mistaken. Suppose the team

that committed the blunder ends up winning the game despite our prospective evocation

of the FATAL ERROR theme. In this case, the final story of the game as produced by

our incremental sifting-based commentary generator can dramatize the mistaken com-

mentary as part of a larger ERROR AND REDEMPTION theme by retrospectively

invoking the moment at which it appeared that the game would be lost due to the

blunder. By computationalizing the “anticipation of retrospection” that characterizes

prospective narrative intelligence [7], we can produce more human-like commentary that

more effectively draws out a convincing story from gameplay.

5.4.2 Interactive Incremental Sifting

Several play experiences that center on narrative coauthorship between the

player and an AI system have made use of story sifting to help the player comprehend

the contents of a rich simulated storyworld. These include Writing Buddy [107], Cozy

Mystery Construction Kit [45], and Why Are We Like This? [47,48]. In these games, the

ability to expose partial sifting pattern matches to the player introduces new potential

affordances for play.

Consider a sifting pattern like the following, adapted from the arson-revenge

Sheldon sifting pattern presented by Ryan [99]:

(pattern arsonRevenge
(event ?harm where

107

tag: harm,
actor: ?victim, target: ?arsonist)

(event ?scheme where
eventType: hatch-revenge-scheme,
actor: ?arsonist, target: ?victim,
(ancestor ?harm ?scheme)),

(event ?arson where
eventType: set-fire,
actor: ?arsonist, target: ?victim,
(ancestor ?scheme ?arson)))

In an interactive sifting context, when a pattern like this is available and a

partial match with bindings for the first two events is present, the system can make

use of this partial information (that a revenge scheme has been undertaken but not yet

completed) in many ways. Beyond simply informing the player that this microstory

is possible, it can accept suggestions from the player on whether the scheme should

actually be carried out or not; suggest character actions that advance the scheme in

various ways (e.g., having the ?arsonist character purchase a can of gasoline); or even

suggest alternative ways that the revenge scheme could be carried out, for instance

if multiple revenge-oriented patterns that all begin with a similar set of events are

simultaneously present.

Additionally, a game of this nature could allow the player to choose for them-

selves a sifting pattern that they would like to see take place. Once chosen, the player

could track the progress of this sifting pattern as new events occur; decide whether

or not to accept a particular event as advancing the sifting pattern; and receive early

warning from the computer when an event has a chance of disrupting the story that the

player is trying to create. Such an interface could enable the computer and player to

108

explicitly collaborate on partially realized stories in exciting new ways.

5.4.3 Retrospective Sifting

It is also possible to use Winnow as an alternative, more verbose but more

human-friendly syntax for the specification of retrospective sifting patterns. For in-

stance, Winnow can compile the previously defined breakHospitality sifting pattern

to a roughly equivalent Felt pattern:

(eventSequence ?e1 ?e2 ?e3)
[?e1 eventType enterTown] [?e1 actor ?guest]
[?e2 eventType showHospitality]
[?e2 actor ?host] [?e2 target ?guest]
[?host value communalism]
[?e3 tag harm]
[?e3 actor ?host] [?e3 target ?guest]
(not-join [?e1 ?guest ?e3]

(eventSequence ?e1 ?eMid ?e3)
[?eMid eventType leaveTown]
[?eMid actor ?guest])

One minor semantic difference between this compiled Felt pattern and the in-

crementally executed Winnow pattern lies in how the constraint [?host value communalism]

(the Felt equivalent of Winnow’s ?host.value: communalism) is applied. Under ret-

rospective execution of a Felt sifting pattern, this constraint is checked at the end of

the event sequence, so the validity of the match hinges on whether the host character

still holds communalism as a value after the whole sequence has played out. Under

incremental execution, however, this constraint is associated specifically with the ?e2

execution stage, so we only check whether the host values communalism at the time of

event ?e2. This allows for incrementally executed patterns to make some subtle distinc-

109

tions about when constraints hold that are not possible when executing sifting patterns

in a purely retrospective mode.

Compilation allows for Winnow sifting patterns to be used as preconditions in

Felt action definitions. It also ensures that Winnow’s performance in a purely retro-

spective sifting context is never worse than Felt’s. And even “timeless” Felt or Sheldon

sifting patterns that are not formulated in terms of event sequences (e.g., a sifting pat-

tern that finds instances of unrequited love between characters) can be expressed in

Winnow as single-event patterns. Consequently, Winnow can often be used as a drop-in

replacement for the sifting component of Felt.

5.5 Performance

Winnow is written in browser JavaScript, in a coding style that optimizes for

clarity over performance. Nevertheless, it is fast enough to be useful for at least some

real-world simulation-driven games.

To establish a performance baseline, we created an incremental sifting bench-

mark task involving a small simulated storyworld with 30 event types and 5 charac-

ters. We conducted several distinct runs of the benchmark; on each run, the par-

tial match pool was initialized with a variable number of partial matches against the

breakHospitality pattern, ranging from 10 up to 1000. One hundred random events

(with an event type and tags randomly taken from the 30 available event types, and

an actor and target character chosen randomly from the five available characters) were

110

Pool size Min time Max time Avg time
10 9ms 40ms 13ms
50 41ms 110ms 50ms
100 78ms 227ms 93ms
500 398ms 577ms 460ms
1000 443ms 1097ms 912ms

Table 5.1: Benchmark results for various partial match pool sizes. Minimum, maximum,
and average time taken to update the partial match pool per event is given for each
iteration of the task.

created and added to the database one by one, and the time it took Winnow to update

the partial match pool on each event addition was recorded.

The benchmark was run in Firefox 87.0, on a 2019 MacBook Pro with a 2.6 GHz

6-Core Intel Core i7 processor and 16GB of RAM. Full benchmark results are available

in Table 5.1. Notably, on the most difficult version of the benchmark task (in which 1000

partial pattern matches had to be checked per event), Winnow took on average 912ms

per event to update the partial match pool. This is within the one-second response

window suggested by usability experts as sufficient for maintaining the user’s flow of

thought in an interactive context [89, Chapter 5]; therefore, Winnow’s performance is

likely sufficient for the provision of near-immediate feedback on player-initiated game

events. Additionally, in many games, events of potential narrative significance occur

much less frequently than once per second, so it is likely that Winnow will be able to

keep up with a wide variety of gameplay types. (Especially frequent events, such as

movement events in action games, are often of little narrative significance and unlikely

to even be logged as events in a narrative-focused chronicle of gameplay.)

Low-hanging fruit for further optimization is abundant. In particular, Win-

111

now’s use of the DataScript library for Datalog query execution imposes a string parsing

overhead on every query that is run; this overhead could be reduced through tighter

integration with a Datalog backend. Additionally, since Winnow may frequently find it-

self evaluating the same Datalog expression many times when checking an event against

a large pool of partial matches, some form of expression-oriented evaluation cache may

help to avoid redundant computation.

5.6 Discussion

5.6.1 Pool Management Strategies

Winnow makes no attempt to remove partial pattern matches from the pool,

except when they are either completed or killed by unless-event constraint violations.

As a result, additional application-specific pool management strategies may be useful

in mitigating unbounded growth of the pool over time. Collectively, these strategies

bear some resemblance to the “sifting heuristics” proposed by Ryan [99]: higher-level

counterparts to sifting patterns that encode more generic facets of narrative tellabilty.

One easy-to-implement and fairly generic approach to pool management in-

volves the automatic pruning of any partial match that has not accepted any of the

last K events for some reasonably large K. The exact threshold to use here is likely

dependent on the texture of the simulation with which you are working, and different

thresholds may even be appropriate for different sifting patterns within the same appli-

cation. For instance, a partial match against a “whirlwind romance” pattern can likely

112

be safely pruned after a relatively short period of inactivity, whereas a match against a

pattern that encompasses the whole of a character’s lifespan might usefully lie dormant

for a much longer period.

Another strategy for mitigating pool growth involves replacing a partial match’s

default “fork and advance” behavior with a simpler “advance directly” behavior (i.e., a

behavior that avoids growing the partial match pool) once the match is advanced past

a certain point. For instance, a partial match that already has bindings for all of its

non-event variables could be advanced directly without forking off duplicates. Since

the non-event variables in some patterns (e.g., the identities of the ?host and ?guest

characters in the breakHospitality pattern) seem much more strongly determinant of

the microstory’s player-perceived identity than the events themselves, a group of partial

matches that are technically unique but vary only in event specifics might be perceived

by the player as duplicates—a perception that would be mitigated if this strategy was

employed.

Finally, narrower application-specific heuristics could be used to clean up par-

tial matches when certain game events take place without requiring these events to

be specified as unless-event clauses in every relevant sifting pattern. For instance,

depending on the simulation domain, many emerging microstories might be invali-

dated by the premature death of an involved character. Therefore, instead of writ-

ing unless-event clauses into almost every pattern to hedge against character death,

it might be easier from an authoring standpoint (and more performant from a work-

minimizing standpoint) to automatically prune any partial matches involving a character

113

that has just died—perhaps excluding matches against a smaller set of patterns that

have been specifically marked as tolerant of character death.

5.6.2 Modeling Causality

As Ryan has argued [99], causal bookkeeping—the explicit modeling of causal-

ity relationships between simulation events—greatly aids the implementation of a cu-

rationist approach to emergent narrative. However, many of the simulation engines

that are used in notable emergent narrative games today—for instance, Ryan’s own

Talk of the Town simulation engine [100]—do not perform explicit causal bookkeeping,

instead relying on human interactors to infer or invent causality relationships between

events. In order to ensure that Winnow is able to reason over the output of a wide

range of simulation-driven emergent narrative games, we wanted to avoid imposing a

technical requirement that Winnow sifting patterns match only causally connected se-

quences of events. As a result, Winnow sifting patterns are by default written in a

causality-agnostic way.

When working with the output of a simulation engine that performs explicit

causal bookkeeping, we expect that causal relationships between events will be avail-

able as data within the event entities themselves: for instance, every event entity might

contain an explicit pointer to the previous event or events that caused it. Therefore,

Winnow sifting patterns can be written to explicitly reason about this causality infor-

mation when it is present—for instance, to constrain pattern matches so that all of

a pattern’s kernel events must be causally related—or to ignore causality information

114

when it is either absent or irrelevant to the context in which a particular sifting pattern

will be used. We believe that this added flexibility is worth the slight additional au-

thoring burden of having to manually assert causality constraints between events when

these constraints are desired.

5.6.3 Decoupling Sifting and Simulation

Unlike our earlier sifter Felt (discussed in chapter 3), Winnow does not offer

any built-in support for simulation domain authoring. Instead, it is a standalone sifter.

Simulation authors could choose to integrate Winnow-based story sifting into their simu-

lation framework if they desire, but since our work on Felt, we have come to believe that

sifters will most often be applied to the output of simulations (or other event-generating

processes) over which the sifter’s creators do not have direct control. Consequently, we

believe it is cleaner to define sifters as separate libraries which simulation creators can

import on a case-by-case basis if necessary.

5.6.4 Conjunction and Disjunction

At the language level, Winnow does not provide any specific support for writing

sifting patterns that match the conjunction of two or more other patterns. However,

conjunction of patterns can straightforwardly be implemented through modification of

the event chronicle. When a match (complete or partial) against a particular sifting

pattern is first detected, the fact that this match has occurred can be added to the

chronicle as a new event. Higher-level sifting patterns can then be written to look

115

for instances of these match events and advance when the appropriate conjunction of

lower-level pattern matches has occurred.

Within sifting patterns, disjunction (the ability for a single event clause to

match either an event A or an event B, where A and B have different characteristics)

can be implemented via Datalog inference rules. An inference rule with multiple disjoint

bodies will hold if any one set of body conditions holds true; therefore, an event clause

can match disjoint events by checking whether the event satisfies an inference rule that

contains a disjunction.

5.7 Conclusions and Future Work

We have introduced Winnow, a domain-specific language for incremental story

sifting that improves on previous sifting technologies (particularly Felt) by enabling the

implementation of prospective as well as retrospective narrative intelligence via sifting.

Winnow is capable of expressing and incrementally executing a wide variety of realistic

sifting patterns, including equivalents to existing Felt and Sheldon patterns and patterns

that operate over the Blaseball simulation. Additionally, it is performant enough to run

in an interactive context and can be used as a more human-friendly language for purely

retrospective sifting as well.

At a high level, Winnow can be viewed as a narrative cognition engine that

attempts to help the computer understand partial stories that might have arisen in

the mind of a human spectator or user. It is from this perspective that story sifting

116

appears to us as an especially exciting approach to narrative intelligence: if we can

computationally model the way that humans make sense of emergent stories, we can

build systems that are capable of understanding gameplay narratively, just as players do.

We believe that future work on sifting should attempt to further explore the implications

of this view.

117

Chapter 6

Loose Ends

Winnow’s ability to reason prospectively as well as retrospectively about nar-

rative structure (discussed in chapter 5) makes it possible to build sifting-based AI

systems that can recognize and surface incomplete plot threads. Integrating this ca-

pability into an approachable narrative instrument, however, represents an additional

challenge. In this chapter we present Loose Ends, a narrative instrument and mixed-

initiative creative interface (MICI) [24,68] that aims to support a human user’s creativity

by providing them with an artificially intelligent creative partner. Specifically, by incor-

porating Winnow-based features into a human-facing user interface for managing plot

threads, Loose Ends aims to address the problem of directionlessness (with which our

earlier narrative instrument Why Are We Like This? struggled, as discussed in chapter

4) while preserving the desirable aspects of the WAWLT player experience.

In the domain of storytelling-oriented creative writing, most existing MICIs

function by providing suggestions as to how a story might be continued, thereby inject-

118

ing unexpectedness into the writing process [11] and providing an immediate answer to

the question of “What happens next?” when the user would otherwise become creatively

stuck [53]. These existing MICIs have shown promise in several ways. In particular,

MICIs that function by providing short-term story continuations have proven effective

at suggesting viable next steps for a story [98]; taking the story in unexpected direc-

tions [11,47,114]; and creating a sense of shared authorship [106] between the user and

system [11,47,114].

However, these existing MICIs also exhibit several recurring problems. Most

prominently, because the continuations these systems provide take only local context

into account, they have a tendency to pull the story in unwanted directions [11, 98,

114] or to otherwise create a sense of long-term directionlessness [47] that inhibits the

development of coherent high-level story structure.

To address these problems, we created Loose Ends, a MICI for storytelling that

aims to support the development of coherent longer-term story structure. By explicitly

reasoning about multiple parallel plot threads and providing a mixed-initiative interface

for managing long-term storytelling goals framed in terms of these plot threads, Loose

Ends aims to provide suggestions that keep the story on track with respect to the

development of character arcs, conflicts, and high-level narrative themes.

The main contributions of this chapter are:

• A co-creative AI system that can reason about threaded plot structure in relation

to high-level storytelling goals, proactively suggest new goals based on past plot

119

events, and suggest character actions that advance these goals

• An approachable user interface for interacting with this AI system to create stories

• An evaluation of our approach by five experts in computationally engaged story-

telling, indicating that Loose Ends succeeds at mitigating directionlessness while

preserving a sense of coauthorship

In addition to these contributions, we also make the current version of Loose

Ends available to be played in a web browser1 and release its codebase as open source2.

6.1 Related Work

Loose Ends draws inspiration from several past attempts to facilitate playful

mixed-initiative storytelling, particularly Writing Buddy [107] and Why Are We Like

This? [47, 48]—the latter of which is described in greater detail in Chapter 4. Both of

these systems allow players to specify storytelling goals that guide the direction of the

running story by influencing what story continuations the system will suggest. Both

systems generate continuation suggestions in the form of structured plot events rather

than prose, using a rules-based AI system rather than a language model to generate

goal-relevant continuations. And both systems provide a story transcript that captures

all past plot events in the form of a story outline, alongside player-written narration

elaborating on the basic event descriptions generated by the system.
1https://itsprobablyfine.github.io/LooseEnds
2https://github.com/ItsProbablyFine/LooseEnds

120

https://itsprobablyfine.github.io/LooseEnds
https://github.com/ItsProbablyFine/LooseEnds

Loose Ends follows a similar architecture, although it differs from its prede-

cessors in two key ways. First, its storytelling goals are more sophisticated than those

in either predecessor system. Unlike in Why Are We Like This?, storytelling goals in

Loose Ends specify sequences of events that must be added to the story for the goal to

be satisfied (rather than individual events alone)—and unlike in Writing Buddy, story-

telling goals in Loose Ends can be parametrized with specific characters and additional

constraints. It is important for long-term story structure that the player and AI sys-

tem be able to collaborate explicitly on the development of parametrized multi-event

sequences, since narrative structure often relies heavily on reincorporation of previously

introduced elements into later parts of the story [125]. Second, the AI in Loose Ends is

capable of suggesting new storytelling goals that are consistent with the story up until

this point, rather than just steering action suggestions toward player-specified goals as

in previous systems. Together, these changes result in a system that feels like an active

writing partner while also guiding player-authored stories toward coherent longer-term

structure.

Beyond plot event-based systems such as Writing Buddy and Why Are We Like

This?, a number of attempts have also been made to facilitate mixed-initative story-

telling by providing continuation suggestions in the form of unstructured prose. Early

examples of this approach can be found in the Say Anything [121] and Creative Help [98]

systems, which use case-based reasoning to find sentences similar to the user’s most re-

cently typed sentence in a large database of preauthored stories, then suggest these

sentences as continuations. More recently, textual continuations provided by language

121

models have been used to support storytelling in a relatively unmediated way [11, 72].

Singh et al. [114] finetune a large language model on a storytelling-relevant dataset

and extend its completion suggestions to include images and sound as well as text, then

evaluate this approach at scale. In each of these cases, purely text-based completions

have been found to be pleasantly surprising and often relevant to the immediately pre-

vious parts of the story being told, but divergent from user-intended story structure in

ways that require frequent revision by the user to maintain long-term direction.

One recent mixed-initiative storytelling support system that departs from the

interaction paradigm of local continuation suggestion is TaleBrush [17], which instead

aims to give users direct control of high-level story structure via the sketching of a visual

fortune arc for the story’s main character. This approach has so far only been used to

generate very short stories (on the order of five sentences long), and the coherence of the

generated stories is limited, but this potential alternative means of specifying high-level

storytelling goals still merits mention here.

6.2 System Description

Loose Ends (Figure 6.1) is a mixed-initiative creative interface for playful story-

telling. We specifically conceive of Loose Ends as an AI-based narrative instrument [56]:

a system that can be played to produce narrative, in much the same way that a musical

instrument can be played to produce music.

In the Loose Ends interaction loop, a human player repeatedly selects action

122

Figure 6.1: The Loose Ends user interface. The Who is involved? section displays
basic information about a generated cast of five characters. The What has happened?
section lists plot events that have taken place in the story so far, along with player-
written text giving more details about these events. The What happens next? section
shows AI-generated suggestions for what might happen next in the story. The Where
are we going? section shows active storytelling goals, including transparent goals that
have been suggested by the AI system rather than added by the player. One action
suggestion (highlighted in orange in the bottom left) is being hovered over by the player;
consequently, the impact this suggestion would have on the active storytelling goals if
accepted (i.e, advancement of the majorWork goal) is also highlighted in orange on the
right. Unlike WAWLT, Loose Ends does not offer a storyworld investigator interface.
The reasons for this are discussed in more detail in chapter 4, but broadly speaking,
Loose Ends maintains considerably less simulation state than WAWLT (making the
investigator less useful), and the investigator was used less than we anticipated even in
WAWLT, so removing it is a natural way to streamline the Loose Ends UI. Nevertheless,
the most frequently used and relevant parts of the investigator’s characters tab have been
folded into the Who is involved? section (a static display of the characters in the
storyworld and their individual traits), while the investigator’s situations tab has been
folded into the Where are we going? section (where system-detected situations will
appear as partially satisfied storytelling goal suggestions).

123

suggestions furnished by the underlying AI system to continue the plot of a running

story, using storytelling goals to steer the narrative toward player-desired long-term

outcomes. Actions selected by the player are added to a running story transcript, and

each action can be annotated with additional text by the player—for instance to narrate

the action in greater detail.

Although Loose Ends as a system aims to be storyworld-agnostic, the version

of Loose Ends presented here contains actions and storytelling goals that are specifically

relevant to constructing stories about the development of character relationships and

careers within a small community of artists. In the future, we envision that many

different “playsets” for Loose Ends might be created, supporting the construction of

stories set in many different kinds of storyworlds.

The AI system that powers Loose Ends consists of two major components.

First is a storytelling goals tracker that updates a pool of active and possible storytelling

goals as new plot events are added. Second is an action suggestion generator that

generates and ranks potential suggestions for the next plot event in the story based on

the currently active storytelling goals.

6.2.1 Storytelling Goals Tracker

Storytelling goals in Loose Ends are used to set and maintain the high-level

direction of the story. Every goal is an instance of a goal template: a story sifting

pattern written in the domain-specific logic programming language Winnow [46]. An

example goal template is given in Appendix A.

124

A goal template describes a sequence of interrelated events that can be inter-

preted as satisfying a particular storytelling purpose or instantiating a particular kind

of plot thread. For instance, the current version of Loose Ends includes templates for

goals that introduce or develop character relationships (e.g., friendship or rivalry); in-

ternal conflicts (e.g., artistic or career struggles); and high-level narrative themes (e.g.,

moral themes related to the virtues of persistence in the face of adversity). There were

12 goal templates total in the version of Loose Ends evaluated here.

A goal is a partial match against a goal template, representing a sequence of

past plot events that partially meet the goal template’s requirements. To advance a

goal is to locate and accept an action suggestion that continues the sequence of events

that match the underlying goal template. For instance, if a majorWork goal involving

the character Aidan has been advanced past the first event (in which the goal’s main

protagonist character begins work on a major art project) and a second event in which

Aidan makes progress on the project is added to the story, this goal will be advanced

another step.

Goals can also be cut off if an event that violates one of the goal’s constraints

is added to the story. For instance, if an onARoll goal involving the character Bella

is active, but another character completes a major artwork before Bella manages to

complete two major artworks in a row, this goal will be cut off, since a condition of the

onARoll goal has now been violated.

Goals are parametrized by the characters that are involved in them, and mul-

tiple goals that are based on the same underlying goal template can be active concur-

125

rently as long as they pertain to a different configuration of characters. For instance,

two formGrudge goals can be simultaneously active if either the character that holds

the grudge, the target of the grudge, or both are different between the two goals. Addi-

tionally, if the player knows that they want a certain type of plot thread to be present

in the story but does not know which characters they want to be involved, they can add

a storytelling goal of the relevant type without any character parameters specified and

allow the system to suggest possible ways of casting the available characters into this

thread.

The Loose Ends user interface permits players to add goals manually (by select-

ing a goal template to instantiate as a goal, from a library of all available goal templates)

and to remove goals that have already been established at any time. In addition, the

AI system in Loose Ends constantly tracks and evaluates a pool of partial matches that

the player has not established as goals. If one of these partial matches advances beyond

a certain threshold (33% completion in the current version of Loose Ends), the system

will automatically promote it to an active goal, rendered in a transparent style to indi-

cate that this is a system-suggested goal rather than a player-added one. These goals

can be removed by the player like any other (enabling the player to veto the system’s

suggestions of additional storytelling goals), or the player can click on them to remove

the transparency effect and notionally “lock them in” as player-intended goals.

126

6.2.2 Action Suggestion Generator

Action suggestions in Loose Ends are drawn from two pools of actions. The

basic actions pool contains actions that are possible for any character at any time,

regardless of social state, and remains fixed at all times. The dynamic actions pool

is recalculated whenever a new event is added to the story, and contains actions that

are only possible because of active storytelling goals that are in an appropriate state.

For instance, when a complete establishGrudge goal between the characters Cam and

Devin is active, the dynamic actions pool will contain actions that Cam can only take

toward Devin because of their active grudge on Devin (such as sabotaging Devin’s most

recent artwork). There were 32 action types total in the version of Loose Ends evaluated

here: 20 basic actions and 12 dynamic actions.

Actions in general may be either solo (involving only a single character, the

actor who takes the action) or dyadic (involving two characters, the actor who takes the

action and the target toward whom the action is directed). Creating a minor artwork,

for instance, is a solo action, while insulting another character is a dyadic action. In

addition, every action has an event type uniquely identifying the type of action that

was performed and a list of zero or more tags that assign the action to high-level

categories (such as release for actions in which the actor finishes and releases an

artwork, friendly for actions in which the actor is friendly toward the target, and

harms for actions that harm the target).

Action suggestions are recalculated every time the set of active storytelling

127

goals changes. When calculating action suggestions, the action suggestion generator

first iterates over all possible next actions (in both the basic and dynamic action pools)

and determines, for each action, which storytelling goals would be impacted (either

advanced or cut off) by the addition of this action to the story. Each action is then

given a priority score, which is the sum of three factors:

• The number of active storytelling goals that this action would advance

• A constant factor (0.5) if this action is from the dynamic actions pool—i.e., if it

is only possible because of an active storytelling goal

• A random factor (between 0 and 0.5) to randomly permute the priority of actions

with otherwise equal scores

Actions are sorted by their score and displayed in order, with the three highest-

scoring actions being pulled to the top of the action suggestions list. In this way, actions

that relate most strongly to the active storytelling goals are prioritized for display,

with randomness ensuring a degree of alternation between suggestions that advance

parallel plot threads. When the user hovers over an action suggestion to consider it,

the precalculated information about which storytelling goals this action would advance

or cut off is used to display the ramifications of accepting this action in the storytelling

goals pane on the right side of the user interface.

Unlike in WAWLT, characters in Loose Ends do not perform autonomous ac-

tions in the background, and most actions are not gated by any preconditions. Au-

tonomous actions in WAWLT were an early attempt at giving the AI system more

128

capacity to take the story in unexpected directions, but did less than we hoped to

address the problem of directionlessness, and have effectively been replaced in Loose

Ends by system-suggested storytelling goals. Meanwhile, in Loose Ends, the more so-

phisticated storytelling goals are generally sufficient to pull the most relevant action

suggestions to the front of the suggestions list without any explicit causal modeling, en-

abling the removal of explicit preconditions on most action types (which we found both

time-consuming and difficult to author in our work on WAWLT). The main downside

of this shift is that Loose Ends sometimes presents players with apparently inconsistent

action suggestions when they explore beyond the first page or two of suggestions, which

stood out to some players as jarring at times but did not result in a substantial degra-

dation of player experience overall. Overall, we believe that the ideal level of causal

modeling in a Loose Ends-like narrative instrument probably falls somewhere between

the high level present in WAWLT and the low level present in Loose Ends. Both of these

differences between WAWLT and Loose Ends are discussed in more detail in chapter 4.

6.3 Interaction Examples

In conjunction, the Loose Ends AI and user interface permit several desir-

able interactions that are not possible in other mixed-initiative creative interfaces for

storytelling. Four especially interesting examples of novel mixed-initiative interactions

enabled by Loose Ends (all of which took place organically during evaluation) are pre-

sented below.

129

Figure 6.2: Based on events that were added to the story to complete two
establishGrudge goals, Loose Ends has automatically discovered and surfaced a sug-
gestion for another author goal (the bondOverSharedDislike goal) to spin off a new
plot thread initiated by these events.

6.3.1 Discovering New Storytelling Goals

Beyond simply suggesting action-level continuations to a running story in ac-

cordance with player-provided storytelling goals, Loose Ends can also infer new story-

telling goals that are consistent with the story so far and proactively suggest these goals

to the player. This often results in interactions where a player who would otherwise

become uncertain of what to do next is inspired by, and begins pursuing, a system-

discovered storytelling goal instead.

For instance, in Figure 6.2, the player has just completed two establishGrudge

goals targeting the same character (Cam) have both been completed. At this point,

Loose Ends automatically discovers and surfaces a successive character relationship de-

velopment goal, in which Aidan and Bella (who both have grudges on Cam) bond over

their shared dislike. The first two steps of this goal are already complete, because the

130

Figure 6.3: As the player considers an action that would advance one of their thematic
goals but undermine another, the impact of the action on both thematic goals is high-
lighted, making the conflict apparent.

system has been tracking the possibility of surfacing this goal in the background, but it

has only just now progressed far enough to be displayed.

6.3.2 Discovering Thematic Conflicts

Loose Ends can make it apparent when a conflict has arisen between two active

storytelling goals. For instance, in Figure 6.3, the player is simultaneously working to-

ward two distinct thematic goals for the story and considering an action that will reward

Emily with career success after she completes a major artwork. This would support the

theme that persistent work on a single major project leads to success (slowAndSteady)

but undermine the competing theme that the way to success is to create a rapid suc-

cession of more minor artworks (quantityOverQuality). When the impact of the con-

sidered action on all active author goals is visualized, the conflict between these goals

is revealed to the player.

131

6.3.3 Resurfacing Dormant Plot Threads

Because Loose Ends can maintain a larger set of active storytelling goals than

the player can hold in their head all at once, action suggestions can serve to remind

players of incomplete plot threads that they would otherwise forget to revisit. For in-

stance, long-term storytelling goals like the tryTryAgain thematic goal (which requires

a single character to repeatedly release artworks that are poorly received, before finally

releasing one that is well-received) may temporarily fade into the background as the

player focuses on another subplot that weaves together a few distinct storytelling goals

at once—but once this more pressing subplot is complete, actions advancing the earlier

thematic goal will again rise to the top of the action suggestions pool, reminding the

player to return to the previously initiated thread.

6.3.4 Interleaving Parallel Plot Threads

When multiple parallel plot threads are active and none of these threads has

storytelling priority, the slight random permutation of equally ranked action suggestions

means that Loose Ends by default tends to promote actions that alternately advance

different threads. This can help players escape fixation [34], in which they develop a

narrow and premature focus on one plot thread or set of characters and forget about

the possibility of developing others.

132

6.4 Evaluation Procedure

To gauge the effectiveness of Loose Ends as a mixed-initiative storytelling

interface, we conducted an expert evaluation. This evaluation was modeled on the

evaluation of Germinate [49], an earlier mixed-initiative co-creative system.

We recruited five expert evaluators, all of whom are experienced creative writ-

ers and researcher-practitioners in intelligent narrative technologies. Four of these eval-

uators hold a PhD in a relevant area, while one holds multiple relevant graduate degrees

and is currently enrolled in a relevant PhD program. All evaluators had past experience

with mixed-initiative storytelling in general, and none had encountered Loose Ends be-

fore. Because our evaluators were familiar with the state of the art in mixed-initiative

storytelling, they were readily able to compare Loose Ends to similar systems and judge

what it does well or poorly in comparison.

Each evaluator participated in a single remote play session via Zoom. Each ses-

sion was approximately one hour long and began with a brief (approximately 5-minute)

introduction to the Loose Ends interface by one of the researchers. Subsequently, the

evaluator constructed a single story using the Loose Ends interface while thinking aloud

and sharing their screen. Once the story was complete, one of the researchers asked sev-

eral open-ended interview questions to prompt reflection on play patterns they observed

during the session. Both the think-out-loud and interview portions of the playtest ses-

sions were recorded for later analysis. Finally, evaluators were administered a brief user

experience questionnaire [67] consisting of the following questions:

133

Q1. What is your overall impression of the system?

Q2. How easy was it to use the system?

Q3. Were you able to use it without unnecessary effort?

Q4. Did you feel a sense of control over the story?

Q5. Was the system fun to use?

Q6. Did you feel a sense of ownership of the story?

Q7. Were you curious to see what would happen next in the story?

Q8. Did you generally know what direction you wanted the story to go next?

Q1 was open-ended and qualitative, while Q2-Q8 were quantitative, with re-

sponses ranging from 1-5 (where 5 indicates the highest level of agreement with the

premise of the question). Q1-Q5 were adapted directly from the Germinate expert eval-

uation questionnaire [49], while Q6-Q8 were intended to elicit reflection on aspects of

the co-creative storytelling experience that were frequently mentioned by playtesters of

Why Are We Like This? [47]. A summary of evaluator responses to the quantitative

questions is given in Table 6.1.

134

Question E1 E2 E3 E4 E5 Avg
Q2. Usability 4 4 4 5 4 4.2
Q3. Effortlessness 4 5 5 5 5 4.8
Q4. Control 4 4 4 4 3 3.8
Q5. Fun 4 5 4 4 4 4.2
Q6. Ownership 3 4 3 3 3 3.2
Q7. Curiosity 4 5 4 3 4 4.0
Q8. Direction 4 5 4 4 3 4.0

Table 6.1: Summary of evaluators’ responses to quantitative survey questions. All
responses were given on a numeric scale from 1-5, where 5 is highest agreement.

6.5 Evaluation Results

6.5.1 Directionlessness Is Mitigated

Our central design goal for Loose Ends was to mitigate the sense of high-level

directionlessness reported by players during playtesting of Why Are We Like This? [47]

and assist in the development of stories that contain satisfying high-level structure. Both

quantitative and qualitative evaluation responses suggest that Loose Ends successfully

supports the development and maintenance of high-level narrative direction from the

player’s perspective.

Quantitative survey responses related to sense of storytelling direction (Q8)

ranged from 3-5, indicating that all evaluators had a sense of where they wanted the

story next to go at a majority of points during the storytelling process. Additionally,

all but one evaluator (E5) reported a score of 4 or higher in this category.

Qualitative think-out-loud remarks and interview responses are consistent with

these quantitative results. In particular, two evaluators (E4 and E5) remarked un-

prompted on how they never experienced writer’s block or a sense of being stuck during

135

the play process. Additionally, no evaluators explicitly reported a sense of aimlessness

or insufficient medium-term direction at any point during their playthrough, in stark

contrast to the prevalence of these comments during playtesting of Why Are We Like

This?

6.5.2 Coauthorship Is Preserved

One open question for Loose Ends was whether the AI system could success-

fully preserve the sense of shared authorship that players experience in Why Are We Like

This? while intervening more proactively in the storytelling process—including through

the suggestion of new high-level storytelling goals. Both quantitative and qualitative

evaluation responses suggest that Loose Ends succeeds in this regard.

Quantitative responses regarding sense of control over the story (Q4), sense of

ownership of the story (Q6), and sense of curiosity regarding what would happen next

in the story (Q7) are especially salient here. For control, all evaluators reported a score

of at least 3 (indicating a moderate sense of control), and all but one (E5) reported a

score of 4 (indicating a strong, but not complete, sense of control). For ownership, all

evaluators reported a score of at least 3 (indicating a moderate sense of ownership), and

one (E2) reported a score of 4 (indicating a strong, but not complete, sense of ownership).

For curiosity, scores were distributed across the 3-5 range, indicating that all evaluators

felt at least moderate curiosity, while all but one (E4) experienced either strong or

very strong curiosity regarding the story’s next direction. Taken together, these scores

suggest that evaluators generally remained in control of the story while working with

136

the system, but that they also created stories containing unexpected twists that they

would be unlikely to invent if writing alone—to the extent that the AI system seemed

to hold partial ownership of the stories that emerged.

Qualitative think-out-loud remarks and interview responses further support

this interpretation. One evaluator (E5) felt that the play process reflected “a nice

meeting in the middle” between player-led and system-led storytelling; another (E1)

remarked that it “feels like the sweet spot for co-creativity”; and a third (E2) felt it to

be a “good collaboration”: “kind of the dream” for mixed-initiative co-creativity.

6.5.3 Goal Alignment Is Unexpected and Fun

Four evaluators (E2-E5) remarked unprompted on how much they enjoyed it

when the system correctly anticipated where they wanted the story to go next and offered

options (especially storytelling goal suggestions) for continuing the story in a relevant

direction. One evaluator (E2) was particularly pleasantly surprised by how often this

took place during play. This suggests that the feeling of being seen or understood by

the system can be a significant source of enjoyment during mixed-initiative storytelling,

perhaps related to the aesthetic of responsiveness as described by Mason [76].

6.5.4 Evaluators Found Loose Ends Easy to Use

Loose Ends was rated highly by evaluators on usability and (especially) lack

of unnecessary effort involved in use, suggesting that it is considered highly usable in

comparison to similar systems with which these evaluators were familiar. All evaluators

137

reported a score of at least 4 for both Q2 (usability) and Q3 (effortlessness), and all

but one evaluator (E1) reported a score of 5 for effortlessness, indicating unanimous

agreement that Loose Ends is easy to use.

One caveat to this finding is that our evaluators, as experts in computationally

engaged storytelling, were already familiar with several similar systems and used to

putting up with unpolished interfaces. Consequently, this finding might not generalize

well to other player populations.

6.5.5 Some Players Want Prose-Level Suggestions

Evaluators used the freely editable text boxes in the story transcript in very

different ways. Two evaluators (E1 and E4) mostly used them to write extended nar-

ration of high-level plot events, as we originally envisioned. One (E2) ignored the text

boxes almost entirely. One (E3) used the text boxes to write short notes-to-self about

why they chose certain actions from a storytelling perspective—a use-case we did not

envision. And one (E5) initially used the text boxes to add terse narrative details for

later expansion into full narration, but then stopped using them partway through play.

In qualitative think-out-loud remarks and interview responses, two evaluators

(E1 and E2) both indicated that they wanted assistance in coming up with potential

details for how certain high-level actions could have been narrated. E2 in particular

(who made almost no use of the text boxes) stated that they would have found this

additional narration-level support especially helpful.

Altogether, under the cognitive process model of writing [29,35], we find that

138

Loose Ends currently provides assistance mostly at the planning stage, specifically in

the creation of plot outlines. Expansion of support to later stages of the writing process

represents a potential direction for future work.

6.5.6 Storyworld Inconsistencies Stand Out

The current version of Loose Ends makes use of a stateless, näıvely random

action suggestion generator rather than a full-fledged social simulation to generate can-

didate action suggestions. Character relationship state is not tracked anywhere besides

in storytelling goals related to friendship and rivalry, and most action types can be sug-

gested between any pair of characters regardless of these characters’ current relationship

state. This leads to occasional generation of action suggestions that seem nonsensical

from the perspective of a player who is tracking character relationship state mentally.

Three evaluators (E3-E5) commented at least once on this perceived occasional

lack of consistency as a detriment to the overall storytelling experience in Loose Ends.

This finding underscores the importance of storyworld consistency maintenance features

for storytelling support—as suggested by several past studies, including Kreminski et

al. [57] and Calderwood et al. [11]. In the future, we intend to extend Loose Ends to use

a more sophisticated suggestion generation mechanism that tracks substantially more

character relationship state, hopefully alleviating this problem.

139

6.5.7 Common Feature Requests

Three evaluators (E1, E3, and E4) mentioned wanting to filter action sugges-

tions to only display actions with particular characteristics, such as those of a particular

event type or those involving particular characters. Three evaluators (E1, E3, and E4)

mentioned a desire to express a temporary focus on a specific storytelling goal, so that

the system would prioritize action suggestions that would advance this goal. Four evalu-

ators (E1-E3 and E5) expressed a desire to minimize complete storytelling goals without

removing them, in order to free up more screenspace for incomplete goals. And finally,

four evaluators (E1 and E3-E5) stated that they wanted more detailed information

about a particular character’s traits or relationships to be immediately available while

considering a suggested action involving that character. Going forward, we plan to add

all of these features to Loose Ends in some form.

6.6 Conclusions and Future Work

Preliminary evaluation of Loose Ends, a novel mixed-initiative creative in-

terface for storytelling, suggests that it preserves the desirable sense of coauthorship

present in earlier systems while mitigating player-perceived narrative directionlessness.

We hope that the formalization of jointly human- and machine-understandable story-

telling goals presented here, and the idea of a mixed-initiative storytelling partner that

can explicitly reason about and suggest high-level plot directions for a story (in addi-

tion to immediate continuations), will be taken up and further developed in the next

140

generation of MICIs for storytelling support.

141

Chapter 7

Conclusion

Recall our three research questions, introduced in Chapter 1:

• RQ1. In what ways do existing systems that are used as narrative instruments

succeed and fail at providing their users with creativity support?

• RQ2. What new technical capabilities would we need to develop to address the

deficiencies of existing narrative instruments?

• RQ3. What new human-facing interfaces would we need to construct to in-

tegrate these new technical capabilities into playful computationally supported

storytelling practices?

This dissertation proposes answers to all three of these questions. In Chap-

ters 1 and 2, I introduced narrative instruments as a concept, described two high-level

categories of existing systems (interactive emergent narrative games and AI-supported

creative writing tools) that have been appropriated as narrative instruments, and dis-

142

cussed two key flaws of these existing systems (overwhelm and directionlessness) that

guided and structured the remainder of my dissertation work. In Chapters 3 and 5, I

presented two story sifters that enable new technical capabilities which can be used to

address the issues of overwhelm and directionless respectively. And in Chapters 4 and 6,

I presented two new narrative instruments that incorporate these technical capabilities,

alongside preliminary evaluation of the player experience facilitated by these systems.

Altogether, this dissertation suggests that the problems of overwhelm and structureless-

ness in narrative instruments can be mitigated through a more expressive approach to

story sifting (based on logic programming) that permits partial and incremental sifting,

and which enables the development of user interfaces for the explicit coordination of

shared storytelling goals between players and AI systems.

That said, much work remains to be done before mixed-initiative co-creative

narrative instruments can achieve their full potential. In the following section, I briefly

discuss several potential high-level directions for future work based on the work pre-

sented here.

7.1 Looking Forward

7.1.1 Integrating Disparate Symbolic Models of Storytelling

The formulation of storytelling goals we adopted in Loose Ends unifies the

affordances of several earlier techniques for guiding action in interactive storytelling. In

particular, because Loose Ends storytelling goals can both recognize actions as advanc-

143

ing the state of certain microstories and provide new actions based on their internal

state, they function both as story sifting patterns and as something akin to Versu’s

constitutive social practices [28], which provide characters with affordances only when

certain social states are active. (For instance, a Loose Ends storytelling goal in which

two characters become rivals can unlock rivalry-specific actions between those two char-

acters only once the goal has progressed past a certain degree of completion.)

In the future, I believe that it may also be possible and useful to unify this

computational model of narrative with others—in particular with planning-based ap-

proaches to guiding character action, since it would not be especially difficult to search

for actions that are likely to advance storytelling goals in desirable ways beyond the

immediate next timestep. The templated action sequences defined by Winnow sift-

ing patterns, when used to guide action toward the advancement of these sequences

(as in Loose Ends), already essentially function as something similar to goals in plan-

ning, albeit with only a single step of lookahead applied. Similarly, the unless-event

constraints that define when a partial match against a Winnow sifting pattern is no

longer viable somewhat resemble the open-ended and expressive integrity constraints

that define invalid action sequences in answer set programming approaches to narrative

generation [23,116]. By introducing more fully realized forms of planning and integrity

constraint specification to our unified model of computational story structure, it might

be possible to make simultaneous use of affordances from numerous different story gen-

eration approaches, including “bottom-up” and “top-down” story generation techniques

that are commonly seen as opposed.

144

7.1.2 Developing Sifting Heuristics

Although story sifting to date has made extensive use of story sifting patterns—

low-level specifications of event sequences that tend to make for interesting narrative

material, which are matched directly against a chronicle of past storyworld events—

there has been little work so far on the development of what Ryan terms story sifting

heuristics, or higher-level abstract encodings of storyfulness that might help to guide

sifting [99, p. 250]. Once a wide variety of sifting patterns targeting a particular simu-

lation have been defined, the challenge of sifting shifts toward one of determining which

of the many available pattern matches is highest-priority or most likely to function

as compelling narrative material—and it is here that heuristics seem especially useful.

Though it has previously been suggested that statistical improbability might serve as

the basis for a good heuristic [99, p. 250], and that cognitive models of narrative per-

ception such as the Indexter model [13] might also play a useful role in defining sifting

heuristics [50], these ideas have yet to be implemented concretely in the context of a

storyworld simulation as far as I am aware. At the time of this writing, I am actively

working to develop a sifting heuristic that operationalizes the notion of statistical im-

probability among sifting pattern matches, but this work is still in its early stages, and

many alternative sifting heuristics remain to be discovered and implemented.

7.1.3 Neurosymbolic Approaches to Storytelling Support

Both symbolic and neural approaches to story generation have strengths and

weaknesses, especially when viewed in terms of the forms of support that they can readily

145

provide to human storytellers. In particular, symbolic approaches enable the definition

and enforcement of goals for high-level story structure, while neural approaches are ca-

pable of generating open-ended story continuations without a human author needing

to manually define all the potential kinds of events that can possibly occur within a

storyworld. Therefore, I have argued in the past that it would be beneficial to construct

systems that are capable of combining neural and symbolic approaches to story gener-

ation in order to provide users with a wider range of support [53]. This strikes me as

one of the leading priorities for future work in mixed-initiative co-creative storytelling,

and I am currently pursuing this direction myself as I continue past the scope of my

dissertation work.

Some work has already been done on hybrid (neurosymbolic) approaches to

fully autonomous story generation, particularly by Lara Martin [75] and other current

and former members of Mark Riedl’s lab. However, this work has yet to be extended

to the context of creativity support tools for storytelling. Many potential integrations

of neural and symbolic approaches to narrative intelligence might prove useful for sto-

rytelling support, but the one that I am currently focused on is the integration of a

large language model into a Loose Ends-style mixed-initiative creative interface (with

explicitly, symbolically specified storytelling goals) in place of a human-authored story-

world simulation as a generator of action suggestions. Although this approach requires

parsing and interpretation of open-ended text completions in order to make sense of

what these completions imply from the perspective of a symbolic world model, this is

a challenge that Martin’s prior work has already begun to attack, and success in this

146

approach would make it substantially easier to generate highly open-ended suggestions

for story continuation that nevertheless advance (and are guided by) symbolic models

of story structure.

Another, parallel line of work in neurosymbolic approaches to storytelling sup-

port might involve attempting to learn symbolic representations of story structure from

open-domain corpuses of story. Elson’s work on story intention graphs [27], for in-

stance, included an attempt to manually extract generalizable story structure patterns

from written fables. Many of these patterns could readily be encoded as sifting patterns

in a logic language such as Felt or Winnow and used to conduct story sifting over the

output of an appropriate simulation engine, and it is similarly not outside the realm of

feasibility that these patterns could also be learned from written stories if appropriate

natural language processing techniques are applied.

7.1.4 Learning from Players

One line of research that I have intended to pursue for several years, but that

ended up falling outside the scope of this dissertation, involves the ethnographic study of

players who construct retellings and the process of retelling construction around existing

interactive emergent narrative games. This line of research would make use of methods

such as interviews and observational studies to gather data on how players approach

retelling construction, with the ultimate goal of using this information to construct a

grounded theory [18] of retelling construction beyond the basic theory of extrapolative

narrativization [57] that I have already advanced.

147

In the context of these user studies, it might also be interesting to capture and

examine detailed interaction trace data, for instance by logging all of the user interface

actions that users perform and analyzing this log in parallel to think-out-loud and other

forms of observational data. This could enable the discovery of interaction patterns that

are representative of distinct player types, perhaps analogous to the “curious user” type

reported by Nelson et al. [88] in their study of a casual creator for game design.

7.1.5 Evaluation

As discussed in Chapter 1, creativity is seen as a grand challenge in computer

science for several reasons—one of which is the difficulty of its evaluation. This diffi-

culty is no less present in mixed-initiative co-creative storytelling than in other areas of

creativity-oriented computer science research, and essentially every one of the projects

presented in this dissertation has proven challenging to evaluate in some sense. For

the time being, I chose to evaluate the new narrative instruments I designed (Why

Are We Like This? and Loose Ends) primarily by means of small-scale think-out-loud

playtesting [42]—a formative and human-centered approach to evaluation that aims to

qualitatively characterize the player experience of these particular narrative instruments,

without comparing them directly to alternatives (since few if any directly comparable

alternatives exist) and with the goal of generating context-sensitive design insights that

can be applied to future projects. Though this is a typical form of evaluation for research

through design [33,133], it also limits the extent to which we can speak confidently about

the effects of specific, narrowly delimited design decisions on players in general. In the

148

future, it may be beneficial to test the effects of specific design decisions with larger user

populations and to employ psychometrically validated survey instruments such as the

Creativity Support Index [15] to develop a firmer sense of whether, when, and why the

different features of systems like WAWLT and Loose Ends are useful for mixed-initiative

storytelling.

When developing mixed-initiative creative interfaces, the user’s or player’s sub-

jective experience of the creative process is only one of several things that might be worth

evaluating. Beyond creative experience, it also makes a good deal of intuitive sense to

evaluate the outputs of the creative process, particularly the artifacts that people create.

In interactive storytelling, the field of retelling studies specifically asks researchers to

consider the artifacts that people create while using interactive narrative systems (i.e.,

retellings) as part of the process by which systems are evaluated. I broadly agree with

this call and have attempted to articulate processes by which the study of retellings

can be combined with the study of player experience through more conventional self-

report and interview methods in the past [57], but the details of how retellings should be

evaluated—and how they should be compared and contrasted with measures of player

experience—remain largely undefined to date.

One potentially promising approach to the analysis of retellings involves treat-

ing them as the outputs of a procedural content generator (the narrative instrument with

which they were generated, potentially also including the player as a part of the overall

story-generating system) and conducting an expressive range analysis (ERA) [118,120]

to characterize the complete space of retellings that a particular instrument is capable

149

of producing. Tabletop role-playing games, which are frequently used as narrative in-

struments, have already been characterized as procedural content generators amenable

to expressive range analysis in the PCG literature, so there is some degree of precedent

for this proposal [39]. Additionally, some prior work has been done on the application

of ERA-like analyses to emergent narrative games [64], though this work has treated

sets of character goal state values (rather than complete story structures) as the output

artifacts to be analyzed via an ERA-inspired approach.

Since expressive range analysis generally involves the generation of very large

numbers of artifacts, it would be substantially easier to apply ERA to narrative instru-

ments with which players have already created a wide variety of published retellings.

Alternatively, an approach such as expressive range coverage analysis [52] might be

used to contrast a large number of autonomously generated stories (the narrative in-

strument’s innate expressive range) with a small number of co-created stories in order to

gauge how the narrative instrument as a mixed-initiative creative interface leads players

to favor or disfavor certain kinds of stories within the overall expressive range. This ap-

proach would require the narrative instrument to be capable of generating stories both

fully autonomously and in a mixed-initiative mode, but the former is not guaranteed to

be a capability of all narrative instruments; developing a random machine player (or a

machine player that somehow imitates human players in a more sophisticated fashion)

might enable the application of this evaluation method to narrative instruments that

lack an innate autonomous mode. Regardless of the details, any application of expres-

sive range analysis to narrative structures would also necessitate the development of

150

new computationally defined metrics for story, since ERA as an approach relies on the

availability of a suite of metrics that are appropriate for characterizing the artifacts

under study (and ERA has not previously been applied directly to story structure, as

far as I am aware).

7.2 Final Thoughts

Broadly speaking, the work presented in this dissertation can be taken as an

argument for an approach to creativity research that explicitly views creation as a form

of play. The idea of “narrative instruments” as playable interactive narrative systems

that differ from both tools and games stems directly from a playcentric view of creativity,

as does the idea of examining interactive emergent narrative gameplay from a creativity

support perspective in the first place. It seems likely to me that a great deal of equally

fruitful research can be done on the basis of this premise, including in expressive domains

ranging well beyond narrative. Consequently, my greatest hope for this dissertation is

that it will help to establish a distinct tradition of explicitly playful creativity support

research, building on foundations introduced by other research traditions (especially

that of games research) but not allowing itself to be constrained by these traditions’

boundaries. I close with the following assertion, my highest-level takeaway from the

last five years of my research: to better support creativity, seek out inspiration

from its most playful forms.

151

Bibliography

[1] Tarn Adams. Emergent narrative in Dwarf Fortress. In Procedural Storytelling in

Game Design, pages 149–158. AK Peters/CRC Press, 2019.

[2] Philip Agre. Toward a critical technical practice: lessons learned in trying to re-

form AI. In Geoffrey Bowker, Susan Leigh Star, William Turner, and Les Gasser,

editors, Bridging the Great Divide: Social Science, Technical Systems, and Coop-

erative Work, pages 131–157. Mahwah, NJ: Erlbaum, 1997.

[3] Lea Albaugh, April Grow, Chenxi Liu, James McCann, Gillian Smith, and Jen-

nifer Mankoff. Threadsteading: playful interaction for textile fabrication devices.

In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors

in Computing Systems, pages 285–288, 2016.

[4] Avery Alder. The Quiet Year. https://buriedwithoutceremony.com/

the-quiet-year, 2013.

[5] Bay 12 Games. Dwarf Fortress. https://bay12games.com/dwarves, 2006.

[6] Botnik. Predictive Writer. https://botnik.org/apps/writer, 2017.

152

https://buriedwithoutceremony.com/the-quiet-year
https://buriedwithoutceremony.com/the-quiet-year
https://bay12games.com/dwarves
https://botnik.org/apps/writer

[7] Peter Brooks. Reading for the Plot: Design and Intention in Narrative. Harvard

University Press, 1984.

[8] Matt Brown. The power of projection and mass hallucination: Practical AI in

The Sims 2 and beyond. Invited talk at AIIDE 2006, 2006.

[9] Robin Burkinshaw. Alice and Kev. https://aliceandkev.wordpress.com, 2009.

[10] Robin Burkinshaw. Meaningful Stories for The Sims 4. https://roburky.itch.

io/sims4-meaningful-stories, 2021.

[11] Alex Calderwood, Vivian Qiu, Katy Ilonka Gero, and Lydia B Chilton. How

novelists use generative language models: An exploratory user study. In HAI-

GEN + user2agent @ IUI, 2020.

[12] Rogelio Cardona-Rivera and Robert Young. Symbolic plan recognition in interac-

tive narrative environments. In Proceedings of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, volume 11, 2015.

[13] Rogelio E Cardona-Rivera, Kara B Cassell, Stephen G Ware, and R Michael

Young. Indexter: a computational model of the event-indexing situation model for

characterizing narratives. In Proceedings of the 3rd Workshop on Computational

Models of Narrative, pages 34–43, 2012.

[14] Erin A Carroll, Celine Latulipe, Richard Fung, and Michael Terry. Creativity

factor evaluation: towards a standardized survey metric for creativity support. In

153

https://aliceandkev.wordpress.com
https://roburky.itch.io/sims4-meaningful-stories
https://roburky.itch.io/sims4-meaningful-stories

Proceedings of the Seventh ACM Conference on Creativity and Cognition, pages

127–136. ACM, 2009.

[15] Erin Cherry and Celine Latulipe. Quantifying the creativity support of digital

tools through the Creativity Support Index. ACM Transactions on Computer-

Human Interaction (TOCHI), 21(4), 2014.

[16] John Joon Young Chung, Shiqing He, and Eytan Adar. The intersection of users,

roles, interactions, and technologies in creativity support tools. In Designing

Interactive Systems Conference 2021, pages 1817–1833. ACM, 2021.

[17] John Joon Young Chung, Wooseok Kim, Kang Min Yoo, Hwaran Lee, Eytan

Adar, and Minsuk Chang. TaleBrush: Sketching stories with generative pretrained

language models. In CHI Conference on Human Factors in Computing Systems,

2022.

[18] Tom Cole and Marco Gillies. More than a bit of coding: (un-) grounded (non-)

theory in HCI. In CHI Conference on Human Factors in Computing Systems

Extended Abstracts, 2022.

[19] Simon Colton and Geraint A Wiggins. Computational creativity: The final fron-

tier? In ECAI 2012 - 20th European Conference on Artificial Intelligence, vol-

ume 12, pages 21–26. IOS Press, 2012.

[20] Kate Compton, Quinn Kybartas, and Michael Mateas. Tracery: an author-focused

154

generative text tool. In International Conference on Interactive Digital Story-

telling, pages 154–161. Springer, 2015.

[21] Kate Compton and Michael Mateas. Casual creators. In International Conference

on Computational Creativity, pages 228–235, 2015.

[22] Katherine Compton. Casual Creators: Defining a Genre of Autotelic Creativity

Support Systems. PhD thesis, University of California, Santa Cruz, 2019.

[23] Chinmaya Dabral and Chris Martens. Generating explorable narrative spaces with

answer set programming. In Proceedings of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, volume 16, pages 45–51, 2020.

[24] Sebastian Deterding, Jonathan Hook, Rebecca Fiebrink, Marco Gillies, Jeremy

Gow, Memo Akten, Gillian Smith, Antonios Liapis, and Kate Compton. Mixed-

initiative creative interfaces. In Proceedings of the 2017 CHI Conference Extended

Abstracts on Human Factors in Computing Systems, pages 628–635, 2017.

[25] Mirjam P Eladhari, Anne Sullivan, Gillian Smith, and Josh McCoy. AI-based

game design: enabling new playable experiences. Technical report, UC Santa

Cruz Baskin School of Engineering, 2011.

[26] Mirjam Palosaari Eladhari. Re-tellings: the fourth layer of narrative as an instru-

ment for critique. In International Conference on Interactive Digital Storytelling,

pages 65–78. Springer, 2018.

[27] David K Elson. Detecting story analogies from annotations of time, action and

155

agency. In Proceedings of the LREC 2012 Workshop on Computational Models of

Narrative, Istanbul, Turkey, pages 91–99, 2012.

[28] Richard Evans and Emily Short. Versu—a simulationist storytelling system. IEEE

Transactions on Computational Intelligence and AI in Games, 6(2):113–130, 2013.

[29] Linda Flower and John R Hayes. A cognitive process theory of writing. College

Composition and Communication, 32(4):365–387, 1981.

[30] Freehold Games. Caves of Qud. https://www.cavesofqud.com, 2022.

[31] Jonas Frich, Lindsay MacDonald Vermeulen, Christian Remy, Michael Mose Bisk-

jaer, and Peter Dalsgaard. Mapping the landscape of creativity support tools in

HCI. In Proceedings of the 2019 CHI Conference on Human Factors in Computing

Systems. ACM, 2019.

[32] Jacob Garbe. Simulation of history and recursive nar-

rative scaffolding. http://project.jacobgarbe.com/

simulation-of-history-and-recursive-narrative-scaffolding, Feb

2018.

[33] William Gaver. What should we expect from research through design? In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems,

pages 937–946, 2012.

[34] John S Gero. Fixation and commitment while designing and its measurement.

The Journal of Creative Behavior, 45(2):108–115, 2011.

156

https://www.cavesofqud.com
http://project.jacobgarbe.com/simulation-of-history-and-recursive-narrative-scaffolding
http://project.jacobgarbe.com/simulation-of-history-and-recursive-narrative-scaffolding

[35] Katy Gero, Alex Calderwood, Charlotte Li, and Lydia Chilton. A design space for

writing support tools using a cognitive process model of writing. In Proceedings of

the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing

2022), pages 11–24, 2022.

[36] Natalie Goldberg. Writing Down the Bones: Freeing the Writer Within. Shamb-

hala, 2005.

[37] Jason Grinblat and C Brian Bucklew. Subverting historical cause & effect: gen-

eration of mythic biographies in Caves of Qud. In Proceedings of the 12th Inter-

national Conference on the Foundations of Digital Games, page 76. ACM, 2017.

[38] Jason Grinblat, Cat Manning, and Max Kreminski. Emergent narrative and repar-

ative play. In International Conference on Interactive Digital Storytelling, pages

208–216. Springer, 2021.

[39] Matthew Guzdial, Devi Acharya, Max Kreminski, Michael Cook, Mirjam Elad-

hari, Antonios Liapis, and Anne Sullivan. Tabletop roleplaying games as procedu-

ral content generators. In International Conference on the Foundations of Digital

Games, 2020.

[40] Minh Hua and Rita Raley. Playing with unicorns: AI Dungeon and citizen NLP.

DHQ: Digital Humanities Quarterly, 14(4), 2020.

[41] Kathryn Hymes. Developing ‘artifacts of play’ for your tabletop games. https://

157

https://www.gdcvault.com/play/1026745/Board-Game-Design-Summit-Developing
https://www.gdcvault.com/play/1026745/Board-Game-Design-Summit-Developing

www.gdcvault.com/play/1026745/Board-Game-Design-Summit-Developing,

2020.

[42] Tom Knoll. The think-aloud protocol. In Games User Research, pages 189–202.

Oxford University Press, 2018.

[43] Hartmut Koenitz. Towards a theoretical framework for interactive digital narra-

tive. In Joint International Conference on Interactive Digital Storytelling, pages

176–185. Springer, 2010.

[44] Max Kreminski. Procedural narrative design with parametrized storylets. https:

//www.gdcvault.com/play/1025699/Tech, 2019.

[45] Max Kreminski, Devi Acharya, Nick Junius, Elisabeth Oliver, Kate Compton,

Melanie Dickinson, Cyril Focht, Stacey Mason, Stella Mazeika, and Noah Wardrip-

Fruin. Cozy Mystery Construction Kit: Prototyping toward an AI-assisted col-

laborative storytelling mystery game. In Proceedings of the 14th International

Conference on the Foundations of Digital Games, 2019.

[46] Max Kreminski, Melanie Dickinson, and Michael Mateas. Winnow: A domain-

specific language for incremental story sifting. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence and Interactive Digital Entertainment, volume 17,

pages 156–163, 2021.

[47] Max Kreminski, Melanie Dickinson, Michael Mateas, and Noah Wardrip-Fruin.

Why Are We Like This?: Exploring writing mechanics for an AI-augmented sto-

158

https://www.gdcvault.com/play/1026745/Board-Game-Design-Summit-Developing
https://www.gdcvault.com/play/1026745/Board-Game-Design-Summit-Developing
https://www.gdcvault.com/play/1025699/Tech
https://www.gdcvault.com/play/1025699/Tech

rytelling game. In Proceedings of the 2020 Conference of the Electronic Literature

Organization, 2020.

[48] Max Kreminski, Melanie Dickinson, Michael Mateas, and Noah Wardrip-Fruin.

Why Are We Like This?: The AI architecture of a co-creative storytelling game.

In International Conference on the Foundations of Digital Games, 2020.

[49] Max Kreminski, Melanie Dickinson, Joseph Osborn, Adam Summerville, Michael

Mateas, and Noah Wardrip-Fruin. Germinate: A mixed-initiative casual creator

for rhetorical games. In Proceedings of the AAAI Conference on Artificial Intelli-

gence and Interactive Digital Entertainment, volume 16, pages 102–108, 2020.

[50] Max Kreminski, Melanie Dickinson, and Noah Wardrip-Fruin. Felt: a simple

story sifter. In International Conference on Interactive Digital Storytelling, pages

267–281. Springer, 2019.

[51] Max Kreminski, Melanie Dickinson, Noah Wardrip-Fruin, and Michael Mateas.

Loose Ends: A mixed-initiative creative interface for playful storytelling. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, volume 18, 2022.

[52] Max Kreminski, Isaac Karth, Michael Mateas, and Noah Wardrip-Fruin. Eval-

uating mixed-initiative creative interfaces via expressive range coverage analysis.

In IUI Workshops, pages 34–45, 2022.

[53] Max Kreminski and Chris Martens. Unmet creativity support needs in compu-

159

tationally supported creative writing. In Proceedings of the First Workshop on

Intelligent and Interactive Writing Assistants (In2Writing 2022), pages 74–82,

2022.

[54] Max Kreminski and Michael Mateas. A coauthorship-centric history of interac-

tive emergent narrative. In International Conference on Interactive Digital Sto-

rytelling, pages 222–235. Springer, 2021.

[55] Max Kreminski and Michael Mateas. Reflective creators. In International Con-

ference on Computational Creativity, 2021.

[56] Max Kreminski and Michael Mateas. Toward narrative instruments. In Inter-

national Conference on Interactive Digital Storytelling, pages 499–508. Springer,

2021.

[57] Max Kreminski, Ben Samuel, Edward Melcer, and Noah Wardrip-Fruin. Evalu-

ating AI-based games through retellings. In Proceedings of the AAAI Conference

on Artificial Intelligence and Interactive Digital Entertainment, volume 15, pages

45–51, 2019.

[58] Max Kreminski and Noah Wardrip-Fruin. Sketching a map of the storylets design

space. In International Conference on Interactive Digital Storytelling, pages 160–

164. Springer, 2018.

[59] Max Kreminski and Noah Wardrip-Fruin. Generative games as storytelling part-

160

ners. In Proceedings of the 14th International Conference on the Foundations of

Digital Games, 2019.

[60] Max Kreminski, Noah Wardrip-Fruin, and Michael Mateas. Toward example-

driven program synthesis of story sifting patterns. In Joint Proceedings of the

AIIDE 2020 Workshops, 2020.

[61] Kromtec. Legends Viewer. https://github.com/Kromtec/LegendsViewer, 2015.

[62] Quinn Kybartas and Rafael Bidarra. A semantic foundation for mixed-initiative

computational storytelling. In International Conference on Interactive Digital

Storytelling, pages 162–169. Springer, 2015.

[63] Quinn Kybartas and Rafael Bidarra. A survey on story generation techniques

for authoring computational narratives. IEEE Transactions on Computational

Intelligence and AI in Games, 9(3):239–253, 2016.

[64] Quinn Kybartas, Clark Verbrugge, and Jonathan Lessard. Tension space analysis

for emergent narrative. IEEE Transactions on Games, 13(2):146–159, 2020.

[65] Anne Lamott. Bird by Bird: Some Instructions on Writing and Life. Knopf

Doubleday, 2007.

[66] Bjarke Alexander Larsen, Luis Emilio Bruni, and Henrik Schoenau-Fog. The

story we cannot see: On how a retelling relates to its afterstory. In International

Conference on Interactive Digital Storytelling, pages 190–203. Springer, 2019.

161

https://github.com/Kromtec/LegendsViewer

[67] Bettina Laugwitz, Theo Held, and Martin Schrepp. Construction and evaluation of

a user experience questionnaire. In Symposium of the Austrian HCI and Usability

Engineering Group, pages 63–76. Springer, 2008.

[68] Antonios Liapis, Georgios N Yannakakis, Constantine Alexopoulos, and Phil

Lopes. Can computers foster human users’ creativity? Theory and praxis of

mixed-initiative co-creativity. Digital Culture & Education, 8(2):136–153, 2016.

[69] Genevieve Liveley. Anticipation and narratology. In Roberto Poli, editor, Hand-

book of Anticipation: Theoretical and Applied Aspects of the Use of Future in

Decision Making. Springer, 2017.

[70] Sandy Louchart and Ruth Aylett. The emergent narrative theoretical investiga-

tion. In The 2004 Conference on Narrative and Interactive Learning Environ-

ments, pages 21–28, 2004.

[71] Sandy Louchart, John Truesdale, Neil Suttie, and Ruth Aylett. Emergent narra-

tive, past, present and future of an interactive storytelling approach. In Interactive

Digital Narrative: History, Theory and Practice, pages 185–199. Routledge, 2015.

[72] Enrique Manjavacas, Folgert Karsdorp, Ben Burtenshaw, and Mike Kestemont.

Synthetic literature: Writing science fiction in a co-creative process. In Proceedings

of the Workshop on Computational Creativity in Natural Language Generation

(CC-NLG 2017), pages 29–37, 2017.

[73] Chris Martens. Ceptre: A language for modeling generative interactive systems. In

162

Eleventh Artificial Intelligence and Interactive Digital Entertainment Conference,

2015.

[74] Chris Martens and Matthew A Hammer. Languages of play: towards semantic

foundations for game interfaces. In Proceedings of the 12th International Confer-

ence on the Foundations of Digital Games, pages 32–41. ACM, 2017.

[75] Lara Jean Martin. Neurosymbolic Automated Story Generation. PhD thesis, Geor-

gia Institute of Technology, 2021.

[76] Stacey Mason. Responsiveness in Narrative Systems. PhD thesis, University of

California, Santa Cruz, 2021.

[77] Gus Mastrapa. Kiwi comic tells tale of Dwarf Fortress failure. https://www.

wired.com/2010/09/oilfurnace, 2010.

[78] Michael Mateas and Andrew Stern. Build it to understand it: Ludology meets

narratology in game design space. In DiGRA ’05 - Proceedings of the 2005 DiGRA

International Conference: Changing Views: Worlds in Play, 2005.

[79] Michael Mateas, Paul Vanouse, and Steffi Domike. Generation of ideologically-

biased historical documentaries. In AAAI/IAAI, pages 236–242, 2000.

[80] Maxis. The Sims 2. https://ea.com/games/the-sims/the-sims-2, 2004.

[81] Josh McCoy, Mike Treanor, Ben Samuel, Aaron A Reed, Noah Wardrip-Fruin,

and Michael Mateas. Prom Week: designing past the game/story dilemma. In

163

https://www.wired.com/2010/09/oilfurnace
https://www.wired.com/2010/09/oilfurnace
https://ea.com/games/the-sims/the-sims-2

Proceedings of the International Conference on the Foundations of Digital Games,

2013.

[82] Joshua McCoy, Mike Treanor, Ben Samuel, Aaron A Reed, Michael Mateas, and

Noah Wardrip-Fruin. Social story worlds with Comme il Faut. IEEE Transactions

on Computational Intelligence and AI in Games, 6(2):97–112, 2014.

[83] James R Meehan. TALE-SPIN, an interactive program that writes stories. In

Proceedings of the 5th International Joint Conference on Artificial Intelligence,

pages 91–98, 1977.

[84] Eric Murnane. Emergent Narrative: Stories of Play, Playing with Stories. PhD

thesis, University of Central Florida, 2018.

[85] Kumiyo Nakakoji. Meanings of tools, support, and uses for creative design pro-

cesses. In International Design Research Symposium, volume 6, pages 156–165,

2006.

[86] Bonnie A Nardi. A Small Matter of Programming: Perspectives on End User

Computing. MIT Press, 1993.

[87] Mark J Nelson. Emergent narrative in The Sims 2. https://www.kmjn.org/

notes/sims2_ai.html, 2006. Accessed: 2021-08-20.

[88] Mark J Nelson, Swen E Gaudl, Simon Colton, and Sebastian Deterding. Curious

users of casual creators. In Proceedings of the 13th International Conference on

the Foundations of Digital Games, 2018.

164

https://www.kmjn.org/notes/sims2_ai.html
https://www.kmjn.org/notes/sims2_ai.html

[89] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1993.

[90] Jeff Orkin. Three states and a plan: the A.I. of F.E.A.R. In Game Developers

Conference, 2006.

[91] Joseph Osborn, Ben Samuel, Michael Mateas, and Noah Wardrip-Fruin.

Playspecs: Regular expressions for game play traces. In Proceedings of the AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment, vol-

ume 11, 2015.

[92] Paradox Interactive. Crusader Kings II. https://www.paradoxinteractive.

com/games/crusader-kings-ii/about, 2012.

[93] Julie Porteous. Planning technologies for interactive storytelling. In Handbook of

Digital Games and Entertainment Technologies. Springer, 2016.

[94] Nikita Prokopov. DataScript. https://github.com/tonsky/datascript, 2014.

[95] Aaron Reed. Archives of the Sky. https://archivesofthesky.textories.com,

2018.

[96] Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, Ben Shneiderman, Randy

Pausch, Ted Selker, and Mike Eisenberg. Design principles for tools to support

creative thinking. In NSF Workshop Report on Creativity Support Tools, 2005.

[97] Ben Robbins. Microscope: A Fractal Role-Playing Game of Epic Histories. https:

//lamemage.com/microscope, 2011.

165

https://www.paradoxinteractive.com/games/crusader-kings-ii/about
https://www.paradoxinteractive.com/games/crusader-kings-ii/about
https://github.com/tonsky/datascript
https://archivesofthesky.textories.com
https://lamemage.com/microscope
https://lamemage.com/microscope

[98] Melissa Roemmele and Andrew S Gordon. Creative Help: A story writing assis-

tant. In International Conference on Interactive Digital Storytelling, pages 81–92.

Springer, 2015.

[99] James Ryan. Curating Simulated Storyworlds. PhD thesis, University of Califor-

nia, Santa Cruz, 2018.

[100] James Ryan and Michael Mateas. Simulating character knowledge phenomena in

Talk of the Town. In Game AI Pro 360, pages 135–150. CRC Press, 2019.

[101] James Owen Ryan, Michael Mateas, and Noah Wardrip-Fruin. Open design chal-

lenges for interactive emergent narrative. In International Conference on Inter-

active Digital Storytelling, pages 14–26. Springer, 2015.

[102] Marie-Laure Ryan. Narrative in real time: chronicle, mimesis and plot in the

baseball broadcast. Narrative, 1(2):138–155, 1993.

[103] Marie-Laure Ryan. Narrative and the split condition of digital textuality. Dichtung

Digital, 7(1), 2005.

[104] Marie-Laure Ryan. Avatars of Story. University of Minnesota Press, 2006.

[105] Marie-Laure Ryan. From narrative games to playable stories: Toward a poetics of

interactive narrative. Storyworlds: A Journal of Narrative Studies, 1:43–59, 2009.

[106] Ben Samuel. Crafting Stories Through Play. PhD thesis, University of California,

Santa Cruz, 2016.

166

[107] Ben Samuel, Michael Mateas, and Noah Wardrip-Fruin. The design of Writing

Buddy: a mixed-initiative approach towards computational story collaboration.

In International Conference on Interactive Digital Storytelling, pages 388–396.

Springer, 2016.

[108] Ben Samuel, Aaron A Reed, Paul Maddaloni, Michael Mateas, and Noah Wardrip-

Fruin. The Ensemble engine: next-generation social physics. In Proceedings of

the Tenth International Conference on the Foundations of Digital Games (FDG

2015), pages 22–25, 2015.

[109] Ben Samuel, James Ryan, Adam J Summerville, Michael Mateas, and Noah

Wardrip-Fruin. Bad News: An experiment in computationally assisted perfor-

mance. In International Conference on Interactive Digital Storytelling, pages

108–120. Springer, 2016.

[110] Donald A Schön. The Reflective Practitioner: How Professionals Think in Action.

Basic Books, 1983.

[111] Janelle Shane. SkyKnit: When knitters teamed up

with a neural network. https://www.aiweirdness.com/

skyknit-when-knitters-teamed-up-with-18-04-19, 2018.

[112] Ben Shneiderman. Creativity support tools: Accelerating discovery and innova-

tion. Communications of the ACM, 50(12):20–32, 2007.

[113] Emily Short. Beyond branching: Quality-based, salience-based, and

167

https://www.aiweirdness.com/skyknit-when-knitters-teamed-up-with-18-04-19
https://www.aiweirdness.com/skyknit-when-knitters-teamed-up-with-18-04-19

waypoint narrative structures. https://emshort.blog/2016/04/12/

beyond-branching-quality-based-and-salience-based-narrative-structures,

2016.

[114] Nikhil Singh, Guillermo Bernal, Daria Savchenko, and Elena L Glassman. Where

to hide a stolen elephant: Leaps in creative writing with multimodal machine

intelligence. ACM Transactions on Computer-Human Interaction, 2022.

[115] Robin Sloan. Writing with the machine. https://robinsloan.com/notes/

writing-with-the-machine, May 2016.

[116] Adam M Smith and Michael Mateas. Answer set programming for procedural con-

tent generation: A design space approach. IEEE Transactions on Computational

Intelligence and AI in Games, 3(3):187–200, 2011.

[117] Adam M Smith and Michael Mateas. Computational caricatures: probing the

game design process with AI. In Workshops at the Seventh Artificial Intelligence

and Interactive Digital Entertainment Conference, 2011.

[118] Gillian Smith and Jim Whitehead. Analyzing the expressive range of a level

generator. In Proceedings of the 2010 workshop on Procedural Content Generation

in Games, 2010.

[119] Ingibergur Stefnisson and David Thue. Mimisbrunnur: AI-assisted authoring

for interactive storytelling. In Proceedings of the AAAI Conference on Artificial

168

https://emshort.blog/2016/04/12/beyond-branching-quality-based-and-salience-based-narrative-structures
https://emshort.blog/2016/04/12/beyond-branching-quality-based-and-salience-based-narrative-structures
https://robinsloan.com/notes/writing-with-the-machine
https://robinsloan.com/notes/writing-with-the-machine

Intelligence and Interactive Digital Entertainment, volume 14, pages 236–242,

2018.

[120] Adam Summerville. Expanding expressive range: Evaluation methodologies for

procedural content generation. In Fourteenth Artificial Intelligence and Interactive

Digital Entertainment Conference, 2018.

[121] Reid Swanson and Andrew S Gordon. Say Anything: Using textual case-based

reasoning to enable open-domain interactive storytelling. ACM Transactions on

Interactive Intelligent Systems (TiiS), 2(3), 2012.

[122] Steven Sych. When the fourth layer meets the fourth wall: the case for critical

game retellings. In International Conference on Interactive Digital Storytelling,

pages 203–211. Springer, 2020.

[123] Atau Tanaka. Interaction, experience and the future of music. In Consuming

Music Together, pages 267–288. Springer, 2006.

[124] Theresa Jean Tanenbaum and Angela Tomizu. Narrative meaning creation in

interactive storytelling. International Journal of Computational Science, 2(1):3–

20, 2008.

[125] Zach Tomaszewski. On the use of reincorporation in interactive drama. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, volume 7, pages 84–91, 2011.

[126] Mike Treanor, Alexander Zook, Mirjam P Eladhari, Julian Togelius, Gillian Smith,

169

Michael Cook, Tommy Thompson, Brian Magerko, John Levine, and Adam Smith.

AI-based game design patterns. In Proceedings of the Tenth International Con-

ference on the Foundations of Digital Games (FDG 2015), 2015.

[127] u/RireMakar. This single adventure is consuming my life. 159 pages

to finally slay the good ol’ Dragon of Larion. My family misses me...

https://www.reddit.com/r/AIDungeon/comments/hwr0sf/this_single_

adventure_is_consuming_my_life_159, 2020.

[128] Noah Wardrip-Fruin. Playable media and textual instruments. Dichtung Digital,

34:211–253, 2005.

[129] Noah Wardrip-Fruin. Expressive Processing: Digital Fictions, Computer Games,

and Software Studies, chapter The Tale-Spin Effect, pages 115–168. MIT Press,

2009.

[130] Noah Wardrip-Fruin, Michael Mateas, Steven Dow, and Serdar Sali. Agency

reconsidered. In DiGRA Conference, 2009.

[131] Stephen G Ware, Edward Garcia, Mira Fisher, Alireza Shirvani, and Rachelyn

Farrell. Multi-agent narrative experience management as story graph pruning.

IEEE Transactions on Games, 2022.

[132] R Michael Young, Stephen G Ware, Kara B Cassell, and Justus Robertson. Plans

and planning in narrative generation: a review of plan-based approaches to the

generation of story, discourse and interactivity in narratives. Sprache und Daten-

170

https://www.reddit.com/r/AIDungeon/comments/hwr0sf/this_single_adventure_is_consuming_my_life_159
https://www.reddit.com/r/AIDungeon/comments/hwr0sf/this_single_adventure_is_consuming_my_life_159

verarbeitung, Special Issue on Formal and Computational Models of Narrative,

37(1-2):41–64, 2013.

[133] John Zimmerman, Jodi Forlizzi, and Shelley Evenson. Research through design

as a method for interaction design research in HCI. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 493–502, 2007.

171

	List of Figures
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Background
	Retellings
	Story Sifting
	Creativity Support Tools
	Deficiencies of Appropriated Instruments
	Overwhelm
	Directionlessness
	Toward Solutions

	Felt
	Related Work
	System Description
	Case Studies
	Starfreighter
	Cozy Mystery Construction Kit
	Diarytown

	Discussion
	Authoring Sifting Patterns
	Debugging Story Sifters
	Coupling Sifting and Simulation

	Conclusions and Future Work

	Why Are We Like This?
	Related Work
	Architecture
	Storyworld State Database
	Action Definitions
	Author Goals
	Action Suggestions
	Autonomous Actions
	Storyworld Investigator
	Transcript

	Playtesting
	Discussion
	Story Sifting
	Simulation Design
	Author Goals
	Effect Handlers

	Conclusions and Future Work

	Winnow
	Related Work
	Motivation
	System Description
	Incremental Execution

	Use Cases
	Autonomous Incremental Sifting
	Interactive Incremental Sifting
	Retrospective Sifting

	Performance
	Discussion
	Pool Management Strategies
	Modeling Causality
	Decoupling Sifting and Simulation
	Conjunction and Disjunction

	Conclusions and Future Work

	Loose Ends
	Related Work
	System Description
	Storytelling Goals Tracker
	Action Suggestion Generator

	Interaction Examples
	Discovering New Storytelling Goals
	Discovering Thematic Conflicts
	Resurfacing Dormant Plot Threads
	Interleaving Parallel Plot Threads

	Evaluation Procedure
	Evaluation Results
	Directionlessness Is Mitigated
	Coauthorship Is Preserved
	Goal Alignment Is Unexpected and Fun
	Evaluators Found Loose Ends Easy to Use
	Some Players Want Prose-Level Suggestions
	Storyworld Inconsistencies Stand Out
	Common Feature Requests

	Conclusions and Future Work

	Conclusion
	Looking Forward
	Integrating Disparate Symbolic Models of Storytelling
	Developing Sifting Heuristics
	Neurosymbolic Approaches to Storytelling Support
	Learning from Players
	Evaluation

	Final Thoughts

	Bibliography

