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Abstract
Deep learningwith convolutional neural networks (CNNs) has experienced tremendous growth inmultiple healthcare applications and
has been shown to have high accuracy in semantic segmentation of medical (e.g., radiology and pathology) images. However, a key
barrier in the required training of CNNs is obtaining large-scale and precisely annotated imaging data.We sought to address the lack of
annotated data with eye tracking technology. As a proof of principle, our hypothesis was that segmentation masks generated with the
help of eye tracking (ET) would be very similar to those rendered by hand annotation (HA). Additionally, our goal was to show that a
CNN trained on ET masks would be equivalent to one trained on HA masks, the latter being the current standard approach. Step 1:
Screen captures of 19 publicly available radiologic images of assorted structures within various modalities were analyzed. ETand HA
masks for all regions of interest (ROIs) were generated from these image datasets. Step 2: Utilizing a similar approach, ET and HA
masks for 356 publicly available T1-weighted postcontrast meningioma images were generated. Three hundred six of these image +
mask pairs were used to train a CNN with U-net-based architecture. The remaining 50 images were used as the independent test set.
Step 1: ETandHAmasks for the nonneurological images had an averageDice similarity coefficient (DSC) of 0.86 between each other.
Step 2:MeningiomaETandHAmasks had an averageDSCof 0.85 between each other. After separate training using both approaches,
the ETapproach performed virtually identically to HA on the test set of 50 images. The former had an area under the curve (AUC) of
0.88, while the latter had AUC of 0.87. ET and HA predictions had trimmed mean DSCs compared to the original HA maps of 0.73
and 0.74, respectively. These trimmed DSCs between ETand HAwere found to be statistically equivalent with a p value of 0.015.We
have demonstrated that ETcan create segmentationmasks suitable for deep learning semantic segmentation. Futureworkwill integrate
ET to produce masks in a faster, more natural manner that distracts less from typical radiology clinical workflow.

Keywords Deep learning . Artificial intelligence . Segmentation .Meningioma . Eye tracking

Introduction

Eye tracking (ET) has been used extensively for research in
marketing, psychology, and medical image interpretation [1,
2]. It has also been used in medical imaging research to eluci-
date differences in how expert and novice radiologists interpret
images [3–6]. For example, decades of work have used ET to
predict radiologist diagnosis and detect the search path of var-
ious image modalities, including chest imaging [1, 2, 7], mam-
mography [3, 8], CTcolonography [9], dental radiographs [10],
and musculoskeletal radiographs [11], based on radiologist
gaze points within the images [12]. Other efforts have gone into
integration of ET into standard clinical workflow [13].
Additional research has employed ET to study radiologist re-
sponse to interruptions [14, 15] and fatigue [16, 17].

More recently, Khosravan et al. employed ET in an actual
clinical practice setting to improve the detection, diagnosis,
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and quantification (segmentation) of lung nodules and prostate
lesions [18, 19]. Segmentation is widely recognized as an im-
portant task in image quantification [20–22]. It has become an
ad hoc component of most computer-assisted diagnosis (CAD)
tools. The recent exponential growth of artificial intelligence
(AI), specifically deep learning (DL) using convolutional neural
networks (CNNs) has enabled the segmentation of anatomic
structures previously difficult to segment with older methods
of thresholding, region/boundary-based approaches, or hybrid
techniques such as combining models and graph-search algo-
rithms [20–22]. As such, AI holds great promise as a method to
segment structures of interest (SOIs, e.g., organs or tumors)
automatically, either in clinical practice or for research pur-
poses. AI has shown promise for assisting in worklist triage
[23], and automated segmentation will likely be an important
component of this functionality.

A key limitation to the advancement of medical DL seg-
mentation is obtaining abundant quantities of accurately cu-
rated imaging data for effective DL training. Specifically,
what is needed to build successful CNNs is a large number
and variety of images, with corresponding expert-annotated
masks that specify per-pixel locations of SOIs. Typically, the
task of annotation is done manually with mouse clicks, tracing
out the borders of the SOI for each image and each image slice
to be used in training the network. This approach has two
drawbacks: (1) it can be very time-consuming, especially as
larger, more complex datasets are needed; (2) it generally oc-
curs outside of routine clinical care during dedicated research
time. As such, these tasks are often done by nonradiologist
researchers who, given less clinical exposure to those types of
images and structures, may not recognize as well the correct
SOIs or their proper borders, reducing annotation accuracy.

Therefore, a method to annotate medical images during
routine clinical work could provide far greater efficiencies.
Such annotation would be performed by expert clinicians,
radiologists, or pathologists, often subspecialized in the par-
ticular subset of images they interpret clinically [24].
Additionally, this work could reduce outside time commit-
ment, since it would be done as part of the normal clinical
work already being performed. With tens of millions of mag-
netic resonance images (MRI) and CT scans being performed
annually in the USA alone, harvesting even a small portion of
this clinical volume for deep learning would represent a tre-
mendous leap forward.

We propose ET as a technology to allow routine clinical
interpretation of images to generate annotated data for DL
algorithm training. As radiologists’ and pathologists’ clinical
workflow is centered around visually examining images, ET
can capture when they are gazing at SOIs. In the case of
radiologists, classification information is also available for
recording during clinical work because they typically dictate
labels or descriptions of SOIs into a voice recognition system
while gazing at the structures.

In order to evaluate the potential of such a technique, we
sought to assess if ET can generate image masks equivalent to
those rendered by the conventional hand annotation (HA) for
DL segmentation.

In step 1 of the present study, we hypothesized that masks
produced by ETwould be similar to those obtained from HA
for a wide variety of image modality and region of interest
(ROI) types.

In step 2, we hypothesized that, for a set of meningioma
images, ET image masks would not only be similar to HA
masks but also would generate equally accurate DL segmen-
tation predictions compared to those from HA.

Methods

Image Acquisition

Step 1 We obtained 19 publicly available nonneurological
radiologic images from Google Images and PubMed Images
[25, 26]. The goal here was not to use masks for DL, but
simply to demonstrate that effective mask generation from
ET is possible with a diverse array of SOIs for a wide variety
of imaging modalities.

The set of images used in this study (for both steps 1 and 2)
is listed in Table 1. The much larger number of meningioma
images was chosen so as to provide enough data for DL, and
we included normal brain images to increase CNN specificity.
We generated segmentation masks without DL for a few ex-
amples of various types of nonmeningioma images in order to
illustrate that this is indeed a very broad and general approach.
It can in theory segment any type of object in any type of
medical image.

Step 2 We obtained 356 publicly available postcontrast T1-
weighted MRI of meningiomas, 23 of them through publicly
available images on Google Images, and the other 333 from
peer-reviewed publications via PubMed Images [25, 26]. All
images were screen captured as PNG files on a Macbook Air

Table 1 Enumeration of the number and types of imaging modalities
and structures of interest for which masks were generated both by eye
tracking and by hand annotation. In the case of meningiomas, the masks
were subsequently used to train and test a segmentation CNN

Image type Number of images

Meningiomas on postcontrast T1WI 356

Normal brains on postcontrast T1WI 69

Livers on CT 5

Breast masses on mammography 4

Kidneys on ultrasound 5

Heart on PET MIP 5
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(Apple, Cupertino, CA). Additionally, 69 T1 postcontrast im-
ages of normal brains were obtained as screen captures from a
publicly available image database [27]. Most images had been
obtained in the axial plane, though approximately 25% were
in sagittal or coronal planes. All images were loaded into a
PowerPoint (Microsoft, Redmond, WA) document to allow
for rapid viewing and ET annotation, although this could have
also be done with a DICOM viewer.

Eye Tracking

Steps 1 and 2 The Fovio™ Eye Tracker remote eye-tracker
system (Seeing Machines Inc., Canberra, Australia) was used
in this study. Gaze data were collected using the associated
EyeWorks™ Suite (v.3.12) at the rate of 60 Hz on a DELL
Precision T3600 (Windows 7, Intel Xeon CPU E5
−1603@2.80 GHz with 128 GB of RAM). Images were pre-
sented on a 30″ EIZO LCD monitor. Displayed images were
fit to as large a rectangular space as feasible on the display
monitor. Initial calibration was confirmed by way of a nine-
point calibration procedure in EyeWorks™ Record.
Calibration was also reconfirmed manually by the operator
after initial calibration was done and before the image viewing
started; confirmation required that the user’s gaze matched the
location of an alternately moving and stopping display point
on the monitor to within a preprogrammed threshold value.

The Fovio remote system was located 2 cm beneath the
bottom of the viewing screen and at a 26° angle with respect
to the monitor. Following calibration, the user completed the
task of visually tracing gaze around the meningioma or other
SOI borders. A single radiologist trained in neurologic image
interpretation (JNS) viewed the images. Zoom/pan and win-
dow level adjustments were not permitted.

A screen captured wmv format video file with continuous
recording of time points was generated. The task of the radi-
ologist was to explicitly move his eyes around every menin-
gioma and other SOI surface/outer contour. The video
displayed user gaze position as a function of time overlaid
on the images. This was essentially a video of the user’s gaze
during the entire eye-tracking process. The total time spent
viewing all 356 meningioma borders plus the 19 other SOI
borders, which became the video file running time, was
2280.3 s, or approximately 38 min. A schematic of the eye-
tracking setup is shown in Fig. 1.

The software calculates fixations (where the eyes land with
foveal vision). Fixation locations and dwell times are automat-
ically correlated with x,y image locations. The system’s as-
sessment of x,y locations was based on an internal reference
system within the monitor, not specific to PowerPoint. Thus,
we were able to identify which fixations were associated with
the meningiomas and other SOIs for each image. Fixations
associated with the user looking elsewhere (i .e. ,
nonmeningiomas) were excluded. From these data, an image

trace was generated for each image using the EyeWorks
Analyze software. This consisted of pixel values equal to
one at the locations of gaze and zero elsewhere.

Detailing further, non-SOI fixation points were excluded as
follows: the video file of the real-time gaze fixation points on
the set of images was reviewed after the entire ETexercise was
performed. This video also contained a recording of the timer
that accompanied the gazes. Hence, the video included within

it the set of all time points t j
� �Nt

j¼1, where Nt is the total

number of time points that transpired during image examina-
tion with ET. For our ET session and corresponding video,
which lasted roughly 2300 s, with 100-ms increments, Nt ≈
2.3 × 104.

We shall denote the set of all meningiomas as Mif gNM
i¼1,

where NM = 356 is the total number of meningiomas exam-
ined. For a given meningiomaMi, typically the first second or
so of gaze fixation would not be on the lesion. However, as
soon as the SOI was detected by the user in his peripheral
vision, he switched gaze to focus on the meningioma borders.
During video review, the time at which the user’s gaze first fell
on the meningioma borders was noted and recorded in an
Excel spread sheet as the start time for that meningioma,

which we denote as t Mið Þ
start . We denote x,y position of the gaze

point at t Mið Þ
start by x

t
Mið Þ

start

y
t
Mið Þ

start

� �
. When the user was done

performing a counterclockwise trace around the meningioma
with his eyes, he clicked on the keyboard’s down arrow to
bring up the next meningioma image. This having been re-
corded in the video, upon subsequent video review, a corre-
sponding time was displayed in the video. This time showed
when the user last looked at the meningioma border; this was

recorded as the stop time, t Mið Þ
stop , for meningioma Mi, with

corresponding gaze point position x
t
Mið Þ

stop

y
t
Mið Þ

stop

� �
.

Hence, for meningiomaMi, the border trace is extracted as
the set of x,y points:
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Mask Generation, Training, and Testing

Steps 1 and 2 Image contour traces were imported into
Matlab.Masks were generated as the convex hull of the traces.
At a later date, hand annotations of every meningioma and
other SOI image were obtained by the same radiologist
(JNS) via the roipoly function in Matlab. For the normal
postcontrast images without meningioma, masks were simply
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the zero matrix. All images (anatomical and their correspond-
ing masks) were resized in Matlab to be 256 × 256 pixels.

Step 2 The meningioma postcontrast images along with
the ET and HA masks were imported into Python as
*mat files. The images were normalized to have zero
mean and unit standard deviation, in order to reduce
network susceptibility to covariate shift. At this point,
306 of the 356 images were assigned randomly for
training and validation, while the other 50 images were
reserved as a testing set. Of the 306 training/validation
images, 80% were randomly selected for training, while
the other 20% for were used for validation.

Training was performed using Python 3.7.0 and the packages
Tensorflow andKeras on aworkstationwith three 1080NVIDIA
Ti GPUs (11 GB each) with two 18-core 2.10 Gigahertz Intel
Xeon E5-2695 v4 CPUs and 256 GB system RAM.

The meningioma images were used as input to a 20-layer
neural network based on the U-net architecture [28] which has
been shown to be effective for medical image segmentation
[29–31]. Initial filter parameter weights were randomly selected
with a mean of zero according to the default Keras Glorot ini-
tialization. All convolutions were performed with 3 × 3 filters.
We used negative Dice coefficient as the loss function for train-
ing. A steepest gradient descent approach based on the Adam
optimization algorithm with step length 1 × 10−5 was used. The

Fig. 1 Eye-tracking setup. User
gaze direction is shown by the red
arrow. Eye-tracking hardware (in
green oval) sends near-infrared
light (yellow arrow) to the user’s
eyes, which are reflected back as
the corneal reflection (dashed
blue arrow). The calibration soft-
ware is able to calculate from the
latter the user’s gaze position
(curved purple arrow pointing to-
ward green dot on the monitor to
the user’s left) in real time

Fig. 2 Nonneurological image
mask borders of various
structures of interest. Eye-
tracking mask contours are in
green, hand annotation in blue
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model was trained for 600 epochs, after which improvement in
accuracy of the prediction and loss values leveled off. Training
time was approximately 6 h using both ET and HA masks.

The 50 testing set meningioma images were run through the
trained CNN. Four examples of testing set meningioma images
with superimposed CNN mask predictions are provided in
Fig. 4. No size threshold was applied to those predictions.

Receiver operating characteristic (ROC) area under the
curve (AUC) was calculated by varying size thresholds for
predicted pixel groups or Bclusters^ in a manner very similar
to that used in previous work segmenting cerebral aneurysms
[32]. We used the matplotlib Python plotting library to gener-
ate and display the ROC curves. It is worth noting that the
ROC curves both for HA- and ET-based predictions were
generated by comparing predicted masks to HA mask anno-
tation as the gold standard. Using the HA mask (the one ini-
tially traced around the meningioma, not the one predicted by
the CNN trained on HAmasks) as the truth in this manner was
felt to constitute a stricter criterion to test the ET method.

In order to show equivalence of ETand HAmasks, we used
the two one-sided test (TOST) method [33, 34]. TOST is a

complement to the t test method, which is used to determine
whether there is a statistically significant difference between
the means of two datasets. We sought to show the opposite:
that our two datasets, namely the set of ET mask predictions
and the set of HA mask predictions, were statistically equiva-
lent. Not being able to demonstrate statistically significant
difference on a t test does not show equivalence, hence the
need for an equivalence test like TOST.

Equivalence is shown when the difference Δ between two
sets falls between a predetermined range −ΔL <Δ <ΔU, where
ΔL and ΔU are the lower and upper equivalence bounds, re-
spectively. These bounds are prespecified to satisfy the smallest
effect size of interest (SESOI). The SESOI is essentially a
threshold for how close the values from two datasets should
be in order to be considered equivalent [33, 34].

Results

Step 1 For the 19 nonmeningioma, nonbrain MRI images, the
average Dice coefficient between HA and ET was 0.86. Four

Fig. 3 Four examples of
meningioma mask border
comparisons. Eye-tracking
(green) and hand annotation
(blue) mask contours are overlaid
with the corresponding
postcontrast T1-weighted images
containing meningiomas
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examples of the surface boundaries of the masks generated by
the two methods are shown in Fig. 2.

Step 2 For the 356 meningioma-positive images with nonzero
masks generated both by HA and ET, the mean Dice coeffi-
cient for overlap between the two mask types was 0.85. Four
examples of the outer border of the masks generated by HA
and ET are displayed in Fig. 3.

The ROC curves both for HA and ET methods are shown
in Fig. 5. Both methods give AUC values of close to 0.9 (0.87
for HA, 0.88 for ET), and the curves are essentially the same
for the two methods. Additionally, the trimmed mean DSC for
CNN-predicted mask versus HA generated mask was 0.74
using HA masks as model input, while for using ET as model
inputs, it was virtually identical at 0.73. The DSCs for HA and
ETwere statistically equivalent by the TOST method [33, 34]
with a p value of 0.015, using 0.1 as the SESOI.

Discussion

Discussion of Results

As can be seen in Fig. 2, the mask surface boundaries from
HA and ET match fairly closely, which is compatible with the
high mean Dice similarity score between them. However, it

should be noted that in Fig. 2a, the ET trace is noted to Bcut
corners^ around the liver compared to HA. This likely result-
ed from the fact that ETannotation of nonmeningioma images
was performed at the end of one long session after ET menin-
gioma annotation for all 356 meningioma images. Hence,
there was probably a fatigue factor leading to the short cut
seen in Fig. 2a. Hence, this nicely illustrates the fatigue-
related limitation of our particular first iteration of the ap-
proach involving consciously tracing one’s gaze around lesion
borders. Figure 3c shows one mildly Bcut corner^ around the
meningioma, indicating that not only fatigue but possibly a
neurobehavioral/neurocognitive tendency of the user was to
take this minor shortcut while moving the eyes but not when
tracing borders by hand. Ultimately, small differences such as
these did not engender a significant difference between the
overlap of the masks themselves nor the performance of the
resulting ET CNN versus the HA CNN, as verified by mean
Dice scores all 85% or greater.

Figure 4 shows significant overlap between the CNN-
predicted masks and the enhancing lesions. Note the false
positive pixels in Fig. 4c in the right orbital fat. Here, the
algorithm is mistaking the high signal intensity of fat for en-
hancing meningioma. However, in our experience, the more
images the CNN was trained on that had orbits (without a
mask over them), the better the trained network was at dis-
cerning that these were not meningioma, and the fewer of

Fig. 4 Four example predictions
from the CNN trained on eye-
tracking-generated images.
Predicted meningioma pixels are
in red. Significant overlap be-
tween the predictedmasks and the
enhancing lesions is evident. Note
the false positive pixels in Fig. 4c
in the right orbital fat. The algo-
rithm is mistaking the high signal
intensity of fat for enhancing
meningioma
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these errant predictions were seen. Also, postprocessing with
size thresholds would remove smaller errant predictions such
as this, as implemented in calculating the ROC curves.

Most importantly, Fig. 5 shows the overall performance of
both HA- and ET-generated CNNs to be essentially identical,
which is further verified by their near-equivalent mean Dice
scores, both over 85% and statistically equivalent.

Overall, we have thus demonstrated that ET can be an ef-
fective approach for generating segmentation masks for DL.

Limitations and Future Directions

There are several limitations in this study. Only one radiologist
was tested for this eye-tracking study, and this is the same
radiologist who performed the manual draws. The results,
therefore, may not be entirely applicable to all radiologists.
Additionally, many of the lesions selected for contouring were
relatively large, and thus, the eye-tracking results were likely
more accurate than if only smaller lesion targets had been used.

We chose the method of screen capturing publicly available
images as PNG files for practicality, expediency and as a safe-
guard to avoid compromising protected health information.
However, the images obtainedwere of significantly lower qual-
ity than DICOM files captured in full spatial resolution and
number of grayscale levels from a local Picture Archiving
and Communication System (PACS) database. Using lower
image quality for training and/or testing CNNs has been shown
to yield worse results than for higher quality images [35, 36].
As such, it is notable that our CNNs achieved fairly high AUC
values with these comparatively low-quality images.

An important ultimate goal would be to integrate this tech-
nology into routine clinical practice, so that potentially mil-
lions of mask annotations could be harvested from clinical
work. The approach presented here is a proof-of-principle
and is far from perfected. Tracing out lesion borders visually
is tedious, tiring, and divorced from how radiologists view

structures of interest during image interpretation. Hence, a
more Becologically valid^ workflow is needed. A combina-
tion of eye-tracking data, thresholding, and iterative deep
learningmay provide the eventual best route. Future work will
thusly endeavor to develop such hybrid approaches.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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