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Simple Summary: Early detection is crucial towards improving survival in patients diagnosed
with oral cancer. Non-invasive strategies equivalent to histology diagnosis are extremely valuable
in oral cancer screening and early detection in resource-constrained settings. Optical coherence
tomography (OCT), an optical biopsy technique enables real-time imaging with periodic surveillance
and capability to image architectural features of the tissues. We report that while OCT system
delineates oral pre-cancer and cancer with more than 90% sensitivity, integration, with artificial
neural network-based analysis efficiently identifies high-risk, oral pre-cancer (83%). This study
provides evidence that the robust, low-cost system was effective as a point-of-care device in resource-
constrained settings. The high accuracy and portability signify widespread clinical application in
oral cancer screening and/or surveillance.

Abstract: Non-invasive strategies that can identify oral malignant and dysplastic oral potentially-
malignant lesions (OPML) are necessary in cancer screening and long-term surveillance. Optical
coherence tomography (OCT) can be a rapid, real time and non-invasive imaging method for frequent
patient surveillance. Here, we report the validation of a portable, robust OCT device in 232 patients
(lesions: 347) in different clinical settings. The device deployed with algorithm-based automated
diagnosis, showed efficacy in delineation of oral benign and normal (n = 151), OPML (n = 121), and
malignant lesions (n = 75) in community and tertiary care settings. This study showed that OCT
images analyzed by automated image processing algorithm could distinguish the dysplastic-OPML
and malignant lesions with a sensitivity of 95% and 93%, respectively. Furthermore, we explored
the ability of multiple (n = 14) artificial neural network (ANN) based feature extraction techniques
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for delineation high grade-OPML (moderate/severe dysplasia). The support vector machine (SVM)
model built over ANN, delineated high-grade dysplasia with sensitivity of 83%, which in turn, can
be employed to triage patients for tertiary care. The study provides evidence towards the utility of
the robust and low-cost OCT instrument as a point-of-care device in resource-constrained settings
and the potential clinical application of device in screening and surveillance of oral cancer.

Keywords: optical coherence tomography; oral cancer; oral squamous cell carcinoma; oral potentially
malignant lesions; pre-malignant lesions; artificial neural network

1. Introduction

Early detection and subsequent intervention are the best approach for improving
the outcome of oral cancer. Cancers of the oral cavity and lips account for approximately
377,713 new cancer cases with a mortality of approximately 177,757 cases worldwide [1].
India faces the highest age-adjusted incidence rate (15.2) and mortality rate (9.3), which
could be attributed to the usage of tobacco and tobacco-related products [2–5]. More
than 90% of the oral cavity cancers are oral squamous cell carcinoma (OSCC). The high
morbidity and mortality in patients with OSCC are primarily attributed to late diagnosis,
with more than two-thirds of OSCC cases diagnosed at an advanced stage. Prognosis of
OSCC is stage-dependent, with an average five-year disease-free survival rate of 80–90% if
diagnosed at early stages; and 20–30% if diagnosed at late stages [6,7].

OSCC is frequently preceded by oral potentially malignant lesions (OPML) and
1.5–20% of these lesions progress over 5 years [8]. The mechanism of malignant transfor-
mation remains unclear, with no definite prognostic markers capable of determining risk
in an individual patient [9]. Patients with OPMLs, hence, need to be detected early with
frequent and vigilant surveillance. Currently, monitoring is performed by visual exami-
nation followed by incisional biopsy. Studies have proven that improved awareness and
reduced mortality can be achieved in high-risk patients by frequent oral screening [10] and
mouth self-examination [11], nevertheless, the diagnostic accuracy of visual examination is
unreliable due to inaccurate distinction of the normal variations/benign oral lesions from
potentially malignant lesions [12,13]. Visual examination is also the primary approach in
various screening programs involving primary health care centers; however, lack of trained
frontline health workers add to delayed diagnosis [12]. Furthermore, poor compliance
in high-risk patients when referred to tertiary care centers for biopsy and the need for
high-resource environment including specialist expertise for biopsy confirmation add to
the challenge [8]. The key approach in reducing the mortality and morbidity of OSCC is
hence to generate non-invasive strategies that can detect OSCC at an early stage and enable
periodical monitoring of malignant progression.

Diagnostic adjuncts such as toluidine blue staining, brush biopsy, chemilumines-
cence, narrow-band imaging, and auto-fluorescence have been explored for their utility in
screening high-risk patients; however, these methods were subjective and required skilled
medical practitioners for interpretation [14,15]. Optical coherence tomography (OCT) is a
non-invasive modality, which uses low coherence light in the near-infrared spectral range
with a penetration depth of several hundred microns in tissue and has been explored
to detect micro-architectural changes in tissues [16] including the epithelial thickness of
the different oral sub-sites [17–19]. OCT-based imaging has the potential to be used as a
screening tool in ex-vivo studies, wherein trained observers interpreted the images with a
high efficiency (>80% accuracy) in identifying OSCC and OPMLs [20–22]. These studies,
however, indicated the need for expert interpretation, which could give rise to subjectivity.
Our group had previously reported the development of a portable, robust, low-cost OCT
imaging system and an image processing algorithm for delineation of oral suspicious
lesions [23]. In this study, we report the integration of OCT imaging with automated image
processing and deep learning to reduce the subjectivity in image interpretation, and it
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is large-scale, in-vivo, validation in the delineation of OSCC and dysplastic lesions from
normal/benign lesions in both community and tertiary care settings.

2. Materials and Methods
2.1. Study Population and Design

This clinical study was conducted with the approval of the independent institutional
ethics committee (Narayana Health Medical Ethics Committee (NHH/MEC-CL-2015-279),
and KLE Society’s Institute of dental Sciences (KIDS/IEC/11-2015/8)) and monitored by
the committee. The study included subjects who were more than 18 years old, consented
for the investigation and clinically diagnosed with any oral lesions. Subjects with reduced
mouth opening (less than 2 cm); those undergoing treatment for tuberculosis, HIV, HBV,
HCV, and oral cancer; and pregnant women were excluded. The study participants were
recruited from two different settings; tertiary care setting from the Department of Head and
Neck Oncology, Mazumdar Shaw Medical Center, Narayana Health City, the Department of
Oral Medicine, KLE Institute of Dental Sciences and from community settings (oral cancer
screening camps conducted across Bangalore) during the time-period from December 2015
to November 2016. Subjects underwent incision/punch biopsy from the same lesion site,
wherein the OCT images were taken and were administered standard-of-care treatment
according to histology diagnosis (Figure 1). For the OCT imaging, the device was placed
on the mucosal lesion for 30–60 s at 90 degrees’ angulation and the images were captured.
Imaging was followed by incisional or excisional biopsy (wherever indicated) within a
period of 10–15 min. The captured images were classified by simple algorithm developed
previously [23,24]. The image features were extracted using multiple (n = 14) artificial
neural networks (ANN) and the support vector machine (SVM) model was developed.
Both the methods were compared with histological or clinical diagnosis depending on
whether biopsy was indicated or not.

Figure 1. Study design. The subjects were: (A) recruited from low resource settings (oral cancer screening camps),
dental hospitals and tertiary cancer center. (B) A portable Optical Coherence Tomography (OCT) system, (C)was used
to capture oral mucosal lesion images, after oral physician consultation. The OCT images were recorded in laptop and
used for image pre-processing and automated image analysis (D,E). The subjects underwent incision/excision biopsy (if
indicated) for histopathological diagnosis (F,G). The OCT images were then analyzed by automated image processing and
algorithm/artificial intelligence (H) based classification and compared with histological diagnosis.
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2.2. OCT System Design

Optical coherence tomography can generate high-resolution cross-sectional images of
the oral mucosa (Figure 1E) [23,24]. OCT techniques can generate tomographic images by
utilizing the differences in refractive index due to cells, organelles, and fibers in extracellular
matrix found in biological tissues. The device used in this study is a spectral-domain
OCT (SD-OCT) system consisting of a 2D scanning long GRID rod probe and uses a low
coherence light (Figure 1B). The SD-OCT system used a center wavelength of 930 nm. It
has an axial resolution of 7.0 µm and a lateral resolution of 15.0 µm with an oral mucosal
penetration depth of 0.2–1 mm. Using a 20 kHz, 1024-point CCD line-scan camera on
the spectrometer detection arm, an imaging speed of 1.2 kHz was achieved (2 images per
second). In the hand-held imaging scanner, a GRIN rod relays the light from the proximal
end of the probe to the patient’s oral mucosa.

2.3. Analysis of OCT Images

The automated interpretation of OCT images was implemented by two approaches; a
MATLAB based simple algorithm-score [23,24] and an Artificial Neural Network-Support
Vector Machine (ANN-SVM) based model. Multiple images (range of 10–15) were captured
from oral mucosal lesions. The raw images were evaluated in two ways; by a trained oral
physician (in order to remove blank, blurry, and poor images) and by using a non-reference
image quality evaluator, Naturalness Image Quality Evaluator (NIQE) [25]. Images with
high noise, artifacts and low quality (based on physician input) were removed from the
image data set (Figure S1A). The significance of stationarity of the data quality change
as assessed by NIQE was evaluated using Augmented Dickey Fuller test (ADF) [26] and
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [27]. NIQE score showed an increasing
variation in the image quality (Figure S1A), with image quality worsening with time (ADF
test, p = 0.10 and KPSS test, p = 0.01). However, assessment of the quality across different
diagnostic categories as well as study-sites did not show any trend (Figure S1B) [26,27].
These images were taken forward for the analysis with their histopathological or clinical
diagnosis (wherever biopsy was not indicated) as the gold standard.

2.3.1. Algorithm-Score Based Analysis

The simple algorithm-score was derived from intensity measurements and thickness
of the epithelium and sub-epithelium in the OCT images [23]. Firstly, a region of interest
(ROI) was selected after image enhancement. An edge detection algorithm was applied
on the ROI to obtain the edge of the first layer and OCT score was derived. The OCT
score was used to stratify the images as malignant (OCT score range: −0.0580 to −0.0780),
dysplastic (Range: −0.0780 to−0.0918) or normal (Range: −0.0918 to−0.1280) as described
previously [23,24]. The efficacy of the algorithm was ascertained by using histological
diagnosis as the reference standard.

2.3.2. ANN-SVM Based Analysis

The image analysis pipeline included image preprocessing, feature extraction using
multiple deep neural networks, and Support Vector Machine (SVM) model (Figure 2)
development. The training was performed in two steps, delineating the lesions according to
the risk of malignancy and grades of dysplasia. The models were developed for sequential
separation of oral malignant lesions from the dysplastic and non-dysplastic lesions and
followed by the differentiation of dysplastic from non-dysplastic oral lesions. All the
image preprocessing, feature extraction, SVM model development, and validation were
performed using MATLAB 2019a version.
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Figure 2. ANN-SVM based image analysis pipeline. Image data sets selected for image pre-processing and segmentation
(A) after quality evaluation. The image was enhanced by Gaussian filter. Template images were used to segment region of
interest of upper and lower sections by 2D-cross correlation. Feature extraction (B) was performed on segmented images
by multiple artificial neural networks (ANN). The extracted features were used for developing Support Vector Machine
model (SVM) model for each ANN feature vectors (C). The receiver operating characteristic (ROC) curve analysis was
performed in cross-validation data set to find out optimal cut-off score for classification. The SVM-model validated in test
data set and classified according cut-off score. The ANN-SVM models were developed for stepwise classification- initially
for classifying OSCC from dysplastic/normal/benign lesions and then dysplastic from benign/normal lesions. OSCC:
Oral squamous cell carcinoma, HGD: High grade dysplasia–Moderate/Severe dysplasia, LGD: Low grade dysplasia- Mild
dysplasia, hyperplasia, ANN: Artificial neural network, 2D- 2 dimensional, SVM: Support vector machine, ROC: Receiver
Operating Characteristic.

Image Data Preparation

Datasets from histologically or clinically (normal and benign lesions wherein biopsy
was not indicated) annotated OCT images were classified into training and test sets
(Table S1). The training set included images from our previous studies [23,24] and the
current study (Cases: 127; Images: 3594). In the training set, 40% of the images were from
previous study dataset and 60% from the current, prospective study cohort. The testing of
ANN-SVM model was performed in 271 oral sub-sites (stand-alone dataset of 2129 images)
(Table S1).

Image Preprocessing

From each acquired OCT image, a pair of images was generated, consisting of the
upper original image as well as a lower mirror image separated by a line (Figure 2A). The
images were normalized and smoothened by Gaussian filter. A high-quality image set
(upper and lower) was used as a template to segment the region of interest (ROI) from
each of the images using a normalized 2D cross correlation [28,29]. A normalized 2D
cross-correlation method segmented the images into upper and lower images and filtered
out poor quality images (Figure 2A). The upper and lower segmented images were used
for training.

Feature Extraction by Deep Learning and SVM Model

The images from the training data set (n = 3594; included upper/lower mirror images)
were further randomly divided for SVM model training (70%) and cross-validation (30%).
Feature extractions were performed using multiple, simple to complex neural networks
(n = 14) (Table S2). The images were passed through all the layers of each neural network
till the fully connected layer (before softmax layer) [29] without back propagation (keeping
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weights of ImageNet dataset). The features were then extracted from this layer using
activation function (MATLAB 2019a) and SVM model was generated (fitcecoc function,
learner–Linear) using the training set (70%) for binary classification. The model was then
validated in the cross-validation dataset (30%) and the score was calculated by taking
the average prediction score of all images of the same site. The prediction score for the
validation set was analyzed and optimal threshold cut-off score established for every
ANN-SVM model using receiver operating characteristic (ROC) curve analysis (Figure 2C).
The image features were extracted from test data using each neural network and classified
using the trained SVM model. The final diagnosis of the subject was arrived at according to
the cut-off calculated from ROC curve analysis of the cross-validation data set. The results
of each neural network model were evaluated for their sensitivity, specificity, and accuracy
in distinguishing malignant and dysplastic images sequentially.

2.4. Statistical Analysis

The minimum sample size required (diagnostic test), to validate the device and
algorithm were calculated. Considering alpha value of <0.05 and power of 80% the
minimum patients required for the study was 207 to show a sensitivity greater than
91% (Null hypothesis: sensitivity = 85%; Alternate hypothesis: sensitivity 6= 85% or
sensitivity = 91%) [23,24,28]. We included a possible drop out of 20% due to poor image
quality and estimated a sample size of 249 for the study. Additionally, from healthy
volunteers (n = 25), an average of five oral sub-sites were captured.

Descriptive statistics were used to summarize details of patient demography, clinical
features and pathology diagnosis. The distribution of the OCT score across normal/benign,
dysplastic and OSCC subjects was determined. Kruskal-Wallis test was used to determine
the statistical significance between multiple groups. The sensitivity, specificity, and accu-
racy were calculated. ROC curve analysis was performed to find cut-off score. All statistical
analyses were carried out using the software MedCalc v14.8.1 and image analysis were
performed by MATLAB 2019a. The graphs required for the manuscript were prepared
using MedCalc v14.8.1 and Tableau 2019.4.8.

3. Results
3.1. Clinical and Demographic Details of Patients

The subjects were recruited as per the inclusion and exclusion criteria from a tertiary
cancer center (MSMC: 51.1%), dental oral medicine clinic (KLES: 28.1%), and community
screening centers (20.9%) (Figure S2A). Majority of the subjects from community screening
(100%) and tertiary cancer center (73.6%) were males (Figure S2B), while the age of patients
in the dental clinic and tertiary cancer center followed the same distribution (median
age > 45 years; Figure S2C). In the community, the median age of recruited subjects was
32 years. The major sites captured were buccal mucosa (53.9%) and labial mucosa (12.1%)
(Figure S2D). The majority of cases recruited from dental clinic and community centers
were dysplastic (67.9%), while most of the malignant cases (86.7%) were enrolled from the
tertiary cancer center (Figure S2E). Eighty percent of subjects had a habit history of tobacco
chewing, smoking, or both (Figure S2F), with tobacco chewers being the majority of the
population.

Each subject recruited into the study underwent oral examination and subsequently,
OCT images were captured (Figures 1 and 3). A total of 381 sub-sites images were captured
from 249 subjects (subjects had multiple sites, especially from normal healthy participants);
347 sub-sites were used for analysis (17 subjects were excluded due to lack of biopsy)
(Figure S3).
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3.2. Algorithm Prediction Score Correlates with Histopathology Diagnosis

A total of 172 oral sub-sites were prospectively analyzed by the algorithm, considering
parameters of intensity and epithelial thickness. The OCT scores obtained were compared
with the histological diagnosis. Comparative analysis of the sub-sites indicated that the
algorithm-score of dysplastic lesions (−0.0828 ± 0.0121) was significantly different from
that of the OSCC lesions (−0.0651 ± 0.0142, p < 0.005) and the normal/benign sub-sites
(−0.0943 ± 0.015, p < 0.005) (Figure 4).
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shows median and inter-quartile range.

As a next step, the differences in scores were compared across the dysplastic and OSCC
patients based on their age, gender, tobacco usage, and lesion-site (Figure S4). Among these
parameters, significant differences were observed based on the tobacco chewing risk habit
(p = 0.035) and age (p = 0.045) (Figure S4). Dysplastic patients with tobacco chewing had
a lower median score (−0.0838) as compared to patients with alcohol/smoking/without
habits (−0.0782). Similarly, patients grouped based on age showed a difference in OCT
score (age > 45: −0.0778, age ≤ 45: −0.0838; p = 0.045), indicating the effect of these
parameters on the OCT image. There was, however, no difference observed in the scores
when the patients were categorized based on site or gender.

A comparison of the OCT scores of mild (median score: −0.0832), moderate (median
score: −0.0828), and severe dysplasia (median score: −0.0835) (Figure S4E) showed no
significant difference (p = 0.0921) indicating that the OCT score was unable to differentiate
the grades of dysplasia. Nevertheless, the algorithm score could delineate OSCC from
others (dysplasia/normal/benign) with a sensitivity of 93% (CI: 82–98%) and specificity
of 74% (CI: 65–82%) respectively (Table 1). Similarly, dysplasia could be delineated from
normal/benign with a sensitivity of 95% (CI: 88–98%) and specificity of 76% (CI: 52–91%).

Table 1. Sensitivity and specificity of simple algorithm and ANN. OSCC: Oral Squamous Cell Carcinoma, HGD: High
Grade Dysplasia, LGD: Low Grade Dysplasia, TP: True positive, TN: True negative, FN: False negative, FP: False positive.

Method Diagnosis Sensitivity
(TP/(TP + FN))

Specificity
(TN/(TN + FP)) PPV NPV

Algorithm-Score OSCC Vs Dysplasia/Benign/Normal 93(51/55) 74(87/117) 63 96
Dysplasia VsBenign/Normal 95(91/96) 76(16/21) 95 76

DensNet-201-SVM OSCC Vs Dysplasia/Benign/Normal 86(43/50) 81(179/221) 51 96
Dysplasia Vs Benign/Normal 84(81/97) 82(101/124) 78 86

Inception-ResNet-v2-SVM HGD Vs LGD/Benign/Normal 83(63/75) 69(100/146) 58 89

3.3. ANN-SVM Model Delineated Grades of Dysplasia

All the images were passed through layers of 14 pre-trained ANN architecture, features
were extracted from fully connected layers of ANN and the SVM model was developed
using these features. The optimum threshold score values of SVM-model (Figures S5–S7),
calculated by ROC curve analysis from the cross-validation data set (30% of the training
set), showed 82–94% training accuracy and 60–85% test accuracy in delineating cancer from
other lesions (Figure 5, Table S3). NASNetMobile and DenseNet-201 feature extraction
showed the highest accuracy in delineating oral cancer and dysplastic lesions. DenseNet-
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201-SVM model showed a sensitivity and specificity of 86% and 81% respectively in
delineating OSCC from others (Table 1, Figure 6).

Figure 5. Accuracy of the various ANN-SVM models in delineating the patient cohorts. The training and test accuracy of
the 14 neural networks used in the study in delineating cancer from dysplasia/non-dysplastic lesion and dysplasia from
non-dysplastic lesions were depicted. The size of circle represents the size of neural network. The less overfitting models
were NASNetMobile and DenseNet-201.
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The models showed 92–98% accuracy in the training set and 62–84% accuracy in the test
sets for the detection of dysplastic lesions (Figure 5). DenseNet-201-SVM model showed high-
est test sensitivity (Table 1; 84%). Furthermore, Inception-ResNet-v2-SVM model showed
high sensitivity (83%; CI: 72.2–90.4) in delineation of high-grade dysplastic lesions (HGD;
moderate/severe dysplasia) from low-grade lesions (mild-dysplasia/benign/normal).

3.4. Clinical Application of OCT Device in Triaging Patients

A biopsy-decision model (Figure 7) was developed according to the automated im-
age analysis based on either the algorithm score or the ANN-SVM based diagnosis. The
model consists of multiple steps to triage the patients. As a first step, automated algo-
rithm score and/or DenseNet-201-SVM delineated OSCC from dysplastic/non-dysplastic
lesions (sensitivity: 86% (ANN) and 93% (algorithm) and specificity: 81% (ANN) and
74% (algorithm)), and the OSCC cohort can be referred for biopsy. The patients nega-
tive for test-1 can be assessed for the presence of dysplasia (Sensitivity: 86% (ANN) and
95% (algorithm)) (Figure 7). As a final step, the dysplastic patients could be further cat-
egorized into high-grade dysplasia using Inception-ResNet-v2-SVM (Sensitivity: 83%)
(Figures S7–S9, Table S3). This final model provides a sensitivity of 96% (CI: 86.3–99.5) and
92% (CI: 84.4–96.4) for delineating OSCC and dysplastic lesion respectively. It also showed
specificity of 79% (ANN) and 76% (algorithm) for delineating cancer/dysplastic lesions
from non-dysplastic lesions (Figure 7).
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4. Discussion

Early detection and regular surveillance of suspicious oral lesions are critical for de-
creasing mortality rate of OSCC. In this study, we validated a portable, low-cost OCT-based
screening device for its accuracy in identifying malignant and potentially malignant lesions
in resource-constrained settings. The simple algorithm score was able to delineate cancer
from others with a sensitivity and specificity of 93% (CI: 82–98) and 74% (CI: 65–82) respec-
tively. Besides, the combination of OCT imaging with deep learning could differentiate
high-grade OPML with a sensitivity of 83%. This is the first large cohort study with varied
patient groups (benign and different grades of dysplasia), deploying OCT-based imaging
integrated with automated diagnosis (both simple algorithm and ANN-SVM model). The
results suggested that OCT-based identification of malignant and dysplastic lesions are
equivalent to incision biopsy-based diagnosis.

Previous studies in oral cancer using OCT imaging were mainly carried out ex vivo
samples with the images being interpreted by trained observers. The diagnosis, being based
on the manual calculation of the epithelium thickness, had certain subjectivity introduced
by inter-observer variation. Nevertheless, OCT imaging was capable of delineating oral
cancer with a sensitivity and specificity of 85–92% and 78–94% in these studies [18,20].
Fluorescence lifetime imaging in combination with OCT in the hamster cheek pouch
model discriminated benign, dysplastic, and cancerous lesions [30] with a sensitivity and
specificity of 81–90% and 92–96%. However, the major limitation of the study was that
a majority of the benign lesions were hyperplastic or hyperkeratotic cases of the buccal
mucosa. In comparison to these studies, in our study, imaging was done in vivo, in the
patients, including all sites of the oral cavity, and subjectivity in diagnosis was addressed by
employing automated image analysis and interpretation. This integration of OCT imaging
with algorithm-score resulted in a sensitivity of 93% (CI: 82–98) and 95% (CI: 88–98) in
delineating OSCC and dysplasia respectively (Table 1). Additionally, documentation of
OCT images of healthy volunteers indicated site-specific variation; the dorsal surface of
the tongue showed a different architecture displaying a high variation in the site-based
optical properties compared to the other four oral sub-sites (Figure S10A). The floor of
the mouth consistently showed the thinnest epithelium component, whereas the buccal
mucosal lining showed maximum thickness compared to the other surfaces, as previously
reported [19].

Automated image interpretation is a necessary tool that is to be applied in screening
settings as it nullifies subjectivity in diagnosis, and enables efficient and periodic follow
up of patients. A recent study integrated ANN with a three-dimensional OCT imaging
system to differentiate normal and abnormal head and neck mucosa, wherein a pre-trained
ANN (AlexNet) analyzed six malignant, one dysplastic as well as their corresponding
tumor margin tissues, obtained a sensitivity and specificity of 100% and 70% respectively
in identifying cancer from others [31]. In our study, both automated diagnostic platforms
(ANN and the algorithm-based score) were able to identify malignant/dysplastic lesions
with a sensitivity of 93–96% and specificity of 74–79% (Figure 7). In the ANN-based analysis
we explored 14 pre-trained neural networks for feature extraction and SVM model was
developed. Some of these networks are quite complex containing 25–1244 layers and our
study showed the best results with DenseNet-201 and NASNetMobile (Figure 6). The
image analysis and ANN based simple feature extraction method, uses low computational
power, less training, and validation time. However, the ANN-SVM model was overfitting
due to smaller training dataset and increased complexity. Overall, automation in this study
was significant in improving efficacy and reducing the subjectivity of OCT-based diagnosis
of oral malignant/premalignant lesions.

The prototype device combined with automated diagnosis in our study gives a sensi-
tivity of 96% (CI: 86.3–99.5) and 92% (CI: 84.4–96.4) for delineating malignant and dysplastic
lesions which strengthens the application of OCT as point-of-care device in a low resource
setting (Figure 7). Additionally, the ANN-based analysis was able to delineate high-grade
dysplastic lesions with a sensitivity of 83%, which is very beneficial in the management of
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high-risk lesions in follow-up visits. This process (Figure 7) could be used in low resource
settings in real time, wherein, the captured images will be processed and fed to the ANN-
SVM model to generate the diagnosis using a graphic user interface. Our recent study,
wherein oral cytology was combined with ANN, could detect high-grade dysplastic lesions
with a comparatively lower sensitivity of 73%, owing to the limitations of the cytology
technique [32]. A recent clinical trial (NCT02415881) in head and neck squamous cell
carcinoma used an anti-epidermal growth factor receptor contrast agent (panitumumab-
IRDye800CW) and showed that the signal to background ratio was significantly higher in
high-grade dysplasia as compared to low grade dysplasia/normal (p < 0.05) [33]. Another
study, in oral leukoplakia, based on nuclear morphometric analysis (brush biopsy) revealed
that low-grade and high-grade dysplasia can be significantly differentiated based on DNA
content, DNA index, nuclear area, nuclear radius, nuclear intensity, sphericity, and frac-
tional dimension (p < 0.01) [34]. Although these methods showed significant results in
identifying high-grade dysplasia, they are either minimally invasive procedures or need
extensive processing/specialist expertise. The ability to accurately distinguish high-grade
lesions from mild dysplasia, benign and normal, using non-invasive OCT imaging, is one
of the most significant aspects of this study.

The prototype device is a low-cost system, constructed at 10% of the cost of existing
commercial system [23,24] and this study further established its applicability in low-
resource settings. The system is apt for clinical use, both in screening and surveillance
settings due to multiple advantages; the speed of image capture (two images per second),
safety (easily sterilized, harmless radiation), ease of use (the device is user-friendly, can
be operated by a nurses/dentists), rapid detection (OCT can enable real-time evaluation),
and monitoring (enables repeated imaging for surveillance). However, there were a few
challenges, one of them being the ability to access different oral cavity regions. A redesign
with specific angulation at the tip can probably enable access to difficult sites such as the
retromolar-trigone (RMT). Another challenge in our study is a comparatively low specificity
(74–79%), which can be attributed to two main issues; intensity difference in benign lesions
and dorsal tongue lesions. The intensity difference in OCT image is attributed to differential
presence of chromophores (melanin, hemoglobin) in the epithelium, basal membrane, and
lamina propria [21]. Benign lesions lacking epithelium (aphthous ulcer, traumatic ulcer,
oral pemphigus) are hence misdiagnosed as malignant. Secondly, the architecture of dorsal
tongue tissue, consisting of stratified squamous keratinized epithelium and characterized
by papillae, is known to introduce shadowing artifacts influencing the image quality
(Figure S10B) [35]. In our ANN-based analysis, 7.7% (n = 21) of the lesions were from the
dorsal tongue, out of which 12 (57.1%) were misclassified as cancer (cancer: 4 vs. others: 17)
and 3 (17.6%) as dysplasia (dysplasia: 3 vs. others: 14), thereby accounting for high false
positivity. Another factor to be considered is that, the spatial resolution of our OCT system
is poor considering the advanced OCT devices available currently in the market with
resolutions of 1 µm [36]. The current resolution although not ideal, was sufficient for
the aim of the current study, the device being low cost, to be utilized in low resource
settings to delineate malignant or OPML lesions from benign or normal. Notwithstanding
these challenges, the system showed high sensitivity, a necessity for any screening/early
detection device. The OCT device, integrated with ANN/algorithm-based diagnosis,
improved decision making in field settings or dental clinics in triaging the patients with
malignant and high-grade dysplastic lesions to the tertiary cancer center, thereby enabling
early detection, accurate referrals, and timely/appropriate treatment.

5. Conclusions

This study has validated the efficacy of the robust, low-cost OCT device as a point-
of-care device in differentiating malignancy, dysplasia, and normal/benign oral lesion
in resource-constrained settings. The screening and surveillance pipeline will include,
imaging the lesion, feeding them to the decision-tree model for data interpretation, and
accordingly a referral to the tertiary center for a biopsy if the patient is detected with a
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malignancy and high-grade dysplasia. The high accuracy, easy to use detection pipeline,
good concordance with histology, and its portability suggests potential clinical application
in screening and surveillance of oral cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13143583/s1. Figure S1: Distribution of NIQE (Naturalness Image Quality Evaluator)
score. The graph (A) showed increase in NIQE scores (reducing the quality of the image) according
to order of cases recruited. There is no pattern change according to diagnosis and study sites (B).
SCC: squamous cell carcinoma, study sites: KLE, MSMC, Community Screening Site (CSS). Figure S2:
Clinical and demographic details of subjects. The subjects were recruited from different study
sub centers- tertiary cancer center, dental clinics and community screening camps (A). The detail
distribution of age (B) and gender (C) of participants from each type of study centers were depicted.
The majority of cases was presented with buccal mucosa lesions (D) and was dysplastic (E). The
count and percentage of the various oral sub-sites (D) imaged, histology diagnosis (E) and risk-factor
history (F) were depicted center-wise. Figure S3: Study consort chart. FigureS4: OCT algorithm score
distribution across sub-sites, gender, age and habits. Sub-sites categorized into gingivo-buccal sulcus
(GBS) and tongue (A) according to dysplasia and oral squamous cell carcinoma (SCC), showed no
significant difference (p > 0.05). The same result (p > 0.05) was observed in gender-based distribution
(B). Significant difference was observed in dysplastic cases when the age (C) or habits (D) were
considered (p < 0.05). The scores did not show any significant difference between the grades of
dysplasia (E) and between high-grade dysplasia (HGD)/low-grade dysplasia (LGD) (F). FigureS5:
Receiver Operating Characteristic (ROC) curve analysis of 14 ANN-SVM model score for delineating
oral squamous cell carcinoma from dysplasia/benign/normal. Figure S6: Receiver Operating
Characteristic (ROC) curve analysis of 14 ANN-SVM model score for delineating dysplastic lesions
from non-dysplastic lesions (Normal/Benign). Figure S7: Receiver Operating Characteristic (ROC)
curve analysis of 14 ANN-SVM model score for delineating high grade dysplasia (moderate/severe
dysplasia) from low grade dysplasia (mild dysplasia, benign, normal). Figure S8: Accuracy of 14
ANN-SVM model for delineation high grade dysplasia (moderate/severe dysplasia) from low grade
dysplasia (mild dysplasia, benign, normal). Figure S9: Sensitivity and specificity of 14 ANN-SVM
model in delineating high grade dysplasia (moderate/severe dysplasia) from low grade dysplasia
(mild dysplasia, benign, normal). Figure S10: OCT images of different oral mucosa sub-sites. The
architectural difference between sub-sites of oral mucosa (normal) is evident with buccal mucosa
displaying the maximum epithelial thickness and floor of the mouth and gingival displaying the least
(A). The dorsal tongue (B) showed architecture variation from the rest of the sub-sites. (B) OCT images
of lesions/normal dorsal tongue. TableS1: Data set for artificial neural network (ANN) training and
testing from current study and previous study dataset. TableS2: Artificial neural networks (n = 14)
used for Feature Extraction and number of layers of each neural Network. Table S3: Test sensitivity
and specificity of 14 ANN-SVM models.
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