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Abstract

Background

A number of studies have detected relationships between weather and diarrhea. Few have

investigated associations with specific enteric pathogens. Understanding pathogen-specific

relationships with weather is crucial to inform public health in low-resource settings that are

especially vulnerable to climate change.

Objectives

Our objectives were to identify weather and environmental risk factors associated with diar-

rhea and enteropathogen prevalence in young children in rural Bangladesh, a population

with high diarrheal disease burden and vulnerability to weather shifts under climate change.

Methods

We matched temperature, precipitation, surface water, and humidity data to observational

longitudinal data from a cluster-randomized trial that measured diarrhea and enteropatho-

gen prevalence in children 6 months-5.5 years from 2012–2016. We fit generalized additive
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mixed models with cubic regression splines and restricted maximum likelihood estimation

for smoothing parameters.

Results

Comparing weeks with 30˚C versus 15˚C average temperature, prevalence was 3.5%

higher for diarrhea, 7.3% higher for Shiga toxin-producing Escherichia coli (STEC), 17.3%

higher for enterotoxigenic E. coli (ETEC), and 8.0% higher for Cryptosporidium. Above-

median weekly precipitation (median: 13mm; range: 0-396mm) was associated with 29%

higher diarrhea (adjusted prevalence ratio 1.29, 95% CI 1.07, 1.55); higher Cryptosporid-

ium, ETEC, STEC, Shigella, Campylobacter, Aeromonas, and adenovirus 40/41; and lower

Giardia, sapovirus, and norovirus prevalence. Other associations were weak or null.

Discussion

Higher temperatures and precipitation were associated with higher prevalence of diarrhea

and multiple enteropathogens; higher precipitation was associated with lower prevalence of

some enteric viruses. Our findings emphasize the heterogeneity of the relationships

between hydrometeorological variables and specific enteropathogens, which can be

masked when looking at composite measures like all-cause diarrhea. Our results suggest

that preventive interventions targeted to reduce enteropathogens just before and during the

rainy season may more effectively reduce child diarrhea and enteric pathogen carriage in

rural Bangladesh and in settings with similar meteorological characteristics, infrastructure,

and enteropathogen transmission.

Author summary

Location-specific weather factors influence the fate, transport, and transmission of entero-

pathogens that cause diarrhea. We sought to identify hydrometeorological risk factors

associated with childhood diarrhea and specific enteropathogens in rural Bangladesh. In

this setting, higher temperatures and precipitation were associated with higher diarrhea in

children under 5 years old and with several enteropathogens including bacteria, viruses,

and parasites. Higher precipitation was associated with the lower prevalence of some

enteric viruses. Our data suggest that interventions targeted to reduce pathogen transmis-

sion just before and during the rainy season might be most effective to reduce diarrhea in

this setting.

Introduction

Diarrhea is a leading cause of disability adjusted life years (DALYs) among children under 10

years old [1]. In low- and middle-income countries (LMICs), where the burden of diarrhea is

high, asymptomatic enteropathogen carriage is also common [2] and is linked to child growth

failure [2] and impaired child cognitive development [3]. While the global burden of diarrhea

in diarrhea morbidity and mortality has steadily declined in LMICs [4], climate change poses a

threat to further progress. Diarrhea risk is projected to increase by 15–20% due to climate

change in the period 2040–2069 relative to the period 1961–1990 [5], and the World Health

Organization estimates that additional deaths will be greatest among children from South Asia

and Eastern Africa [6].
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Because of the complex etiology of diarrhea, understanding relationships between weather

and environmental risk factors and specific enteropathogen infection or asymptomatic car-

riage is critical to informing both current disease control efforts and climate change adaptation

[5,7]. Enteric pathogens have differing environmental survival and transport, and relationships

with weather (e.g. precipitation, temperature) and environmental factors (e.g. proximity of

surface water to the household) are likely to be specific to particular pathogens [8]. Yet, there is

limited evidence from LMICs linking these risk factors to a broad range of enteropathogens

and diarrhea [9–12].

Prior studies have found increased diarrhea after heavy rainfall and floods, with at least

some attribution given to the flow of fecal material into the environment from overwhelmed

sewage treatment facilities in high-income contexts and latrine overflow/leakage in low- and

middle-income contexts [13–15]. Parasitic and bacterial diarrhea are more common in the

rainy season [12,16]. The concentration-dilution hypothesis posits that the greatest risk will

occur at the beginning of a rainy season, after an antecedent period of no rainfall where patho-

gens can accumulate in the environment. Data have supported this hypothesis in most con-

texts [17]. Increased temperatures have been associated with higher incidence of bacterial

diarrhea but lower incidence of viral diarrhea [16,18]. Higher temperatures are also associated

with less Escherichia coli on children’s hands, more cases of food-borne salmonellosis, and

higher E. coli concentrations on food, in source water, and in stored drinking water in the

household [19–21]. Higher relative humidity can increase the viability of bacteria but increase

viral inactivation, while also increasing the transfer efficiency of both from fomites [22–24]. In

LMICs, higher temperatures have been associated with a decrease in rotavirus prevalence and

small increase in adenovirus prevalence; higher humidity and temperature have been associ-

ated with higher enteric bacteria prevalence and lower virus prevalence; and associations with

precipitation varied by pathogen [9]. Furthermore, human behaviors such as handwashing

and water treatment practices have been shown to vary under differing weather conditions.

For example people are less likely to wash their hands but more likely to boil their drinking

water during colder weather, and the use of water storage and treatment has been shown to

increase in dry periods [25].

In Bangladesh, the prevalence of childhood diarrhea remains high, despite laudable prog-

ress in recent decades [26,27]. In addition, due to its low altitude, seasonal monsoon from

June-September with resulting flooding, and high population density, Bangladesh is among

the top ten countries most vulnerable to extreme weather events due to climate change [28]. In

the absence of weather-informed enteropathogen mitigation strategies, Bangladesh’s hard-

earned reductions in diarrheal disease morbidity and mortality may be reversed. Yet, few stud-

ies have investigated relationships between weather, surface water, and enteric pathogen infec-

tion and carriage in a community setting in Bangladesh [29,30].

Here, we leverage community-level pathogen and diarrheal illness data from a large inter-

vention trial in rural Bangladesh matched with fine-scale spatial resolution risk factors. Our

objectives were to identify weather and environmental risk factors associated with diarrhea and

enteropathogen prevalence in young children in order to inform targeted interventions for this

vulnerable population. We hypothesize that there are pathogen-specific differences in the direc-

tion, magnitude, and significance of associations with hydrometeorological exposures.

Methods

Ethics statement

The trial was approved by ethical review committees at the International Centre for Diarrheal

Disease Research, Bangladesh (icddr,b; PR- 11063), University of California, Berkeley (2011-
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09-3652), and Stanford University (25863). Participants provided written, informed consent

before enrollment and before fecal specimen collection.

Study design

We analyzed data that was collected in a cluster-randomized trial of water, sanitation, hand-

washing, and nutrition interventions in rural Gazipur, Mymensingh, Tangail, and Kishoreganj

districts of Bangladesh (Fig 1) [31]. From 2012–2013, the trial enrolled a total of 720 village

clusters spanning a geographic area of 12,500 km2. The trial enrolled pregnant women and

measured outcomes longitudinally in their children. On average, approximately 10% of the vil-

lage was enrolled in each cluster [31] and the sample is generalizable to areas of mainland Ban-

gladesh with similar ecological and socioeconomic features. This analysis was restricted to

children enrolled in one of two cohorts of the WASH Benefits Bangladesh study: 1) the diar-

rhea cohort or 2) the enteropathogen cohort. These data span 3 years and were collected in

one of six rounds (three rounds for the diarrhea cohort; and three rounds for the enteropatho-

gen cohort which occurred ~6 months after each diarrhea cohort visit for children enrolled in

this cohort). Each data collection round lasted roughly one year. Approximately 54 clusters

were sampled per month from the diarrhea cohort, and 14 clusters were sampled per month

from the enteropathogen cohort in a spatially dependent manner as the study team moved

around the study area over the course of a year. Each round of household visits started in the

same place and progressed along the same geographic path, thus compounds which were vis-

ited during the rainy season in the first year were more likely to be visited in the rainy season

in subsequent years. Our pre-analysis plan is available at https://osf.io/f9cza/, and we note

deviations from it in Appendix A in S1 Text.

Outcomes

Diarrhea. Field workers measured caregiver-reported diarrhea in the previous 7 days (three or

more loose or watery stools in a 24-hour period or a single stool with blood) in children 6

Fig 1. Cluster-level diarrhea prevalence of study compounds in rural Bangladesh. Panel A) situates the study area within Bangladesh. In panel B) points

represent the centroid coordinates of a study cluster and are colored by cluster-level diarrhea prevalence within the past 7 days in the dry or rainy season. The

blue star represents Dhaka, the capital of Bangladesh. Shapefiles were obtained from https://cran.r-project.org/web/packages/bangladesh/index.html.

https://doi.org/10.1371/journal.pntd.0012157.g001
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months—5.5 years old (N = 4,478 children). The diarrhea cohort was restricted to the control

arms of the original trial or data collected before intervention delivery (i.e. intervention arms

at the baseline survey) (N = 7,320 measurements) because intervention effects on diarrhea are

modified by weather [32]. Diarrhea prevalence was measured in three main rounds from the

diarrhea cohort (N = 6,589 observations; May 2012—July 2013, September 2013—September

2014, December 2014—October 2015). This included index children (live births of women

pregnant at the time of enrollment), other children living within the same compound that

were younger than 3 years at study enrollment, and children within the same household born

after the index children. Data on caregiver-reported diarrhea was collected in three additional

rounds from children in the enteropathogen cohort (N = 731 observations from index children

in the control arm; December 2012—January 2014, November 2013—November 2014, and

March 2015—March 2016).

Enteropathogens. The enteropathogen cohort included index children from a subsample

of clusters that was evenly balanced across the control, WSH, nutrition, and N+WSH arms

(allocation ratio 1:1:1:1). Clusters in each arm were selected based on logistical feasibility for

specimen collection and transport to a central laboratory. Field workers collected stool samples

from these children between November 2013 and November 2014 when they were approxi-

mately 14 months old and evaluated samples (N = 1,408) for 34 enteric viruses, bacteria and

parasites using qPCR (details in Appendix B in S1 Text). Stool samples were collected as part

of a routine household visit regardless of children’s symptom status (14% of children reported

diarrheal symptoms in the previous 7 days at the time of stool collection). We chose to collect

stool from both asymptomatic and symptomatic children because prior literature has shown

the importance of asymptomatic pathogen carriage on growth faltering [2,33,34].

We measured the following pre-specified primary outcomes: prevalence of 1) caregiver-

reported diarrhea in the past 7 days, 2) any enteric virus (adenovirus 40/41, astrovirus, norovi-

rus GI/GII, rotavirus, sapovirus), and 3) any parasite (Cryptosporidium spp, Enterocytozoon
bieneusi, or Giardia spp). We did not include prevalence of any bacteria because at least one

bacterium was detected in over 95% of samples. Pathogen-specific prevalence for pathogens

detected in >10% of samples were secondary outcomes.

To detect potential unmeasured confounding or outcome measurement bias in the diarrhea

analysis, we repeated the analysis using caregiver-reported child bruising in the past 7 days as a

negative control outcome [35,36].

Hydrometeorological variables

We matched hydrometeorological risk factors from remote sensing datasets to trial data by

date of outcome measurements and geocoordinates of study compounds (groups of house-

holds in which patrilineal families share a common courtyard). Two of the exposures (temper-

ature and precipitation) had daily resolution data and the other (surface water and humidity)

had monthly resolution. Those with daily resolution were aggregated in different ways over a

7-day window (as well as a 30-day window for temperature) and lagged by 0, 1, 2, or 3 weeks

(corresponding to the periods 1–7, 8–14, 15–21, and 21–28 days before outcome measure-

ment). As diarrhea was measured at a weekly resolution (any diarrhea in the previous 7 days),

we included 1- to 3-week lags for diarrhea and 0- to 3-week lags for pathogen outcomes per

previous studies reporting these as relevant lag times between temperature or precipitation

and either diarrhea or enteric pathogens [9,18,37,38]. The lag periods include expected time

for microbial growth/death due to weather (e.g. temperature and humidity), mobilization and

transport of enteropathogens persisting in the environment (e.g. after precipitation), and post-

exposure enteropathogen-specific incubation times within the host to reach detectable levels
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and/or initiate a diarrheal response (Appendix C in S1 Text). Exposures with monthly resolu-

tion were linked to the outcomes by calendar month of outcome ascertainment without any

lag period. Here we briefly summarize each variable; Appendix D in S1 Text includes addi-

tional details.

Temperature. Using 0.001 degree (~1 km) resolution daily near surface air temperature

data from the National Aeronautics and Space Administration Famine Early Warning System

Network Land Data Assimilation System (FLDAS) Central Asia dataset [39], we calculated the

average, minimum and maximum temperature values for 7 and 30 days prior to outcome

observation, with 1-3-week lags for diarrhea and 0-3-week lags for pathogen outcomes.

Precipitation. We obtained 0.1 degree (~10 km) resolution daily precipitation data from

the Multi-Source Weighted-Ensemble Precipitation dataset from GloH2O which merges

gauge, satellite, and reanalysis data and corrects for bias [40]. We created an indicator for

heavy rainfall (any day in the prior week with total daily precipitation >80th percentile

[17mm] on rainy days during the study period) and an indicator for whether the weekly sum

of precipitation (over the past 7 days) was above or below the median (13mm) for the entire

study period. Precipitation thresholds were based on the percentile of all daily totals (across all

study years and not season-specific) in order to maximize the generalizability of our results.

Each variable was calculated with 1-3-week lags for diarrhea and 0-3-week lags for pathogen

outcomes. As a sensitivity analysis for the thresholds to define the categorical variables, we also

include a heavy rainfall variable calculated using the 90th percentile (29mm), and weekly sum

of precipitation above the 75th (58mm) and 90th (105mm) percentiles. Although prior studies

have used different fixed periods between the months of June and October as the rainy season

in Bangladesh [30,41,42], we observed variations in the start and end of the rainy period in dif-

ferent years of our study, with substantial rainfall before June in every year. Therefore, we

determined the rainy season empirically [10], defined as the continuous period during which

the 5-day rolling average of daily precipitation was�10mm/day.

Surface water. We obtained monthly 30 m resolution surface water data for the period

1984–2020 from the Global Surface Water Explorer [43]. Variables included: 1) seasonal sur-

face water consistently present in a season, 2) ephemeral surface water present intermittently,

and 3) any surface water (ephemeral, seasonal, or permanent) detected in the month of out-

come measurement, including man-made and natural water bodies. We calculated tertiles of

distance from each household to the nearest surface water and created an indicator for whether

the proportion of pixels with surface water within 250m, 500m, or 750m of each household

was above or below the median. The distance thresholds were determined to capture risks

associated with the potential for flooding in the household environment during heavy rainfall.

Humidity. We obtained mean monthly vapor pressure deficit data with 4 km resolution

from Terraclimate [44] and measured associations with a continuous measure in kilopascals

(kPA).

Statistical analysis

We used generalized additive mixed models with a Poisson family with a log link to estimate

the relationship between exposures (continuous exposures modeled with cubic splines, cate-

gorical exposures modeled as factors relative to a reference category) and outcomes [45–47].

To estimate simultaneous confidence intervals, we resampled from the variance-covariance

matrix under a multivariate normal distribution [48]. To assess potential spatial autocorrela-

tion, we used Moran’s I coefficient and included a bidimensional thin plate spline function of

household latitude and longitude for models in which we detected spatial autocorrelation. Due

to multiple measurements within a study compound in the diarrhea dataset (e.g. index
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children and siblings sampled within a single compound on the same day and data collected

over multiple years), we included random intercepts for study compound for diarrhea models.

In the pathogen dataset, only a single measurement was collected for each index child thus we

included random intercepts for study cluster for pathogen outcomes to account for village-

level clustering. For a small number of models evaluating categorical exposures, there was

insufficient spatial variation leading to poor model fit for the generalized additive mixed mod-

els. In this case, we reran the models as generalized linear models with a Poisson family and

log link without spatial terms and used robust standard errors to account for clustering. We

adjusted for covariates that were associated with each outcome in our dataset using a likeli-

hood ratio test (p-value < 0.1) (details in Appendix E in S1 Text). For pathogen carriage out-

comes, we pooled across all study arms in which specimens were collected (N = 1,408

measurements) to maximize statistical power and included receipt of WASH or nutrition

interventions as covariates; this was not necessary for the diarrhea outcome as only observa-

tions from the control arms were used. In cases when the number of covariates selected

through screening was large and would have resulted in poor model fit due to data sparsity, we

removed covariates from the adjustment set sequentially, starting with those with the weakest

association to the outcome. We predicted prevalence from adjusted models with continuous

covariates set at the median across all samples, intervention set at receiving both WASH and

nutrition interventions, household wealth set at the lowest quartile, antibiotic use set at none

in the previous 7 days, and sex set as male.

We assessed effect modification for the diarrhea outcome by child age (<1.5 vs.�1.5 years)

because age is strongly associated with diarrhea risk [49,50]. Because pair-wise correlations

between temperature and precipitation were strong (S1 Fig), we evaluated temperature expo-

sure models with and without inclusion of precipitation as an additional covariate. We also

assessed effect modification of temperature by precipitation using a model with both exposures

and an interaction term. Neither vapor pressure deficit nor surface water displayed correla-

tions with other hydrometeorological variables, so we did not adjust these exposure models for

other exposures.

Results

Study participant characteristics

The diarrhea cohort included 4,478 children (mean age = 23 months; SD = 12m) measured in

three rounds from 2012–2016, and the pathogen cohort included a subset of 1,408 children

(mean age = 14 months; SD = 2) measured primarily in 2014 (Table 1). Other demographic

characteristics of each cohort have previously been reported [31,51]. Overall, diarrhea preva-

lence was 7.1%, with 6.1% prevalence in the dry season and 8.3% in the rainy season (Fig 1B;

prevalence ratio of rainy vs dry season 1.36, 95% CI 1.14, 1.62).

Temporal trends

The study period spanned three rainy seasons from 2013–2015. During the rainy season, aver-

age weekly temperature was higher (Fig 2). Distance to surface water was slightly lower during

the peak of each rainy season. Diarrhea measurements were not collected in some weeks of the

2013–14 rainy seasons.

Temperature

During the study period, the average weekly temperature across the study area ranged from

15–33˚C, the minimum weekly temperature ranged from 13–33˚C, and the maximum weekly
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temperature ranged from 17–34˚C. Enteropathogens were measured during a one-year period

of the study, during which the minimum temperatures did not fall below 17˚C and the average

weekly temperature did not fall below 19˚C.

According to adjusted model results using a 1-week lag, diarrhea prevalence was 3.3% (95%

CI 2.0%, 5.6%) at average weekly temperature of 15˚C and 6.8% (95% CI 5.2%, 8.9%) at 30˚C;

unadjusted models produced similar results (prevalence of 2.9% [95% CI 1.8%, 4.7%] at 15˚C

and 5.8% [95% CI 4.9%, 7.0%] at 30˚C). Trends remained evident at longer lags, and the rate

of increase in diarrhea prevalence was higher at weekly average temperatures above 30˚C (Fig

3A). Higher average weekly temperatures were also associated with higher prevalence of Shiga

toxin-producing E. coli (STEC) (S1 Table), enterotoxigenic E. coli (ETEC) (S1 Table), and

higher Cryptosporidium (8.0% [95% CI 3.8%, 16.7%] at 19˚C; 16.0% [95% CI 11.5%, 22.1%] at

30˚C; 2-week lag using adjusted models) (Fig 3C and 3E). Sapovirus prevalence displayed an

inverse relationship, with 15.9% prevalence (95% CI 6.4%, 39.3%) at average weekly tempera-

tures of 19˚C and 7.1% (95% CI 4.6%, 11.2%) at 30˚C (1-week lag using adjusted models).

These models all appeared linear, thus we can infer that each 1˚ C increase in temperature was

associated with approximate prevalence increases of 0.23% for diarrhea, 0.66% for STEC,

1.57% for ETEC, and 0.73% for Cryptosporidium, and a 0.80% decrease for sapovirus. The rela-

tionship between temperature and the prevalence of Enterocytozoon bieneusi, Giardia, and

norovirus was nonlinear (Fig 3D and 3E), but the confidence intervals were wide. There was

no association between temperature and the prevalence of other bacteria (Fig 3B) or other

viruses (Fig 3D). Associations between temperature and the combined metrics of ‘any virus’ or

‘any parasite’ masked the heterogeneous effects of individual viral or parasitic enteropathogens

Table 1. Study participant and sample characteristics.

Diarrhea cohort Pathogens cohort

Children 4,478 1,408

Observations 7,320 1,408

Year of measurement

2012 491 (6.7%) 0 (0.0%)

2013 2,680 (36.6%) 19 (1.3%)

2014 1,868 (25.5%) 1,389 (98.7%)

2015 2,170 (29.6%) 0 (0.0%)

2016 111 (1.5%) 0 (0.0%)

Mean age, months (SD) 22.6 (11.8) 14.0 (2.0)

Antibiotics consumed in the past week –a 233 (16.5%)

Season

Rainyb 3,408 (46.6%) 620 (44.0%)

Dry 3,912 (53.4%) 788 (56.0%)

Intervention arm in original trial

Controlc 7,320 (100.0%) 328 (23.3%)

WASHd 0 (0.0%) 368 (26.1%)

Nutrition 0 (0.0%) 352 (25.0%)

Nutrition + WASHd 0 (0.0%) 360 (25.6%)

a Not measured
b Defined as the period when the 5-day rolling average rainfall was�10mm/day.
c This includes 2066 baseline measurements (before intervention delivery) from children whose households were

randomized to later receive an intervention.
d Water, sanitation, and handwashing

https://doi.org/10.1371/journal.pntd.0012157.t001
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Fig 2. Time trends in risk factors, diarrhea prevalence, and number of observations. Shaded bands indicate 95%

confidence intervals using robust sandwich standard errors to account for correlation within study clusters. Estimates

exclude biweekly periods when the number of observations was<10. Panel A) includes diarrhea measurements from

the control arms of the original trial. Breaks in the line indicate periods when the study did not collect data on diarrhea

status. In panels B) to E), we display the risk factor values that corresponded to the diarrhea measurements in our

analysis. For periods when there was no diarrhea data collection, we display the risk factor values for the next biweekly

period with at least 10 diarrhea measurements. Panel F) displays the number of diarrhea observations in each biweekly

period. Rainy seasons (grey shaded regions) were determined empirically as periods where the 5-day rolling average

rainfall was�10mm/day.

https://doi.org/10.1371/journal.pntd.0012157.g002
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(Fig 3D and 3E). Overall, results for diarrhea and pathogen prevalence were similar using alter-

native lag periods and with stronger effects at 2- and 3-week lags for bacterial pathogens (Figs

3A and S2) and using minimum or maximum weekly temperature (S3–S5 Figs).

Precipitation

Median total weekly precipitation during the study period was 13mm (range: 0-396mm), with

medians of 0mm (range: 0-198mm) in the dry season and 63mm (range: 0-396mm) in the

rainy season. Above-median weekly total precipitation (>13mm) was associated with higher

diarrhea prevalence (PR = 1.21; 95% CI 0.98, 1.51; adjusted PR [aPR] = 1.29, 95% CI 1.07,

1.55) using a 2-week lag, but not using 1- or 3-week lags (Fig 4A) nor when using higher

threshold cutoffs (75th and 90th percentile, S6 Fig). For parasites, above-median weekly precipi-

tation was associated with higher Cryptosporidium prevalence (e.g., aPR = 2.07; 95% CI 1.39,

3.10 for a 3-week lag), but lower Giardia prevalence (e.g., aPR = 0.66; 95% CI 0.49, 0.90 for a

2-week lag) (Fig 4B). For viruses, above-median weekly precipitation was associated with

higher prevalence of adenovirus 40/41, but lower prevalence of sapovirus and norovirus (Fig

4C). For bacteria, above-median weekly precipitation was associated with higher prevalence of

enterotoxigenic E. coli (ETEC), STEC, Shigella/EIEC, Campylobacter, and Aeromonas (Fig

4D). With higher percentile cutoffs, results were similar for viruses, and similar but attenuated

Fig 3. Diarrhea and enteropathogen prevalence by weekly average temperature. All panels present adjusted models (see Appendix E in S1 Text for details);

shaded bands indicate simultaneous 95% confidence intervals (CIs) accounting for clustering. Panel A) includes diarrhea measurements in children aged 6

months—5.5 years in the control arms in the original trial. Panels B-E) include measurements in children approximately 14 months of age in the control,

combined water + sanitation + handwashing (WASH), nutrition, and combined nutrition + WASH arms of the original trial. We present results for the lag

periods that best aligned with the incubation period for each outcome (Appendix C in S1 Text); results with alternative lag periods are in S2 Fig. S1 Table

provides point estimates and 95% CIs for bacteria (panels C-D) at 19˚C and 30˚C. Prevalence estimates were predicted under conditions which held all

adjustment covariates at fixed representative values (see Methods for details).

https://doi.org/10.1371/journal.pntd.0012157.g003
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for bacteria and parasites except for E. bieneusi, for which increased precipitation was associ-

ated with a lower prevalence using both the 75th and 90th percentile cutoffs with a 1-week lag

(S6 Fig). Heavy rainfall (>80th percentile, 17mm) on a single day was associated with higher

prevalence of diarrhea (aPR = 1.31, 95% CI 1.09, 1.57; 2-week lag), Cryptosporidium,

Fig 4. Association between diarrhea and enteropathogen prevalence and above- vs. below-median average weekly precipitation. All panels present

adjusted models including an indicator for above median (13mm) average weekly precipitation as the independent variable; unadjusted models produced

similar results. Error bars present 95% confidence intervals adjusted for clustering. The x-axis is on the log scale. Panel A) includes diarrhea measurements in

children aged 6 months—5.5 years in the control arms in the original trial. Panels B-D) include measurements in children approximately 14 months of age in

the control, combined water + sanitation + handwashing (WASH), nutrition, and combined nutrition + WASH arms of the original trial. Closed circles in

panels B-D indicate the expected most important lag based on enteropathogen-specific incubation times (Appendix C in S1 Text).

https://doi.org/10.1371/journal.pntd.0012157.g004
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adenovirus 40/41, Aeromonas, Campylobacter, Shigella/EIEC, ETEC and lower prevalence of

norovirus and sapovirus (S7 Fig). Results were similar with a 90th percentile cutoff threshold

for all outcomes except diarrhea where the association was lost (>29mm; S7 Fig). Results var-

ied by lag period, and the lag period expected to be most important based on enteropathogen-

specific incubation times (Appendix C in S1 Text) were often not the most strongly associated

with above-median precipitation or heavy rainfall (Figs 4B–4D and S6 and S7).

Surface water

The mean distance from study households to the closest surface water was 277m (range: 11-

1818m) for any surface water, 446m (range: 11–1852) for ephemeral surface water, and 396

(range: 11–1839) for seasonal surface water. Compared to households in the highest tertile of

distance to any surface water (> 315m), Aeromonas prevalence was lower for those in the mid-

dle tertile (165-315m) (aPR = 0.53; 95% CI 0.29, 0.96) and in the lowest tertile (<165m)

(aPR = 0.43; 95% CI 0.23, 0.81) (S8 Fig). Aeromonas results were similar for ephemeral and

seasonal surface water. Distance to surface water was not associated with other outcomes.

Around each study household, the median proportion of land that contained any surface

water was 0.4% (range: 0–76%) within 250m, 4% (range: 0–76%) within 500m, and 6% (range:

0–76%) within 750m. Most outcomes were not associated with the proportion of land that

contained surface water. For certain radii and surface water types, an above-median propor-

tion of surface water was associated with lower diarrhea, Aeromonas, adenovirus 40/41, noro-

virus, and E. bieneusi prevalence and higher prevalence of Shigella/EIEC; however, most

confidence intervals were close to or spanned the null (S9 Fig).

Humidity

Vapor pressure deficit (VPD) ranged from 0.49 to 1.71 kPa (mean 0.86 kPa) during the study

period. Higher values of VPD, corresponding to lower humidity, were associated with

decreases in ETEC (S10 Fig); prevalence was 41.6% (95% CI 26.8%, 64.5%) at VPD of 0.66 kPa

and 16.1% (95% CI 8.1%, 32.0%) at VPD of 1.56 kPa according to the adjusted model. Higher

VPD was also associated with lower prevalence of Shigella/EIEC, sapovirus, and any virus (S10

Fig). No associations with other outcomes were observed.

Other analyses

We detected meaningful effect modification in our pre-specified subgroup analyses evaluating

child age category (6 months-1.5 years, 1.5–5 years) for the diarrhea outcome. Diarrhea in chil-

dren aged 1.5–5 years old tended to be impacted by precipitation to a greater extent than youn-

ger children (S11 Fig). Heavy rain significantly increased diarrhea prevalence in older children

(aPR 1.54, 95% CI 1.21, 1.97) but not those in the younger group (aPR 1.07, 95% CI 0.83, 1.37)

in adjusted models with a 3-week lag (results were similar with a 2-week lag).

Due to the strong correlation between temperature and precipitation, we included models

with both temperature and precipitation variables. Models which included both variables

often had improved model fit (lower Akaike Information Criterion) over models with only

temperature. There were few instances in which models were improved by the inclusion of an

interaction term (S2 Table).

Our negative control analysis using caregiver-reported child bruising found null associa-

tions with most risk factors and a small association in the opposite direction than we observed

for diarrhea for a few of the temperature risk factors, suggesting that potential misclassification

of the outcome did not substantially influence our results (S3 Table and S12 Fig).
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Discussion

In this analysis of the association between weather and environmental variables and enteric

pathogen carriage in children in rural Bangladesh, we found that higher weekly average tem-

peratures and above-median precipitation were associated with higher prevalence of diarrhea

and certain enteric pathogens. Surface water presence near the household was also associated

with carriage of certain enteric bacteria and parasites. Consistent with prior studies, our analy-

sis found that the effects between hydrometeorological variables and enteropathogens are het-

erogeneous [9,14,16]. We emphasize the heterogeneity even within pathogen class, such that

effects can be masked when looking at composite variables (e.g. any viral enteropathogen) or

even at the level of all-cause diarrhea.

Precipitation and diarrhea

Above-median weekly precipitation with a 2-week lag was associated with up to 29% higher

diarrhea prevalence and heavy rainfall with a 2-week lag was associated with 31% higher preva-

lence of diarrhea. A prior meta-analysis found both positive and negative associations between

precipitation and diarrhea risk [17]. Generally, heavy rainfall preceded by a dry period has

been associated with higher diarrhea risk, while heavy rainfall preceded by a wet period has

been associated with lower diarrhea risk. This may be because pathogens concentrate during

dry periods and then are flushed into the environment when heavy rainfall occurs (the concen-

tration-dilution hypothesis) [17]. We were not able to investigate associations with heavy rain-

fall preceded by a dry vs. wet period because almost all heavy rainfall periods were preceded by

rainy days. Taken together, our findings suggest that in our study setting, even moderately

higher precipitation was associated with meaningful increases in diarrhea. However, these

results obscure important heterogeneous impacts of precipitation on specific enteropathogens,

which we discuss below.

Precipitation and enteropathogens

We found that above-median (>13mm) total weekly precipitation was associated with a higher

prevalence of Cryptosporidium, adenovirus 40/41, Aeromonas, Shigella/EIEC, Campylobacter,
ETEC, and STEC and lower prevalence of norovirus, sapovirus, and Giardia. Thus, five of the

top ten diarrhea-attributable pathogens for children under 24 months old displayed positive

associations with above-median total weekly precipitation [49]. A recent meta-analysis of data

from children up to 6 years old in 19 LMICs with tropical climates found that higher precipita-

tion was associated with a small decrease in ETEC and Campylobacter prevalence and no dif-

ference in Cryptosporidium, Shigella, Giardia, or enteric virus prevalence [9]. Pathogen

prevalence was similar for viruses, slightly higher for Campylobacter and Cryptosporidium, and

lower for Giardia and Shigella/EIEC in our study compared to the prior meta-analysis. Some

of these differences are likely due to the narrower age range of children included in our patho-

gen cohort (approximately 14 months old) compared to those in the meta-analysis, particularly

for Giardia which is typically seen in older children. Additionally, our pathogen cohort cap-

tured primarily asymptomatic enteropathogen carriage within the community (only 14% of

children had reported diarrhea) while the previous meta-analysis relied heavily on hospital-

based surveillance and case-control studies of overt diarrheal illness. Our findings may also

differ due to varying urbanicity and WASH infrastructure [52] compared to the locations

included in the meta-analysis.

Interestingly, some enteropathogen associations with precipitation were stronger for lag

periods that differed from the lag period we expected to be most relevant based on within-host

incubation times. Particularly for bacteria, analyses using 2- and 3-week lag periods had
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stronger associations than those with a 1-week lag; this may reflect higher environmental

growth, survival, and/or delayed transport (e.g. from flooding that occurs days after a rain

event) following higher precipitation. Adenovirus 40/41, a double-stranded DNA (dsDNA)

virus, displayed an inverse relationship with precipitation compared to the other viruses

evaluated, which were both single-stranded RNA (ssRNA) viruses. A prior study showed

that ultraviolet irradiation led to a 4-log10 inactivation of ssRNA viruses but only a 2-log10

inactivation of dsDNA viruses in water [53]. It is possible that increased water turbidity

associated with precipitation events intensifies this relationship. Estimating environmental

survival of enteric pathogens under different weather conditions is an important area for

future research.

Temperature

For temperature, our estimated associations were more modest overall than those from previ-

ous studies. One meta-analysis–encompassing populations of all ages from various climate

regions–estimated that a 1˚ C increase in mean temperature was associated with relative

increases of 7% for diarrhea and bacterial diarrhea and no association with viral diarrhea [16].

Another study focusing on children from LMICs estimated that increasing weekly average

temperatures in the range between 10–40˚ C was associated with higher risk of Campylobacter,
ETEC, Shigella, Cryptosporidium, Giardia, and adenovirus and lower risk of sapovirus and

rotavirus, and generally associations were stronger [9]. Our more modest estimates may reflect

the fine-scale spatial resolution of our study or differing background levels of enteropathogen

transmission. Our findings reinforce that relationships between temperature and enteropatho-

gen carriage are heterogeneous, even within pathogen class (i.e. virus, bacteria, parasite). The

null results for the composite measures of ‘any virus’ or ‘any parasite’ in the background of sig-

nificant effects for individual viruses/parasites cautions against evaluating higher-level group-

ings that may mask pathogen-specific effects.

Limitations

This study was subject to several limitations. First, in 2014, the original trial did not collect

data during peak rainy season (Fig 2), limiting our ability to make inferences about associa-

tions with heavy rainfall in that season. Second, we only measured enteropathogens in a sub-

sample, so statistical power was limited for certain analyses; for this reason, we did not

consider it feasible to estimate associations with class-specific diarrhea (e.g., bacterial diarrhea)

as prior studies have done. However, measuring enteropathogen carriage in a community-

based cohort (including asymptomatic and symptomatic infections) sheds light on weather-

specific transmission patterns that may not be discernable when restricting to symptomatic

cases and individuals seeking care at health facilities. Third, the enteropathogen sample

included a narrow age range (approximately 14 months); results may not generalize to other

ages. Rotavirus, a highly climate-sensitive pathogen, was not included in our pathogen-specific

analysis because it did not meet our 10% prevalence threshold (although detection of rotavirus

is accounted for in our composite “Any virus” variable). Rotavirus was detected in only 2.2%

of our community-based cohort, which is similar to other cross-sectional studies where the

majority of samples are not associated with diarrheal symptoms. Our effect modification anal-

yses may also have had limited statistical power. Finally, because relationships between hydro-

meteorological factors, diarrhea, and enteropathogen infection vary by climate zone [54], our

findings might not generalize to settings with differing enteropathogen transmission levels,

WASH infrastructure, or hydrometeorological characteristics.
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Climate and policy implications

Climate change models predict increases in temperature (mean increase of 1˚ C) and precipi-

tation (mean increase of 6%) in Bangladesh from 2021–2050 [55]. Our findings suggest that

under these projections, there would be small increases in the prevalence of diarrhea and cer-

tain enteric pathogen infections.

One potential implication of our findings is that interventions to reduce enteropathogen

infections in Bangladesh and similar settings may be most beneficial prior to or during the

rainy season. A recent analysis found that WASH interventions were more effective at reduc-

ing diarrhea during periods of heavy precipitation [32,56]. Seasonal targeting of interventions

is a common and cost-effective strategy for other diseases with seasonal transmission patterns,

such as malaria [57], but has yet to be used for enteric illness. Of note, the enteropathogens

that had higher prevalence under higher temperature and precipitation levels are not currently

vaccine-preventable. Many can be prevented by household WASH interventions [51], but sus-

tained use is critical to realizing health benefits [58,59] and has proven difficult to maintain in

the long term [60–62]. Given the high cost and user burden of household WASH interventions

[60], seasonal targeting via the direct provision of resources and/or increased promotion may

improve both public health impact and cost-effectiveness.

Conclusions

We observed heterogeneous impacts of weather on community-level enteropathogen carriage

by pathogen class and species for young children in rural Bangladesh. However, the prevalence

of a majority of the enteropathogens, as well as diarrheal illness, displayed a positive associa-

tion with total weekly precipitation above 13mm. In similar settings, preventive interventions

targeted at the beginning of the rainy season may be an effective strategy for reducing enteric

pathogen infections and carriage, particularly under climate change.
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S1 Fig. Pairwise relationships between weather variables. Bivariate scatter plot of continuous

climatic risk factors in the diarrhea cohort. Correlation ellipses depict the strength of the asso-

ciation on the basis of the Spearman rank correlation, color of the ellipse indicates the direc-

tion of the correlation, and the correlation coefficient is printed inside each ellipse.

(PDF)

S2 Fig. Predicted enteropathogen prevalence by weekly average temperature (C) with dif-

ferent lags. All panels present adjusted models for children approximately 14 months of age in

the control, combined water + sanitation + handwashing (WASH), nutrition, and combined

nutrition + WASH arms of the original trial. Shaded bands indicate simultaneous 95% confi-

dence intervals accounting for clustering. Prevalence estimates were predicted under condi-

tions which held all adjustment covariates at fixed representative values (see Methods for

details).

(PDF)
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S3 Fig. Predicted diarrhea prevalence by temperature minimum, mean and maximum. All

panels present adjusted models for temperature with a 1-week lag period for diarrhea measure-

ments in children aged 6 months—5.5 years in the control arms in the original trial. Shaded

bands indicate simultaneous 95% confidence intervals accounting for clustering. Prevalence

estimates were predicted under conditions which held all adjustment covariates at fixed repre-

sentative values (see Methods for details).

(PDF)

S4 Fig. Predicted enteropathogen prevalence by temperature minimum. All panels present

adjusted models for children approximately 14 months of age in the control, combined water

+ sanitation + handwashing (WASH), nutrition, and combined nutrition + WASH arms of

the original trial. Shaded bands indicate simultaneous 95% confidence intervals accounting for

clustering. Prevalence estimates were predicted under conditions which held all adjustment

covariates at fixed representative values (see Methods for details).

(PDF)

S5 Fig. Predicted enteropathogen prevalence by temperature maximum. All panels present

adjusted models for children approximately 14 months of age in the control, combined water

+ sanitation + handwashing (WASH), nutrition, and combined nutrition + WASH arms of

the original trial. Shaded bands indicate simultaneous 95% confidence intervals accounting for

clustering. Prevalence estimates were predicted under conditions which held all adjustment

covariates at fixed representative values (see Methods for details).

(PDF)

S6 Fig. Diarrhea and enteropathogen prevalence by above- vs. below-cutoff for total weekly

precipitation at 75th and 90th percentile cutoffs. All panels present adjusted models includ-

ing an indicator for above 75th (58mm) or 90th (105mm) percentile average weekly precipita-

tion as the independent variable; unadjusted models produced similar results. Error bars

present 95% confidence intervals adjusted for clustering. The x-axis is on the log scale. Panel

A) includes diarrhea measurements in children aged 6 months—5.5 years in the control arms

in the original trial. Panels B-D) include measurements in children approximately 14 months

of age in the control, combined water + sanitation + handwashing (WASH), nutrition, and

combined nutrition + WASH arms of the original trial. Closed circles in panels B-D indicate

the expected most important lag based on enteropathogen-specific incubation times (Appen-

dix C in S1 Text).

(PDF)

S7 Fig. Diarrhea and enteropathogen prevalence by heavy rainfall. All panels present

adjusted models including an indicator variable for heavy rainfall (total weekly

precipitation > 80th (17mm) or 90th (29mm) percentile during the study period); unadjusted

models produced similar results. Error bars present 95% confidence intervals adjusted for clus-

tering. The x-axis is on the log scale. Panel A) includes diarrhea measurements in children

aged 6 months—5.5 years in the control arms in the original trial. Panels B-D) include mea-

surements in children approximately 14 months of age in the control, combined water + sani-

tation + handwashing (WASH), nutrition, and combined nutrition + WASH arms of the

original trial. Closed circles in panels B-D indicate the expected most important lag based on

enteropathogen-specific incubation times (Appendix C in S1 Text).

(PDF)

S8 Fig. Prevalence ratios for diarrhea and enteropathogen carriage and distance from

study households to surface water. All panels present adjusted models; unadjusted models
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produced similar results. The independent variable was a categorical variable for tertiles of dis-

tance from each household to the nearest surface water (<165m; 165m to<316m, 3316m).

Error bars present 95% confidence intervals adjusted for clustering. The x-axis is on the log

scale. Panel A) includes diarrhea measurements in children aged 6 months—5.5 years in the

control arms in the original trial. Panels B-D) include measurements in children approxi-

mately 14 months of age in the control, combined water + sanitation + handwashing (WASH),

nutrition, and combined nutrition + WASH arms of the original trial.

(PDF)

S9 Fig. Prevalence ratios for diarrhea and enteropathogen carriage associated with the pro-

portion of land around study households that contained surface water. All panels present

adjusted models; unadjusted models produced similar results. The independent variable was

an indicator for whether the proportion of pixels with surface water within 250m, 500m, 750m

of each household was above or below the median. Error bars present 95% confidence intervals

adjusted for clustering. The x-axis is on the log scale. Panel A) includes diarrhea measurements

in children aged 6 months—5.5 years in the control arms in the original trial. Panels B-D)

include measurements in children approximately 14 months of age in the control, combined

water + sanitation + handwashing (WASH), nutrition, and combined nutrition + WASH arms

of the original trial.

(PDF)

S10 Fig. Predicted diarrhea and enteropathogen prevalence by vapor pressure deficit. All

panels present adjusted models; shaded bands indicate simultaneous 95% confidence intervals

accounting for clustering. Pathogen models included measurements in children approximately

14 months of age in the control, combined water + sanitation + handwashing (WASH), nutri-

tion, and combined nutrition + WASH arms of the original trial. Diarrhea model includes

measurements in children aged 6 months—5.5 years in the control arms in the original trial.

Prevalence estimates were predicted under conditions which held all adjustment covariates at

fixed representative values (see Methods for details).

(PDF)

S11 Fig. Interaction between age category and hydrometeorological risk factors on child-

hood diarrhea prevalence. Data are from adjusted models and include measurements in chil-

dren aged 6 months—5.5 years in the control arms in the original trial. Panels A) and B) Error

bars present 95% confidence intervals adjusted for clustering and the x-axis is on the log scale.

Panel A) shows an indicator variable for heavy rainfall (total weekly precipitation > 80th

(17mm) or 90th (29mm) percentile during the study period or for above median (13mm), 75th

(58mm) or 90th (105mm) percentile average weekly precipitation as the independent variable.

Panel B) The independent variable was an indicator for whether the proportion of pixels with

surface water within 250m, 500m, 750m of each household was above or below the median or

a categorical variable for tertiles of distance from each household to the nearest surface water

(<165m; 165m to<316m,�316m). Panel C) Shaded bands indicate simultaneous 95% confi-

dence intervals accounting for clustering. Prevalence estimates were predicted under condi-

tions which held all adjustment covariates at fixed representative values (see Methods for

details). No significant results were observed for other temperature variables or vapor pressure

deficit.

(PDF)

S12 Fig. Negative control analysis–bruising and temperature. All panels present adjusted

models for weekly minimum, mean, or maximum temperature with the indicated lag period;

shaded bands indicate simultaneous 95% confidence intervals accounting for clustering.
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Includes measurements in children aged 6 months—5.5 years in the control arms in the origi-

nal trial. Prevalence estimates were predicted under conditions which held all adjustment

covariates at fixed representative values (see Methods for details).

(PDF)

S1 Table. Bacterial enteropathogen prevalence estimates at weekly average temperatures

of 19˚C and 30˚C.

(PDF)

S2 Table. Akaike Information Criterion (AIC) from adjusted models including tempera-

ture and precipitation variables and with or without interaction terms for diarrhea in the

previous 7 days or detection of an enteropathogen. Blue boxes indicate where models with-

out the interaction term had lower AIC while orange boxes highlight models where including

the interaction term results in lower AIC. Bolded values emphasize the model with the lowest

AIC for the given temperature variable.

(XLSX)

S3 Table. Adjusted prevalence ratios for caregiver-reported child bruising in the prior 7

days.

(PDF)
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