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Radiative Transfer on a Cubic Lattice 

Rudolph W. Preisendorfer 

Scripps Institution of Oceanography, University of California 

La Jolla, California 

INTRODUCTION 

This work presents in complete detail an application of the 

1-4 
general theory of radiativ? transfer on discrete spaces to 

the problem of determining the radiance distributions at each 

depth in a plane-parallel medium with given external boundary 

conditions. Thus, in particular the present work gives an explicit 
5 

solution of the complete two boundary Planetary Hydrosphere Problem 

in the discrete-space context. All of the relatively intractable 

integral equations in reference 5 are thereby reduced to simple 

recurrence relations for relatively low-order matrices. Step by 

step details are given to show how the basic radiometric principle 

of discrete spaces, namely the local interaction principle, 

ultimately leads to a workable computation procedure, suitable for 

use on automatic computers, which in principle can result in a 

complete numerical determination of the radiance distribution at 

each point of the discrete-space counterpart to a real optical 

medium, such as those associated with planetary atmospheres and 

hydrospueres. 
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The type of discrete space used here is known as the extended 

cubic lattice, which is a discrete-space model of an arbitrarily 

stratified plane-parallel optical medium. A simpler type of dis

crete space, known as the linear lattice, was used in an earlier 

work to solve the general two-flow problem in arbitrarily 

stratified plane-parallel media. In essence, the extended cubic 

lattice replaces the continuous plane-parallel optical medium by 

a collection of points located at the centers of contiguous equal 

cubes contained within two parallel planes in Euclidean three-

space. Each cube-center is a point of the lattice and each point 

may interact radiometrically with its twenty-six immediate neigh

bors (3ee Figure 1). 

The problem solved in this work is the complete two boundary, 

twenty-six flow problem. Given: The incident plane radiance 

distributions on the upper and lower boundaries of a well-defined 

extended cubic lattice; Required: The radiance of the emergent 

flux in each of the twenty-six directions about each point of the 

lattice. The complete solution is given by a detailed seven stage 

computation procedure appended to the present work. 

The overall plan of the present work is as follows: first 

the geometrical setting of the problem is defined, using the 

notion of an extended cubic lattice and its associated quotient 

space. Next, the principles of invariance are formulated for the 
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lattice. From these are deduced the requisite equations governing 

the R, and "J" operators on the lattice. These operators are 

then used to express the required internal radiance distributions 

at each point of the lattice. 

THE EXTENDED CUBIC LATTICE 

The definition of a general cubic lattice was given in 

reference 2. For the reader's convenience, we will repeat the 

definition here. Let E3 designate the usual Euclidean three-

space (i.e., the set of all triples (•x,^)3)of real numbers x > 

^ , and 2 ). Let a , 5 , C be three finite integers, 

such that 0^(Xii b and 0$C • Then the subset 

of £3 is a cubic lattice of n - (Zc + l)a(b -a.+ /] points. The 

subset A,v, of f ) is an extended cubic lattice of depth 

rn- {to-a.-hi) if C^oo . 

4 
In a previous study, the discrete space of central interest 

was the linear lattice, which is the special cubic lattice defined 

by setting C=J=0. The linear lattice thus represents the simplest 
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extreme in the family of spaces encountered in radiative transfer 

theory, namely the one-dimensional space associated with the two-

flow analysis of the light field. The extended cubic lattice is 

a discrete space of intermediate complexity whose continuous 

counterpart is the slab in £3 (i.e., the set of all points of 

fEj between and including the two planes defined by ^•=a> 2—b) 

with plane boundary conditions. The extended cubic lattice will 

be the discrete space of central interest in this work. 

The Plane Boundary Condition 

The sources of radiant flux on the extended cubic lattice X n 

will be limited to the upper boundary ZCQ. and lower boundary Xi 

defined as all points (ar/o,3) in X n with Jr^a. or ? = b , 

respectively. Unless explicitly stated otherwise, the source 

radiance distribution function N'° (•*»-, •} will be zero on 3 : 

(the unit sphere in E 3 , i.e., the set of all unit vectors § 

in gfB ) for all 0̂ - e X* , except for those in X«_ and a b 

at each of which N°(X; , «) will have prescribed values on "=: 

and _SL.+ , respectively. In particular, for the present work, 

N (-X-i , •") will be assumed independent of x- on the upper 

and lower boundary. Thus, in the terminology of the continuous 

theory, Xn has a plane source of radiant flux at its upper 
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and lower boundaries. The directional structure of N/°(aA ») , 

however, will be arbitrary and fixed during the remainder of this 

discussion. 

The Eclipse Convention 

The first two steps in the simulation of the continuous slab 

geometry have been accomplished by the adoption of the notion of 

an extended cubic lattice Xo a n d the assumption of a plane 

source on X o • The final step in the present attempt to simu

late the continuous slab geometry will be accomplished by adopting 

the following eclipse convention for Xn (For some earlier 

remarks on the eclipse conventions, see reference 1.): Let (ar,%2) 

be a point in the extended cubic lattice X n • Consider the 

subset OCX)*!, 2) of ' IŜ  defined as: 

The subset C(X)y,l ) clearly consists of at most twenty-seven 

points of Xn (Figure 1), and has the general configuration of 

a cube with (.X,*)^) at its center. The subset Ctx,?)?) is 

called the cell associated with U/'iii) . The present eclipse 

convention now maybe phrased: For each tz>1,2) £ X* . N(x,1)2, ») 
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is identically zero on £ - 3 ; ' > where 151 is the fixed 

local direction space defined by CL'X)^J i) • In other words 

the present eclipse convention states: the radiometric activity 

of each point (*)1ii) of Xn will be explicitly limited to the 

points of CiZ^h i) . 

THE ASSOCIATED QUOTIENT SPACE 

The adoption of the present plane source boundary condition, 

and the above eclipse convention for the extended cubic lattice Xn 

allows a profound simplification in the essential structure of Xr> • 

This simplification is achieved by constructing a special quotient 

space YD ^rom Xn • The construction of the associated 

quotient space begins with the partitioning of Xn into columns 
•js-

Y* (-*>3 ) which are subsets of Xn of the form: 

Y* (•*,?) = {ix^hi) : (x,*,}) e Xn ? x^ fixed } t 

* The logical choice of notation for these subsets would be 
Xn Cxi^) . However, for the sake of simple quotient 
space notation later on in this work, the choice of a sym
bol other than X is imperative. Later on in the present 
series, the more logical notation is resumed. 
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There is a countably infinite number of columns Y,-, (XJ^ ) ̂  Xn. 

The union of these columns is, of course, Xo . The sets yh(x,y' 

are the points of the quotient space Yn . Because of the con

ventions adopted above the fact is clear that the description of 

the radiance function, on all of Xn is already achieved by des

cribing it at any point of Yn i.e., along a column Yn (X>1) . 

This follows from the fact that the radiance distribution about 

f-*')^, i) in YnC^i^i) is identical with that about Cxi^^z,'*) 

in Y ( * I ^ J ) for each 2", £*?£-$ b . Thus, from a radio

metric point of view, the quotient space Yn can be reduced to a 

single column. With this observation we may and shall henceforth 

restrict attention to the special cubic lattice formed of the cells 

associated with the points of the special single column Yn ( Q}0) 

in Xn which we will designate as Yn for short. 

Figure 1 may be used to depict Y> i f the reader imagines 

that x and t-i are set equal to zero. We now set d - i and 

5= n until further notice. Observe that we may locate a point 

(.0,0,y) of Yn by a single integer *=: M ( i^ j"< n . A point 

on the cell associated with LX-,^,2-) may be identified by means 

of a unit vector of HI . (See preceding section.) For the 

present purposes these twenty-six directions are grouped into the 

following four subsets of the local direction space of a point in 

Xn .* (See equation (26) below and Figure 3 for the detailed 
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identification of these vectors.) 

£,= {%: f^', f'i SO) 

-. = f f.> f * = ', J'i<o] 

where ^ = ( o, 0) - \ ) is the unit outward normal to Yn . Here 

.H. f is the set of all upward (outward) directions, and !="_ is 

the set of all downward (inward) directions. The subset 3 1 0 is 

the set of all horizontal (singular) directions. The set ~E1 + 

defines the proper upward directions. Clearly, the number of 

elements associated with -=:+ , 2£. Q f and JH _ is 17, 8, and 

9, respectively. The number of elements in 5 f ^ is 9. 

The radiance distribution at (0,0, i) is then completely 

described by the specific radiance vector 

W 4 ) = ["NUO,0,j , ?,)j . . . , NCO.O,^ f7t) ] 
(1) 
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_ / 
where ^ . E j ^ ; l i l < 2 6 . We wi l l se t , for brevi ty , 

N( :)',?• ) s N(0,0,i , 5 X ) 

It will be convenient to partition vector (l) into three 

parts N + ( j ) , Mo(j) and N_ (j) , each part being 

defined as: 

where f(- f ^=. + - -!„ - j^ + ^ J ̂  / < 3 . Further: 

No(i)~ [NM*,?„),..., NO', ?,7)] 

where £• f _Z 0 } 10 « i <5 17 . Finally 

N U j ) * !>0",T,tf), ..., N lj',S*2j], 

(2) 

(3) 

(4) 

where J; e -=• ~ > 1 8 S £ < ̂  , 
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!c se t : 

|sj( j ) - [MUil 9 Notj)'] 
4-

so that NHj) may be wri t ten: 

(5) 

M ( j ) * [N/+ (;j) j ^-'o'O , (6) 

which completes the analog with the continuous radiance distribu

tions in reference 6. We now go on to formulate the principles of 

invariance associated with the special cubic lattice Yi 
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PRINCIPLES OF INVARIANCE 

The principles of invariance have proved to be powerful 

and incisive tools in the formulation of radiative transfer 

problems. We now develop the requisite forms of the principles 

for the present problem. 

The first step in the derivation of the four principles of 

invariance is the development of the appropriate form of the in

variant imbedding relation. This step has been essentially 

accomplished in equation (47) of reference 2. It remains only 

to make explicit the values of 3C, ̂  £ , and the appropriate 

dimensions of the various vectors and matrices involved in that 

statement. 

Invariant Imbedding Relation 

Following the general methodology of reference 2, we now 

partition Yn into two subsets Yp an<* Vq > such that 

Yp= { ( 0 , 0 , 3 ) : I * / S j ^ I ^ fl j < . 0 , i hxecL uAtyts; p 

Then define Ys ^ Yn ~ YP * s 0 t n a t H ^ p + a . The remainder 

of the derivation now proceeds in essen t ia l ly the same way as 
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that used to establish the corresponding results for a linear 

lattice (reference 4). In particular, we designate by NJ_ (O) 

the given incident radiance distribution N°(.> > ') on 2rT _ . 

Further we set (^+.(0+1) = Ni °(f), -) on 3" / • The purpose 

of these new designations of j\J is to allow, by means of a 

uniform notation for radiance distributions, a relatively compact 

formulation of the invariant imbedding relation without having to 

explicitly display the incident radiance distributions in the form 

Kl0 ( 3 ; » ) . Finally, as in reference 4, we choose for consi

deration the particular partitioned subvector E fv + f̂ 'j 3 ^ - ^ ' 0 

of M(P|n) which occurs in the general theory (see reference 

2). This choice may be realized by extracting the appropriate 

components from the left and right hand sides of the general in

variant imbedding relation ((47) of reference 2). Further,it is 

of some importance to observe at this point that the present exact 

counterparts to N\(l) and N - C O (in (47) of reference 

2) are, respectively, N/+.(/cfl) and N- {i— i) associated 

with the present partition i Yp Yo \ °^ Yo • With these 

observations, (47) of reference 2 yields: 
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where I < i ^ j ± \< ̂  ^ . Recall that tJ I i j ) and 

f\J.. ( j ) generally have 9 components and that M+ / j ) has 

17. It follows that J («•*•(, { /'-') and Q.(-*-t, j //+-i) are 

9 x 17 matrices, whereas the remaining two matrices in (l) are 

9 x 9 . (Compare these dimensions with those cf the linear 

lattice case, reference 4). 

Statement of the Frinciples 

we now follow the general methodology of reference 6 to 

derive the two main statements of the principles of invariance 

from (7). First, we set 'i-A > so that (7) becomes: 

T'iK+hit d'-0 ($(*+<, j , j-rt 

[kMj),N-/jy] =e [MJ(K+I);N_£I-»V] 

&(3-<,J,K*i) J ft'hi,K + i) 

We now set 
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The 9 x 17 matrix T(t<"H,J ) is associated with a slab whose 

initial level is at l< and whose terminal level is at 3 , 

where j'^ « ; hence the slab has K- j +1 layers. The 9 x 17 

matrix fc( j, k+|) is associated with the slab whose initial 

level is at j and terminal level at ĵ  . Reading off the 

first component in the vector equation (8), we have, with the 

definitions (9): 

This is the first main statement of the invariance principle. 

The second main statement is obtained from (7) by setting k = j : 

J(j + I,4, /-») Q.Ci + 1, I,*-*) 

[Nt(jj;M-M'j] ̂ L.MlODjM-^-')] 

Gk/-i,d',)+') ^(i-irfij*-1) 
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Now set 

^ ^ ^ j + i l s "TY/-..J) j 

(?(4+i,d,<:-')= * o w - 0 
(12) 

The 9 x 9 matrix T(l-i, J ) is associated with a slab whose 

initial level is at <L and terminal level at j ; A. ^ -j 

Hence the slab has j - ̂  -f | layers. The 9 x 9 matrix 

R.(-i. ̂ -l) is associated with the slab whose initial level is 

at 4 and terminal level at /. . Reading off the appropriate 

component relation in (11): 

J, i\Mj) - NJ/'OTfAU'l-f K/IM'+O R ( ^ Z ' - ^ (13) 

This is the second of the two main statements of the principles 

of invariance. 
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The remaining principles of invariance now follow auto

matical ly: In I , l e t 3 = | , « = H ; and then l e t ^ ' - / , 

with K a rb i t r a ry : 

U T , N M n = N + (n + J) T(n+t,i) -f- f\/. (J) R ( i , n + 0 

= |v/f (K-H) T <'<+', i ) -*- N~(o) R(lji<+i) 

(14) 

The vectors Ni (n-H) ? N/-/0) are the arbitrary 1 x 9 source 

radiance vectors at the lower and upper boundaries, respectively. 

Finally, in II, let j a- n , 4 = | , and then ^ = O with 

X. arbitrary: 

33L . N-M) * N-fo) T(o,o) -+- N/'f (n-n) £(n,o) 

- M- (/-OT̂ '-'jO) + Nf (nti) &(n} x-/) , 

(15) 
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The Standard Reflectance and Transmittance Operators 

The quartet of R. and T" matrices introduced in (9) and 

(12) above are the standard reflectance and transmittance 

operators associated with Yrt . From the point of view of the 

principles of invariance, the global scattering properties of 

are known, and in fact the entire radiative transfer problem 

associated with Yn ^s solved, once this quartet of operators 

is completely known on Yn * Yo 

Some care must be exercised in the correct dimensioning of 

these standard operators. By recalling that we have set c'^ J •$• ̂  

throughout the present discussion, it is then easy to infer that 

T(K"H;j) and R( { } J->) are associated with the upward (or 

outward) incident radiances on their respective slabs. Further 

•jll-\ \ ) and P( j, k-*-') are associated with down

ward (or inward) incident radiances on their respective slabs. 

Finally, because of the unavoidable symbolic perversity of any 

notation associated with a plane-parallel slab (or an extended 

cubic lattice) which thus induces an unavoidable asymmetric 

partitioning of N(4 ) into the 17 component vector Pvt-(j) and 

the 9 component vector M-(.j) , it follows that the R. and f 

operators are also unavoidably asymmetric with respect to the 
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up and downwelling streams. Thus T(^+'; j ) and R.( j, K-rl) 

are, as noted earlier, necessarily 9 x 17 matrices, whereas, 

Tt^'S'J ) and &(i> i~{\ are necessarily 9 x 9 matrices. 

This asymmetric state of affairs is also present in the contin

uous case, but is usually only a harmless nuisance there because 

the subset 31 Q in the continuous case is of Sb -measure zero. 

However, in the discrete case, the set 31 a °? singular directions 

contains about 31$ of all the directions of the local direction 

space ^ , and can no longer be conveniently ignored. 

* If the R- and T matrices are all redefined to be 9 x 9 matrices 
so that a semblence of symmetry is attained, then it will be necessary 
to introduce (i): new operators which map N/V and K/- into N * (ii): 
additional principles of invariance governing these new operators, and 
(iii): more detailed computation procedures. By retaining the present 
asymmetry, we avoid such needless complications here and, incidentally, 
preserve the classical methodology of the continuous radiative transfer 
theory, which employs only two general (the J3. and T ) operators. ° 
In subsequent works (on the plane and point source problems) additional 
operators must be introduced. It turns out that the present point of 
view is adequate, and the present choice of notation, fortunate, when 
transferred to the context of these more general problems. 
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The standard R and ~f operators defined on the arbitrary 

discrete space Yh * Yn have many of the formal properties of 

the R- and ~f operators in the continuous case as can be seen 

by comparing the principles of invariance in the discrete case 

with those in the general continuous case (reference 6). In 

particular we observe that 

_ . . . * (the 9 x 9 zero matrix) 
K i 4,j ) - u 

"T~(<j' j ) ^ X (the 9 x 9 identity matrix) 

which follows from principle II (Equation (13)) by formally 

4 4 

setting £—I =* j . A similar statement follows from principle 

I (Equation (10)) by setting ^ ' ' J , but now the statement 

is appropriately tailored to the 9 x 17 matrices occurring there: 

The "tailoring" is accomplished by operating on each side of I 

with the contracting matrix C (defined in (24) below) which 

reduces principle I to the 9 x 9 case considered in (16) and (17) 

the result is: 

R ( iij) ** 0 (the 9 x 9 zero matrix contracted from a 9 x 17 

zero matrix). 
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T ( J j ) = I (the 9 x 9 identity matrix contracted from a 

particular 9 x 17 matrix). (19) 

Furthermore, the particular 9 x 17 matrix T(i,i) of which 

T'iiti) Is a contraction, is defined by the property: 

T'(l-H,j) T(4,j ) = T ( 3 + '> J) t I^J^o . (2Q) 

Property (20) is the identity transmittance convention for up-

welling 9 x 17 transmittance matrices, of the form ~T(.j,j) , 

which we adopt henceforth. Examples of the use of (20) occur in 

(48) when 0v\ , and in (101) when /2 * J . 
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EQUATIONS GOVEUNII G THE R AND T OPERATORS FOR MULTILAYERS 

If the reader has been following the present development of 

the principles of invariance by comparing each of the preceding 

steps with its linear lattice counterpart in reference 4, he should 

by this stage have discerned the remarkable formal similarity be

tween the simple two-flow formulation of the linear lattice and the 

relatively more complex twenty-six flow case. The principle of 

invariance approach in the discrete space setting is of such funda

mental strength that the dimensionality and geometric complexity of 

the basic space Xn has no discernable affect on the apparent 

complexity of the formulations of the principles of invariance on 

Xn • Thus the preceding statements I - IV (Equations (10), (13), 

(14), (15)) of the principles of invariance on the cubic lattice 

are apparently no more complex than their simple two-flow counter

parts on the linear lattice of reference 4. However, the most 

remarkable feature of the discrete formulations is yet to come: 

In this section we show that the formal similarity between the 

linear and cubic lattice contexts persists up to the stage of 
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developing the recurrence relations for the R_ and T 
•ss-

operators. In fact, one merely verifies that he may repeat 

here the steps in the corresponding section of reference U, The 

only difference in the resulting functional relations is that 

they are matrix statements, and not scalar statements. Thus a 

scalar statement of the form: 

A , 
I- A3 A3 

found in reference U is now to be interpreted as: /\, {"i-ZuAil 

where I , A 1 , A 2 , and A 3 are any four mutually commen

surate matrices such that £l - AzA3~] is a square matrix whose 

inverse CI-A2 AT] "'exists. The question of the existence of this 

inverse in the discrete space setting was settled in references 1 

and 2. 

•* This suggests that one may expect the general partition relations 
and general recurrence relations in a cubic lattice to be independent 
of the structure of the local direction space associated with the 
points of the lattice. It turns out that this is true. The proof 
is accomplished by an appeal to the general partition relations (21)-
(24) of reference 2. Thus, to within the limitations of the capabil
ity of a computer, the radiometric interconnections between points of 
a cubic lattice may be arbitrarily increased beyond the presently 
considered set of twenty-six. The present method, with only minor 
changes, remains applicable. 
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As in the scalar or two-flow case (reference k), to establish 

the £_ and ~f equations we first establish the desired equations 

for a general partition of V^ 

General Partition Relations for Downward Flux 

Suppose Y^ is partitioned into two subsets Y«w and Vn-m 

such that Ym ~ (Co,o,i), , . . ? (0,0,m)j and Yn-*t ~ iLO)o)r^ + \)y..j (a,0,ri\\ 

To obtain the requisite relation for R.0,0) , start with 

principle III (Equation (14)) by setting K = m ? N/ \ (n +< ) s Q 

and writing: 

N + O ) cr N/-(0) R(l,n) 

(21) 

Next, in I (equation (10)) set j * m + f , | < r n s o that 

N^W + O ~ N-(">) R f ^ + , j n + 0 . (22) 
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Finally, in II (Equation (13)) set -j"= (Tj / = ) 

!\/_(m)zr N-(0)~T(O,rr)) ~+- N^ (nr)-i-i) (Z(m,0) . (23) 

Now if this were the linear lattice derivation we would next 

eliminate N~(W) from (22) and (23) in order to obtain an 

expression for |v/+( M + •) . Observe, however, that unlike the 

linear lattice case, we cannot make immediate use of the inter

mediate relation (23), derived from II, to effect the desired 

elimination because (23) uses N/|(m-<-() and not tJi(iy\+i) 

Recall that tsl+ Lrn -H) is a 17-component vector, whereas fv/+ Cm-fi) 

is a 9-component vector. The way out of this impasse is clear: 

Define a 17 x 9 matrix: 

c ' » \ n I > (24) 
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where I is a 9 x 9 Hentity matrix, and the zero denotes a zero-

matrix of dimensions to complement those of Q f and ~T , 

namely 8 x 9 . The matrix C is called the contracting matrix. 

It has the property: 

W+(j) C' ~ Ni-(i) , (25) 

for all .j , | ̂  -j' i f) . 

The contracting matrix can generally operate on matrices of 

dimension Hx |7 , H arbitrary, if C is used as a post-

multiplier. Thus if A is a y * \J matrix we will henceforth 

denote by A the ^ * 9 matrix: 

AC 7. (26) 

* This process of contracting a 17-component vector to a 9-
component vector is a special case of the general process of 
extracting an arbitrary submatrix from a general matrix, which 
generally requires two contracting matrices: one as a pre-
multiplier, the other as a postmultiplier of the given general 
matrix. 
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Returning now to the problem of determining the partition 

relation governing R( 1,0 + 1) , we postmultiply relation (22) 

by the contracting matrix C / ; the result is: 

Ni i (m-H ) =i N- (rr\ ) il'Cm + i , nti) , . . 

Inserting th is expression for M+(m+t) into (23): 

NMrvO ^ N-(O)Tt0,m) •+ N , ( m ) R'(rr\+\, n+i) R(m,o), 
(28) 

and then solving this for N~(m) , the result is: 

N-lm) ~ |v/.fo) T(o.m) [i - R'f M+I, A-M) R ^ o ) ! ~'. (29) 

Equations (27) and (29) are nov*. used to obtain the equation 

governing (M + (<v\ + /) : 
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This, in turn, is used in (21) to obtain the desired relation 

governing £ (I, n 11) ' 

-f KM*?) T{o,/n) [I- R'(m+\,n+t) RCIKIO)"]"' n'(,Y\ + t)n+-i) T(m+i 

Since |\j_ (.0) is an arbitrary vector, we have, finally: 

RO.nn) -

^ R(i,^ + i) +T(olrY))[l-R/(m+iln+l)R(m,o)~]~,z<[fr)+li,]+l) T(tn+iji) 

Relation (31) is the desired partition relation governing 

the standard reflectance operator for downward flux in a cubic 

lattice Xn . The partition { Y m ? Yf) _ m] of Yo is 

arbitrary. An important recurrence relation for |̂ Ci)n-f() may 

be obtained by setting rr\ = / . This will be discussed in 

detail later on. Now we go on to obtain the partition relation 

for T(0,n) . 
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Star t ing with principle IV (Equation (15)) by set t ing 

/ ~ ' = M and hi + ( n •+ i ) =r O , we have: 

K / - { n ) - N-(0)T(O,n) 

= N/-(">) T/m,n ) . 

From (29) and (32) i t follows tha t 

* NJ-(O)T(0|W) [ l - R.^m+1-n+i ) R.(m,0)~] T(^,n) , 

Since N/_ (0) i s a rb i t r a ry , 

(32) 

J(o,r\) - T(olry))lI-R'(wir\.r\+i)lUir>lU)~]~ T(m,n) 
(33) 

Relation (33) is the desired partition relation governing the 

standard transmittance operator T(OiO) for downward flux in 

a cubic lattice y 
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General Partition Relations for Upward Flux 

The functional relations governing the iZ. and ~f operators 

for upward flux in an arbitrary Yn 7 namely fZ(0,0 ) and 

I (1 + 1 j / j may be obtained in precisely the manner used to 

obtain R.(/, D - H ! and ~f( 0, n) associated with the down

ward flux, after making the appropriate changes in the boundary 

lighting conditions. Since it is important that the partition 

relations for R.(0,o\ and T(n-Hj / 1 enjoy the same confi

dence as their downward flux counterparts, they will also be 

derived step by step from the principles of invariance. It may 

be of interest to observe, however, that the desired expressions 

for fZ(ftiO) and T(n+\i |) can be read off directly 

from (31) and (33) when the reader takes full cognizance of the 

order of occurrence of the individual matrices in their express

ions along with their physical significance of each. This, 

incidentally, was the manner in which R(D/0) and T £ n + /,i) 

for the linear lattice (of reference 4) were obtained. 

We begin with the derivation of the partition relation for 

£1(010) with respect to the general partition [ Y ™ 7 Vn-A-i J 

of Yn 5 l i m i n . In principle IV (Equation (15)) set 
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M- (O) =r O , ^ =r m _, . ; ; then 

N/„ (n) = K i | ( n+t) R.(D,O) 

- N-lm ) T(rr),n) -+ is/f ( n-t-i) R(n,m) . 

In pr inciple I I (Equation (13)) , set j ' « An , /= / , then 

N _ ( m ) r : N / ( m + l ) ft(m(0) , , . 

In pr inciple I.(Equation (10)) , set ^m+l , \<v. r\ , then 

NZ+foi+D s K / { ^ - n ) T fnJ-|,»7i + i) -+ f \ J . ( m ) ( ? ^ i + / , n t i ) . 

(36) 

Next, contract each side of (36) by postmultiplying with the 

contracting matrix C (see Equation (24)). The result is: 

(37) 
W f (M+l ) ar ^^n+i)T'<n^i,w+i) •+IS/.{in)R

/(m4l,rt + i) . 

- 30 -

(34) 
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From (35) and (37): 

* N t ( ii+i ) 7"(n + i> m-n ) £(m,o) •+• N-fM) R'dn-n, v+t) R(m,o) ^8^ 

which can be solved for /\J_(rn) : 

N-Cn) -

- W + f M | T ' ( f l + i | m + i ) R(m,o) [ l - R Y n r r i , n + 0 R("\,o)J ~ (39) 

Using this in (34), it follows that 

- N i cn + i) R(f>iM) - f 

which in view of the fact tha t N ± (n +1 ) i s a rb i t r a ry , y ie lds 

the operator equation: 

R(nto) = 

= R.(n,m) + T ^ n + i.w-M) RO>M) [ l ~ fcWi, n+/)*fc<m,df) " T(m,n\ (40) 
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This is one form of the partition relation for R(P,o) in an 

arbitrary cubic lattice Yrt . The partition fym V/,( _ 1 

of /0 is arbitrary. 

An alternate form of (40) may be obtained by making use of 

a general theorem in matrix theory which states that: For any 

two equal-order square matrices A\ 3 A z , for which H i - A^Ai*] 

exists, then 

Aeli- A<Ai3-' = li-A zA,J-'A2 . 

If now we make the following identifications: A\~ R (m+\, n-t-t), 

Az ~ l<(rv\)o) , then using the above matrix theorem, (40) may be 

written: 

R(n]0) =r 

R(n,m) + T'in+i.m+i) [1~ &(m,o)P (tn + i, n+i)J 2(m,o) T(m,n) 

This is the desired form of the partition relation for 

in an arbitrary cubic lattice Yn . This is also the form 

obtained if a careful study of (31) is made and then (31) is 

translated, matrix by matrix, into the upward flux case. 
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It now remains to derive the expression for T(ntl) l) 

Starting with principle III (Equation (14)) in which we set 

N-tO) — 0 > K.— w , it follows that 

Nfin+i)"T/i'-fi,i) •=• N + irn-ti) T(1n + i , i) 

Using (35) and (37), we find tha t 

N i (m + i) = f ^ i (!n+n T '( n + i , fvp+z) -+• N/+f ro-f i ) R(m,o) R Ym-H, 

which may be solved for tJ+(r*+{) : 

V+(rr)+\) ^ N/lcn + i) T ^ OH-J , m+i) [ l - R(m,o) R(n-*+i,n + i)J ~l 

when t h i s i s used in (42), the resul t i s : 

N/+ (n-H) T ^ - H , i ) — 

= W i f n + H T ' ( n + i . m + i ) [ l - B ( w , 0 ) f c / f r « + i , n r i ) , 3 " ' T ^ M - H , ! ) , 

which in view of the fact that N!<r\ + t) is arbitrary, yields 

the operator equation: 
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T(r>+ht)- T'(fl+hr*-*i) Ll-K(m«>)R'(n*+i,n + i) J T^m + hll 

(44) 

This is the desired partition relation for "r(0 + i} i ) in 

an arbitrary cubic lattice in • The partition f YIY> , Y*i-m J 

of in is arbitrary. Equation (44) is also the form one would 

obtain by a careful direct translation of (33) into the upward 

flux geometry. 

General Recurrence Relations 

The act of setting m s=. | in the general partition 

\ Vw j Yfi-M [ of the cubic lattice Yo. maY D e intrepreted 

as the addition of a point to the sub-lattice Y»-. - \ (°>0> 7 ) >" -> (o'°> n'i . 

Hence if the R, and T operators are known for the sub-lattice 

Yn-| > ̂  becomes a simple inductive step to arrive at the (Z. 

and T operators for Yn = ( O i ^ ^ U in-i, Thus setting *vi = I 

in (31) yeilds the desired recurrence relation for R(t,n-t-\) : 

R( \,n+\) *Rt\,z) ^ T{o,i)\j-R'(S,n+0R (itO)']''R.'(3,n + ?) T(?, 0 
(45) 
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From this it may be observed that the 9 x 17 matrix RClfO-rl) 

associated with the lattice Yn = ] (0)&>l) ? ... (O,0,r\))xs determin

able once we know the 9 x 17 matrix R(2) n •+•/] for 

Yn-i = j(-°)°^U-.. (0'O,n)\> along with the operators R ( i ^ ) , 

T(o,i) » R(>)0) > a n d TtZ/i) 

The latter matrices are the reflectance and transmittance 

operators for the cell associated with the point (Ot 0}() of 

Yn • Equivalently, from the point of view of the extended 

cubic lattice, these operators are the reflectance and trans-

mittances associated with the single layer at level 1 in the 

extended cubic lattice from which Yn w a s constructed. The 

single layer at level j in the extended cubic lattice will be 

called the monolayer at level -j . In the simple linear lattice 

case (reference 4) the reflectance and transmittance of a mono

layer are obtainable directly from the ?L. -function of the 

linear lattice. The case of a monolayer in cubic lattice, 

however, is more complex. This follows from the fact that the 

cell at level -j' in Yn ca" interact with the eight neigh-

boring cells at level 4 in the adjacent Yn of the extended 

cubic lattice, a situation which could not occur in the linear 

lattice. Hence it becomes a separate task to evaluate the four 

operators Q (^ , j+ \) ,T<j'-l;j) , RY;j\j-l) , T(j'+l.i), 

associated with the monolayer at level j in a cubic lattice. 
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A special section below is devoted to this task. 

We now continue with the derivations of the general 

recurrence relations. By setting m = I in (33), the result is 

770.A) = T<O}I) f i - tfY^n+i) R(i,o)] '-TO,n) 

Hence if 77', n) and g ' ^ n + n are known for the sub-

lattice Y«-, - fa*,z),..., (0,0,0)) o f Y n , a l o n g w i t h T ^ ( ) 

and Rn,o) for the nonoiayej. at level -̂  then - p ^ ^ 

for the lattice Y n - /f<W,/) , ... ? (0,0,0)) is determinable. 

Because of the presence of R'<*,* + ,) in (46), it follows that 

any systematic numerical computation procedure must first deter

mine the R.{j,n + i) operators, \ S j < n by means of (45). 

This fact will be taken into account in the computation procedure 

below. 

Equations (45) and (46) are the general recurrence relations 

for downward flux in an arbitrary cubic lattice Yn . Equations 

(47) and (48) below are the general recurrence relations for up

ward flux in the arbitrary cubic lattice \« . They are obtained 

from (41) and (44), respectively, by setting m - n - | . 
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- o 

R(n>(3) =» 

X(ntn-i)+- T W l ^ ) [ l ~ Q(n-ilo)R/(n,n-ti)]',^Cn-,lo) T(n-i,r>) 

(47) 

T(n-M,n ^ T'(n + \,n) [ ] > R (n-i, J) R'Vn.n + /)]~ ' T(n>{ j 

(48) 

The recurrence relations (47) and (48) may be given a 

physical interpretation as follows: Suppose the R and 7~ 

operators for upwelling flux are known for the sub-lattice 

{(0,d,i), .. . (0,0, D-i)1] , i.e., we know [2(0-1,0) , T(D,/) . 

Furthermore, the R and T operators for the monolayer at 

level O are known, i.e., we know 2(0,0 ~t) ,T(n+i,o) , 

fUn,n-t-i) , and T(^-^n) . Then the recurrence 

formulae (47) and (48) show how to obtain R(f),0) and T(n + i,ij 

for the lattice /(0,t>,i) v .. (0,0,0)] where n is an arbitrary 

integer, f) •>• | 

An examination of the recurrence relations (45), (46), (47), 

(48), shows that before they can be used the various R and T 

operators for an arbitrary monolayer at level 4 in Yn must be known. 
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Observe that the general partition relations cannot be used to 

obtain the monolayer operators; for by setting n (and therefore/-

m ) equal to unity in (31), (33), (41) and (44), one obtains 

mere identities by virtue of -Equations (16) - (19). However, 

the way out of this difficulty is easily effected by appealing 

once more to the principle of local interaction. This will now 

be done. 

THE R AND T OPERATORS FOR A MONOLAYER 

Introductory Remarks 

In the course of deriving the four recurrence relations 

governing the R and ""]"" operators for a general multilayer 

(preceding section) it was found that in order to initiate an 

actual computation procedure, each of the four recurrence re

lations required explicit knowledge of the four R and ~f 

operators for a general monolayer of the extended cubic lattice. 

It was further noted that the general partition relations for a 

lattice are unable to supply the required monolayer operators, 

since the partition relations reduce—as they should—to identi

ties when an extended cubic lattice of unit depth is considered. 
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The purpose of this section is to derive the required general 

formulae governing the four R and T operators associated 

with an arbitrary monolayer in the lattice. Toward tnis end, 

the principle of local interaction may once again be called 

into service. By mec-ns of it we may quickly and completely .= 

solve the present complex multiple scattering problem. 

To prepare the ground for the application of the principle 

of local interaction, we now outline the essential physical and 

geometric aspects of the present problem. Figure 2 shows the 

eight immediate neighbors of the point (o,o,j) (which is the 

/[ fh member of the column Yt\(0,o) > see Figure 1). To fix 

ideas, suppose the entire monolayer is irradiated by a steady 

collimated specific radiance in the direction of the unit vector 

-&. . The point (<?,<?, j) , as each of the countably infinite 

other points in the monolayer, redirects some of this radiance 

into the eight directions about it toward its eight immediate 

neighbors in the cell associated with (0,0, j) . An inter-

reflection (a multiple scattering) process is thereby initiated 

within the monolayer. At steady state a certain fraction of 

the incident flux escapes from the monolayer, another fixed 

fraction is continuously cycled within the monolayer, and, 

finally, a third fixed fraction is lost by absorption. On one 

hand the local conservation property allows us to conclude that 
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the sum of these fractions is unity. On the other hand, the 

principle of local interaction allows us to deduce directly 

the individual steady state magnitudes of the radiance distri

bution in each of the twenty six directions about (os 0, , ) . 

In short, the principle allows a means of explicitly calculating 

the components of the specific radiance vector (V(j')at (o,0,j). 

(See Equation (l).) 

The requisite vector form of the principle of local inter

action is given in Equation (18) of reference 1. This equation, 

written in its most general form, is: 

NM*j> = N-(ar^ Z ( xd) -+• N°(xy) Z°(-Xj) • 

The mathematical definitions of the terms are given in complete 

detail in reference 1; therefore, they need not be repeated here. 

However, it will be helpful to restate the physical interpreta

tions of the terms. (S/+ (.x ) is the specific radiance output 

vector of the point DC • in the general discrete space X n ; 

NJ_ (Xj ) is the field radiance input vector to the point x- . 

Both NJtt#j) and M-(Zj) generally have |T* components. 
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In the present case, because of the adopted eclipse conventions, 

they each have 26 components. The vector h}°(a)±s the source 

vector at x • , and represents input sources of incident radiant 

flux on Xj originating from outside Xn . The matrices .2f( JC. ) 

and ~Z (-Xj ) are the local scattering matrices which transform 

the incident radiances on yJ into the output radiance from CX. • 

To adapt the general formula (49) to our present needs, we 

imagine the nine points of the horizontal section of the cell 

associated with ( o, 0, -j ) to form a closed system imbedded within 

the given extended cubic lattice. This is rigorously permissible 

in view of the properties of the associated quotient space Yn 

of the extended cubic lattice. (See the discussion above in the 

section entitled. "The Associated Quotient Space".) Thus the 

term Nl°£2j ) £°(X}) of (49) may be used to describe the 

effect of the radiances M_(j-l) , M+(j+|) incident on the 

monolayer from its upper and lower neighbor layers on levels <j—\ 

and ^ + i , respectively. The output of the j'+fi monolayer in 

the direction of the j-i and j'-f. I layers will then be 

described respectively by the components Nj-(j1 and N^-^j'j , 

of the vector N (j) which are defined in (2) and (4), respect

ively. The cycling radiance within the Vth monolayer will then 

be described by the component rJo(^) of K/(i' ) which is 

defined in (3). Recall that, by virtue of equation (l) above, 
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the mutual relations between these vectors are: 

N M ) ~ [ K M I ) , M-<j')J 
(50) 

and 

| \ M 0 ) = [N< ( J ) , N/Wj')] 
(51) 

The Local interaction Principle for Horizontal Radiance 

With these preliminaries in mind, it should then be clear 

that the requisite special form of (49) for the present closed 

system is: 

N„(j)= N8(3) Z ^ ^ H " W°h) 2 ° ^ ) • (52) 

Observe that the vector f00 (3) plays a dual role in (52). 

As it stands on the left side of (52) it is an output vector. On 

the right side of (52) it plays the role of an input vector. This 

dual role is a consequence of the mathematical fact that 

N oil) = N„(j) M ) 
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where H is the permutation matrix for the present closed 

system. (For the detailed description of M , see Equation 

(21), reference 1.) The dual role of M&fjj may also be 

understood from physical considerations of the radiant flux 

pattern within the v'ld monolayer. (See Figure 2.) Here, 

any given output component of NA»lJ ) , say the one which 

directs flux from (0,0, j) in the ^-direction, is at the same 

time an input radiance on (0,0, j ) coming from the neighbor 

of (O^O, j ) which lies in the (-jj-direction from (0 ,ot <} . 

The General Solution for Horizontal Radiance 

With these observations, it follows that /£~9(-j) is an 

8 x 8 matrix of the form: 

2 ( j ) £,. ; fio) 2tj';J„ ; 5"/7) 
\ 

5 o ( i ) 

X ( j J f n > Si* ) ?(ii fh \ %n ) J 
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For notational reasons which will become clear in the 

discussion that follows we relabel the matrix (53) as: S (-i j 0$ O) • 

Formally, then, we set: 

r^i) ~ S(/',fl;o) (8 x 8) matrix . (54) 

The notation £0 lj ) has now completed its purpose of allowing 

a conceptually smooth transition from the general context of (49) 

to the present special monolayer context. 

The solution of (52) for NQ(j) is straight forward: 

(55) 

The existence of the inverse of I-S(jj£>50) is guaranteed 

on the grounds that S^j'j^jO) is a norm-contracting operator 

(Equation (28), reference 1.) Equation (55) then represents the 

horizontal flux within the V f It monolayer induced by radiant 

flux incident on the monolayer either from the directions within 

2! o or ÊL ~ ~ET o , or a combination of these possibilities. 

The matrix 2°(j)in the present general case directs the flux from 

the directions of the source vector into the direction space 3T 0 

within the monolayer. 
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The Auxiliary Scattering Matrices 

In order to describe the response of the A \\\ monolayer 

to i r rad ia t ion from the -j - I and A +• | monolayers, we must 

formulate several special forms of the local in teract ion pr in

c ip le (49). We now define the special scat ter ing matrices which 

a r i s e in such a formulation, and col lec t them for convenient 

reference below. The symbol (oL * /3 ) to the l e f t of each 

matrix gives the dimensions of the matrix. For completeness, 

we include $( j ' ; 0 ; 0) once again in (60) below. 

(9 x 17) 

(9 x 8) 

S( j i + i-H) =x ( X ( j ; U]^)] 

$({>+ iO ) 

I £ <* S 9 , 

I i /J S 17 

I ^ * s 9 

(56) 

(57) 

(9 x 9) S ( / ; f $ - ) * = il (58) 

(8 x 17) SCii 0, + 
tO ^ oL < ( 7 

I S f3 «• | 7 
(59) 

(8 x 8) S ( i ; 0;0) 
I O <• >* ^ 1 7 

i o ^ / 3 « n (60) 
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(8x9) sn;'i-> ~ ( 1(y^*]Sr)\0±c<±a (61) 
\8 ^(i =5: 26 

(9x17) 5C/;-i+ J - | < ̂  < 17 (62) 

.. 15 & ̂  ̂  2-6 
(9x8) S(^-;0) * " [Q^p ^ n (63) 

18 < ~< ̂  2& 

(9x9) S(j'-^-) = " | 5 ̂  ^ ^ 2 6 (64) 

It may be helpful to point out that the four matrices SCj 3 "f 5"+"/, 

S< i '•> + i ~ ) , SCi j ~ 5 "* ) , and S O ' j - j - ) defined above 

have the same dimensions respectively as T(l+I> j') > R( i 1 -') > 

R-( 6 lj ^~l) > T( j"' ) j ) t the four required R_ and T operators 

for the monolayer. In fact, if there were no cycling horizontal 

radiant flux within the level A (which is essentially the case in 

the linear lattice in xvhich there is essentially only one point 

comprising the monolayer)then we would have RC^'; itl)
 =r S<f j ; — ', -r ) 

etc. However, an interreflection process at a given point within 

the j K monolayer exists by virtue of the presence of neighboring 

points in the layer. Thus an interreflection term must be added to 

5 (_j. _ . 4) before it can be equated to f? ( j' ( j + |) . 
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The Required Forms of the R and T Monolayer Operators 

1. Downward Flux. 

Let the j'^ monolayer be irradiated by an arbitrary 

(]-l) monolayer radiance distribution, tJ-i^-l) • This 

vector then acts as the source vector N°LJ) in (52). There 

are no other sources on the monolayer at this time. Let ^J0(^ ) 

now denote the cycling horizontal flux induced by this source. 

The general local interaction principle (49) now applied once 

again to the monolayer as a discrete space imbedded in the ori

ginal extended cubic lattice, states that the reflected radiance 

vector NJH ( j ) is governed by the equation: 

<\Mj) - Mo(j) 5(^3 u3+) + N-(j-) S^'*~;+) . (65) 

For this same source, the transmitted radiance vector Kl~ ( -j ) 

is governed by: 

N-l j) =? K M j ) SO'jO;-! -f- N-ii-t\ S( j j ~ }~) ( 
(66) 
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Now using the reflectance operator R^j'-w) ar*d the 

transmittance operator TO-', J') f°r downward flux incident 

on the >' f J, monolayer, we may also write 

IV t (] ) = N-(j->) R/j'.j'fl) 9 

,N,'_ (•,') = N_(j-l) T(j-iji) , 

which follow from the two main Principles of Invariance I, II 

(Equations (10), (13)) by setting / =r-j'= «" , and using the 

present source hypothesis that KAf f;|i) s 0 . 

From (55), the vector J\}0 i j ) is now given by 

Noli) = N-(i~i)S(y} 0'}-)[l-S<iit>so)] 

Combining (65), (67), and (69): 

-i 
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Since N/~ ( j - l ) i s a rb i t r a ry , i t follows tha t 

(70) 

Repeating this proceed for the combination of (66), (68), (69): 

NUj-0 ̂ 4-1, j) = W.(4| •= 

= N-if-0 Sc^'-jo) [l-5^i0;oj]-'5o"i^i-) •+ W.ll-ilS^'j-j.) 

and since K/-(J-I) is arbitrary, 

Tfj-',i) ' S(j'3-5-) -t- Slji'so)ll-SCy,Oio)]-iSCdi0i-) 

(11) 

2. Upward Flux. 

The pattern of derivation is now clear. To determine 

the R_ and 7" operators R. I j ,y i) and Ttj'tijj) for upward 

flux incident on the <j' fh monolayer, we first write down the 

requisite special form of (49) with N°(j ) n o w replaced by an 
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a rb i t r a ry upward radiance d i s t r ibu t ion |S/j(jfl) from the 

j-H monolayer: The cycling horizontal flux hJ0(j) within 

the ^ {\\ monolayer i s then given by 

Vo<i) = hjiti + D S(j^-)o)ll-5(iJ0',0)]'f 

The reflected downward r-adiance distribution l^-^j) and trans

mitted upward radiance distribution N/+ ( j) are then described 

by: 

M- i j ) « (Wo(j') d(ijO)-) + rw[^>n $( J ; f 3 - ; 

(72) 

(73) 

N M i ) * NMj) 5 ^ ' i O i f ) + **<{«) 5 ( ^ j f ; f ) (74) 

The main pr inciples of invariance I and I I (Equations (10), (13)) 

now yie ld : 

M - ( j ) » M4 f j H ) R ^ , 0 - i ) , 

NJf ( j ) * M i < ; jH| T f d-f'i j ) ; 

(75) 

(76) 
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by setting /= ̂  = /< and using the present source hypothesis, 

fv-i j-')* 0 

Combining (72), (73) and (75), we have 

- NJ,' (J+M S ( j ; f ) « ) I ' T~ 5 r 3 ' ^ ^ ) ] " ' so" ; 0*} -) 

whence 

R-^'.i-O - S^f)-)+:S(i;So)[l-S(fi^)]*lS(J;oi-] (77) 

In a similar way, we find: 

T U H . J W 5(jj-h54)i- S ( J > } 0 ) [ l - 5 O ' ^ J 0 ^ " 1 SCj ;*>;+•) (78) 

Equations (70), (71), (77), (78) give the required reflectance 

operators for the A {\\ monolayer in an extended cubic lattice 

under a plane boundary lighting condition. 
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REMARKS ON THE FOLARITY OF THE R AND T OPERATORS 

The Polarity Theorem 

Knowing under what conditions polarity of an optical medium 

is to be expected, a]lov;s the theorist or computor to occaisionally 

simplify his work by choosing the appropriate form of the R. and 

T functions on the medium. The concept of polarity in radiative 

transfer theory was defined and discussed in reference 4. The 

discussion of the polarity of the R- and T" operators for a cubic 

lattice proceeds in a manner similar to that for the R- and T 

factors associated with a linear lattice. We shall therefore not 

enter into any further analytical details here. 

Because of the more complex local direction space ZH. in a 

cubic lattice, there is more of a chance, so to speak, for polarity 

to arise. One would then expect the Polarity Theorem for the 

linear lattice to be modified in the cubic lattice setting. The 

form which the theorem now takes is: 

Polarity Theorem for Cubic Lattices: (i) If Yn is isotropic at 

every point and is homogeneous, then the & and T* operators 

possess no polarity. That is: 
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R'C i,n -ti ) - ^Cn,0) , (79) 

T(a , n ) = T'f/» + -/') (80) 

(ii) If 'n is isotropic at every point but is not homogeneous, 

then the R and T operators generally possess polarity, That 

is: 

R^'.rn-i ) Jsr 0.(0,0) } 
(81) 

T (0, 0) ^- T'(n-H) I) . (82) 

One implication of the theorem is that if Yrt is isotropic 

and homogeneous for all points of \n except one point then one 

may generally expect polarity of the /̂  and T operators associ

ated with Yfl . /mother implication is that isotropy of all the 

points of |h does not generally guarantee isotropy of To : 

Statement (ii) asserts that the presence of inhomogeneities in an 

otherwise isotropic medium gives rise to anisotropy on the quotient 

space level. 
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The proof of the present polarity theorem may be based on 

the general recurrence relations (45), (46), (47), and (48). 

The proof, which is quite simple, begins by setting fl? £ ±n 

all of these equations. This simulates the case of a two-layer 

cubic lattice. Because of the possibility of a quotient space 

interpretation, the two layer lattice may well represent the 

partition into two layers of a continuous slab of arbitrary 

finite depth. An examination of the resulting two-layer express

ions under various assumptions on the homogeneity and isotropy 

properties on the point level yields the two conclusions of the 

theorem. 

A Specific Example of Polarity 

Instead of the formal proof, we will give an example of 

sufficient simplicity to allow the reader to perceive intuitively 

the polarity of the R. and T operators in a specific case. 

Consider a continuous slab X which consists of two homogen

eous isotropic contiguous layers A and B whose boundaries are 

parallel to the x<j plane. The upper layer A is purely absorbing. 

Hence in A the volume scattering function (H is identically zero 

on X * -̂ . and the volume absorption function has some constant 
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fixed value a . The layer B is purely scattering so that 

Q,~ 0 on B, and CT has some fixed directional structure inde

pendent of depth in B. The slab considered as a whole is 

therefore inhomogeneous, and isotropic at each point. 

Suppose a single pencil of radiant flux of unit radiance is 

normally incident on the upper boundary of A from above. The 

pencil is transmitted, unscattered, to the boundary between A and 

B. Thus as the attenuated flux reaches this internal boundary, 

it is still in collimated form and normally incident on the 

boundary. The layer B transmits the incident flux which emerges 

in some fanned out directional pattern, say P_ , at the lower 

boundary of B. The pattern FL is characteristic of the T 

operator for B. 

Now suppose the lower boundary of B is irradiated by a 

normally incident pencil of radiant flux of unit radiance in the 

upward direction. Layer B then transmits this flux and the flux 

emerges in some fanned out pattern Rf at the boundary between 

A and B. Of course the absolute magnitude of the transmitted 

radiance through B differs from the previous case, but it should 

be intuitively clear that the directional structures of P— 

and f̂_ and the relative amounts transmitted by B are identical, 

Symbol .ically, R_ zz P¥ . 
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Now the pattern P4. is transmitted to the upper boundary 

of A. Because A is purely absorbing, the emergent directional 

pattern P+ of the radiance at the upper boundary of A is gen

erally different from the common pattern of P- and P+ . 

The pattern P+. can, in fact, be easily calculated, given P4- . 

Thus the downward and upward radiance transmittance operators of 

the slab ) \ are different. A similar argument can be made for 

the downward and upward radiance reflectance operators associated 

with X ' 

Of course, in real life no such slabs exist; but one may 

imagine a continuous, gradual departure within A and B from these 

ideal extremes. Since polarity is a yes-or-no phenomenon by 

definition(i.e., either there is polarity or there is not polarity) 

it is clear that polarity will persist as the departure from this 

extreme case is made as long as the medium X * A + B is inhomo-

geneous. This completes the example. 
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GENERAL SOLUTION OF THE TWENTY-SIX-FLOW PROBLEM 

Solution of the Problem 

All of the pieces of the solution of the twenty-six-flow 

problem in an extended cubic lattice have now been manufactured. 

It remains only to assemble them in the proper order. Suppose 

then that (sJ_ (0\ represents a 9-component radiance vector at 

each point of the upper boundary of an extended cubic lattice 

Xn of depth n . Then the downward radiance vector Kj^(-j) 

at level j , is given in terms of N/-C0) by (29), and N+(j) 

by (22) once N,(j) is known. The R. and T operators 

appearing in (22) and (29) are defined by (31) and (33) for the 

downward flux, and by (41) and (44) for the upward flux. Using 

equations (45), (46), (47), (48) these recurrence formulae may 

be used to obtain the general K and T operators once the R. 

and *T operators for a monolayer are known. The formulae for 

the monolayer operators for the present problem are given in 

terms of the basic *<L -function of X n in equations (70), 

(71), (77), (78). This entire procedure may be applied mutatis 

mutandis to the problem of an incident radiance distribution at 

level n , i.e., when W-(0)=*O and M l(r\i-\)=fc o . 
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Boundary Effects 

The preceding general solution may be used to take into 

specific account the effects of reflecting boundaries of a 

medium. This can be done in two ways: (i) By assigning to 

S . -functions of layers X a n d H the reflectance and 

transmittance properties of the boundaries of the medium, (ii) 

By adjoining to ^n the additional layers labeled O and r\-t\ 

which are then assigned ZF-functions which represent the 

boundary reflectance and transmittance data. This latter method 

will be used in the computation procedure given below. 

Superposition of Solutions 

Since all of the presently used principles and operators of 

discrete space radiative transfer theory are linear, the basic 

solution above may be used to find f^+fj) and NJ. ( J ) when an 

arbitrary set of incident source conditions are given at the upper 

and lower boundaries simultaneously. This is accomplished by 

adding together the contributions to M4 (j) and to N-(j) from 

each of the boundary sources. 
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Homogeneous Isotropic Media 

In the event that a homogeneous isotropic extended cubic 

lattice Xn is considered, the basic solution procedure for 

the medium is considerably simplified in view of the Polarity 

Theorem. (See Equations (79) - (82).) It would in this case 

be sufficient to compute only R C j , n-H), 16 j S 0 and 77 d', n ) 

0 ^ 3 -Sr n -1 for downward flux. Under these conditions 

we have in addition: R ( { K ) ~ R/jv, K') and T/j,K) = Tlj',*') 

whenever K - .{ =: \< - y1' $; O 

The Internal-Source Problem 

The present work has considered the so called complete two 

boundary problem (using the classification scheme of plane-parallel 

transfer problems, reference 5). In such a problem, the radiance 

distribution is required at each point of a medium which is arbi

trarily stratified, has generally two refleeting-transmitting 

boundaries, and the only sources of radiance on the medium are 

those which irradiate the boundaries from without. The internal 

source problem on the other hand hypothesizes that the same 

medium generally has its internal layers directly irradiated by 

sources, and requires the determination of the resultant radiance 
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distribution at each point of the medium. This problem may be 

solved using the techniques of discrete space radiative transfer 

theory. To solve this problem it is found that the principle of 

local interaction muat be pressed into use in all its guises: 

in the form of the invariant imbedding relation, the principles 

of invariance, and the local interaction principle itself. To 

formulate and solve the dnternal-source problem here would con

stitute too great a digression from the present goals; this task 

will be reserved for a subsequent report. 

THE PLANE-PARALLiiL MEDIUM AND ITS ASSOCIATED CUBIC LATTICE 

The purpose of this section is to outline the sequence of 

steps to be followed whenever a cubic lattice representative of 

a plane-parallel arbitrarily stratified optical medium is to be 

constructed. 

* With only minor notational changes ( g -notation to &,-J an
notation) the following construction procedure is immediately 
applicable to an arbitrary space y0 which is to be imbedded 
in a general cubic lattice. The only material change in the 
formulations is the appropriate generalization of the distribu
tion factors Dl (see (84) below) which are here specially 
designed for the plane-parallel setting. 
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In this way the complex multiple scattering problem in a 

continuous medium may be converted into its more tractable 

discrete counterpart. There are two main steps in such a 

construction: (a) The partitioning of the body of the given 

plane-parallel medium into a finite number 0 of a contiguous 

slabs. These n slabs along with the (generally) two bound

aries of X are assembled to form an extended cubic lattice 

Y-n + z of depth 0 + 2 . (b) Each point of a column of the 

associated quotient space Yn +2. is assigned a local scattering 

function £- and local absorption function A in such a way 

that these functions are related as naturally and as closely as 

possible to their continuous counterparts in X , and such 

that they satisfy the local conservation property (Equation (11), 

reference l). 

o 
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Construction of the Lattice 

We begin with an outline of the first step in the 

construction of the associated lattice. X is the given 

slab, i.e., X3- \CX,1,2) : 0 ^ 2 ? Z,J with unit outward 

normal Ji (See Figure l). Let X be arbitrarily stratified, 

i.e., let its optical properties be constant on planes parallel 

to the plane Xa v f (z:%£) : £=&j which is the upper boundary 

of X • As in reference 4, divide X into ft slabs a • 

I i J £ D whose boundaries are parallel to 0Co y and such 

that the ^ slab X' is of vertical extent A J . Let 

S-n+i^ \(lrt,i) : Z-2, j be the lower boundary of X • Tne 

ordered collection {x0lZn . . . , Jcn, Xn + t) of subsets of X 

assumes the role of the column Yf>^i(0}0) ±n the associated 

quotient space i n+2 of the cubic lattice. The subset JC ' 

0 =6 ̂j £ n +1 of ^ 3 will assume the role of the j±h 

point of the column Yn+z Lo,o) . Hence ^ 0 = r A n + , = O „ 

For computation purposes, the subsets X • I £ / % n will be 

considered concentrated at the point ( 0,0, 2j) in B3 where 

7:j is the mid-depth of the slab OC- : 

We will once again abbreviate the column notation Y* -* 2 ( o o) 

to Yn/2 . 
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Construction of the Local Direction Space 

The second main step in the construction of the cubic lattice 

is the assignation of the X and A functions to the points of 

the column Y^ + z. - For this part it is necessary to know first 

of all U~ and CL , the volume scattering and volume absorption 

functions on )( , and secondly, to know the reflectances and 

transmittances of the upper and lower boundaries 0Co and 2f of 

A • The latter information is coded in the form: if '(O \ $ • ' f ) 

and ^ ( n + ( ; $\ ; J K) > respectively, where $/_, jT(< are elements 

of the set of twenty-six directions of the common local direction 

space -X of each point of Ya + 2 • 

Before this assignation can be performed, however, it is 

necessary to explicitly give the formulas for the elements of ;=" 

The most natural display of ]=r is as follows (next page): 

/ 
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. / 

— + • 

r 
S, = (o,o,-i) 

< \ " , = ( \,ori) f ~ < I . ' , -'^ S 
€ f* 

s J 4, 

VI 

>,-«) 
7 \ry 

? 

- ^ - O « 

7 \ry 

- 64 -

$ > - * 

(83) 

£ : (> ' , - i ) 

CI ) - / ; -<] 

V3 

r,a -_ ( 1 . 0 , 1 ) 
S. 

< ! ; ! . ' ) 

VT ^ * V? 3*>" ~ W * * 
<°JS') f _ r-'^wi 5*,« 

\iT 

S a , = (zhzl±i] c ^ , - I , I ) 

v~a 
S2«f =» 

\/a J? r >2X 
V3 

V ? 2 6 - (0,0,1) 
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This display is patterned after the usual (Q^ fc) 

representation of directions using polar coordinates. The .' 

vector f, is the zenith or basic outward direction, the 

vector 5^6 is the nadir or basic inward direction. All the 

others are arranged so that they cover each & -level in an 

increasing (j> -fashion, starting with G — O , and ending 

with 0 = IT . (See Figure 3, which depicts the cell associated 

with the origin of G 3 .) 

Construction of the Attenuation Functions 

The task that remains is the assigning of the 2 and A 

functions to the remaining n points of Vo + ̂  • Toward this 

end, partition the unit sphere ~ZL in E3 about X- into 
si 

twenty-six regions -̂  ; of equal solid angle measure \_TL- ( ETJ ) =• 

4fr/<?4» such that Tj
 £ —: . The precise geometric description 

of these subsets of 32 is best left to the individual pro

grammer; even equal solid angle requirements may be relaxed for 

individual cases. We will require, in addition, the twenty-six 

distribution factors D j '• 

f oMUf) 
D< - ~ ^ , ,<v^d (84) 

a i 

file:///_TL
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it 

Now by means of the basic re la t ion 

c<(2\-=. <X(Z) •+ ~d.Lt) (85) 

where 

^(i] x \jr(i' *'> f ^ d^($) (86) 

is the value of the volume total scattering function ,4. at 

depth £ , and oL is the volume attenuation function, we may 

write 

<*(2,f<) = .o.-(i,..%i)-f 4(1, Sx). (87) 

* If X is anisotropic, relations (85) and (86) still hold. In 
this event the direction of the incident flux should be explicitly 
included. This is done in (88). Hence from (88) onward, the 
possibility of anisotropy is explicitly carried along in the notation. 

http://~d.Lt
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where 

ot(Z, f j - OA- o(CS) 

0 <2> Tv) = Q x a (2) 

4(2.- J J = D,' Ad) 

(88) 

_. / 
Furthermore, for 3X- f c: , define 

ZmSi \cn) = e J 4- Aj D ; } <r^; s . 5 r ) o / i a r s ) , 

and for 5 ^ ^ , *S i , S K £ ^ ' > define 

and finally, define 

/ W ^ y j = ff<*;,^-)4j, ( 9i) 

where ^ in (89) - (91) takes on the values ^ s l , . t n 
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Demonstration of the Local Conservation Property 

The local conservation property for the functions jSf (o • » • .. ) 

and f\(°j •) associated with X0 (and also those for 

Xn-t-i )is animmediate consequence of the properties of the 

reflectance and transinittances of surfaces. For the case of 

the points OC • , Ii J S H , however, the local conserva

tion property is not supplied automatically and must be verified. 

Now we have defined £ and /\ above in such a way that the 

local conservation property is arbitrarily closely approximated, 

the finer the subdivision of X . To see this we merely recall 

that Q~~ J>3«; j maybe represented exactly as: 

where the "o" symbol stands for a function with the property: 

0(6) 
— +o 

as S —*- O . Hence for sufficiently small ,/J ' , 
J 

0 (<*"(*/, ft-) Aj) can, for example, be an order of magnitude 

smaller than oc(>; , $^ ) 4 y . Combining (87) - (92), i t follows 
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tha t 

Aii ;(:) + Z3-(iifiiM = 1+ ° («<•*>,*;) As) f m 

for every j" , j ̂  ^ <• n and each f^ 6 H . Hence 

for a given slab X over £o, j?*} and a sufficiently large 0 

the local conservation property becomes arbitrarily closely 

satisfied on Yfl+Z • (See Equation (11), reference 1 ,for 

general statement of local conservation property.) 

An alternative to (89) and (90) would be: 

2 ( / ; L j J ^ = ^ j 0 / A y fit; J / ; F „ ) (95) 

This alternative way of defining J>L would perhaps be 

more welcome in the tedious preparation period prior to a 

numerical calculation propram. Now, however, unless CT is 

isotropic, (93) can only be approximated, even as max \ A: f -^O . 
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COMPUTATION PROCEDURE 

This section contains a finite sequence of rules which 

constitute a computation procedure leading to the numerical 

tabulation of the radiance distributions N ( 3' ) "=sr L_M+(i) ,; N/-(j'j]]5 

/j = 0, I } ,,, ; ) 1 , |1 +/ , on a cubic lattice V o + 2 with 

reflecting boundaries and source conditions at the upper and 

lower boundaries. Before proceeding with the actual details, 

some preliminary remarks are made which can insure efficient 

use of the computation procedure. 

Preliminary Definitions and Observations 

Definition:' Let X represent an arbitrarily stratified iso

tropic plane-parallel medium between the planes at geometric 

depths ;?0 , and ^, ^ %0 . Then if <̂ - is the volume 

attentuation function on X > the optical depth T( I'JX") 

of a general subslab of X defined by the interval C 3 ' i '' 3 C 

C &b,2j is ; 

2" 

-C(i\2") = [*(*)dZ (96) 

* I f Xn i s anisotropic , then instead of ot use occ-j = - [cxi-, s,) 

<*(-,&<}] over Q ? 0 , 2 , 1 
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Hence, to any geometrical depth 7- — 20 in X below the 

7 0 - boundary, ^ 0 <• % -5 i? / there is assigned an 

optical depth ; 

Definition: Let X represent a plane-parallel medium. Let 

O^ and Q~ represent the volume attenuation and volume 

scattering functions on X and X *— *~ respectively. Then 

the medium X is said to be separable if and only if the 

phase function /Q : 

y2 zr ATi 0~/oL ( 9 ? ) 

defined on X> — * 3 £ > is independent of optical depth r in 3? . 

Observation: If a plane-parallel medium X i s separable, then X 

becomes a homogeneous medium under the replacement of geometric 

depth 2-Zo by optical depth V , i.e., under the adoption of 

the optical-depth coordinate system. 
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Observation: It follows from the preceding observation and the 

Polarity Theorem ( (79) - (82) ) that the R and T operators 

of an isotropic separable medium are polarity-free in the optical-

depth coordinate system. 

Observation; If X is isotropic at every point, then there are 

only three basically distinct directions of ~=T _ along which 

pencils of unit radiance may impinge on a point of DCo (the 

upper boundary). These directions are distinct in the sense that 

the resultant light field from a unit radiance impinging on the 

point along any of the other 6 directions of "3t — is, after 

a suitable rotation about the 2 axis, identical to that asso

ciated with one of these three directions. In the notation of 

(83), we will choose ^^H > IzS > and F2& as these basic 

directions. 
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The Seven Stages of the Computation Frocedure 

STAG£ ONE: DEFINITION OF Yrw2 

(a) Basic Data Assumed Known: Reflectance and 

transmittance of upper and lower boundaries 

of the given plane-parallel medium X ; the 

volume attenuation function (X of X ; the 

volume scattering function (T of X J source 

condition giving M ° at upper and lower 

boundaries of X 

(b) Choose an optical depth T(0)2,) , by means of 

(96), over which X is to be considered. 

(c) Choose an integer f) which defines the number 

of slabs into which X is to be partitioned. 

Let AT w TC0,1x)/n . The geometric depth 

Aj of the jih slab is then defined re

cursively by the equation: 

A AT ^ J o((i) o/2 -J o 
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Wet result: A partition of X irvto H slabs 

of fixed optical depth A T . This partition, 

together with the upper and lower boundaries 'X 0 

and 21n+i of X defines Y0 + 2 ~ fx*.,*!? 

. . . ; Xn Xr>„r} the associated quotient space of X n . 

(d) Define the local direction space JEE 

(Equation (83).) 

(e) Determine the local scattering functions -2T ({j • 3 ') 

and local absorption functions A (j ; *) for 

each point of Yfl + <? so that "2. and A satisfy 

the local conservation property. (See Equations 

(84) - (93).) 
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STAGE TVJO: MONOLAYER MATRICES. 

(a) Determine the R. and ~[~ operators for the j f h 

monolayer, o ^- j Z: n+l in VA + Z . Use 

Equations (70), (71), (77), and (78). 

(b) Notation: R L j , j'+ \) , Jij-l, j ) are R_ 

and T matrices for downward flux a t level -\ , 

O ^ i =£ n +• I • P ( 3", j - / ) , 

T ( j - ' > 3 ) are R. and T matrices for upward 

flux a t level -j , 0 -^ J* ^ n -+- / 

STAGE THREE: DOWNWARD REFLECTANCE MATRICES 

(a) The reflectance of the p - l ayer subset of Vn + z, 

15- P ^ P + 2 , whose i n i t i a l layer i s a t level 

fi"* 2 - p. and whose terminal layer i s a t V> -M 

(Figure 4) i s given by: 

i - i 

>< fc'(n+3-p, 0+2 ) T £ n + 3 - p , fl+2-p> 

(98) 
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Thi3 follows by induction on p , starting with 

recurrence relation (45) applied to V 

^ -• z. 

This formula may be checked by se t t ing p r j 

P " 0 4 1 * T h e f°rmer case yields an iden t i t y , 
the l a t t e r yie lds (45) for V y> + 1 . 

(b) Compute " R ( Y U * - p > n * . jj) f o r p r ^ j „+ Z 

Observe that for each p ^ j , a l l the matrices on 

the r ight of (98) are known, e i the r from STAGE TWO, 

on the preceding step for a ( p - | \ l ayer . 

STAGE FOUR: UPWARD REFLECTANCE MATRICES 

(a) The reflectance of a n - layer subset of V 

!< n<Y)-Tlyh°se i n i t i a l layer i s a t level o ~ | 

and whose terminal layer i s a t level O (Figure 5) 

i s given by: 

(99) 

This follows by induction on p s t a r t i ng with tho 

recurrence re la t ion (47) applied to V ^ ^ o 
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This formula may be checked by se t t ing p ~ J p = DtT. . 

The former case yields an iden t i ty , the l a t t e r 

yields (47) for Vf t ( ^ 

(b) C o m p u t e T ^ p - ^ - i ^ for p = 1 / « * ^ " V l 

Observe that for each p > | , a l l matrices on 

the r ight of ( 99) are known, e i ther from STAGE 

TWO, or the preceding step for a ( C>-A - l aye r . 

STAGE F I V E : DOWNWARD TRANSMITTANCE MATRICES 

(a) The transmittance of a p - layer subset of V f i f o 

j <T p < jr» 4- 1 > whose i n i t i a l 

layer i s at l eve l 0 and whose terminal layer 

i s a t j p - | (Figure $) i s g;Lven by: 

T(-ijP-t> = T(r» . p ^ j r - ^ p - i . p ^ t p ^ i - ^ * 

(100) 

This follows from (46) by making the following 

substitutions: layer symbol Q "^ ~ j layer symbol 

vm -»p-?, layer symbol Y\ -*> p — | 
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This formula may be checked by se t t ing p - J , 

p — 0-+*3L • T n e former case yields an 

iden t i t y , the l a t t e r yields (46) for \W Sr'Z. 

(b) Compute T ( - \ , P - f̂  f ° r P " \ > '' l > ft* £ . 

Observe that for each p> >• j , a l l matrices 

on the r igh t of (lOO)are known, e i the r from 

STAGE FOUR, STAGE TWO, or the resu l t s of the 

preceding step for a / r > — ( ^ - l ayer . 

STAGE SIX: UBTARD TRANSMITTANCE MATRICES 

(a) The transmittance of a p layer subset of y \ \ + * L 

l < \Z> S Ŷ  V 2 - . > w h o s e i n i t i a l layer i s at 

level Y^-M and whose terminal layer i s a 

level r > ^ L - ^ P (Figure 4) i s given by? 

- H W >wi-p) -T ' (* *., W p ^ - n ^ - p >*M" ^ 

. • | m . I I I .i I , I Kl [• •! ,1 III I I .J I 'I ' '•>* ' ' ' 

(101) 
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This follows from (44) by making the following 

subs t i tu t ions : layer symbol \~) -> \\ -V \ 

layer symbol f n - ^ Y M ^ - P > l a v e r symbol 

j - ^ OVZj""P ' ^n^ s f o n n u l a "^y D e checked 

by setting p * | , D c ^f^ • T n e 

former case yields an iden t i t y , the l a t t e r c ase 

yields (44) for 4 V > V 3 . 

(b) ComputeTTnVl j V n Z - p ^ for p = I > •• " , YH Z 

Observe that for each p S | , a l l matrices on the 

r ight side of (101) are known, e i ther from STAGE 

THREE, STAGE TWO, or the resul ts of the preceding 

step for a ( O - \ } - layer . 

STAGE SETCN: RADIANCE VECTORS 

Part (A). Source Condition: I r r ad ia t e ^ M ^ at the upper 

boundary / V ~ , in turn, by a unit radiance 

along each of the nine direct ions of *r»' 

The vector M ^ / y^ ̂ -T\ i s set equal to the 

zero vector throughout Part (A) of STAGE SEVEN. 
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(a) For each of the nine incidence di rec t ions of 

-=• - , compute NV_ ( j) a t each l eve l , 

0^ j == 0+1 , using (29) now adapted to 

YtOw : 

N-ij) = fO-C-D T ( - i , j ) ll-R'(j + itnT2)R.(j,-i)J -i 

(102) 

where KJ-(-l) = J V ( 0 , flff), ..., N / ° ( o } ^ ) ] 

and in which each component, in turn, is unity 

with all others zero. The matrices required in 

this step are given by the results of STAGES 

THREE, FOUR, and FIVE. 

(b) For each of the nine incidence directions of 

"3T- , compute M+(j) at each level, 

0 $: j tS- D •+• | using (22) now adapted to Y^ + t: 

(103) 
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The matrices required in this step are given by the 

results of STAGE THREE. 

Part (B). Source Condition: Irradiate Yrn-2. at the lower 

boundary X, , in turn, by a unit radiance along 

each of the nine directions of ^z. ^ . The 

vector N - (- I) is set equal to the zero vector 

throughout part (B) of STAGE SEVEN. 

(a) For each of the nine incident directions of ^ H + , 

compute N±(j) at each level, Q <• j -£ q + I 

using: 

NIWj) = 

= N/(/i + 2) T ( f l ^ , j ) -i~T/Cnf2,i)[l~r<lJ-<,-)R/(f j , n+2 ) ] ' f c f j - » , -

(104) 

which is a combination of the formulae (35), (36), 

and (43) now applied to Y"+<2 • In (104), w'+cn+Z) 

i s of the form: 
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in which each component in turn is unity with all 

others zero. The matrices required in this step are 

given by the results of STAGES THREE, FIVE, and SIX. 

(b) For each of the nine incidence directions of 2ET + 

compute NA-lj) at each level, OS j -^ h +1 

using (35) now applied to Ŷ -*-2 : 

,V- l{) ~ N+O'-w) R(J,-l) 
(105) 

The matrices required in this step are given by the 

results of STAGE FIVE. 

Part (C): Source Condition: Yi + Z irradiated at CC 0 and 

-t n + i by arbitrary source vectors N/ _ (— I ) , 

N/.J.cn-t-O 

(a) Each of the resultants: ^^(j) and N-(j) , at 

each level 0 S j £ n+ I , is the sum of the 

contributions from each of the boundary sources, 

computed in accordance with Parts (A) and (B) above. 

THIS ENDS THE COMPUTATION PROCEDURE. 
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THE C E L L C ( X , Y , Z ) ASSOCIATED WITH THE POINT ( X , Y , Z ) IN X 

Note: For s i m p l i c i t y , the unit c u b e s , wh i ch p a r t i t i o n 
E 3 , and at whose centers the po in ts of X n 

h e , have been o m i t t e d f r om the f i g u r e . The 
l ight l ines connec t i ng the po in ts of C ( X , Y , Z ) 
are drawn in to ach ieve a 3 - d imens lona I ef fect 

Points of 
the ce l l 

C(x,y,z) 

(x .y .z ) 

Po in ts of the 
column Yn( x , y ) 

F i g u r e I 

Rudolph W. Preisendorfer 
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RADIOMETRIC ACTIVITY WITHIN A MONOLAYER 

OF THE EXTENDED' CUBIC LATTICE 

level j 

The eight uni t d i r e c t i o n 
vec to rs of H 0 a t po in t 
( 0 , 0 , j ) of Yn ^ / 

T h e ' heavy dots denote the eight po in ts of the 

cel l a s s o c i ated ' wi th ( o, o, j ) wh i c h l ie in t he 

mono l a y e r at level j • 

F i g u r e 2 

f'2 
Rudolph W. Preisendorfer ^ 
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THE LOCAL DIRECTION SPACE H 

The numbers in the c i r c les c o r r e s p o n d to the ind ices 
of the e lements of H. The c i rc les correspond to the elements 
of the cel l assoc ia ted wi th the o r ig in ( 0 , 0 , 0 ) of E 

+ Y 

Figur e 3 

Rudolph W. Prelsendorfer 
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THE FOUR R AND T OPERATORS FOR THE P-LAYER 

SUBSETS OF Y n + 2 USED IN THE COMPUTATION PROCEDURE 

0 
— upper boundary 

R ( n + 2 - p ,n + 2 ) T (n + 2 , n + 2 - p ) 

d i rec t ion of 
increasing p 

ower boundary 

F igu re 4 

n 

n + l 

R ( p - i , - l ) 

upper boundary 

d i r e c t i o n of 
increas ing p 

T l - I . p - I ) 

lower boundary 

F igure 5 

Rudolph W. Preisendorfer 




