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A B S T R A C T 

We present a method for mapping variations between probability distribution functions and apply this method within the context 
of measuring galaxy redshift distributions from imaging surv e y data. This method, which we name PITPZ for the probability 

integral transformations it relies on, uses a difference in curves between distribution functions in an ensemble as a transformation 

to apply to another distribution function, thus transferring the variation in the ensemble to the latter distribution function. This 
procedure is broadly applicable to the problem of uncertainty propagation. In the context of redshift distributions, for example, 
the uncertainty contribution due to certain effects can be studied ef fecti vely only in simulations, thus necessitating a transfer 
of variation measured in simulations to the redshift distributions measured from data. We illustrate the use of PITPZ by using 

the method to propagate photometric calibration uncertainty to redshift distributions of the Dark Energy Surv e y Year 3 weak 

lensing source galaxies. For this test case, we find that PITPZ yields a lensing amplitude uncertainty estimate due to photometric 
calibration error within 1 per cent of the truth, compared to as much as a 30 per cent underestimate when using traditional methods. 

Key words: gravitational lensing: weak – methods: numerical – galaxies: distances and redshifts. 
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 I N T RO D U C T I O N  

he matter density field of the Universe and its evolution o v er time
elate directly to the cosmological model of the Universe. Galaxy sur-
 e ys pro vide observable proxies of the matter density field, and thus
an be used to place competitive constraints on parameters of cosmo-
ogical models. Specifically, experiments such as the Dark Energy
urv e y (DES), Kilo-Degree Survey (KiDS), and the Hyper Suprime-
am Surv e y (HSC) as well as the future Vera C. Rubin Observatory’s
e gac y Surv e y of Space and Time (LSST), Euclid , and Roman Space
elescope missions measure statistics such as correlation functions of
alaxy positions and shapes to probe the underlying matter density
eld (Green et al. 2011 ; Laureijs et al. 2011 ; LSST Dark Energy
 E-mail: jmyles@stanford.edu 

&  

e  

2  

Pub
cience Collaboration 2012 ; Hildebrandt et al. 2017 ; Abbott et al.
018 ; Hikage et al. 2019 ; Hildebrandt et al. 2020 ; Heymans et al.
021 ; Abbott et al. 2022 ). In these analyses, determining the impact
f weak gravitational lensing on the observed galaxy images provide
rucial information to relate observations to the underlying matter
ensity field that galaxies live in. Among the data products needed for
hese experiments, redshift distributions , which encode the relative
ontribution of galaxies at different redshifts to the gravitational
ensing signal observed loom large due to their key role in enabling
nterpretation of the effect of weak lensing on the apparent shapes
nd sizes of galaxies (For a re vie w, see e.g. Ne wman & Gruen 2022 .
ee also Huterer et al. 2006 ; Lima et al. 2008 ; Cunha et al. 2012 ;
ildebrandt et al. 2012 ; Benjamin et al. 2013 ; Bsemi Huterer, Cunha
 Fang 2013 ; Bonnett et al. 2016 ; Samuroff et al. 2017 ; BsemiHoyle

t al. 2018 ; BsemiWright et al. 2020a , b ; Euclid Collaboration et al.
020 ; Joudaki et al. 2020 ; Tessore & Harrison 2020 ; BsemiMyles
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t al. 2021 ; Hildebrandt et al. 2021 ; BsemiCabayol et al. 2022 ; Gatti
t al. 2022 ; S ́anchez et al. 2022 ). 

In lensing surv e y nomenclature, the term ‘redshift distribution’ 
efers to a function describing the relative probability of a galaxy in a
ample to have come from a particular narrow redshift histogram bin. 
 typical lensing surv e y will divide its data set into a few tomographic
ins, each with its own redshift distribution. We highlight that a 
edshift distribution is distinct from the photometric redshift for 
ny individual galaxy, and the uncertainty requirements of redshift 
istributions are likewise distinct from uncertainty requirements 
f individual galaxy photometric redshifts. As reducing systematic 
ncertainties in redshift distributions is necessary to meet uncertainty 
oals on estimated cosmological parameters, greater attention is 
eing drawn to the importance of modelling redshift distribution 
ncertainty with sufficient complexity (see e.g. Malz et al. 2018 ; 
adzhiyska et al. 2020 ; Malz 2021 ; Myles et al. 2021 ; St ̈olzner

t al. 2021 ; Cordero et al. 2022 ; Malz & Hogg 2022 ; Zhang et al.
022 ). Redshift distributions have been historically described as a 
ingle probability density function together with, for example, a shift 
arameter describing uncertainty on the mean redshift value (e.g. 
oyle et al. 2018 ). More recently, redshift distrib utions ha ve been
escribed as joint probability distribution function (PDF) for redshift 
istogram bin heights, meaning each bin in a redshift histogram 

as a full associated PDF (see e.g. Leistedt et al. 2019 ; S ́anchez
 Bernstein 2019 ; Alarcon et al. 2020 ), or alternatively as an

nsemble of slightly varying PDFs that collectively describe the full 
ncertainty in knowledge of galaxy redshift (see e.g. Hildebrandt 
t al. 2017 ; Myles et al. 2021 ). In this work, we present a method
or characterizing such an ensemble of PDFs that collectively 
epresent the knowledge of the redshift distribution for a galaxy 
ample. 

Measuring and quantifying the uncertainty of redshift distributions 
ften involves detailed studies of simulated galaxy catalogues, 
here particular sources of error can be tightly controlled. For 

xample, simulation codes easily facilitate changes in the number 
nd spatial extent of galaxies used, biases in the assumed distribution
f true galaxy redshifts, and the level of photometric noise in the
urv e y. In this work, we present a methodology for mapping the
ariation present in an ensemble of redshift distributions measured in 
imulations to redshift distributions measured from the data, and vice 
ersa. Our methodology relies on probability integral transformations 
o transfer the variation in an ensemble of distributions to another 
ducial distribution. We call this method PITPZ for the probability 

ntegral transformations (PITs) that characterize and enable it and 
or the redshift ‘ z’ distributions that it is designed to help to estimate.
lthough this method is designed and discussed in the context of

elating effects measured in cosmological simulations to analogous 
easurements on data, its potential for application is notably broader 

han this. 
This paper is organized as follows: in Section 2 , we describe

he PITPZ method and its differences compared to related existing 
ethods, in Section 3 , we discuss how we implement our method

s software, in Section 4 , we derive quantities conserved by the
ransformations of the method, in Section 5, we show an example use
f this method for propagating photometric calibration uncertainty 
o redshift distributions of galaxies in the Dark Energy Surv e y, in
ection 6 , we show results of the experiment outlined in Section 5 ,
nd in Section 7 we conclude. 

A flat � CDM cosmology with H 0 = 70 km s −1 Mpc −1 and �m 

=
.3 is assumed throughout this work. Other cosmological parameters 
re taken to be consistent with Planck 2018 � CDM cosmology 
lanck Collaboration VI ( 2020 ). 
 M E T H O D  

his section describes the PITPZ method for transferring the 
ariation measured in one ensemble of distributions to another 
istribution. We provide a visual illustration of the method in Fig. 1
o accompany the text of this section. 

In our description of the PITPZ method, we use notation p ( z) to
enote the probability distribution function of a random variable z 
f interest. In this work, the variable of interest is galaxy redshift
or a weak lensing sample of galaxies, but we refer only to abstract
eneral probability distributions in Sections 2 , 3 , and 4 , because our
ethod is broadly applicable to any problem with an ensemble of

robability distribution functions describing some uncertainty. We 
hus defer specific redshift discussion until the analyses discussed in 
he sections thereafter. 

PITPZ requires two inputs and produces one output. Namely, the 
wo inputs are: 

I. A fiducial p ( z) measurement or ensemble of measurements. We
enote this ensemble with p fid. ( z). While only one such measurement
s needed for the purposes of this algorithm, the algorithm accom-
odates having an ensemble of fiducial p ( z) measurements to, for

xample, sequentially propagate multiple independent sources of 
ncertainty. 
II. An ensemble of redshift distributions whose variation we want 

o map to p fid. ( z). We call this ensemble the input ensemble and
enote it with p 

in . 
i ( z), where i is an index for each realization in the

nsemble. 
he sole output is: 
III. An ensemble of p ( z) whose variation is related to the variation

etween realizations of the input ensemble but which is mapped 
nto p fid. ( z). We call this ensemble the output ensemble and denote
t with p out. ( z). We describe quantitatively the relationship between
he variation of the input ensemble and the variation of the output
nsemble in Section 4 . 

We begin by computing the inverse cumulative distribution func- 
ion (inverse CDF, also called the quantile function) F 

−1 
i for each

ealization p i ( z) in the input ensemble. This can be written as 

 

−1 
i ( p) = { z : F i ( z) = p} , (1) 

here the CDF is defined as 

F i ( z) = 

∫ ∞ 

−∞ 

p i ( z 
′ ) d z ′ = 

∫ z max. 

0 
p i ( z 

′ ) d z ′ . (2) 

he integral transforming p ( z) to F ( z) is called a probability integral
ransformation (Dodge et al. 2006 ). Our method relies on these
ransformations to generate the cumulative distribution functions 
ecessary to subsequently produce a transformation that transfers 
ariation from the input ensemble onto p fid. ( z). 

We note that our method, while making use of PITs, differs from
ast uses of PITs for galaxy redshift estimation. Such past work
ncludes the use of PITs to assess redshift biases by taking advantage
f the fact that the PIT of a proper PDF is uniformly distributed,
o deviations from uniform distributions in PITs computed from 

edshift PDFs indicate the presence of biases in these underlying 
DFs (see e.g. Bordoloi, Lilly & Amara 2010 ; Polsterer, D’Isanto
 Gieseke 2016 ; Freeman, Izbicki & Lee 2017 ; Tanaka et al. 2018 ;
chmidt et al. 2020 ; Shuntov et al. 2020 ; Hasan et al. 2022 ; Zhang
t al. 2022 ). Our method, by contrast, uses PITs to construct another
ransformation entirely, which is used to alter p ( z) to make them

ore like some other p ( z), as to be described in greater detail in the
ollowing text. 
MNRAS 519, 1792–1808 (2023) 
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Figure 1. PITPZ method used to propagate the uncertainty associated with the mock ensemble shown in the top left-hand panel onto the mock fiducial curve 
of the bottom right-hand panel. Top left : Input ensemble of PDFs. The variation between these curves is the information we want to transfer. Top right : Input 
ensemble of CDFs. Bottom left : Delta transformations constructed from the input ensemble by taking the difference of inverse CDFs with respect to the mean 
inverse CDF. Bottom right : Output ensemble of PDFs constructed by applying delta transformations to the inverse CDF of the fiducial p ( z), then converting the 
result to a PDF. 
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We define a new transformation which we call a delta transforma-

ion (denoted here as T ) as the difference between the inverse CDF
 

−1 
i of a given realization in the input ensemble and the avera g e

nverse CDF of the input ensemble: 

 i = F 

−1 , in . 
i − 〈 F 

−1 , in . 〉 . (3) 

Given this definition, each delta transformation encodes the
ifference between a given realization of the input ensemble and
he mean of the realizations of said input ensemble. We apply these
ransformations by adding each delta transformation to the inverse
NRAS 519, 1792–1808 (2023) 
DF F 

−1 
fid. of the fiducial data n ( z): 

 

−1 , out. 
i = F 

−1 , fid. 
i + T i . (4) 

iven this ensemble of transformed inverse CDFs of p fid. ( z), we
onstruct the output ensemble by taking the inverse of these inverse
DFs to yield CDFs, then differentiating to yield PDFs: 

 

out. 
i ( z) = 

d (
F 

out. 
i 

)
. (5) 
d z 

art/stac3585_f1.eps
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 IMP LEM ENTATION  

he conceptual algorithm described in Section 2 for generating an en- 
emble of p ( z) involves manipulating smooth probability density and 
uantile functions. We circumvent implementation complications 
hat arise from operating on smooth functions by evenly sampling 
ach PDF to generate an ordered list of n samples { z 0 , . . . , z n } from
ach p ( z) and manipulating these samples, rather than the quantile
unctions directly as follows. In practice, the probability density 
unctions used are often stored digitally as histograms, in which case 
ur sampling procedure a v oids complications related to differing 
ormalizations and bin size and range. 
In brief, applying a delta transformation (as in equation 4 ) amounts

o generating an ordered list of samples z from each p ( z), adjusting the
alues of those samples with the delta transformation, and computing 
he distribution of the adjusted samples for a specified histogram 

inning. We first determine the number of samples to be apportioned 
o each histogram bin, then use those samples to compute and apply
ach delta transformation, and finally compute the new p ( z) from
ach array of ordered, adjusted samples. 

We use the largest remainder method to apportion the discrete 
amples among histogram bins as closely to the bins’ relative 
robability as is possible (Tannenbaum 2010 ). This method consists 
f dividing the total number n of samples to be apportioned by the
istogram value p ( z) of each histogram bin. Each bin is apportioned
 number of samples equal to the integral part of its respective
uotient. The histogram bins are then ranked by the size of their
emainders, and each bin is assigned an additional sample until 
he remaining samples have been fully allocated. This procedure 
s done for the fiducial distribution p ( z), and for each realization
 

in . 
i ( z) constituting the input ensemble. After using this method to
ompute the appropriate number of samples apportioned to each bin, 
e distribute those samples evenly across the width of the bin. This
ields the following sets of ordered redshift values: 

I. 1 (or more) set { z 0 , z 1 ,. . . , z n } fid. 

II. N sets { z 0 , z 1 , . . . , z n } in . i 

Here the j th value z i , j of the i th set of ordered redshift samples
 z} i represents the redshift corresponding to the j 

n 
th quantile of the 

istribution. In other words, these samples constitute the quantile 
unction for p ( z). 

We then compute the delta transformations by taking the difference 
f each ordered sample of a realization in the input ensemble and the
orresponding ordered sample for the mean of these realizations: 

 i = { z 0 , z 1 , . . . , z n } in . i − { z 0 , z 1 , . . . , z n } 〈 in . 〉 
= { � 0 , � 1 , . . . , � n } i . (6) 

pplying these delta transformations amounts to adding each of 
hese �z values to the value of its corresponding quantile in the list
f ordered samples of p fid. ( z). For a single delta transformation T =
 � 0 , � 1 ,. . . , � n } , the implementation of equation ( 4 ) is then: 

z out. 
0 , z out. 

1 , . . . , z out. 
n 

} = 

{
z fid . 

0 + � 0 , z 
fid . 
1 + � 1 , . . . , z 

fid . 
n + � n 

}
. (7) 

We note that as a result of the delta transformation some samples
an be shifted outside of the range of acceptable v alues, e.g. belo w
ero in the case of cosmological redshift. In the case of redshift
istributions, we discard these samples and increase the value of the 
emaining samples such that the mean redshift of the distribution 
s not changed. Once we have the perturbed samples described by 
quation ( 7 ), constructing the final modified p ( z) is done by binning
he samples with an y giv en histogram bin edges, which is done in
ieu of equation ( 5 ). 
 CONSERVATI ON  RU LES  O F  D E LTA  

R A N S F O R M AT I O N S  

ecall the goal of the PITPZ method: we aim to propagate uncer-
ainties to measured redshift distributions. Past analyses have used 
oherent shifts of measured redshift distributions to lower and higher 
alues, with the shifts drawn from a Gaussian distribution whose 
tandard deviation encapsulates mean redshift uncertainty (see e.g. 
oyle et al. 2018 ). This approach produces an output ensemble of
DFs that only varies in mean redshift, but in reality many sources of
ncertainty produce more complicated variations than simple mean 
hifts. The goal of PITPZ is to preserve the full correlation structure
cross an input ensemble in a constructed output ensemble. This 
ection is dedicated to illustrating how this information is conserved 
y the PITPZ method. 
Recall that the starting point for applying the PITPZ method is two

nputs: a fiducial measured p fid. ( z) (or an ensemble of such fiducial
easurements) and an input ensemble p 

in . 
i ( z) of redshift distributions

hose variation encodes uncertainty due to some relevant effect(s). 
ur algorithm produces an output ensemble p 

out. 
i ( z) which has

apped the variation in the input ensemble onto the fiducial mea-
urement p fid. ( z). Posing the question of information conservation in
he broadest possible sense, we want to relate each central moment
f each realization in p 

in . 
i ( z) to the corresponding central moment

f its counterpart realization in p 

out. 
i ( z). We proceed by deriving

he conservation rules for the mean, variance, and skewness of a
ealization of the output ensemble in terms of the corresponding 
oments of the fiducial p ( z), the realization of the input ensemble

sed, and the mean of the realizations of the input ensemble. Fig. 2
hows the performance of our software implementation of PITPZ 

o conserve the rules derived for mean and variance. Inspection of
his figure illustrates that PITPZ produces an output p ( z) realization
hose mean differs from the fiducial in proportion to how the mean
f the corresponding realization of the input ensemble differs from 

he mean of the input ensemble. By contrast, mean shifts maintain
his relationship only when sufficiently far from the edges of the
llowed parameter limits. The fact that the observed numerical noise 
ies within the LSST uncertainty region illustrates that the deviation 
rom conservation of the mean value is negligible for near-term weak
ensing redshift calibration applications. PITPZ preserves a similar 
elationship for the variance, but mean shifts do not transfer the
elative change in width of realizations in the input ensemble to the
onstructed output ensemble. Although for the source of uncertainty 
ropagated for this figure (see Section 5 ), the changes in p ( z) width in-
roduced by the mean shift method are within the LSST year 10 target
ncertainty, it is the combined value for all sources of uncertainty that
hould be ultimately compared to the target error budget. In practice,
sing PITPZ may be necessary to meet the LSST year 10 target
ncertainties. 
In this section, we introduce the following notation convention: 

verlines represent averages over the redshift value samples, which 
re inde x ed with j . F or e xample, the mean redshift z of p ( z) is
epresented by z . Brackets represent averages over the redshift 
istribution realizations of an ensemble, which are inde x ed by i . For
xample, the mean p ( z) of the input ensemble, p 

in . 
i ( z), is represented

y p 〈 in. 〉 ( z). 

.1 Mean of redshift distributions 

easuring the mean redshift of each constituent realization of 
he input ensemble yields a distribution of mean redshifts z̄ in . i 

here z̄ in . i = 

∫ 
z ′ p 

in . 
i ( z ′ ) d z ′ . We aim to derive the relation between
MNRAS 519, 1792–1808 (2023) 
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Figure 2. Illustration of mean and variance conservation by the PITPZ method and of impro v ed behaviour compared to mean shifts. Shown here are results 
for the first tomographic bin of the experiment described in Section 5 . Top : Relationship in redshift distribution moments between the input ensemble and 
output ensemble realizations. Bottom : Deviations from the conservation rules derived in Section 4 due to numerical noise in our software implementation of 
the formalism described. The blue uncertainty region corresponds to the LSST Y10 WL analysis uncertainty requirements of 0.001 (1 + z) on the mean and 
0.003 (1 + z) on the standard deviation (here scaled to variance) of redshift at z = 0 (The LSST Dark Energy Science Collaboration et al. 2018 ). 
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ach mean redshift in this ensemble and the mean redshift of the
orresponding output in the output ensemble produced by the PITPZ
lgorithm, z̄ out. 

i . 
As introduced in Section 3 , we can represent a given realization

f the input ensemble p in. ( z), a given delta transformation T , and
he resulting realization of the output ensemble p out. ( z) as a set of
rdered samples: 

p 

in . ( z) ⇔ 

{
z in . 0 , z 

in . 
1 , . . . , z 

in . 
n 

}
T ⇔ 

{
� 0 , � 1 , . . . , � n 

}
 

out. ( z) ⇔ 

{
z out. 

0 , z out. 
1 , . . . , z out. 

n 

}
= 

{
z fid . 

0 + � 0 , z 
fid . 
1 + � 1 , . . . , z 

fid . 
n + � n 

}
. (8) 

It is straightforward to pro v e that the mean redshift of each
ealization of the output ensemble is the sum of the mean redshift
f the fiducial p ( z) and the mean value of the shifts comprising
he delta transformation. In the following we use our custom-
ry labels of ‘in.’ and ‘out.’ to represent single realizations of
he input and output ensembles, respectively, and the letter T to
ikewise represent a single delta transformation. With this con-
ention, each input-output pair follows the following conservation
NRAS 519, 1792–1808 (2023) 
ule: 

¯ out. = 

1 

n 

n ∑ 

j 

z out. 
j 

= 

1 

n 

n ∑ 

j 

(
z fid . 
j + � j 

)

= 

1 

n 

n ∑ 

j 

z fid . 
j + 

1 

n 

n ∑ 

j 

� j 

= z̄ fid . + �̄ 

= z̄ fid . + ̄z in . − z̄ 〈 in . 〉 . (9) 

.2 Higher order moments of redshift distributions 

e present results for the variance and skewness here, deferring the
ull deri v ation to Appendix A . 

Our expression for the variance of a realization in the output
nsemble is 

2 
out. = σ 2 

fid . + σ 2 
T + 2 Cov 

[
z fid . 
j , � j 

]
= σ 2 

fid . + σ 2 
in . + σ 2 

〈 in . 〉 − 2 Cov 
[
z in . j , z 

〈 in . 〉 
j 

] + 2 Cov 
[
z fid . 
j , � j 

]
. 

(10) 
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Our expression for the skewness of a realization in the output 
nsemble is: 
3 
out. ̃  μout. 

3 = σ 3 
fid . ̃  μfid . 

3 + σ 3 
in . ̃  μin . 

3 + σ 3 
〈 in . 〉 ̃  μ

〈 in . 〉 
3 

+ 3 σ 2 
fid . σin . S 

(
z fid . 
j , z fid . 

j , z in . j 

)
− 3 σ 2 

fid . σ〈 in . 〉 S 
(
z fid . 
j , z fid . 

j , z 
〈 in . 〉 
j 

)
+ 3 σfid . σ

2 
in . S 

(
z fid . 
j , z in . j , z 

in . 
j 

)
− 6 σfid . σin . σ〈 in . 〉 S 

(
z fid . 
j , z in . j , z 

〈 in . 〉 
j 

)
+ 3 σfid . σ

2 
〈 in . 〉 S 

(
z fid . 
j , z 

〈 in . 〉 
j , z 

〈 in . 〉 
j 

)
− 3 σ 2 

in . σ〈 in . 〉 S 
(
z in . j , z 

in . 
j , z 

〈 in . 〉 
j 

)
+ 3 σin . σ

2 
〈 in . 〉 S 

(
z in . j , z 

〈 in . 〉 
j , z 

〈 in . 〉 
j 

)
, (11) 

here the S denotes the coskewness of three random variables X , Y ,
nd Z : 

( X, Y , Z) = 

E [( X − E ( X))( Y − E ( Y ))( Z − E ( Z))] 

σX σY σZ 

. (12) 

 C O S M O L O G I C A L  I M PAC T  ANALYSIS  

aving defined PITPZ as a statistical method and illustrated the 
ules by which it conserves and transfers information from one 
istribution of PDFs to another, we now turn to understand how 

his can affect scientific conclusions in the context of weak lensing 
osmology e xperiments. F or the remainder of this work, we choose
o denote our probability distribution function of interest as n ( z) to
emain consistent with the redshift calibration literature, in which 
 ( z) represents a weighted number density of galaxies at redshift z,
here each galaxy’s may be weighted according to its contribution 

o the associated shear catalogue (for more information about weight 
hoices see e.g. Gatti et al. 2021 ). We note that n ( z) has a different
ormalization than the probability density function of a galaxy in 
he surv e y having a specific redshift and emphasize that n ( z) is not
he probability distribution function for the redshift of an individual 
alaxy. 

Weak gravitational lensing refers to the accumulated deflections 
o the path of light from a distant source galaxy as it travels through
he large-scale structure of the Universe toward an observer. In order 
o interpret the coherent distortions in the shapes of large samples 
f observed galaxies due to this effect, we must have a constraint on
he redshift of the source galaxies and the intervening distribution 
f lensing matter. In this context, the salient question is how using
ITPZ to generate n ( z) realizations whose variation encodes uncer- 

ainties in the redshift distributions of the selected galaxy sample 
ill affect the uncertainty on parameters of the cosmological model 
eing tested with weak lensing analyses. In practice, the relationship 
etween variations of n ( z) realizations and cosmology uncertainty 
s that e v aluating the cosmology likelihood function given weak 
ensing data should sample o v er an ensemble of n ( z) realizations.
or the purpose of our work, the question of how n ( z) uncertainty
nd cosmology are related can be reduced to assessing the impact that
sing PITPZ to construct redshift distributions has on the resulting 
istribution of lensing signal amplitude (for a given lens redshift). 
o this end, we first briefly summarize the way galaxy photometry is
sed in the redshift calibration scheme applied in this work, deferring 
o Myles et al. ( 2021 ) for a full description. 

.1 DES Year 3 redshift methodology 

he DES Y3 redshift calibration relies on a method called SOMPZ
eveloped to take advantage of the DES deep-drilling fields, where 
onger exposure times and spatial o v erlap with near-infrared surv e ys
rovides more information to use for redshift inference (Buchs et al.
019 ; Myles et al. 2021 ; Hartley et al. 2022 ). In this method, the deep-
eld galaxies serve as an intermediary between galaxies with secure 
e.g. spectroscopic) redshifts and the o v erall wide-field sample; the
eep-field galaxies play the crucial role of enabling secure redshifts 
o be used for subsamples of galaxies while a v oiding selection bias
etween the secure redshift sample and galaxies in the o v erall wide-
eld surv e y sample (for more information on such selection bias, see
ruen & Brimioulle 2017 ). Within this scheme, redshift distributions 

re computed in small regions of deep-field colour-magnitude space. 
he wide-field galaxy density is determined in small regions of 
ide-field colour-magnitude space. The ultimate calibrated redshift 
istributions of the wide-field sample are the weighted sum of redshift
istributions in deep-field colour-magnitude space, where weights 
re the likelihood of given deep galaxies being detected and selected
n the wide-field sample as determined using the BALROG image 
imulation package (Everett et al. 2022 ). SOMPZ is additionally 
ombined with independent information from galaxy clustering and 
hear ratios (Myles et al. 2021 ; Gatti et al. 2022 ; S ́anchez et al.
022 ). The final product of this kind of redshift calibration is not a
ingle n ( z), but rather an ensemble of n ( z) whose variations encode
he uncertainty. This ensemble can be used in cosmology analyses 
y sampling the ensemble for each e v aluation of the cosmological
ikelihood function. PITPZ is designed as a method for generating 
uch an ensemble to be sampled in cosmology analyses. 

.2 Experimental design 

mong the several sources of uncertainty inherent to the DES Year
 redshift methodology, the photometric calibration of the deep- 
eld galaxies stands out due to the no v el use of these galaxies to

mpro v e our calibration. This uncertainty is best understood by taking 
dvantage of realistic simulations in which photometric calibration 
rror can be easily scaled at will. We therefore choose this source of
ncertainty to illustrate the characteristics of our PITPZ method for 
ropagating uncertainty. 
Our experimental design to illustrate the impact of PITPZ consists 

f the procedure described in the following test and illustrated in
ig. 3 . 
We begin with an ensemble of 100 n ( z) produced using the

uzzard simulations (DeRose et al. 2019 ), where each realization 
as zero-point offsets according to the photometric calibration 
ncertainty measured by Hartley et al. ( 2022 ) are introduced to the
eep-field photometry. The variation between the n ( z) realizations 
n this ensemble reflects the uncertainty in n ( z) due to deep-field
hotometric zero-point uncertainty. 
We split this ensemble into two halves of 50 realizations each.

he first half is used to construct delta transformations relative to
he mean. Because it is used in this way, the first half serves the role
f the input ensemble as defined in §2 , so it is labelled n in. ( z). The
econd half is to construct the fiducial n fid. ( z): n fid. ( z) is simply the
ean of the n ( z) comprising the second half. 
We apply the delta transformations made from the first half (i.e.

rom the input ensemble) to this fiducial n fid. ( z). As an alternative
o applying the delta transformations, we also apply to the fiducial
 

fid. ( z), the mean shifts corresponding to the difference in mean
edshift between each realization of the input ensemble and the 
ean of the realizations of the aforementioned input ensemble; 

his is a simpler alternative to PITPZ, which has been employed
or past redshift calibration analyses (e.g. Jee et al. 2013 ; Bonnett
t al. 2016 ; Hoyle et al. 2018 ). As a result, we have produced two
MNRAS 519, 1792–1808 (2023) 
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Figure 3. Illustration of the experimental design of the cosmological impact analysis in this work. The input ensemble is produced by running SOMPZ 50 times 
with varying deep-field photometric zero-points. The fiducial n ( z) is produced by taking the mean of an ensemble produced by running SOMPZ 50 times again 
with varying deep-field photometric zero-points. ‘Output Ensemble – Mean Shift’ is constructed by shifting the fiducial n ( z) by the mean value of each PIT; 
‘Output Ensemble – PITPZ’ is constructed with the PITPZ method, i.e. by applying the full-shape delta transformations constructed from the input Ensemble 
to alter the fiducial n ( z). 
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ersions of the output ensemble: one with PITPZ and one with mean
hifts. The mean shift ensemble transfers only changes in the mean
edshift between realizations in n in. ( z) by contrast PITPZ transfers,
he information for higher than mean-order moments according to
he conservation rules shown in 4 . In short, PITPZ transfers the full
orrelation structure of the realizations generated by the simulations.
hese two versions of the output ensemble should have transferred
 different aspect or ‘amount’ of information from n in. ( z) to n fid. ( z).
he difference between these two versions of the output ensemble
ill demonstrate the benefits of using PITPZ rather than mean shifts.
o summarize, the three n ( z) ensembles discussed are: 

I. (Input ensemble): First determine random zero-point offsets due
o the uncertainty of the photometric calibration error by drawing
rom a Gaussian centred on zero with standard deviation set to the
ncertainty of the deep-field photometric calibration in each band.
hift all deep-field magnitudes according to the result of this draw

n each respective band for each deep field. Use these altered deep-
eld magnitudes as input to a run of the SOMPZ method on the
uzzard simulated galaxy catalogues. Select the first 50 realizations
nd construct delta transformations from them. 

II. (Output ensemble – mean shift): n ( z) constructed by applying
ean shifts (rather than full-shape delta transformations) to the
ducial n ( z). 
III. (Output ensemble – PITPZ): n ( z) constructed by applying

ull-shape delta transformations to the fiducial n ( z). Following the
otation of §2 , this ensemble is labelled n out. ( z). 

These n ( z) are shown in Fig. 4 . With these mock redshift distribu-
ion ensembles produced, we turn to assessing the difference between
hem for cosmology analysis. Our analysis consists in computing the
NRAS 519, 1792–1808 (2023) 
ncertainty on the lensing amplitude associated with each ensemble,
hich relates closely to uncertainty on cosmological parameters. 
We are interested in the following comparisons of the lensing

mplitude distribution results yielded from these analyses: 

(1) The difference between the lensing amplitude distributions
ssociated with II and III illustrates the residual effect on redshift
istributions of zero-point uncertainties beyond the first-order shift
f the mean redshift. This is equi v alent to illustrating the importance
f using PITPZ, rather than simpler mean shifts, to incorporate this
ystematic uncertainty into redshift distributions. 

(2) Because the input ensemble serves as a ground truth for the
egree of variation due to photometric calibration uncertainty present
n the simulations, any difference between the lensing amplitude
istributions associated with I and III illustrates the residual effect
n redshift distribution of zero-point uncertainties beyond what is
orrected for with delta transformations produced with Buzzard.
his is equi v alent to illustrating the impact of higher than first-order
oments due to the effect of photometric calibration uncertainty

eyond what can be accounted for with the PITPZ method. In
ummary, any difference here illustrates shortcomings of the PITPZ
ethod. 

While the primary goal of this work is the illustration of the
mportance of using the delta transformation to preserve higher-order
nformation than lower n -th order statistics in generating ensembles
f probability distributions (i.e. comparison 1), this experimental
esign facilitates a secondary goal of illustrating the impact of
ur chosen source of uncertainty – photometric calibration error
on cosmology constraints. This secondary goal can play a role

n informing future observing strategy decisions to collect the data
ecessary to reduce this uncertainty. 
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Figure 4. Illustration of the n ( z) distributions used in the simulated likelihood analysis in this work. The input ensemble is produced by running SOMPZ 

50 times with varying deep-field photometric zero-points. ‘Output ensemble – mean shift’ is constructed by shifting the fiducial n ( z) by the mean value of 
each PIT; ‘Output Ensemble – PITPZ’ is constructed with the PITPZ method, i.e. by applying the full-shape delta transformations constructed from the input 
ensemble to alter the fiducial n ( z). 
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It remains to describe the rele v ant statistic that relates redshift
istributions to constraints on the parameters of a given cosmological 
odel. In practice, weak gravitational lensing involves inferring 

he matter distribution from coherent distortions in the measured 
hapes of galaxies. The presence of tangential alignment in galaxy 
hapes measured on the sky corresponds to the presence of a matter
 v erdensity along the line of sight. The observed mean tangential
hear γ t associated with a separation angle θ on the sky can be 
xpressed in terms of the lensing convergence that describes the 
mount of lensing 

 γt 〉 ( θ ) = κ( < θ ) − 〈 κ〉 ( θ ) . (13) 

Convergence, in turn, can be written in terms of the total projected
ass density 
 along a line-of-sight � θ , and a critical surface density

arameter which characterizes the lensing system 

( � θ) ≡ 
( � θ) 


 crit. 
. (14) 

This critical surface density due to lensing of a source at distance
 s from the observer by a lens (i.e. deflector) at distance D d from

he observer in a universe, where the distance between the source 
nd the lens is D ds is defined as follows under the assumption that
he distances between source, lens, and observer are all much greater 
han the spatial extent of the lens (see e.g. Bartelmann & Schneider
001 ) 

 

−1 
crit. ≡

c 2 

4 πG 

D s 

D d D ds 
. (15) 

This definition illustrates that uncertainty on galaxy distance 
orresponds directly to uncertainty on critical surface density, which 
n turn directly limits the degree to which projected mass density, and
herefore cosmology can be constrained. For this reason, we choose 
ritical surface density to test the impact of PITPZ on cosmology. 

The shear γ ( � θ, z s ) to which a particular source galaxy image is
ubject is a function of source galaxy redshift, so the mean shear
bserved along a line of sight � θ must be expressed with respect to the
ource galaxy redshift distributions (MacCrann et al. 2022 ; Amon 
t al. 2022 ) 

( � θ ) = 

∫ 

d z s n ( z s ) γ ( � θ , z s ) . (16) 

Similarly, the total averaged lensing signal amplitude can be 
xpressed in terms of the critical surface density integrated in the
MNRAS 519, 1792–1808 (2023) 
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Table 1. Summary statistics for each ensemble in the cosmological impact analysis of this work. We show the mean value and standard 
deviation for each of two statistics – mean redshift ( z ) and lensing amplitude ( 
 

−1 
crit. ) of an n ( z), for each of four tomographic bins; we 

also show the relative value of the lensing amplitude mean and standard deviation compared to the input ensemble to directly highlight the 
difference between PITPZ and mean shifts. We find that using our PITPZ method reco v ers, the uncertainty in z and 
 

−1 
crit. of the input 

ensemble (the ground truth in our experiment), using simpler mean shifts recovers only a portion of the total uncertainty in these parameters. 
The extent to which mean shifts underestimate uncertainty depends on the context of which underlying physical effect is being considered. 
In our case of photometric calibration uncertainty, we find that using mean shifts underestimates the uncertainty in lensing amplitude by as 
much as approximately 30 per cent in each of the bins. We choose z = 0.25 as the lens redshift for the lensing amplitudes shown in this table. 

z 
 

−1 
crit. 

[ 
M 	
Mpc 

] −1 

 

−1 
crit. 

[ 
M 	
Mpc 

] −1 

Name Symbol μ σ μ σ μ/ μin. σ / σ in. 

Bin 1 
Input ensemble p in. ( z) 0.310 1.044e-02 9.043e-17 5.856e-18 1.000 1.000 
Output ensemble – mean shift – 0.313 9.478e-03 9.181e-17 4.256e-18 1.015 0.727 
Output ensemble – PITPZ p out. ( z) 0.312 1.041e-02 9.166e-17 5.919e-18 1.014 1.011 

Bin 2 
Input ensemble p in. ( z) 0.506 5.424e-03 2.007e-16 3.588e-18 1.000 1.000 
Output ensemble – mean shift – 0.506 5.385e-03 2.013e-16 2.592e-18 1.003 0.722 
Output ensemble – PITPZ p out. ( z) 0.506 5.387e-03 2.013e-16 3.576e-18 1.003 0.997 

Bin 3 
Input ensemble p in. ( z) 0.745 1.998e-03 2.910e-16 6.246e-19 1.000 1.000 
Output ensemble – mean shift – 0.745 1.999e-03 2.909e-16 4.504e-19 1.000 0.721 
Output ensemble – PITPZ p out. ( z) 0.745 1.964e-03 2.909e-16 6.174e-19 1.000 0.989 

Bin 4 
Input ensemble p in. ( z) 0.911 2.024e-03 3.185e-16 3.861e-19 1.000 1.000 
Output ensemble – mean shift – 0.912 2.023e-03 3.186e-16 3.169e-19 1.000 0.821 
Output ensemble – PITPZ p out. ( z) 0.912 2.002e-03 3.186e-16 3.830e-19 1.000 0.992 
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ame way as the total shear 

 

−1 
crit. = 

∫ z s , max . 

z l 

4 πG 

c 2 
D d ( z l ) D ds ( z s ,z l ) 

D s ( z s ) 
n ( z s ) d z s ∫ z s , max . 

0 n ( z s ) d z s 
, (17) 

here the denominator is a normalization factor. Here D d , D s , and
 ds are determined by the lens and source redshifts z l and z s .
quation ( 17 ) is a statistic to relate uncertainty on n ( z) to uncertainty
n cosmology results. Note that this statistic is a weighted integral
f n ( z), and ef fecti vely measures the probability density at redshift
igher than the lens redshift z l , with higher redshift probability being
eighted higher. As such, this statistic depends on higher than mean-
rder moments in n ( z). While mean redshift is the most important
etermining factor in the value of this statistic, at fixed mean redshift
ncreasing variance, for example, will increase the probability at the
ighest redshifts. As a result, we expect this quantity to be more
ccurately e v aluated from n ( z) constructed with PITPZ than from
impler mean shifts because PITPZ propagates uncertainty to higher-
rder moments (cf. Fig. 2 ). 
We compute the distribution in 
 

−1 
crit. for each of our redshift

istribution ensembles using the lenstronomy (Birrer & Amara
018 ; Birrer et al. 2021 ) software, and report the resulting values in
able 1 . Since the uncertainty on constraints on cosmology from a
osmic shear analysis such as that conducted with the Dark Energy
urv e y Year 3 data set (Amon et al. 2022 ; Secco et al. 2022 ) is
roportional to the uncertainty on lensing amplitude, the distribution
f possible lensing amplitudes functions as a proxy for the resulting
ncertainty on cosmological parameters. In addition to the statistic
efined in equation ( 17 ), we compute the cosmic shear two-point
orrelation function ξ+ / − with each n ( z) in our input and output
nsembles using the CCL package of Chisari et al. ( 2019 ) (for details
n cosmic shear, see e.g. Amon et al. 2022 ; Secco et al. 2022 ).
e inte grate o v er this cosmic shear data vector ξ , and show results

elating input and output values of this quantity in Fig. 6 . 
NRAS 519, 1792–1808 (2023) 
 RESULTS  

ur primary results are shown in Figs 5 and 6 and Table 1 . Fig. 5
llustrates that PITPZ propagates the relative strength of the lensing
ignal amplitude, which depends on higher-order moments of n ( z)
cross all scales. By contrast, the loss of higher than mean-order
oment information associated with mean shifts causes deviations

rom linearity in the relationship between lensing amplitude in the
nput ensemble and output ensemble realizations. As a result, the
 v erall scatter in 
 

−1 , out. 
crit. is smaller in the case of using mean

hifts. As shown in Table 1 , the scatter in the output ensemble lensing
mplitude using the full PITPZ method matches the true scatter from
he input ensemble to within 1 per cent for all tomographic bins.
y contrast, using mean shifts underestimate this scatter by 27, 28,
8, and 18 per cent in the four tomographic bins, respectively ( z lens 

 0.25). We can summarize the imperfections of the mean shift
ethod relative to PITPZ in terms of two effects visually apparent

n Fig. 5 : first, the slope of the relationship between input and output
ensing amplitude deviates from the value of unity, leading to the
ulk of the loss of scatter in lensing amplitude. Second, ho we ver,
he mean shift method introduces significant scatter about the linear
elationship, which has an o v erall additiv e effect to the scatter in the
ensing amplitude. In this sense, our estimate of the degree to which
ean shifts underestimate the uncertainty in lensing amplitude are a

ower bound because they include this additive effect. Our result that
sing mean shifts on n ( z) underestimates uncertainty applies not only
o lensing signal amplitude, but to any quantity that is a weighted
ntegral of n ( z), as any such quantity will depend on higher-order

oments in n ( z). We finally highlight that since n ( z), unlike 
 

−1 
crit. ,

s cosmology independent, our method does not depend on an
ssumed cosmology. By contrast, an attempt to propagate uncertainty
y way of mean shifts on lensing signal amplitude itself would require
n assumed cosmology to determine the D ds factor present in the
efinition of 
 

−1 
crit. . This is an additional advantage of operating

irectly on n ( z) with PITPZ. We emphasize that although the
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Figure 5. Relationship between lensing signal amplitude in the input ensemble and the output ensemble realizations using PITPZ or mean shifts for the 
experiment described in Section 5 with z lens = 0.25. We find that PITPZ more reliably transfers lensing amplitude information than mean shifts. This is explained 
by the fact that the lensing amplitude is a weighted integral of n ( z), so higher-order moments of n ( z), which are conserved by PITPZ but not conserved by 
mean shifts will cause the mean shift to underestimate the scatter in lensing amplitude. Histograms on the side panels illustrate the distribution of lensing 
signal amplitude for the output ensemble, where the solid line corresponds to the output ensemble produced with PITPZ, and the dotted line corresponds to that 
produced with mean shifts. 
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ualitative results shown are applicable in general, the quantitative 
ifference between PITPZ and mean shifts is specific to the source 
f uncertainty under consideration, and the redshift distributions of 
he source and lens galaxy samples observed. Larger values of lens 
edshift eliminate the impact of differences between realizations in 
he input ensemble at redshift values less than z lens . As one scales lens
edshift up from zero, the degree to which the effect shown in Fig. 5
aries depends on how much relative variation in n ( z) is below and
bo v e the value of the lens redshift. As a result, the degree to which
hese results change for a higher choice of lens redshift is again
pecific to the source of uncertainty and the redshift distribution 
f the galaxy surv e y in question. Fig. 6 shows the relationship
etween input and output values of the cosmic shear data vector 
+ 

. In particular, for each n ( z) realization in the input ensemble,
 f
e compute the galaxy shape two-point correlation function ξ+ 

( θ ) 
given the assumed cosmology defined in Section 1 ) and the integral
 

d θ θξ+ 

. We likewise compute this value for each realization of the
utput ensembles produced by the mean shift and PITPZ methods, 
espectively. Fig. 6 shows that PITPZ again preserves a linear rela-
ionship between input and output realizations, whereas mean shifts 
o not. 

 C O N C L U S I O N  

e have presented a method for transferring variations between 
ealizations of PDFs in one ensemble onto another PDF (or ensemble
f PDFs). Our method, dubbed PITPZ, may have general applications 
or propagating uncertainties on posterior probability functions. In 
MNRAS 519, 1792–1808 (2023) 
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Figure 6. Relationship between the cosmic shear signal amplitude as inferred from input ensemble n ( z) realizations to the cosmic shear signal amplitude as 
inferred from output ensemble n ( z) realizations. The output ensembles are produced with PITPZ or mean shifts with the experiment described in Section 5 . Axis 
values are integrals over the full cosmic shear data vector ξ+ . As in Fig. 5 , we find that PITPZ more reliably transfers information than mean shifts. Histograms 
on the side panels illustrate the distribution of signal amplitude for the output ensemble, where the solid line corresponds to the output ensemble produced with 
PITPZ, and the dotted line corresponds to that produced with mean shifts. 
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ddition to providing a treatment of the algorithm, we derive analytic
stimates of the conservation rules for the first three moments (mean,
ariance, and skewness) of the PDFs used. 

We illustrate the use of this method with an experiment in the
ontext of the weak gravitational lensing survey redshift calibration
roblem, for which the redshifts for large numbers of galaxies are
stimated. We find that our method is an impro v ement o v er simpler
ean shifts of PDFs for transferring higher-order information. We

how that this higher-order information is critically important in the
ontext of redshift calibration by propagating redshift distributions
o total gravitational lensing signal amplitude, which relates directly
o the cosmological constraints of lensing surv e ys. In summary,
e find for our fiducial test case involving photometric zero-point
ncertainty for a DES Y3-like surv e y ( z lens = 0.25) that our method
eco v ers the true uncertainty on lensing amplitude to within 1 per
NRAS 519, 1792–1808 (2023) 
ent, in contrast to an underestimate of as much as 30 per cent
hen using mean shifts. The difference between PITPZ and mean

hift on lensing amplitude reflects the importance of this method for
osmology analyses requiring redshift distributions. 

We confirm that the numerical errors associated with our software
mplementation of our method fall well-within the LSST DESC
ear 10 uncertainty targets for redshift calibration. By contrast,
sing simple mean shifts exceeds this uncertainty target in the mean
edshift in our test case. While in our test case, the error on the
ariance introduced by mean shifts is still so small as to fall within
he LSST DESC Y10 uncertainty target in the scatter in redshift,
t is the accumulated effect for all higher moments, and when also
ccounting for multiple independent sources of redshift uncertainty
hat propagates directly to uncertainty on cosmological parameters,
hich may justify the additional complexity of PITPZ relative to

art/stac3585_f6.eps
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ean shifts. Based on these results, we conclude that future galaxy 
ensing surv e ys should consider using PITPZ for propagating redshift
ncertainties. 
Development of the PITPZ method has been moti v ated by the

ignificant and consequential challenges of the redshift calibration 
roblem to accomplish the stated goals of upcoming galaxy imaging 
urv e ys like the Le gac y Surv e y of Space and Time (LSST Science
ollaboration et al. 2009 ; The LSST Dark Energy Science Collabo-

ation et al. 2018 ; Ivezi ́c et al. 2019 ). In this conte xt, impro v ements
n our ability to measure redshift distributions from photometric 
alaxy samples are a prerequisite to fulfill the promise of the next
eneration of weak lensing experiments and of the investments made 
o this end. As we have discussed, PITPZ will facilitate more accurate
ncertainty characterization of these measurements by enabling a 
ransfer of uncertainties from simulations where certain observa- 
ional effects can be scaled at-will to the measurements on data. 
imilarly, uncertainties measured in data products can be likewise 

ransferred to measurements in simulations, which will facilitate 
ealistic end-to-end analyses in simulations for cosmology pipeline 
alidation. Noting the characterization of the redshift calibration 
roblem as being within a category for which ‘promising ideas exist, 
ut more exploration is needed to determine which will work and how
xactly to use them at the level of precision needed for future surv e ys’
Mandelbaum 2018 ), we highlight that although this work has 
ocused on weak lensing source galaxies, our method has important 
mplications for lens redshift calibration. Given that lens redshift 
istributions appear as a quadratic term in the galaxy clustering 
ignal by way of the radial selection function of lens galaxies for
 given source galaxy tomographic bin (i.e. the ‘galaxy clustering 
ernel’), the galaxy clustering signal is especially sensitive to the 
idth of the lens n ( z) (see e.g. P ande y et al. ( 2021 ), Porredon et al.

 2021 ), Rodr ́ıguez-Monroy et al. ( 2022 )). PITPZ, as a first solution to
ropagating n ( z) uncertainty for the width of n ( z) (and other higher
han mean-order moments) may pro v e an essential component to 
alibrating lens redshift distributions within uncertainty requirements 
or upcoming galaxy clustering analyses. Because PITPZ is part of 
n effort to express redshift distribution uncertainty with sufficient 
omplexity to meet future uncertainty goals, a natural question to 
sk is whether the form of redshift distribution uncertainty relates 
o degeneracies between redshift distribution uncertainty, and other 
uisance parameters in weak lensing cosmology analyses such as 
ntrinsic alignment model parameters. We leave this question to 
uture work. 

PITPZ is a flexible solution with numerous potential applications 
n the context of weak lensing redshift calibration to address the 
lear needs for higher precision in scheduled next-generation galaxy 
urv e ys. More broadly, recognizing the trend within astrophysics 
nd cosmology toward the use of Bayesian statistical methods that 
roduce full posterior probability distributions for model parameters 
f interest, PITPZ can serve a useful role of sophisticated propagation
f uncertainties in a wide variety of subfields of astronomy. 
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〈 in . 〉 + 2 z 〈 in . 〉 j z̄ in . − 2 ̄z in . z̄ 〈 in . 〉 
] 

= σ 2 
in . + σ 2 

〈 in . 〉 −
2 

n 

n ∑ 

j 

[ 
z in . j z 

〈 in . 〉 
j − z in . j z̄ 

〈 in . 〉 − z 
〈 in . 〉 
j z̄ in . + ̄z in . z̄ 〈 in . 〉 

] 

= σ 2 
in . + σ 2 

〈 in . 〉 −
2 

n 

n ∑ 

j 

[ (
z in . j − z̄ in . j 

)(
z 

〈 in . 〉 
j − z̄ 〈 in . 〉 

)] 

= σ 2 
in . + σ 2 

〈 in . 〉 − 2 Cov 
[ 
z in . j , z 

〈 in . 〉 
j 

] 
. (A2) 

In summary, we find that the variance of a delta transformation can be written as the sum of the variance of the input p ( z) used in its 
construction, the variance of the mean of the realizations of the input p ( z) ensemble used in its construction, and the covariance between these 
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elements. This covariance is computed directly from the ordered, evenly-spaced samples of the relevant PDFs. 

σ 2 
out. = 

1 

n 

n ∑ 

j 

[ (
z out. 
j − z̄ out. 

j 

)2 
] 

= 

1 

n 

n ∑ 

j 

[ (
z fid . 
j + � j 

) − (
z fid . 
j + � j 

) ] 2 

= 

1 

n 

n ∑ 

j 

[ (
z fid . 
j + � j 

) − (
z fid . 
j + � j 

) ] [ (
z fid . 
j + � j 

) − (
z fid . 
j + � j 

) ] 

= 

1 

n 

n ∑ 

j 

[(
z fid . 
j + � j 

)2 − 2 
(
z fid . 
j + � j 

)(
z fid . 
j + � j 

) + 

(
z fid . 
j + � j 

) 2 
]

= 

1 

n 

n ∑ 

j 

[ 
z fid . 2 
j + � 

2 
j + 2 z fid . 

j � j − 2 z fid . 
j ( ̄z fid . + �̄ ) − 2 � j ( ̄z 

fid . + �̄ ) + ( ̄z fid . + �̄ ) 2 
] 

= 

1 

n 

n ∑ 

j 

[ 
z fid . 2 
j + � 

2 
j + 2 z fid . 

j � j − 2 ̄z fid . z fid . 
j − 2 ̄� z fid . 

j − 2 � j ̄z 
fid . − 2 � j �̄ + ( ̄z fid . + �̄ ) 2 

] 

= 

1 

n 

n ∑ 

j 

[ 
z fid . 2 
j + � 

2 
j + 2 z fid . 

j � j − 2 ̄z fid . z fid . 
j − 2 ̄� z fid . 

j − 2 � j ̄z 
fid . − 2 � j �̄ + ̄z fid . 2 + 2 ̄z fid . �̄ + �̄ 

2 
] 
. 

= 

1 

n 

n ∑ 

j 

[ (
z fid . 2 
j − 2 ̄z fid . z fid . 

j + ̄z fid . 2 
)

+ 

(
� 

2 
j − 2 � j �̄ + �̄ 

2 
) + 2 z fid . 

j � j − 2 ̄� z fid . 
j − 2 � j ̄z 

fid . + 2 ̄z fid . �̄ 

] 

= σ 2 
fid . + σ 2 

T + 

2 

n 

n ∑ 

j 

[
z fid . 
j � j − �̄ z fid . 

j − � j ̄z 
fid . + ̄z fid . �̄ 

]
= σ 2 

fid . + σ 2 
T + 2 Cov 

[
z fid . 
j , � j 

]
. (A3) 

Using equation ( A2 ) to replace σ 2 
T with quantities from the input ensemble, this yields our final expression for the variance of a realization 

in the output ensemble 

σ 2 
out. = σ 2 

fid . + σ 2 
in . + σ 2 

〈 in . 〉 − 2 Cov 
[
z in . j , z 

〈 in . 〉 
j 

] + 2 Cov 
[
z fid . 
j , � j 

]
. (A4) 

Alternatively we can expand � j to yield 

σ 2 
out. = σ 2 

fid . + σ 2 
in . + σ 2 

〈 in . 〉 − 2 Cov 
[
z in . j , z 

〈 in . 〉 
j 

] + 2 Cov 
[
z fid . 
j , z in . j 

] − 2 Cov 
[
z fid . 
j , z 

〈 in . 〉 
j 

]
. (A5) 

A2 Skewness 

We now turn to developing an expression for the skewness of a realization of the output ensemble in terms of moments of the input ensemble. 
We use the standardized moments, which are normalized to be scale invariant. For a random variable X with probability distribution P with 
mean μ, the standardized moment of degree k is defined as the ratio of the moment of degree k , and the standard deviation σ , 

˜ μk ≡ μk 

σ k 
= 

E[( X − μ) k ] 

(E[( X − μ) 2 ]) k/ 2 
. (A6) 

The standardized moment of degree k of a realization of the output ensemble can be written as follows. Using σ out. to represent the standard 
deviation of a given realization (see equation 10 ), 

˜ μout. 
k = 

1 

σ k 
out. 

E 

[ (
z out. 
j − z out. 

j 

)k 
] 

= 

1 

σ k 
out. 

1 

n 

n ∑ 

j 

[ (
z out. 
j − z out. 

j 

)k 
] 
. (A7) 

Expanding z out. 
j = z fid . 

j + � j = z fid . 
j + z in . j − z 

〈 in . 〉 
j yields 

˜ μout. 
k = 

1 

σ k 
out. 

1 

n 

n ∑ 

j 

[ (
z fid . 
j + z in . j − z 

〈 in . 〉 
j 

) − (
z fid . 
j + z in . j − z 

〈 in . 〉 
j 

)] k 

= 

1 

σ k 
out. 

1 

n 

n ∑ 

j 

[ (
z fid . 
j + z in . j − z 

〈 in . 〉 
j − z fid . 

j − z in . j + z 
〈 in . 〉 
j 

)k 
] 

= 

1 

σ k 
out. 

1 

n 

n ∑ 

j 

[ ((
z fid . 
j − z fid . 

j 

) + 

(
z in . j − z in . j 

) − (
z 

〈 in . 〉 
j − z 

〈 in . 〉 
j 

))k 
] 
. (A8) 
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The standardized skewness is thus 

˜ μout. 
3 = 

1 

σ 3 
out. 

1 

n 

n ∑ 

j 

[ (
z fid . 
j − z fid . 

j 

)3 + 3 
(
z fid . 
j − z fid . 

j 

)2 (
z in . j − z in . j 

) − 3 
(
z fid . 
j − z fid . 

j 

)2 (
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z fid . 
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j 
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)2 
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(
z fid . 
j − z fid . 

j 

)(
z in . j − z in . j 

)(
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j − z 

〈 in . 〉 
j 
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(
z fid . 
j − z fid . 

j 

)(
z 
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j − z 

〈 in . 〉 
j 

)2 + 

(
z in . j − z in . j 

)3 
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(
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)2 (
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〈 in . 〉 
j − z 

〈 in . 〉 
j 

) + 3 
(
z in . j − z in . j 

)(
z 

〈 in . 〉 
j − z 

〈 in . 〉 
j 

)2 − (
z 

〈 in . 〉 
j − z 

〈 in . 〉 
j 

)3 
] 
. (A9) 

Compare to the individual expressions for the k th moment of each ingredient in the recipe for constructing each realization in the output 
ensemble, 

˜ μfid . 
k = 

1 

σ k 
fid . 

1 

n 

n ∑ 

j 

[ (
z fid . 
j − z fid . 

j 

)k 
] 
, (A10) 

˜ μin . 
k = 

1 

σ k 
in . 

1 

n 

n ∑ 

j 

[ (
z in . j − z in . j 

)k 
] 
, (A11) 

˜ μ
〈 in . 〉 
k = 

1 

σ k 
〈 in . 〉 

1 

n 

n ∑ 

j 

[ (
z 

〈 in . 〉 
j − z 

〈 in . 〉 
j 

)k 
] 
. (A12) 

We identify these terms in the expression to write the standardized skewness as 

σ 3 
out. ̃  μout. 

3 = σ 3 
fid . ̃  μfid . 

3 + σ 3 
in . ̃  μin . 

3 + σ 3 
〈 in . 〉 ̃  μ

〈 in . 〉 
3 

+ 3 σ 2 
fid . σin . S 

(
z fid . 
j , z fid . 

j , z in . j 

) − 3 σ 2 
fid . σ〈 in . 〉 S 

(
z fid . 
j , z fid . 

j , z 
〈 in . 〉 
j 

)
+ 3 σfid . σ

2 
in . S 

(
z fid . 
j , z in . j , z 

in . 
j 

) − 6 σfid . σin . σ〈 in . 〉 S 
(
z fid . 
j , z in . j , z 

〈 in . 〉 
j 

)
+ 3 σfid . σ

2 
〈 in . 〉 S 

(
z fid . 
j , z 

〈 in . 〉 
j , z 

〈 in . 〉 
j 

) − 3 σ 2 
in . σ〈 in . 〉 S 

(
z in . j , z 

in . 
j , z 

〈 in . 〉 
j 

)
+ 3 σin . σ

2 
〈 in . 〉 S 

(
z in . j , z 

〈 in . 〉 
j , z 

〈 in . 〉 
j 

)
, (A13) 

where the coskewness of three random variables X , Y , and Z is defined as 

S( X, Y , Z) = 

E [( X − E ( X))( Y − E ( Y ))( Z − E ( Z))] 

σX σY σZ 

. (A14) 

APPEN D IX  B:  N U L L I N G  

Here we introduce an additional optional procedure, which we call nulling that can reduce the error on the mean redshift caused by the PITPZ 

algorithm. Nulling enforces a requirement that the mean of the delta transformation values be zero for each sample index j , i.e. the mean of 
the delta transformations be zero for each percentile of the delta transformation distributions. 

Recalling our definition of the delta transformation in Section 2 , we can write the j th sample of the i th delta transformation as the following 
difference in redshift values between the i th realization of the input ensemble ( p 

in . 
i ( z)) and the mean of the input ensemble, p 〈 in. 〉 ( z). 

T ij = z in . ij − z 
〈 in . 〉 
j . (B1) 

The mean value of the j th sample of each delta transformation o v er all realizations in the input ensemble is thus: 

〈 T ij 〉 = 

1 

n real . 

∑ 

i 

z in . ij − z 
〈 in . 〉 
j 

= −z 
〈 in . 〉 
j + 

1 

n real . 

∑ 

i 

z in . ij 

= −z 
〈 in . 〉 
j + 

〈
z in . ij 

〉
. (B2) 

This quantity does not vanish in general, in particular at the lowest and highest percentiles. These non-zero mean values at each percentile 
of the delta transformation sum to a non-zero mean value of the ensemble of the delta transformations. 

We find empirically that without this procedure, the mean of the delta transformations is approximately 10 −5 , which leads to an error on 
the mean redshift in the p ( z) of the output ensemble at the level of 10 −5 . By contrast, applying this procedure decreases the mean of the delta 
transformations to the level of approximately 10 −10 at the expense of a slightly more complicated method, and a slight deviation from the 
conservation rules in Section 4 . 
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