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Abstract

Non-standard Models of Dark Matter and Their Experimental Signatures

by

Marat Freytsis

Doctor of Philosophy in Physics

University of California, Berkeley

Dr. Zoltan Ligeti, Co-Chair

Prof. Lawrence J. Hall, Co-Chair

The weakly interacting massive particle (WIMP) paradigm gives an elegant mechanism for
the generation of dark matter densities with the appropriate properties to be consistent with
current observations. While in its minimal implementation, the only opportunity to test the
reality of the scenario is by directly detecting the WIMP itself, cosmic ray anomalies observed
several years ago imply the possibility of an extended dark matter sector in which secondary
annihilations or decays can occur before interacting with the standard model. This opens
up the possibility of detecting other parts of dark sector in a much wider set of experiments
than those typically considered in connection to dark matter. In this dissertation I study
several alternative models, capable of yielding signals across a broad range of experimental
approaches.

I study the prospects for detecting a light boson X with mass mX . 100 MeV at a low
energy electron-proton collider. Focus is on the case where X dominantly decays to e+e− as
motivated by recent “dark force” models. In order to evade direct and indirect constraints, X
must have small couplings to the standard model (αX . 10−8) and a sufficiently large mass
(mX & 10 MeV). By comparing the signal and background cross sections for the e−p e+e−

final state, I conclude that dark force detection requires an integrated luminosity of around
1 ab−1. This proposal is currently being implements by the DarkLight collaboration at the
Thomas Jefferson National Accelerator Facility.

I also investigate the bounds on axion-like states from flavor-changing neutral current
b → s decays, assuming the axion couples to the standard model through mixing with the
Higgs sector. Such GeV-scale axions have received renewed attention in connection with
observed cosmic ray excesses. I find that existing B → K`+`− data impose stringent bounds
on the axion decay constant in the multi-TeV range, relevant for constraining the “axion
portal” model of dark matter. Such bounds also constrain light Higgs scenarios in the next-
to-minimal supersymmetric standard model. These bounds can be improved by dedicated
searches in B-factory data and at LHCb.

While looking at direct dark matter detection experiments themselves, it is often assumed
that the first evidence for dark matter will come from experiments probing spin-independent
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interactions, with much higher sensitivities due to coherence effects. I explore models that
would be invisible in such experiments, but detectable via spin-dependent interactions. The
existence of much larger (or even only) spin-dependent tree-level interactions is not sufficient,
due to potential spin-independent subdominant or loop-induced interactions, and I find that
in this way most models with detectable spin-dependent interactions would also generate
detectable spin-independent interactions. Models in which a light pseudoscalar acts as the
mediator seem to uniquely evade this conclusion. In presenting a particular viable dark
matter model generating such an interaction, a tens of MeV–GeV-scale axion is found to be
an attractive candidate independently of considerations presented earlier.
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Chapter 1

Introduction

One of the most significant developments in our scientific understanding of the universe
has been the realization—now from multiple independent observations over almost 80 years—
that most of the matter in the universe could not be baryonic matter we are familiar with
on Earth, but instead is composed of some as-yet unknown species we call dark matter
(DM). Dark matter was first proposed by Fritz Zwicky in order to account for the radial
velocity dispersion of galaxies in the Coma cluster [1]. It is this paper which introduced the
term dunkle (kalte) Meterie (dark cold, i.e. non-relativistic, matter) into the field. Soon
thereafter, the outer regions of galaxies were measured to have larger rotational velocities
than was expected based on the distribution of luminous matter [2, 3]. It is worth noting
that papers on galaxy clusters and galactic rotation curves did not make any connection
between the two, and that both were received with a fair amount of skepticism at the time.

The turning point occurred when Ref. [4] showed that instabilities in models of galactic
disks could be solved by the addition of a massive spherical component. Thereafter, previous
measurements on galactic rotation curves [5], and new measurements of X-rays for hot gas
in elliptical galaxies [6] were shown to be consistent in the amount of additional matter
required. Additional evidence later came from gravitational lensing, which has allowed not
just for the detection of the dark matter, but also for the construction of three-dimensional
maps of its distribution [7]. The methods of X-ray spectrography and gravitational lensing
recently converged in the observation of the Bullet cluster, formed in the collision of two
large galaxy clusters [8]. By measuring the luminous and total mass separately using the
two techniques, one could see the luminous matter lagging behind the total mass, as one
would expect from a weakly-interacting dark matter. This observation effectively eliminated
alternative theories for earlier observations, such as modifications of gravity, from serious
contention.

Such astrophysical measurements also agree with cosmological ones stemming from the
study of the cosmic microwave background (CMB). The WMAP experiment’s best fit to the
ΛCDM model’s parameters yield the baryonic and total matter components in the universe
as, respectively, Ωbh

2 = 0.024 ± 0.001 and Ωmh
2 = 0.14 ± 0.02, where Ωmh

2 is defined as
the density relative to the critical density for eventual recollapse, Ωmh

2 = ρ/ρcrit [9]. The



2

evidence points to dark matter making up over 80% of matter in the universe. Indirect
measurement of the baryonic component from element abundances due to primordial nucle-
osynthesis [10, 11], the X-ray emission from hot gases from inverse scattering off the CMB
due to the Sunyaev-Zel’dovich effect [12], and absorption lines from the intergalactic medium
making up the Lyman-α forest [13] are all also consistent with the WMAP results. Simulta-
neously, analyses of large-structure formation also require a component with the properties of
dark matter in order to generate the density perturbations necessary for galaxy and galactic
cluster formation [14, 15].

Given all the current observational constraints, the best candidates for DM are new el-
ementary particles [16, 17]. However, with all evidence for DM being of an astrophysical
nature, and due to gravitational interactions, nothing is actually known about their micro-
scopic properties, such as particle mass or non-gravitational interactions and their strength.
A particularly attractive paradigm in this regard has come to be known as the weakly-
interacting massive particle (WIMP). Extensions of the standard model (SM) often require
some new symmetry in order to eliminate the generation of SM effective operators, such as
those mediating proton decay, that are highly constrained by experiment. This typically
has the effect of making the lightest particle having differing symmetry properties from the
standard model to be absolutely stable. If such particles interact with the standard model
with weak-scale coupling, and have weak-scale masses, then the Boltzmann equations in-
dicate that upon falling out of thermal equilibrium in the early universe, the relic density
generated is within the range necessary to act as the astrophysically-required dark matter.

Simultaneously, this provides a potential method for observing dark matter’s particle
properties, for if the particles making up DM were in equilibrium with the rest of the universe
though weak-scale interactions in the early universe, the DM present in our galaxies right now
should also interact with regular matter with weak interaction strength. This direct detection
of DM, while requiring very clean, low-background experiments due to the extremely low
rate of weak interactions, proceeds from general arguments, and is thus a promising avenue
independent of the specific underlying model of dark matter.

Of course, such general considerations can only provide a very limited set of signals.
Historically, connections were drawn to models of new physics which were attracting for
independent reasons like solutions to the hierarchy problem, which also happened to have a
particle with the properties given above. In this role, supersymmetry has traditionally been
the leading candidate [18].

An alternative motivation for associating additional signals with the dark sector is pro-
vided by a series of astrophysical anomalies recorded several years ago. These include the
WMAP Haze [19, 20], the PAMELA, FERMI, and H.E.S.S. e+/e− excesses [21, 22, 23, 24],
and the INTEGRAL 511 keV excess [25, 26]. In explaining these observations, a general
framework emerged, in which the DM itself remains at the weak scale as above, but now
interacts with a GeV-scale boson [27, 28, 29, 30]. The excessed of electrons and positrons
detected could then be explained by dark matter first annihilating into these light bosons,
which then decay to the standard model, with only the light leptons being kinematically ac-
cessible. The existence of these light states motivates a fresh look at a lower-energy regime
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than that currently occupied by the collider high-energy frontier, for some aspects of the
dark sector could be accessible there.

Purely theoretical, top-down, motivations for considering such particles also exist. Hid-
den sectors, coupling to the standard model though a kinetic mixing term such as εF ′µνF

µν
EM,

with F ′µν the field strangth tensor of some new gauge field, are generic in string compacti-
fications [31, 32]. Correct masses and couplings can also be generated perturbatively if the
standard model Higgs also couples to the hidden sector [33, 34, 35, 36] (models with often
preserve supersymmetry as well).

In this dissertation, I survey the potential for various experimental approaches to probe
the new framework discussed above. This involves considering new relatively low-energy
collider experiements, connections to B-factory datasets, and a new look at traditional direct
detection efforts.

In Ch. 2, I study the possibility of detecting a light boson X with mass mX . 100 MeV
at a low energy electron-proton collider. In the considered setup, X dominantly decays to
e+e− as motivated by recent “dark force” models via the process e−p → e−pX → e− e+e−.
A notable advantage of such a setup is that the only background is produced by QED and
extremely well understood, with hadrons enable to be produced kinematically, and thus non-
perturbative effects kept at a minimum. After considering direct and indirect constraints
already provided by existing data, I show that a significant portion of the accessible parame-
ter space is left allowed. More precisely, X must have small couplings to the standard model
(αX . 10−8) and a sufficiently large mass (mX & 10 MeV). By comparing the signal and
background cross sections for the final state, I conclude that dark force detection in the se-
lected mass range for all couplings not already excluded requires an integrated luminosity of
around 1 ab−1. I also identify additional ways to extend the reach of such a setup, including
vertex tracking to complete with beam dump searches and a search for an invisible decay of
the X boson. This proposal is currently being implements by the DarkLight collaboration
at the Thomas Jefferson National Accelerator Facility.

The setup of Ch. 2 is particularly well suited for models where light boson are present
due to kinematic mixing with the U(1) electromagnetic (or hypercharge) field. Due to the
required coupling to electrons, it proves unsuitable if such couplings are diractly proportional
to mass, as is the case if the mixing is instead in the Higgs sector, as is the case in “axion
portal”-type scenarios. In Ch. 3, I therefore consider bounds on axion-like states from
flavor-changing neutral current b → s decays, assuming the axion couples to the standard
model through mixing with the Higgs sector. I find that existing B → K`+`− data, already
present in the BaBar and Belle B-factory datasets impose stringent bounds on an axion
decay constant in the multi-TeV range. Independent of dark matter concerns, such bounds
also constrain light Higgs scenarios in the next-to-minimal supersymmetric standard model.
I proceed to discuss particular focused analyses by which these bounds can be improved by
dedicated searches in B-factory data and at LHCb.

Finally, in Ch. 4, I look toward direct dark matter detection experiments themselves.
Due to nuclear coherence effects yielding much larger effective couplings of DM to nucle-
ons, it is often assumed that the first evidence for dark matter will come from experiments
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probing spin-independent interactions. I preform a model-independent analysis of possi-
ble couplings in order to identify models that would be invisible in such experiments, but
detectable via spin-dependent interactions. The existence of much larger (or even only)
spin-dependent tree-level interactions is found to not be sufficient, due to potential spin-
independent subdominant or loop-induced interactions, and I find that in this way most
models with detectable spin-dependent interactions would also generate spin-independent
interactions though would be just as easily detectable. Models in which a light pseudoscalar
acts as the mediator seem to uniquely evade this conclusion, which leads me again to con-
sider a tens of MeV–GeV-scale axion from independent considerations to those presented in
earlier chapters.
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Chapter 2

Dark Force Detection in Low Energy
ep Collisions1

2.1 Introduction

While the gravitational evidence for dark matter is overwhelming [5, 38, 9, 39], direct
measurements of the spectrum and properties of dark matter have so far been elusive. How-
ever, recent astrophysical anomalies—such as those mentioned in Ch. 1—could be evidence
for dark matter annihilation, decay, or up-scattering in our galactic halo. With these obser-
vations, an intriguing paradigm for dark matter has emerged, where TeV-scale dark matter
interacts with a GeV-scale boson [27, 28, 29, 30]. This new light boson X typically has a
mass in the range

2me < mX . few GeV, (2.1)

with an O(1) branching fraction X → e+e−.2

What is the best way to look for light bosons with small couplings to the standard
model? Indirect constraints from lepton anomalous magnetic moments require the coupling
of X to leptons to be αX . 10−8 [33, 41], much smaller than the electromagnetic coupling
αEM ' 1/137.3 Therefore, any direct production mode for X faces a large irreducible
background from an equivalent process where X is replaced by an off-shell photon γ∗. A
number of studies at lepton colliders have concluded that around 1 ab−1 of data is needed
to see the process e+e− → γ + X [44, 33, 45, 46, 43, 36, 47]. While such large integrated
luminosities have been achieved at the B-factories, it is worthwhile to consider alternative
experimental setups that might be more easily scaled to multi-ab−1 data sets.

One standard method to find new particles with small couplings is fixed-target experi-
ments, either with a high intensity beam on a thin target or a “beam dump” experiment

1This chapter, as well as App. A, was co-written with Grigory Ovanesyan and Jesse Thaler and published
in [37]

2For a recent study of models with even lighter bosons, see Ref. [40].
3There are additional direct constraints on X from rare meson decays [33, 42, 41, 43].
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on a thick target. As we will see, such experiments already constrain the X parameter
space [48, 49]. Recent studies in Refs. [43, 50] have concluded that improved fixed-target
experiments can cover a wide range of masses and coupling for X, especially if X has a
sufficiently long lifetime to yield a displaced vertex or if X has a decay mode to penetrating
muons. Even in the case of prompt X boson decay, the luminosity achievable in traditional
fixed-target experiments approaches 1 ab−1/day, so with good energy resolution and control
over systematics, the irreducible γ∗ background could be beaten by statistics, and one can
simply search for electron pairs that reconstruct a narrow X resonance. However, full event
reconstruction is impossible in this context, since one cannot measure the spectrum of the
recoiling nucleus, so traditional fixed-target experiments lack a crucial kinematic cross-check
that is available in lepton colliders.

In this chaper, we propose searching for an X boson in low-energy electron-proton colli-
sions through the process

e−p→ e−p+X, X → e+e−. (2.2)

With a high intensity electron beam on a diffuse hydrogen gas target, one combines the high
statistics of a traditional fixed-target experiment with the full event reconstruction potential
of a lepton collider. To our knowledge, this experimental setup was first suggested in Ref. [51],
motivated by a different dark matter scenario with an invisibly decaying X boson [52]. In
that context, the recoiling proton spectrum was crucial for discovery. Here, we focus on X
bosons that decay visibly to e+e−. Like the fixed-target proposals in Refs. [43, 50], one is
still looking for a narrow X resonance on top of a huge radiative QED background, but here
the recoiling proton and electron spectrum can be used to over-constrain the kinematics.

As in Ref. [51], we consider an electron beam with energy Ee ' 100 MeV, where the
scattering is dominated by elastic scattering and associated radiative processes. In particular,
pion production is kinematically forbidden as are nuclear excitations. Such a setup is being
actively considered for installation at the Free Electron Laser (FEL) at the Thomas Jefferson
Lab National Accelerator Facility (JLab), replacing the laser cavity with a hydrogen gas
target.4 Where the reach in X parameter space overlaps, this proposal of a high intensity
beam on a diffuse target is complementary to the proposal in Ref. [50] of a diffuse beam on
a high density target. We will argue that for the same integrated luminosity, the X reach
in ep collisions is comparable to e+e− and e−e− collisions. Since 1 ab−1/month is achievable
with the FEL beam on a hydrogen gas target, low-energy ep collisions are in principle a
cost-effective way to search for the X boson.

In our study, we will focus on irreducible physics backgrounds and assume idealized
detectors. While there are important experimental backgrounds, we will assume that these
can be controlled using, for example, information about recoiling proton and electron. The
JLab FEL setup is in principle sensitive to:

mX < 2me : X → γγ, invisible

2me < mX . 100 MeV : X → e+e−, γγ, invisible (2.3)

4For an alternative low-energy search using a positron beam incident on a hydrogen target, see Ref. [53].
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In models with rich dark sectors, one can even imagine multi-body X decay modes or more
than one X field [54, 46]. For simplicity, we will only look at X → e+e−, and focus on the
case that X couples only to electrons and not to protons. To capture a wide range of possible
“dark boson” scenarios, we allow X to be scalar, pseudoscalar, vector, or axial-vector.5

In the next section, we summarize the conclusion of our study, that with 1 month to 1 year
of running at the JLab FEL, one can probe an interesting parameter space for the X boson.
In Sec. 2.3, we outline our theoretical setup, and review indirect and direct constraints on
the X boson properties. We study the reach for X in ep collisions in Sec. 2.4 and show how
a matrix element method can be used to extend the X boson reach. Comparisons to other
X boson collider searches appear in Sec. 2.5. Two benchmark scenarios appear in Sec. 2.6,
showing an example analysis strategy as well as a variety of kinematic distributions. We
consider an alternative displaced vertex search in Sec. 2.7 and conclude in Sec. 2.8.

5In the case of a light vector boson, X is often referred to as a U -boson.
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Figure 2.1: Summary of this study, showing constraints and reach on the mX–αX plane. The
scalar couplings are on the left, vector couplings on the right. The top plots are logarithmic in
mX , while the bottom plots are linear in mX to highlight the relevant parameter space. Blue
curves: bounds from lepton anomalous magnetic moments. Orange curves: bounds from
prior beam dump experiments. Purple curves: luminosity necessary to achieve S/

√
B = 5

assuming me+e− invariant mass resolution of 1 MeV, and a detector acceptance of −2 < η <
2, KEp > 0.5 MeV, and KEe± > 5 MeV. The reach in the pseudoscalar and axial-vector
cases are the same as the scalar and vector cases, respectively, but the anomalous magnetic
moment bounds differ. The points labelled “A” and “B” correspond to the benchmark
scenarios studied in Sec. 2.6.
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2.2 Summary

The key results of our study are summarized in this section. We take an electron beam
with a fiducial energy of 100 MeV, incident on a proton target at rest in the lab frame.
At the FEL facility, the proton target is likely to be a hydrogen gas storage cell, which is
sufficiently diffuse to allow recirculation of the FEL beam [55]. In Fig. 2.1, we show a plot of
the mX–αX plane for the case that X has scalar or vector couplings to electrons.6 Here, mX

is the mass of the X boson, and αX ≡ λ2
X/4π is the coupling of the X boson to electrons,

normalized such that it can be roughly compared with αEM ' 1/137.
There are three sets of curves shown on the mX–αX plane:

• Indirect constraints from anomalous magnetic moments. An X boson that couples to
electrons will radiatively generate ae and, assuming lepton universality, aµ. The shaded
region is excluded, as explained in Sec. 2.3.1.

• Direct constraints from beam dump experiments. When the X boson is sufficiently
long-lived, high intensity beam dump experiments are sensitive to the decay X → e+e−.
The shaded region is excluded, as explained in Sec. 2.3.2.

• Discovery reach in ep scattering. As detailed in Sec. 2.4.2, we use an idealized detector
with pseudorapidity coverage −2 < η < 2 (i.e. tracking up to 15.4◦ of the beamline),
kinetic energy thresholds of KEp > 0.5 MeV and KEe± > 5 MeV, and invariant mass
resolution of 1 MeV. Assuming no systematic errors, the curves show the integrated
luminosity needed to achieve a 5σ discovery with statistics alone, i.e. S/

√
B = 5 in a

1 MeV resolution bin centered around mX . If the energy resolution is improved, this
integrated luminosity required for discovery improves linearly. Also, the reach of the
experiment can be further improved using a matrix element method, as proposed in
Sec. 2.4.3.

In addition, the points labelled “A” and “B” indicated the benchmark scenarios considered
in Sec. 2.6.

We see that with an integrated luminosity of 1 ab−1, there is a range of X boson masses
and couplings that are consistent with known bounds but visible in low energy ep scattering.
With an average current of 10 mA, the FEL beam produces 6×1016 electrons per second [56],
while a hydrogen gas target of thickness 1019 cm−2 is expected to be technically feasible [55].
Thus, the expected luminosity of the JLab FEL setup is 6×1035 cm−2 s−1, which corresponds
to 1.6 ab−1/month. With one month to one year of running, such a facility could probe an
interesting range of X boson masses and couplings.

6The plots for pseudoscalar and axial-vector couplings appear later in the text. The reach for the pseu-
doscalar (axial-vector) is the same as the scalar (vector), but the magnetic moment bounds differ.
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2.3 New Light Bosons

We consider four kinds of coupling for the new light boson X: scalar, pseudoscalar,
vector, and axial-vector. For simplicity, we assume that X only couples to electrons (and
other charged leptons), and show in App. A.5 that proton couplings do not drastically change
our conclusions. In the scalar and pseudoscalar cases, we augment the standard model with
a new boson X that couples to the electron field ψe as

Ls/p = ψe
(
λs + λpγ

5
)
ψeX. (2.4)

For the vector and axial-vector cases, we add a massive vector Xµ with couplings

Lv/a = ψe
(
λvγ

µ + λaγ
µγ5
)
ψeXµ. (2.5)

While more exotic operators are possible, Eqs. (2.4) and (2.5) cover the generic possibilities
for how X can couple to electrons.

In a complete theory, there is usually some kind of lepton universality, yielding equivalent
couplings of X to muons and taus. Assuming that X does not introduce lepton flavor
violation, then the coupling of X to the different leptons will either be approximately equal
or proportional to the lepton masses.7 As we will see below, though, if the couplings are
indeed proportional to the lepton masses, then the constraints from aµ exclude any of the
interesting region for this study.

For convenience where relevant, we define

λX ≡
√
|λs|2 + |λp|2 or

√
|λv|2 + |λa|2, αX ≡

λ2
X

4π
. (2.6)

In the text, we work in the limit me � mX , and present formulas for finite me in App. A.1.

2.3.1 Indirect Constraints

Previous studies of the indirect constraints on the X boson appear in Ref. [33]. The
strongest indirect bounds comes from the effect of the X boson on the anomalous magnetic
moments of the electron and muon, ae and aµ, arising from X boson loops. We take the
limits to be δae < 1.7 · 10−11 [41] and δaµ < 2.9 · 10−9 [57]. However, it should be noted
that in the case of vector or pseudoscalar couplings, the aµ bound should not be taken as
a hard constraint. We have chosen a limit such that the addition of the X boson does
not significantly change the agreement between experiment and theoretical predictions. Yet
with the currently observed muon magnetic moment anomaly the agreement between theory
and experiment in aµ actually improves for vector or pseudoscalar couplings just above the
constraint.

7In the special case that X is a pseudo Nambu-Goldstone boson (such as in Ref. [30]), one expects
λp = m`/fa, where m` is the mass of the lepton and fa is the decay constant.
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Figure 2.2: Constraints on the X boson mass mX and coupling αX from anomalous magnetic
moments, ae = (g−2

2
)e and aµ = (g−2

2
)µ. We assume lepton universality with αeX = αµX .

If the couplings of the X boson to leptons were proportional to the lepton masses, then
the aµ constraint would exclude the interesting parameter range for this study. The reason
is that the production rate for X bosons is proportional to αeX , but the constraint on aµ is
on αµX = αeX(mµ/me)

2. Thus, the effective bound on αeX is almost 5 orders of magnitude
stronger than if αeX = αµX . For this reason, we focus on the case with lepton universal
couplings.

The formula for the anomalous magnetic moment appears in App. A.1.1, mirroring known
results from Refs. [58, 59]. Taking the limit me � mX ,

δaes/p =
1

16π2

m2
e

m2
X

(
λ2
s

(
log

m2
e

m2
X

− 7

6

)
− λ2

p

(
log

m2
e

m2
X

− 11

6

))
, (2.7)

δaev/a =
1

16π2

m2
e

m2
X

(
λ2
v

4

3
− λ2

a

20

3

)
+O

(
m4
e

m4
X

)
. (2.8)

The calculation in the muon case does not admit a simple approximate form since mµ ≈ mX

in the range under consideration, so one must use the full formula from the appendix.
The constraints on the coupling of the X boson to electrons and muons are shown in

Fig. 2.2, assuming αeX = αµX . For mX & 10 MeV, the aµ bound dominates, giving roughly
αX . 10−7 – 10−8, except for the axial-vector case, for which the bound excludes much of the
interesting parameter space for this study. Thus, we see that the coupling of the X boson
to leptons must be 5 to 7 orders of magnitude weaker than the electromagnetic coupling
αEM ' 1/137.
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Figure 2.3: Constraints on the X boson mass mX and coupling αX due to prior beam dump
experiments, E774 at Fermilab and E141 at SLAC. The red lines correspond to X boson
lifetimes. The lifetime (and corresponding beam dump constraints) of the pseudoscalar and
axial-vector are nearly identical to the scalar and vector, respectively, except in the very low
mass region.

2.3.2 Direct Constraints

The strongest direct constraints on the X boson come from beam dump experiments.
As explained below, other direct constraints from rare meson decay modes, production from
cosmic rays, or supernova cooling either fall outside the parameter space under consideration
or are subsumed by the beam dump and anomalous magnetic moment constraints.

Despite the small coupling of the X boson to electrons, it still has a sizable production
rate in beam dump experiments because of their very high luminosity. As long as the X
boson lifetime is sufficiently long, the decay of X to electrons happens at finite displacement
from the target. Using the couplings in Eqs. (2.4) and (2.5), the X boson width has been
calculated in App. A.1.2. In the limit me � mX , the width is linear with mass

Γs/p =
αX
2
mX +O

(
m2
e

m2
X

)
, Γv/a =

αX
3
mX +O

(
m2
e

m2
X

)
. (2.9)

Roughly, the beam dump constraints are relevant for lifetimes longer than ∼ 10−3 cm.
As discussed in Ref. [50], the two experiments relevant in the parameter space of interest

are Fermilab’s E774 and SLAC’s E141 electron beam dumps, both originally searches for
MeV-scale axions. E774 consisted of a dump of 5.2 · 109 electrons at 275 GeV on a 19.6-cm
tungsten target, with a 20-cm wide detector 7.25 meters away. With the trigger requiring
a decay product with energy of 2.75 GeV, 17 events, i.e., decays reconstructing to a mass
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resonance, would qualify for discovery [49]. The E141 beam dump consisted of a 9 GeV
source with 2 · 1015 electrons incident on a 12-cm tungsten target with a detector 35 m away
down a 7.5-cm pipe. The trigger consisted of a decay with at least 4.5 GeV energy deposition
on the detector. Given the background, 1000 events would constitute discovery, with the
greater number of events necessary due to the lack of veto counters on this experiment [48].

To determine the excluded parameter space, we mirror the analysis of the vector case
from Ref. [50] and extend it to the other X boson couplings. In particular, we use an
approximate formula for the cross section and kinematics for X boson production and decay
in order to model the coherent nuclear effects involved in the beam dump experiments. The
excluded regions are shown in Fig. 2.3, with X boson lifetimes overlayed. The upper diagonal
boundary of the excluded region corresponds to when the X boson lifetime is sufficiently
short that X decays to electrons within the shielding of the beam. Naively, one would then
expect the upper boundary to be along lines of constant lifetime. The discrepancy is due
to the fact that lower-mass bosons are created with higher average Lorentz factors, allowing
more potential X boson events to be seen in the detector downstream past the shielding.
The lower boundary of the excluded region is determined by the rate of X boson production.
If the typical X boson decays past the detector, then this boundary would be approximately
horizontal. The reason is that for an X decay length `X and distance to detector L, the
fraction of decayed X bosons, approximately L/`X , cancels the 1/mX mass dependence in
the production rate. When the decay length becomes less than the distance to the detector,
the lower boundary rises at a diagonal.

Note that the beam dump constraints exclude any of the parameter space accessible in
this search where X is a very long-lived particle. This is important, because if X were too
long-lived, then it would decay outside of a typical detector volume, and be inaccessible in
the ep scattering experiment under consideration. Regions of moderate X lifetime are still
allowed, so the X might decay with a displaced vertex in ep scattering. We will return to
this possibility in Sec. 2.7.

We can also consider direct constraints that rely on model-dependent assumptions on
hadronic couplings. Most of these end up being either irrelevant or superfluous in the region
of interest. For example, B-factories provide constraints on the X boson coupling constant
though rare Υ decays, but such constraints currently only apply for mX ≥ 2mµ, and are thus
beyond the range of interest [60]. A recent BaBar analysis [61] does constrain dark force
models, but relies on a model-dependent signature present only in non-Abelian dark sectors.
Some proton beam dumps, such as CHARM at CERN [62] do cover some of the parameter
space in question, but rule out areas of parameter space already covered by the electron
beam dumps. There also exist bounds from the rare pion decay mode π0 → e+e− [42], which
can place some additional constraints in a small region close to where the electron and muon
anomalous magnetic moment bounds intersect.

There are also potential bounds that end up being irrelevant since the X boson is short-
lived in the parameter space of interest. For example, X bosons could potentially be observed
due to cosmic rays interacting with the earth, such that X bosons could be seen at detectors
such as AMANDA and IceCube. However, these experiments rule out couplings that are
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smaller (equivalently, lifetimes that are longer) than those we are trying to observe here [50].
Additionally, neutrino searches such as LSND and MiniBooNE can also be used to place
constraints on MeV scale bosons, but again at much lower couplings [63]. Another constraint
comes from supernovae, where X boson production could lead to additional cooling of the
core. However, the X boson would have to travel at least O(10 km) in order to escape the
core. Thus, such constraints require lifetimes for the boson to be several orders of magnitude
longer than those considered in this search. Detailed calculations done for the axion case in
Ref. [64] agree with this rough estimate.

Assuming hadronic couplings, strong bounds on the X boson might be obtained from data
mining the existing pion decay data set from the KTeV collaboration.8 Over the course of
two runs, approximately 1.8·106 decays of π0 → e+e−γ with invariant mass me+e− > 65 MeV
have been reconstructed [65]. Assuming this can be extended to the whole invariant mass
range, this should give a data set of close to 6 ·107 decays. One can then look for an X boson
by looking for a small peak in the me+e− spectrum, in a search much like the e+e− → e+e−γ
search described later in Sec. 2.5. Using an approximate formula for the reach from Ref. [43],
a search looking for X bosons should be able to detect couplings as low as αX ∼ few× 10−8,
an improvement on current bounds, but not matching the reach for the search proposed in
this chapter.

2.4 ep Scattering Below the Pion Threshold

We now describe a promising venue for a light X boson search: low-energy ep scattering.
Despite the above constraints on αX , the cross section for X boson production in ep→ ep+X
is quite large, on the order of picobarns. The X would then decay promptly to e+e−, yielding
an e−p e+e− final state where the electron/positron pair reconstructs a narrow X resonance.
The envisioned experimental setup is sketched in Fig. 2.4, where a high intensity electron
beam is incident on a hydrogen gas target. Assuming a sufficiently large tracking volume,
all four outgoing fermions can in principle be reconstructed.

As we will see, the primary challenge for this search is the large irreducible QED back-
ground, roughly four orders of magnitude larger than the signal, making this a background
limited search. In this section, we summarize the signal and background calculations and
present the reach for the X boson, first using simple cuts on the detector geometry and then
including full information about the event kinematics through a matrix element method.

2.4.1 Cross Section Calculations

In the range of couplings allowed by the anomalous magnetic moment bounds, the width
of the X boson is an eV or smaller. Therefore, to calculate the signal rate for e−p →
e−p e+e−, we can safely use the narrow width approximation. Since the angular distribution
of the decay X → e+e− is relevant for understanding the vector couplings, we maintain full

8We thank Maxim Pospelov for bringing this possibility to our attention.
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Figure 2.4: The envisioned experimental setup to probe e−p → e−p e+e− scattering, where
a high intensity electron beam is incident on a diffuse hydrogen gas target. In order to
reconstruct all four outgoing fermions, a large tracking volume is needed, and we will consider
−2 < η < 2 coverage as a benchmark. While this is a fixed target experiment where most
of the tracks go in the forward direction, we take a detector symmetric around η = 0 for
simplicity. For reference, η = 1 is an angle to the beamline of θ = 40.4◦, η = 2 is θ = 15.4◦,
η = 3 is θ = 5.7◦, and η = 4 is θ = 2.1◦.

polarization information in the signal process e−p→ e−p e+e− as explained in App. A.2. We
used a custom matrix element/phase space generator to calculate the signal cross sections,
and checked the results with CompHEP 4.5.1 [66]. In particular, we used CompHEP to verify
that any interference between the signal and background processes is a subdominant effect
given the narrowness of the X boson.

For the couplings in Eqs. (2.4) and (2.5), the diagrams that contribute to the signal cross
section appear in Fig. 2.5. In the limit that me → 0, the cross section for the pseudoscalar
(axial-vector) case is identical to the scalar (vector) case. While we keep finite me effects in
our calculations, we will only show reaches for the scalar and vector cases, since the finite me

effects are small. While there could be contributions to the signal from X boson couplings
to the proton, we argue in App. A.5 that such effects can be ignored. In reconstructing the
X resonance, there is combinatoric confusion about which electron to pair with the positron,
and this confusion is included in our plots. We neglect the electromagnetic form factor of
the proton, which is a fair approximation since we are considering incoming electron energies
Ee � mproton.

The background to e−p → e−p e+e− is due to QED radiative processes e−p → e−p + γ∗

with γ∗ → e+e− and to the Bethe-Heitler trident process, shown in Fig. 2.6. Details of these
backgrounds appear in App. A.3, where we again ignore the proton form factor. We calcu-
lated the background cross sections using a custom phase space generator interfaced with
the stand-alone version of MadGraph 4.4.17 [67], and checked the results using CompHEP.
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Figure 2.5: Diagrams contributing to the X boson signal. Here, the X boson propagator is
evaluated in the narrow-width approximation.

Because we are considering mX ∼ Ee, thinking of the γ∗ as coming from initial or final
state radiation is not a good approximation to the background process. In the region of
phase space where an e+e− pair fakes an X resonance, the photon is far off-shell relative
to the energy scales involved, so we are far away from soft-collinear limit. In particular,
it should be noted that considerable (constructive) interference increases the background
above naive expectations from the Weizsäcker-Williams approximation. To give a sense of
how important this interference is, one sees changes on the order of 10% in cross sections
with e−p collisions versus e−p̄ collisions, whereas the sign of the proton charge would be
irrelevant in the Weizsäcker-Williams picture.

In principle, there is another background we should consider. Since the proposed JLab
FEL experiment is really an electron-hydrogen gas collider, one might be concerned about
backgrounds from e−e− collisions. In fact, this is only an issue for very low values of mX .
For an electron beam with energy 100 MeV, the center-of-mass energy of e−e− collisions is
around 10 MeV, so radiative Møller scattering is only relevant for mX . 10 MeV. We saw in
Sec. 2.3.2 that such light bosons are already ruled out by direct constraints. Moreover, given
the fact that we imagine using the recoiling proton and electron momentum as a handle on
the collision process, particle identification should be sufficiently robust to distinguish e−e−

from ep collisions. Finally, there are important experimental backgrounds, including event
pileup and photon conversion, which we do not address in this study.

2.4.2 Resonance Reach

Since the X boson is very narrow, with infinitely good mass resolution and the relatively
large X boson production rate, one could easily produce the few events required in the same
e+e− invariant mass bin to conclude the existence of X. In practice, though, one must take
into account finite experimental resolution. In Fig. 2.7, we plot the signal cross sections for
fixed αX = 10−8 as a function of mX , and compare it to the QED background, imposing
a cut that at least one e+e− pair within a 1 MeV mass bin around mX . One can see that
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Figure 2.6: Representative diagrams contributing to the radiative QED background. With
indistinguishable outgoing electrons, there are 12 diagrams in total, consisting of γ∗ emission
off the incoming/outgoing electron/proton lines and the Bethe-Heitler process. In this study,
we ignore the electromagnetic form factor of the proton, which contributes at most a 5%
correction.

the signal cross section is in the range 10−2 to 102 pb, but the background size is generically
four orders of magnitude larger than signal. Thus, one will need a very large integrated
luminosity to establish the signal over statistical fluctuations in the background.

To assess the reach of experiment precisely, one would need to know the true resolution,
efficiency, and dimensions of the detector. As a rough approximation to the detector geome-
try, we assume full azimuthal coverage, and consider a detector with pseudorapidity coverage
of

−2 < η < 2, η ≡ − ln

(
tan

θ

2

)
(2.10)

(i.e. a tracking system that covers angles as close as 15.4◦ to the beam line). As we will see
later in Fig. 2.8, a more aggressive −3 < η < 3 coverage (i.e. tracking up to 5.7◦) actually
has a comparable reach. We also impose a constraint on the kinetic energy of the outgoing
particles:

KEp > 0.5 MeV, KEe± > 5 MeV. (2.11)

Note that in this idealized study, knowing the proton’s kinematics is strictly speaking not
necessary, since the proton four-momentum could be reconstructed from the beam energy
and the measured outgoing electron/positron tracks. In an actual experimental context,
however, overconstraining the full kinematics will be crucial. Although we do not consider
reducible backgrounds here, information on the proton is necessary to avoid mistaking pileup
from multiple elastic- and Møller-scattering events for signal or irreducible background. Ad-
ditionally, having full kinematic information means that the spread in the beam energy does
not directly translate to smearing in the mass resolution, mitigating this intrinsic source of
uncertainty.
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Figure 2.7: Cross section for the X boson signal with αX = 10−8 and the QED background
imposing that at least one e+e− pair is in the mX ± 0.5 MeV invariant mass bin. The
signal cross section scales linearly with αX . Generically, the expected signal is four orders
of magnitude smaller than the background.

While we assume the detector is symmetric about η = 0, recall that we are considering a
fixed target geometry, so the tracks dominantly appear in the forward part of the detector.
Since the QED background has a large forward peak, the pseudorapidity restriction does
improve the signal to background ratio compared to what is shown in Fig. 2.7. We only keep
events where all four outgoing fermions are contained in the tracking volume.

As a baseline, we assume that the e+e− invariant mass resolution is 1 MeV of the target
mX value. We then calculate the value of αX such that for a given luminosity, one can achieve
a 5σ discovery with statistical uncertainties alone, meaning we find where S/

√
B = 5 in a 1

MeV mass bin centered on a candidate X mass. Since the background is relatively smooth
over the kinematic range of interest, the required luminosity for discovery decreases linearly
as the resolvable mass difference decreases:

L(x MeV resolution) = xL(1 MeV resolution). (2.12)

The reach for 1 MeV resolution was shown above in Fig. 2.1, taking 3 MeV < mX < 100 MeV.
While we assume 1 MeV resolution as a conservative estimate, it is worth asking how

this might be improved. In fact, a more accurate baseline would be 1% mass resolution [68],
making required luminosity scale linearly with mX as well. One can try to improve this
resolution, either by increasing the strength of the magnetic field in the tracking region, or
the size of the region itself, but at the low energies under consideration, multiple scattering
is appreciable and puts fundamental constraints on the achievable resolution. We estimate
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Figure 2.8: Reach plots for variable detector angular acceptance η. The grey shaded regions
correspond to the indirect and direct constraints from Sec. 2.3. In all cases, we impose the
criteria KEp > 0.5 MeV and KEe± > 5 MeV. We again take an integrated luminosity of
1 ab−1 and assume 1 MeV me+e− resolution. For small values of η, the reach deteriorates
because the signal efficiency decreases. For large values of η, the reach deteriorates because
the background has a large forward peak.

that achieving 0.5% mass resolution should be possible, but greater improvements would be
extremely difficult.

In Fig. 2.8, we show how the reach changes as the angular acceptance is varied. Going
from |η| < 2 to |η| < 3 slightly improves the reach for smaller values of mX , though the
effect is mild. As we will discuss more below, the reason the |η| < 2 geometry is so effective
is that by cutting out the phase space close to the beam line, we decrease the background
rate without sacrificing much on signal acceptance.

This S/
√
B procedure to establish reach is only a crude estimate of the true sensitivity.

In practice, the actual background distribution would have to be fit from the data using some
kind of sidebanding procedure (see Sec. 2.6), and one also must pay a trials factor in looking
for an invariant mass peak since the X boson could be anywhere. With those caveats, we
see that with 1 ab−1 of data, one begins to probe the interesting parameter regime for the
X boson.

2.4.3 Reach with Matrix Element Method

The reach plots in Fig. 2.1 do not include any kinematic cuts apart from the −2 < η < 2
cut on detector acceptance and the kinetic energy restriction from Eq. (2.11). As we will see
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in Sec. 2.6, the kinematic distributions for signal events do differ from the background, so
one might hope that a set of optimized kinematic cuts might improve the reach for the X
boson. Here we show that a factor of 3 improvement in the reach is in principle possible by
using complete kinematic information via a matrix element method [69, 70].

The matrix element method is often described in terms of a discriminant function [71],
but the essential statistics can be understood by considering a weighted measurement. For
a very narrow resonance X, the signal and background matrix elements for e−p→ e−p e+e−

are essentially functions of Φ̃4, which is the four-body final state phase space Φ4 with an
additional restriction that one of the electron/positron pairs reconstructs a given value of
mX . For simplicity, we will use the notation Φ to refer to Φ̃4.

For a differential signal cross section times luminosity S(Φ) and differential background
times luminosity B(Φ), the naive reach calculation is equivalent to integrating over all of Φ
with unit weight:

S =

∫
dΦS(Φ), B =

∫
dΦB(Φ). (2.13)

The reach is determined by calculating S/δB = S/
√
B, where δ refers to the statistical

uncertainty in the measurement. Now consider a weighted measurement

Seff =

∫
dΦS(Φ)w(Φ), Beff =

∫
dΦB(Φ)w(Φ), (2.14)

where w(Φ) is some weight function. For example, a weight function corresponding to
hard kinematic cuts is one where w(Φ) equals either 0 or 1. However, more general weight
functions still give well-defined measurements.

The matrix element method calculates the optimal kinematic observable to discriminate
signal from background, which corresponds to choosing the optimal function w(Φ) that
maximizes Seff/δBeff . As derived in App. A.4, the ideal weighting function is

wbest(Φ) =
S(Φ)

B(Φ)
, (2.15)

which yields [
Seff

δBeff

]
best

=

√∫
dΦ

S(Φ)2

B(Φ)
. (2.16)

We can therefore recalculate the reach for the X boson using this ideal value for Seff/δBeff ,
and the results are shown in Fig. 2.9. As advertised, there is potential factor of 3 improve-
ment in the reach by using the full kinematic information in the signal and background
distributions.

Of course, the matrix element method assumes that the wbest(Φ) function is calculated
using the true signal and background distributions, and this is not possible in practice, due
to both theoretical uncertainties in the matrix elements and detector effects. Still, one might
still hope to improve the reach by doing hard kinematic cuts that approximate wbest(Φ). As
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Figure 2.9: Reach plots using the matrix element method. The solid curves include the
detector acceptance cuts −2 < η < 2, KEp > 0.5 MeV, and KEe± > 5 MeV, while the
dashed lines have no acceptance cuts. The green curves indicate the reach with the matrix
element method, and the purple curves without. In all cases, we take an integrated luminosity
of 1 ab−1, and the reach corresponds to S/

√
B = 5 assuming me+e− resolution of 1 MeV.

The matrix element method can yield around a factor of 3 improvement in the reach. Note
also that the detector geometry alone does act like a primitive matrix element method by
cutting out the forward region.

an example of this, consider Fig. 2.9. There one sees noticeable improvement in S/
√
B just

from applying the fiducial detector geometry. In this way, the detector geometry does act
like a primitive w(Φ). In Sec. 2.6, we will look at wbest(Φ) in more detail to see what other
kinds of hard cuts could be most helpful in teasing out the signal. In principle, by using a
polarized electron beam, one could obtain additional information from the full ep→ ep+X
matrix element, but we will not consider polarized beams in this chapter.

2.5 Comparison to Other Searches

We argued that low energy ep scattering with at least 1 ab−1 of data was a promising
venue for looking for a light, weakly coupled X boson. Unlike beam dump experiments where
the proton recoil spectrum is not measurable, a high intensity electron beam on a diffuse gas
target allows for full event reconstruction.

However, ep scattering is certainly not the unique choice of experiment with full recon-
struction potential, and electron-electron scattering or electron-position scattering also have
large X boson production rates. Here, we will argue that for the same integrated luminosity,
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ep, e−e−, and e+e− colliders all offer comparable search power. But given the very high in-
stantaneous luminosity achievable at the JLab FEL, we believe that ep scattering is favored
for X bosons in the range 10 MeV− 100 MeV.

Consider the following four scattering processes:

e−p→ e−p+X (fixed target),

e−e− → e−e− +X (colliding beams),

e+e− → e+e− +X (colliding beams),

e+e− → γ +X (colliding beams). (2.17)

The first one is the ep scattering experiment in this chapter, the next two are the equivalent
processes for e−e− and e+e− colliders, and the final search channel is only available for e+e−.
The distinction between “fixed target” and “colliding beams” is only needed to determine
the relation between the lab frame and the center-of-mass frame of the experiment. We
assume the same detector technology for all four experiments, with pseudorapidity coverage
in the lab frame of −2 < η < 2, the kinetic energy restriction from Eq. (2.11), and 1 MeV
invariant mass resolution. For the e+e− → γ + X search, one would also need to impose a
cutoff on photon energy, but as the photons are monochromatic for a given beam energy,
this would merely correspond to no reach at all once the cutoff is reached and is thus not
shown.

In Fig. 2.10, we show the reach in αX as a function of the available beam energy

Eeff =
√
s−m1 −m2, (2.18)

where
√
s is the center-of-mass energy of the collider and mi are the beam masses. (For ep

scattering with a 100 MeV electron beam, Eeff ' 95 MeV.) We take a fixed mX = 50 MeV
and fixed integrated luminosity L = 1 ab−1. The signal and background cross sections were
calculated using the same method as in Sec. 2.4.

Given the same integrated luminosity and high enough values of Eeff, the reach for the
searches involving four final state fermions are within a factor of 2 of each other. However,
getting 1 ab−1 of data in the proposed FEL experiment requires only 1 month of data
taking, while the maximal luminosity currently achieved in colliding beam experiments is
1.7 · 1034 cm−2 s−1 ' 0.5 ab−1/yr. Since high luminosity is critical to probe the parameter
space of interest, this favors a fixed target experiment for the four fermion final states. For
the same luminosity, the e+e− → γ +X search is 1 to 2 orders of magnitude more sensitive
than the ep search, and we will comment more on this search below.

It should be noted that existing collider experiments, such as BaBar and Belle, already
have data sets with integrated luminosities of ∼ 1 ab−1. However, the collisions there
occur at much higher energies. At those energies and for the same search strategy, many
additional backgrounds, both reducible and irreducible, are present, increasing the difficulty
of the analysis. In fact, studies of these detectors typically focus on the case with mX >
2mµ, as the decay of the X boson to muons is more easily reconstructed than the decay to
electrons [46, 60].



23

60 80 100 120 140
10-10

10-9

10-8

10-7

10-6

10-5

Eeff HMeVL

Α
X

Reach HScalarL

ep, 1 ab-1

e-e-, 1 ab-1

e+e- ® e+e-e+e-, 1 ab-1

e+e- ® e+e-+Γ, 1 ab-1

60 80 100 120 140
10-10

10-9

10-8

10-7

10-6

10-5

Eeff HMeVL
Α

X

Reach HVectorL

ep, 1 ab-1

e-e-, 1 ab-1

e+e- ® e+e-e+e-, 1 ab-1

e+e- ® e+e-+Γ, 1 ab-1

Figure 2.10: Reach for an 50 MeV X boson, varying Eeff =
√
s − m1 − m2. We compare

the present ep scattering proposal with three alternative searches: e−e− → e−e− + X,
e+e− → e+e− + X, and e+e− → γ + X. In all cases, we assume a detector acceptance
of −2 < η < 2, KEp > 0.5 MeV, and KEe± > 5 MeV. While the in principle reach in
e+e− → γ + X appears to be better than the other three, we discuss the challenges of that
search in the text. For the same integrated luminosity and large enough Eeff, the three
searches with four outgoing fermions have comparable reach, which favors the ep scattering
proposal where high luminosity is more readily achievable.

On the other hand, even at the higher energies of existing data sets, the e+e− → γ +
X channel does look quite promising for an X boson search due to the lack of hadronic
backgrounds. That said, two factors lead this channel to be more complimentary than
competitive with the search we propose. Our naive estimate of the γ + X reach assumed
perfect reconstruction of every event meeting the detector geometry cuts. This is significantly
more difficult with a search using on-shell photons as there is no longer tracking information
for every particle. In order to identify the single energetic photon in the event with high
accuracy, it is necessary to put tighter cuts on the photon angle to get farther away from
the beam pipe. Estimates in Ref. [44] indicate that when such cuts are put in place, the
reach in coupling actually becomes comparable to that of the ep search. Additionally, the
search for γ+X is complicated by photon conversion in the tracking volume from the much
larger e+e− → γγ process. While this can be offset by cutting on displaced vertices, such an
approach becomes difficult for e+e− mass bins below 50 MeV, and impossible in mass bins
below 20 MeV [72]. For X bosons above 50 MeV, one should be able to extend the γ + X
search already done for X → µ+µ− [61] to X → e+e−, making the search complementary to
ep scattering by filling in the mass range between ∼ 50 MeV and 2mµ.
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Figure 2.11: Reach plots for ep collisions, increasing the electron beam energy from Ee =
100 MeV to Ee = 140 MeV, the maximal sustainable beam energy available at the JLab
FEL. Assumptions about detector geometry, integrated luminosity, and energy resolution
are the same as the previous figures.

The preceding discussion of the benefits of ep scattering applies for X bosons in the mass
range 10 MeV < mX < 100 MeV. For higher values of mX , the JLab FEL simply does not
have the kinematic reach achievable in other colliders. The maximum sustainable FEL beam
energy is around 140 MeV [55], limiting the in-principle reach to mX . 131 MeV. Moreover,
even if one were able to get higher energy electron beams, it is no longer clear whether ep
scattering would pose any advantage, since for electron beam energies above the pion mass,
inelastic scattering channels open up, increasing the number of tracks per beam crossing.

Below the pion mass threshold, though, the reach in ep collisions can be improved in going
to somewhat higher Eeff as seen in Fig. 2.10. A more detailed look is shown in Fig. 2.11,
which compares the reach for Ee = 100 MeV to the maximum sustainable FEL energy of
Ee = 140 MeV. For X boson masses close to the kinematic limit, the higher energy electron
beam gives improved sensitivity, though at low masses, most of which have already been
ruled out by beam dump constraints, the reach gets slightly worse.
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Figure 2.12: Invariant mass distribution for me+e− , comparing the QED background to
benchmark models A (left) and B (right). The fluctuations in the background distribution
at low me+e− are from Monte Carlo statistics, and are not indicative of expected statistical
fluctuations. The signal includes the combinatoric background from pairing the “wrong”
electron with the positron. These plots include the detector acceptance criteria −2 < η < 2,
KEp > 0.5 MeV, and KEe± > 5 MeV. Note the four orders of magnitude difference between
the expected signal and background.

2.6 Benchmark Studies

In this section, we consider two benchmark X boson scenarios, indicated on Fig. 2.1,

A : mX = 50 MeV αX = 10−8, (2.19)

B : mX = 20 MeV αX = 3 · 10−9, (2.20)

with both scalar and vector couplings in each case. These points were chosen to be roughly
close to the 1 ab−1 reach lines in Fig. 2.1. We will show an example analysis strategy for
X boson signal extraction and then show various kinematic distributions to highlight which
parts of phase space are most sensitive to X boson production.

To begin, consider reconstruction of the X boson resonance. In Fig. 2.12, we show
the invariant mass distribution for e+e− pairs, taking the fiducial detector acceptance from
Eqs. (2.10) and (2.11). Since the final state electrons are indistinguishable, the plot includes
two histogram entries per event. In the case of the signal distribution, there is the expected
spike at mX accompanied by a combinatoric background from pairing the positron with the
“wrong” electron. We see that there is a four orders of magnitude difference between signal
and background, consistent with Fig. 2.7 which did not include any detector acceptance
effects.

To show how the X boson resonance could be seen despite the large background, Fig. 2.13
shows a simulated distribution of me+e− created as follows. First, we generate 1 ab−1 of
background pseudo-data for the me+e− distribution and add it to 1 ab−1 of signal pseudo-
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Figure 2.13: Simulated me+e− distributions compared to a background fit. This plot was
made with 1 ab−1 of signal and background pseudo-data, assuming 1 MeV invariant mass
resolution. The blue curves show the expected statistical uncertainties in the background, 1σ
(solid) and 5σ (dashed). For the vector couplings (green), both model A (left) and B (right)
show a prominent bump in the dilepton invariant mass distribution, which is expected since
these benchmark points lie above the 1 ab−1 reach line. For the scalar couplings (red), a
bump cannot be seen, since these benchmark points lie below the 1 ab−1 reach line.

data. We take the combined signal plus background distribution, and fit it to an ad hoc
functional form:

dσfit

dm
= N(m)a(mmax −m)b(em)c, (2.21)

where N , a, b, and c are fit coefficients, and mmax is the maximum kinematically allowed
value for me+e− . We then plot the fractional difference between the pseudo-data and the final
fit function in Fig. 2.13. For the case of the vector couplings where the benchmark points lie
above the 1 ab−1 reach line, a peak at the me+e− distribution at mX is indeed visible above
the expected statistical fluctuations in the background, showing that a sideband procedure
for extracting the background is feasible. For the scalar benchmarks, no such peak is visible,
as expected since these benchmarks lie below the 1 ab−1 reach line.

The X boson resonance signal could be further enhanced by using the matrix element
method of Sec. 2.4.3, which would be applied at each value of me+e− . To see how the matrix
element method would affect our two benchmark points, we plot some example kinematic
distributions in Figs. 2.14, 2.15, 2.16, and 2.17. Except as indicated, these plots are made
using the fiducial detector geometry cuts of −2 < η < 2, KEp > 0.5 MeV, and KEe± >
5 MeV, and require that at least one electron/positron pair reconstructs mX . The electron
that reconstructs the candidate resonance is the active electron, and the other is the spectator
electron. In addition to the raw background and signal cross sections, we also plot the ideal
weighting function from Eq. (2.15).9 Large values of the weighting function correspond to

9As a sanity check, we verified that the weighting function is approximately equal to the ratio of the
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Figure 2.14: Momentum and angular distributions for model A, with mX = 50 MeV and
αX = 10−8. The QED background is restricted to have one e+e− pair reconstruct mX ,
and the corresponding electron is called the active electron while the other is the spectator
electron. These plots include detector acceptance cuts, but the cut corresponding to the
plotted distribution is indicated by shading. The solid blue curves are the QED background,
and the solid red (green) curves are the scalar (vector) signal. The dashed red (green) curves
are the ideal weighting functions for the scalar (vector) case with arbitrary normalization,
which are large in the region of phase space most sensitive to X boson production.
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Figure 2.15: Additional kinematic distributions for model A, with the same criteria and la-
beling as Fig. 2.14. Shown are five pairwise invariant mass distributions (the active electron-
positron invariant mass would of course just give a peak at mX). The out-of-plane angle is
the between the reconstructed X boson and the incoming electron/spectator electron plane.
The decay angle is the angle of the X boson decay products relative to the X boson momen-
tum, measured in the X rest frame. Also shown is the angle between the spectator electron
and the reconstructed X boson.
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Figure 2.16: Momentum and angular distributions for model B, with mX = 20 MeV and
αX = 3 · 10−9, analogous to Fig. 2.14.
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Figure 2.17: Additional kinematic distributions for model B, analogous to Fig. 2.15.



31

regions of phase space that have the highest sensitivity to the X boson.
In Figs. 2.14 and 2.16, we show the momentum and angular distributions for the four

outgoing fermions. All of the detector geometry cuts are imposed, except that the cut
corresponding to the plotted distribution is indicated via shading.

From the momentum distributions, we see that the kinetic energy cuts from Eq. (2.11) do
not cut out much of the most sensitive region, and indeed the cut on proton and spectator
electron kinetic energy enhances the signal relative to the background. For the angular
distributions, because the background has a strong peak when an electron scatters in the
forward direction, the weighting function is suppressed near cos(θelectron) = 1. This explains
why in Fig. 2.8, the reach did not improve much in going from an |η| < 2 cut to an |η| <
3 cut. Away from this peak, the weighting function has roughly flat sensitivity to the
electron/positron angle, indicating that large angular acceptance is important for X boson
reconstruction. Because of energy-momentum conservation, the proton can only scatter in
the forward direction, and the most sensitive region is in fact in the most forward region.

In Figs. 2.15 and 2.17, we show the pair-wise invariant mass distributions, as well as
three angular distributions. The out-of-plane angle is the angle the reconstructed X boson
moves relative to the plane defined by the incoming electron beam and the spectator electron.
The decay angle is the angle between the X boson momentum and the outgoing positron
momentum, as measured in the X boson rest frame. Also plotted is the angle between the
spectator electron and the reconstructed X boson.

The invariant mass distributions do show some ability to distinguish signal from back-
ground. Especially promising is the invariant mass between the spectator electron and the
positron, which peaks at small values for the background. The angular distributions show
less promise, as the ideal weighting functions are relatively flat. Note that the weighting
function for the scalar and vector cases do have different shapes in the angular distributions,
which explains why the reach plots in Sec. 2.4 have different mX dependence even after
correcting for the total signal cross section.

Once the X boson is discovered, the decay angle could be useful for distinguishing the
scalar coupling from the vector case. This distribution is flat for the scalar signal, but
encodes non-trivial angular information in the vector case. This angular variation is much
smaller than the background, though, so a careful analysis would be necessary to extract the
nature of the X boson coupling.

2.7 Prospects for Displaced Vertices

We saw in Sec. 2.3.2 that there is a region of parameter space where the X boson has not
yet been ruled out by the beam dump experiments but has a lifetime long enough to leave
a displaced vertex in ep collisions. While the X bosons produced in low energy ep collisions
are generically not very boosted, there is enough of a tail in the lifetime distribution that a

signal and background in a given observable bin, appropriately normalized to the phase space volume of that
bin. See App. A.4.
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Figure 2.18: Reach in ep scattering using a displaced vertex search strategy. The curves
correspond to producing 10 signal events with an integrated luminosity of 1 ab−1. The
purple curves assume that the total displacement between the interaction vertex and the
X boson decay vertex can be measured. The red curves assume that only the transverse
displacement from the beam axis can be measured. Note that the plotted range for αX
differs from the previous reach plots in this chapter, and that an additional bound from the
E137 experiment is shown.

few X bosons will have large displacements. Moreover, with a diffuse gas target, one can in
principle probe smaller vertex displacements than in a solid target.

Since the QED background does not generically lead to displaced vertices, this suggests
that the reach could be extended beyond that presented in Sec. 2.4. Of course, there are
instrumental effects that can lead to fake displacement, but we ignore these in this study.
For the signal, the displacement can be straightforwardly calculated by convolving the X
boson momentum spectrum with the exponentially falling lifetime curve, properly taking
into account boost factors.

With no expected irreducible backgrounds, we estimate the naive reach by considering
the region of parameter space where at least 10 displaced vertices would be observed. The
expected reach using two different search strategies is presented in Fig. 2.18. The more
aggressive strategy attempts to reconstruct the total displacement of the X boson. That
is, the detected recoiling proton and spectator electron define the interaction vertex, and
electron-positron pair from the X boson define the decay vertex. We plot the reach assuming
a 1 mm or 0.1 mm total displacement could be observed. Since there can be multiple
scatterings per beam crossing, this method faces a background from uncorrelated scattering
events.
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An alternative strategy is to merely reconstruct the transverse displacement of the decay
vertex from the beam axis. Since the X boson momentum is peaked in the forward direction,
this noticeably reduces the reach at the same displacement resolution. Assuming transverse
vertex displacement is easier to detect than total displacement, one might imagine that
increased resolution might compensate to make this the preferred strategy. Note that the
transverse displacement search faces a possible background from photon conversion within
the gas target.

Both displaced vertex strategies probe a different part of the parameter space from the
search in Sec. 2.4, and therefore can be viewed as complementary to the QED background-
limited analysis. In particular, X bosons with couplings two order of magnitude smaller
than those accessible with a direct bump hunt could be seen. At such small couplings, other
prior beam dump experiments come into play beyond those discussed earlier in Sec. 2.3.2. In
Fig. 2.18, the beam dump constraint at the lowest couplings comes from the E137 experiment
at SLAC [73], calculated analogously to the constraints in Sec. 2.3.2.

2.8 Conclusions

Low energy electron-proton scattering is one of the basic processes in the standard model.
It is therefore intriguing that new physics might be discovered in a regime that is thought
to be dominated by elastic and quasi-elastic QED processes. Recent astrophysical anomalies
have motivated a new paradigm for dark matter, where heavy dark matter interacts with a
light, weakly coupled boson. New low energy, high intensity scattering experiments are an
ideal setting to constrain (or confirm) this exciting scenario.

We have argued an X boson with αX ∼ 10−8 and 10 MeV < mX < 100 MeV could
be discovered in low energy ep scattering with around 1 ab−1 of data assuming 1 MeV
invariant mass resolution. Since the search for X → e+e− is background limited, it is crucial
to have an experiment with good energy resolution and very high statistics. We believe
that the unique combination of high luminosity with full event reconstruction makes this
a compelling experimental proposal for the JLab FEL. This proposal is complementary to
the beam dump experiments envisioned in Refs. [43, 50], which are better suited for smaller
value of αX and larger values of mX .

We have shown that a matrix element method which uses complete kinematic information
about the signal and background can increase the sensitivity to the X boson by about a
factor of 3. Though not studied in this chapter, a polarized electron beam could be useful in
extracting additional matrix element information. Of course, the most straightforward way to
increase the sensitivity of the experiment is to improve the invariant mass resolution beyond
our fiducial value of 1 MeV. Finally, if reconstruction of 1 mm or 0.1 mm displaced vertices
are possible, then ep scattering could probe an interesting region of X boson parameter space
with smaller couplings.
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Chapter 3

Constraining the Axion Portal1 with
B → K`+`−

3.1 Introduction

Motivated by a variety of cosmic ray anomalies [21, 22, 23, 24], a new dark matter
paradigm has emerged where TeV-scale dark matter interacts with GeV-scale bosons [27,
28, 29]. In one such scenario—dubbed the “axion portal” [30]—dark matter in the Milky Way
halo annihilates into light pseudoscalar axions-like states. In order to explain the observed
galactic electron/positron excess, the axion, a, is predicted to have a specific mass and decay
constant [30]

360 < ma . 800 MeV, fa ∼ 1− 3 TeV. (3.1)

These axions couple to standard model fermions proportional to their Yukawa couplings,
and in this mass range the axion dominantly decays as a→ µ+µ−. Other novel dark matter
scenarios involving axion-like states have also been proposed [75, 76, 77, 78, 79], which allow
for broader range of axion masses and decay constants.

More generally, light axion-like states appear in variety of new physics scenarios, as they
are the ubiquitous prediction of spontaneous Peccei-Quinn (PQ) [80] symmetry breaking.
The most famous example is the Weinberg-Wilczek axion invoked to solve the strong CP
problem [81, 82], as well as invisible axion variants [83, 84, 85, 86]. Light pseudoscalar par-
ticles appear in any Higgs sector with an approximate PQ symmetry, which often occurs
in the minimal or next-to-minimal supersymmetric standard models (MSSM and NMSSM).
Models of dynamical supersymmetry breaking typically predict an R-axion [87], whose cou-
plings can mimic PQ-type axions. There has also been speculation [88] that the HyperCP
anomaly [89] might be explained by a light axion. Therefore, searches for light axion-like
states have the potential to confirm or exclude a variety of new physics models.

In this chapter, we show that flavor-changing neutral current b→ s decays place stringent
bounds on such models. While the coupling of the axion to fermions is flavor-diagonal,

1This chapter, as well as App. B, was co-written with Zoltan Ligeti and Jesse Thaler and published in [74].
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the b → sa decay mediated by a top-W penguin diagram is enhanced by the top Yukawa
coupling appearing in the top-axion vertex. To our knowledge, Refs. [90, 91, 92] were the
first to consider this decay as a search channel for light pseudoscalars, where the a field was
identified with the CP -odd Higgs A0 in a two Higgs doublet model (2HDM). The analysis of
this chapter highlights the potential off this search channel for models like the axion portal,
where there is an a field which mixes with A0.

In the parameter range of interest for the axion portal, the axion decays promptly to
µ+µ−, and we find that existing B → K`+`− data (for ` = e, µ) can be used to derive multi-
TeV constraints on the axion decay constant fa, especially for small values of tan β. For
heavier axion-like states with reduced branching fractions to muons, B → K`+`− can still
be used to place a bound, relevant for constraining light Higgs scenarios in the NMSSM [93,
94, 95]. The estimates in this chapter are likely improvable by dedicated B → Ka searches
at BaBar and Belle, and can be further strengthened at LHCb and a possible super B-
factory. These searches are complementary to Υ(nS) → γa searches recently performed by
BaBar [96].

In the next section, we review the axion portal Lagrangian, which is relevant for any
DFSZ-type (Dine-Fischler-Srednicki-Zhitnitsky) axion [83, 84], and use it to calculate the
effective b→ sa vertex in Sec. 3.3. We sketch the current experimental situation in Sec. 3.4
and derive corresponding bounds in Sec. 3.5. We conclude in Sec. 3.6.

3.2 Review of the Axion Portal

If one were only interested in studying the tree-level interactions of new axion-like states,
it would be sufficient to introduce a new term in the Lagrangian of the form

δLint =
cψ
fa
ψγµγ5ψ ∂µa , (3.2)

where fa is the axion decay constant and cψ is the fermion charge under the broken U(1).
By the equations of motion, such a coupling is proportional to the fermion mass parameter,
leading to an effective coupling constant cψmψ/fa. However, the b → sa process we are
interested in occurs via a top-W penguin loop. With only Eq. (3.2), such a diagram is
logarithmically sensitive to the cutoff scale [90], so it is necessary to embed the axion coupling
in a complete theory to get a reliable bound on fa.

The axion portal [30] is an example of a class of theories where the b→ sa amplitude is
finite. The axion arises from spontaneous PQ-symmetry breaking in a 2HDM, of which the
DFSZ axion is a special case. We show that the b→ sa amplitude can be derived from the
b→ sA0 amplitude, where A0 is the CP -odd Higgs boson in a PQ-symmetric 2HDM.

Consider a complex scalar field S carrying U(1)PQ charge that gets a vacuum expectation
value 〈S〉 ≡ fa. This spontaneous symmetry breaking leads to a light axion-like state, a,

S = fa exp

[
i√
2fa

a

]
. (3.3)
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The assumption in the axion portal (and for any DFSZ-type axion) is that the only operator
that transmits PQ charge from S to the standard model is

δL = λSnhuhd + h.c., (3.4)

where λ is a (possibly dimensionful) parameter, and n is an integer. This coupling forces
huhd to carry non-trivial PQ charge, and we assume that the entire Higgs potential preserves
the U(1)PQ symmetry to a good approximation. The DFSZ axion [83, 84] corresponds to
the case with n = 2, while for the PQ-symmetric NMSSM [97] n = 1. Either case can be
used in the axion portal model of dark matter.

Since the vevs of S, hu, and hd all break the PQ symmetry, the physical axion will be
a linear combination of the phases of all three fields.2 However, in the fa � vEW limit, it
is calculationally more convenient to work in an “interaction eigenstate” basis, where the
axion a only appears in S, and the CP -odd Higgs A0 only appears in the two Higgs doublets
in the form:

hu =

 vu exp

[
i cot β√

2vEW

A0

]
0

 ,

hd =

 0

vd exp

[
i tan β√

2vEW

A0

]  , (3.5)

where tan β ≡ vu/vd,

vEW ≡
√
v2
u + v2

d ≡
mW

g
' 174 GeV , (3.6)

and we have omitted the charged Higgs H± and the CP -even Higgses for simplicity. The
coefficients appearing in front of A0 ensure that A0 is orthogonal to the Goldstone boson
eaten by the Z boson.

This exponential parameterization of A0 is convenient for our purposes, since PQ sym-
metry implies that mass terms involving a and A0 can only appear in Eq. (3.4). In this basis,
the physical degrees of freedom are given by

aphys. = a cos θ − A0 sin θ,

A0
phys. = a sin θ + A0 cos θ, (3.7)

with

tan θ ≡ n
vEW

fa

sin 2β

2
. (3.8)

2This also means that the physical axion decay constant will be a function of the three vevs. The difference
is negligible when fa � vEW, and we will continue to refer to fa as the axion decay constant.
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At this level, the physical axion is massless.3 A small mass (beyond the contribution from
the QCD anomaly) can be generated by a small explicit violation of the PQ symmetry, but
the precise way this happens is irrelevant for our discussion.

The dominant decay mode for the axion depends on its mass, ma. The axion decay width
to an `+`− lepton pair is given by

Γ(a→ `+`−) = n2 sin4 β
ma

16π

m2
`

f 2
a

√
1− 4m2

`

m2
a

. (3.9)

For 2me < ma < 2mµ, the dominant decay is a→ e+e−. In this mass range, however, strong
bounds already exist from K → πa decays [98, 99]. With the axion decay to fermions being
proportional to their mass-squared, a → µ+µ− dominates over a → e+e− for ma > 2mµ.
Note that in the mass range given in Eq. (3.1), the axion decays within the detector as long
as fa . 1000 TeV.

The axion decay becomes more complicated at higher masses when hadronic decay modes
open up. Ref. [30] estimated that the a→ 3π channel starts to dominate over the µ+µ− chan-
nel at ma ' 800 MeV. Hadronic channels dominate the axion decay until ma & 2mτ , when
the τ+τ− channel becomes dominant. However, as emphasized recently in [100], throughout
the entire mass range 2mµ < ma < 2mb, the branching ratio to µ+µ− remains significant,
and until the τ+τ− threshold, it never drops below O(10−2). For ma > 2mτ , the branching
fraction to muons is approximately

Br(a→ µ+µ−) ' m2
µ

m2
τ

' 0.003, (3.10)

with the precise value depending on tan β through Γ(a → cc̄) and on the neglected phase
space factor.

3.3 The Effective b→ sa Coupling

By assumption, the physical axion state dominantly couples to standard model fields via
its mixing with A0. Therefore, at one-loop level, the amplitude for b → sa can be derived
from

M(b→ sa) = − sin θ ×M(b→ sA0)2HDM, (3.11)

where “2HDM” refers to a (PQ-symmetric) 2HDM with no S field. Moreover, since the final
state only contains a single axion field, there is no difference in the relevant Feynman rules
between the exponential parameterization in Eq. (3.5) and the standard linear parameteri-
zation of A0 in the two Higgs doublet literature. For concreteness, we will consider a type-II
(MSSM-like) 2HDM.4

3For completeness, the physical A0 mass is given by m2(A0
phys.) = λ (fa)n (2/ sin 2β)(1 + tan2 θ).

4The type-I 2HDM model gives the same b→ sA0 amplitude to the order we are working; see Ref. [91].
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Figure 3.1: Diagrams contributing to b → sA0 coupling. Here φ1 and φ2 correspond to the
charged Goldstone mode and the charged Higgs respectively, while P 0

2 is what is termed A0

elsewhere. Figure from Ref. [91]

The radiatively induced b→ sA0 coupling in a type-II 2HDM was calculated in the early
1980’s independently in two papers [91, 92]. The dominant contributions come from penguin
diagrams involving a top quark, a W boson and/or charged Higgs H± boson, and the t tA0

or W±H∓A0 couplings (and corresponding counterterms), as can be seen in Fig. 3.1. The
one-loop b→ sA0 amplitude is reproduced to lowest order (in the mB,A0 � mW,t,H limit) by
the tree-level matrix element of the effective Hamiltonian [91, 92]5

H =
g3 V ∗tsVtb
128 π2

m2
t

m3
W

(
X1 cot β +X2 cot3 β

)
s̄γµPLb ∂µA

0. (3.12)

5The results published in these two papers differ, a fact which seems to have gone unnoticed—or at least
unremarked upon—in the literature. We have redone the calculations both in the unitary gauge and in the
Feynman gauge and agree with the result in Ref. [91]. We also agree with Ref. [92] if we replace in their
Eq. (9) the second ln(m2

t/m
2
W ) term by ln(m2

t/m
2
H), most likely indicating a simple typographical error.

Several papers in the literature seem to use the result as printed in Ref. [92], which has qualitatively wrong
implications. For example, it exhibits decoupling in the mH → ∞ limit and singularities when mH → mt,
whereas the correct result does not.
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The functions X1 and X2 depend on the charged Higgs boson mass mH , and are given by

X1 = 2 +
m2
H

m2
H −m2

t

− 3m2
W

m2
t −m2

W

+
3m4

W (m2
H +m2

W − 2m2
t )

(m2
H −m2

W ) (m2
t −m2

W )2
ln

m2
t

m2
W

+
m2
H

m2
H −m2

t

(
m2
H

m2
H −m2

t

− 6m2
W

m2
H −m2

W

)
ln
m2
t

m2
H

,

X2 = − 2m2
t

m2
H −m2

t

(
1 +

m2
H

m2
H −m2

t

ln
m2
t

m2
H

)
. (3.13)

From this effective Hamiltonian, we can calculate various B decay rates in the 2HDM.
These are summarized in App. B for B → Ka, B → K∗a, and the inclusive B → Xsa
rates. Using Eq. (3.11), the rates in any of these channels relevant for the axion portal are
determined by

Γ(B → Ka) = sin2 θ × Γ(B → KA0)2HDM. (3.14)

3.4 Experimental Bounds

In the parameter range of interest, the axion has a significant decay rate to leptons and
decays promptly on collider timescales. Thus, the axion would manifest itself as a narrow
dilepton peak in b→ s`+`− decays.

The b → sa → s `+`− process contributes to both inclusive and exclusive B → Xs`
+`−

decays [101, 102]. These final states receive large long-distance contributions from interme-
diate J/ψ and ψ′ resonances decaying to `+`−, which result in removing the surrounding
q2(≡ m2

`+`−) regions from the measurements. The so-called low-q2 region (q2 . 7− 8 GeV2)
can probe axion masses up to ma ∼ 2.7 GeV, while the high-q2 region (q2 & 14 GeV2) is
above the a → τ+τ− threshold. In general, one can bound the axion contribution in both
these regions.

In the low-q2 region, and especially for ma . 800 MeV as in Eq. (3.1), the exclusive
mode B → K`+`− is particularly well-suited to constrain b→ sa. This is because dΓ(B →
K`+`−)/dq2 varies slowly at small q2, and B → K`+`− has a smaller rate than B →
K∗`+`−, thus it gives us the best bound by simply looking at the measured spectrum. In
contrast, the exclusive B → K∗`+`− and the inclusive B → Xs`

+`− decay modes receive
large enhancements from the electromagnetic penguin operator, whose contribution rises
steeply at small q2, as 1/q2. This will complicate looking for a small excess in these modes
in this region.

For ma & 1 GeV, we expect that the bounds from B → K`+`− and K∗`+`− may be
comparable (possibly even from B → Xs`

+`− if a super B-factory is constructed), and a
dedicated experimental analysis should explore how to set the strongest bound, using the
rate predictions in App. B. For the remainder of this chapter, we focus on B → K`+`−.
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Since B → Ka contributes mostly to the Kµ+µ− final state, and much less to Ke+e−, to
set the best possible bound onB → Ka, one needs theB → Kµ+µ− andB → Ke+e− spectra
separately. This information does not seem to be available in the published papers [103, 104,
105]. Based on the latest world average, Br(B → K`+`−) = (4.5 ± 0.4) × 10−7 [106, 103,
104, 105], and the spectrum in Fig. 1 in Ref. [104], it seems to us that

Br(B → Ka)× Br(a→ µ+µ−) < 10−7 (3.15)

is a conservative upper bound for any value of the axion mass satisfying ma < mB −mK .
As we emphasized, BaBar, Belle, and a possible super B-factory should be able to set

a better bound on a narrow resonance contributing to B → K(∗)µ+µ− but not to B →
K(∗)e+e−. Moreover, LHCb will also be able to search for deviations from the standard
model predictions in B → K(∗)`+`− with significantly improved sensitivity. While we could
not find a recent LHCb study for the K mode (only for K∗), the fact that the signal to
background ratio at the e+e− B-factories is not worse in B → K`+`− than in B → K∗`+`−

suggests that LHCb should be able to carry out a precise measurement [107]. Interestingly,
since the B → Ka signal is essentially a delta function in q2, the bound in Eq. (3.15) can
be improved as experimental statistics increase by considering smaller and smaller bin sizes,
without being limited by theoretical uncertainties in form factors [108] (or by nonperturbative
contributions [109]). The bound on fa will increase compared to the results we obtain in the
next section, simply by scaling with the bound on 1/

√
Br(B → Ka).

3.5 Interpretation

We now derive the bounds on fa using the calculated B → Ka branching ratio in
Eq. (3.14) and the experimental bound in Eq. (3.15). We start with the axion portal scenario
with Br(a→ µ+µ−) ∼ 100% and where sin θ is defined in terms of fa by Eq. (3.8). We will
then look at the bound on more general scenarios, including the light Higgs scenario in the
NMSSM.

For the axion portal, Fig. 3.2 shows the constraints on fa as a function of tan β and
mH , the charged Higgs boson mass6. For concreteness, we take n = 1; other values of n
correspond to a trivial scaling of fa. In the mass range in Eq. (3.1), the dependence on
ma is negligible for setting a bound. The bound on fa is in the multi-TeV range for low
values of tan β and weakens as tan β increases. At each value of tan β, there is a value of
mH for which the b → sa amplitude in Eq. (3.12) changes signs, indicated by the dashed
curve in Fig. 3.2, along which the bound disappears. Higher order corrections will affect
where this cancellation takes place, but away from a very narrow region near this dashed
curve, the derived bound is robust. The region tan β < 1 is constrained by the top Yukawa

6While this chapter was being completed, Ref. [110] appeared, which claims much stronger bounds on
fa than our result. They use a different effective Hamiltonian from Eq. (3.12), which does not include the
effect of charged Higgs bosons, crucial for bounding DFSZ-type axions.
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Figure 3.2: Bounds on fa as a function of tan β and mH for n = 1 in Eq. (3.8), for m2
a � m2

B.
For each displayed value of fa there are two contour lines, and the region between them is
allowed for fa below the shown value. The bound disappears along the dashed curve, and
gets generically weaker for larger tan β.

coupling becoming increasingly nonpertubative; this region is included in Figs. 3.2 and 3.4,
nevertheless, to provide a clearer illustration of the parametric dependence of the bounds.

As one goes to large values of tan β, the X1 piece of Eq. (3.12) dominates, and sin(2β)/2 =
1/ tan β + O(1/ tan3 β). In this limit, the constraint takes a particularly simple form that
only depends on the combination fa tan2 β, as shown in Fig. 3.3. Except in the region close
to mH ∼ 550 GeV, the bound is better than fa tan2 β & few× 10 TeV.

These B → Ka bounds are complementary to those recently set by BaBar [96] in
Υ(nS)→ γ a→ γ µ+µ−:

fa & (1.4 TeV)× sin2 β . (3.16)

For example, for mH ' 400 GeV, the Υ bound dominates for tan β & 5, while B → Ka
dominates for tan β . 5.

The bounds in Figs. 3.2 and 3.3 apply for a generic axion portal model where mH and
tan β are free parameters. One would like some sense of what the expected values of mH

and tan β might be in a realistic model. Ref. [30] considered a specific scenario based on
the PQ-symmetric NMSSM [97]. In that model small tan β is preferred, since large tan β
requires fine-tuning the Higgs potential. In addition, mH is no longer a free parameter and
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Figure 3.3: The shaded regions of fa tan2 β are excluded in the large tan β limit. To indicate
the region of validity of the large tan β approximation, the dashed (dotted) curve shows the
bound for tan β = 3 (tan β = 1).

is approximately related to the mass of the lightest CP -even scalar s0 via

m2
H ' m2

W +

(
2

sin2 2β

ms0fa
vEW

)2

. (3.17)

In the context of dark matter, Ref. [30] required ms0 to be O(10 GeV) to achieve a Som-
merfeld enhancement. Taking ms0 = 10 GeV and fa = 2 TeV as a benchmark, the B → Ka
bound requires 2.5 . tan β . 3.0, corresponding to 490 GeV . mH . 650 GeV, in the
vicinity of the cancellation region. This bound is very sensitive to ms0 ; for ms0 = 20 GeV
and fa = 2 TeV, the bounds are 1.5 . tan β . 1.7 and 550 GeV . mH . 610 GeV. Note
that models like [77] have no preferred value of mH , can have larger values of fa, and do not
disfavor large tan β.

As mentioned, these B → Ka constraints apply to any scenario where the branching ratio
formula in Eq. (3.14) applies, i.e. where the axion couplings are determined via Eq. (3.7),
and where ma < mB − mK . For example, recent studies of light Higgs bosons in the
NMSSM [93, 94, 95] and related dark matter constructions [76, 78] also contain a light
pseudoscalar whose couplings to standard model fermions can be described in terms of a
mixing angle θ, as in Eq. (3.8).7 There, the mass of the a field is expected to be 2mτ <
ma < 2mb, with the a→ µ+µ− branching fraction estimated in Eq. (3.10).

To show the constraints on such scenarios in a model independent way, we plot the bound
on the combination sin2 θBr(a → µ+µ−) in Fig. 3.4, in the m2

a � m2
B limit for simplicity.

We also show the large tan β limit in Fig. 3.5, where the bound is on the combination
sin2 θBr(a → µ+µ−)/ tan2 β. To apply these bounds for the case where ma is not small

7In the literature, sin θ is often referred to as the “non-singlet fraction” cos θA [94].
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Figure 3.4: Bounds on sin2 θBr(a → µ+µ−) as a function of tan β and mH . Similar to
Fig. 3.2, the successively darker regions going away from the dashed curve are allowed for
sin2 θBr(a → µ+µ−) above the indicated values. When ma is not small compared to mB,
these bounds should be modified by Eq. (3.18), but this is a small effect.

compared to mB, one should make the replacement in Figs. 3.4 and 3.5 (see App. B),

sin2 θ ⇒ sin2 θ
λK(ma)

[
f0(m2

a)
]2

(m2
B −m2

K)
[
f0(0)

]2 ≡ sin2 θ R(ma) . (3.18)

Using a simple pole form for the q2 dependence of f0 [108], we find that R(ma) deviates
from unity by less than 20% for ma < 4.6 GeV (i.e. nearly over the full kinematically
allowed region), and so it is a good approximation to neglect R(ma). In the case of NMSSM
scenarios, the precise bound depends strongly on the parameters of the theory. To give a
sense of the strength of the bound, for ma ∼ 4 GeV, mH ∼ 200 GeV, and using Eq. (3.10),
the bound at large tan β implies sin2 θ/ tan2 β . 5×10−4 (and sin2 θ . 2×10−4 for tan β = 1),
which is a significant constraint on large mixing angles or small tan β.

3.6 Conclusions

In this chapter, we explored bounds on axion-like states from flavor-changing neutral
current b → s decays. We found that the exclusive B → K`+`− decay is particularly
well-suited to constrain such contributions. In the case of the axion portal (or equivalently,
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Figure 3.5: Bounds on sin2 θBr(a → µ+µ−)/ tan2 β in the large tan β limit. The shaded
region is excluded, and the dashed (dotted) curve shows tan β = 3 (tan β = 1).

any DFSZ-type axion), we derived a bound from current B-factory data on the axion decay
constant fa. The bound is in the multi-TeV range, gets stronger for small tan β, and depends
sensitively on the value of the charged Higgs boson mass. This places tension on the axion
portal model of dark matter in the parameter space given in Eq. (3.1). More generally,
there is a constraint on any pseudoscalar with 2mµ < ma < mB −mK whose couplings to
standard model fermions arise via mixing with the CP -odd Higgs A0. This is true even if
Br(a→ µ+µ−) ∼ O(10−3), as is the case for light Higgs scenarios in the NMSSM.

We derived our bound using a conservative estimate from the q2 distribution in B →
K`+`−. The bound could be improved through a dedicated search in existing B-factory
data, and in searches at LHCb and a possible future super B-factory. The B → Ka search
is complementary to axion searches in Υ(nS) → γa, because for fixed mixing angle θ in a
type-II 2HDM, the former scales like 1/ tan2 β while the latter scales like tan2 β.

One way to extend our analysis would be to look at axions decaying to hadronic final
states. We focused on the decay mode a → µ+µ−, since the a → e+e− mode is already
well-constrained by kaon decays, and we were motivated by the parameter space relevant
for Ref. [30]. However, as the axion mass increases, other decay channels open up, such as
a → π+π−π0, a → KK∗, etc. These would also be worthwhile to search for in B-factory
data, especially since dark matter models such as [77] are compatible with a → π+π−π0

decays. It appears to us that setting bounds in these modes is more complicated than for
B → K`+`−, and should be done in dedicated experimental analyses. For constraining
higher mass axions, it would be interesting to study whether B-factories could search for
narrow resonances in B → Kτ+τ− at a level of sensitivity no weaker than m2

τ/m
2
µ times the

corresponding bound in B → Kµ+µ−. Combining a number of search channels, one would
be able to substantially probe scenarios containing light axion-like states.
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Chapter 4

On dark matter models with uniquely
spin-dependent detection possibilities1

4.1 Introduction

The sensitivity of DM direct detection experiments is undergoing rapid progress and is
expected to continue in the next decade. There are a number of proposed experiments which
will probe complementary aspects of dark matter properties with much better sensitivities
than the existing ones: DM mass, spin-independent (SI) and spin-dependent (SD) cross
sections, the dependence of the cross sections on the target nuclei, directional information,
etc.

The focus, rightly, is often on the detection of spin-independent DM interactions, because,
due to a coherence effect, the SI interaction cross section with heavy nuclei is enhanced by
A2, the number of nucleons in a nucleus, and is, therefore, expected in many models to be
the dominant interaction in DM detectors.

There is a good chance that, in the not-too-distant future, direct detection experiments
will be able to extend their sensitivity to cover the full detectable parameter space for SI
cross sections, down to the 10−48 cm2 level, below which atmospheric neutrinos constitute
an irreducible background.

Prior studies [112, 113, 114, 115] have considered the relationship between SI and SD
cross sections, concluding that the two are typically correlated when a viable dark matter
candidate is present. Most of the discussions have been in the context of the minimal
supersymmetric standard model. (Similar statements have been made about DM candidates
in universal extra dimensions [112] and little Higgs models [114], as well.) In general, the
common wisdom is that SI experiments have a much better chance of first direct detection
discovery.

The generality of this conclusion cannot be addressed by merely considering operators;
one must explore the underlying models which determine relationships between operator

1This chapter, as well as App. C, was co-written with Zoltan Ligeti and published in [111]
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coefficients. For example, the conclusions stated above ultimately stemmed from the as-
sumption of DM with electroweak charges, which generically implies both mediators with at
least weak-scale masses to justify null results thus far and couplings to the Higgs leading to
SI signals. Once this condition is relaxed, the relationship between SI and SD cross sections
becomes weaker, and models in which SD interactions are more easily accessible, or even the
only interaction accessible in direct detection experiments, become feasible.

Here we point out that in order to impose the last condition, i.e., uniquely SD detection,
the consideration of subleading effects is crucial. Since, due to coherence effects, SI experi-
ments are more sensitive than SD ones (currently by 5 orders of magnitude), a loop-induced
SI process might be only marginally more difficult or possibly even as easy to detect than
a tree-level SD one. Upon considering these additional operators, we find that models with
light pseudoscalars are uniquely capable of generically evading such detection modes.

Although several ingredients of our analysis appear in the literature [116, 117], the impact
of light mediators on a general analysis of operators has not been heretofore discussed, and
the effect of loop corrections on DM scattering has not been considered in this context. In
Sec. 4.2, we review current bounds on SI and SD cross sections and the expected improve-
ments. Sec. 4.3 then constitutes the bulk of this chapter. We discuss operators relevant for
the detection of DM particles, including operators which become important in the case of
light mediators. We then consider which models could generate exclusively SD interactions,
and calculate the loop-induced interactions that would simultaneously be present. In Sec. 4.4
we construct a viable model demonstrating this possibility, in which the SI interaction is out
of reach, but the SD interaction may be detected in future experiments. Sec. 4.5 concludes.

4.2 Prospects of Direct Detection

XENON10 [118], CDMS [119], and XENON100 [120] currently provide the best SI direct
detection bounds, with the highest sensitivity from XENON100 near 7×10−45 cm2 at 50 GeV.
In general, optimal sensitivity is for DM masses of order the mass of the recoiling nucleus.
At higher masses, the sensitivity decreases roughly as 1/mDM. Within the coming years,
XENON100, LUX, and SuperCDMS can improve these bounds down to the 10−45 cm2 or
possibly near the 10−46 cm2 level. Ultimately multi-ton Xenon or Germanium experiments
can achieve sensitivities to 10−47 cm2 or maybe even 10−48 cm2, at which point atmospheric
neutrinos form an irreducible background [121, 122, 123], and achieving sensitivity to lower
SI DM-nucleon interactions seem unfeasible.

For SD detection, the best current limit for DM-proton interaction is near 4.2×10−39 cm2

from SIMPLE [124] at 35 GeV, with slightly weaker bounds from COUPP [125], KIMS [126],
and PICASSO [127], at similar optimal masses as above. For DM-neutron cross sections the
best bound is from XENON10 [128] at 5 × 10−39 cm2 at optimal sensitivity near 30 GeV.
Within the next few years, COUPP [129], PICASSO [130], and XENON100 should improve
these to few×10−40 cm2, for both protons and neutrons. These limits could then be extended
to near 5 × 10−41 cm2 with experiments such as DMTPC, or to 5 × 10−43 cm2 for a 500 kg
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Operator SI / SD Suppression
Os1 = φ2 q̄q SI —
Os2 = φ2 q̄γ5q SD q2

Os3 = φ†∂µφ q̄γµq SI —
Os4 = φ†∂µφ q̄γµγ

5q SD v2

Table 4.1: Operators relevant for scalar dark matter detection. The suppression factor given
is for the relevant cross section. Operators Os3 and Os4 are only allowed for complex scalars.

extension of COUPP [131].
Bounds on direct detection cross sections can also come indirectly from other exper-

iments. One source is from DM annihilation signals from the Sun. The annihilation at
equilibrium is proportional to the rate of DM capture, which is driven by the same inter-
actions as direct detection. In this case the SI terms are not so strongly enhanced over
the SD ones, since this capture is mostly due to light nuclei, almost entirely hydrogen and
helium. (Some enhancement does occur due to small amounts of Fe and O, but bounding
the SD interaction neglecting the SI contribution is conservative.) Super-Kamiokande [132]
and IceCube [133] used this to place limits on SD proton interactions at around 10−38 cm2,
assuming annihilations primarily to bb̄. Above mDM ∼ 250 GeV, IceCube could even place
a bound at 2× 10−40 cm2 if the DM annihilated to W+W−. However, these indirect bounds
do not apply in the case of light mediators which will be discussed below, since if the an-
nihilations proceed through a light on-shell particle, decays to neither heavy quarks nor W
bosons occur.

Other bounds can be placed from constraints on operators from collider searches [134,
135, 136]. In cases where the mediator can be integrated out, these searches place bounds on
interactions of very light dark matter better than those of direct detection, while remaining
competitive with them for SD interactions of DM that can be directly produced at the
Tevatron. The expected LHC reach is expected to also remain competitive with direct
detection sensitivites of upcoming expierments [135]. However, for mediators light enough
to be produced on-shell, the bound deteriorates rapidly [136], and is also not applicable for
the class of models we discuss below.

4.3 General Considerations

4.3.1 Operator Analysis

In order to survey possible models, we first identify all operators through which dark
matter may interact with detectors. In doing so, we will see which interactions give us the
signals we are looking for, and which operators need to be suppressed by small coefficients or
forbidden by symmetries. Similar operator analyses have been considered before in Refs. [117,
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Operator SI / SD Suppression

Of1 = χ̄χ q̄q SI —

Of2 = χ̄iγ5χ q̄q SI q2

Of3 = χ̄χ q̄iγ5q SD q2

Of4 = χ̄γ5χ q̄γ5q SD q4

Of5 = χ̄γµχ q̄γµq SI —

Of6 = χ̄γµγ5χ q̄γµq
SI v2

SD q2

Of7 = χ̄γµχ q̄γµγ
5q SD v2 or q2

Of8 = χ̄γµγ5χ q̄γµγ
5q SD —

Of9 = χ̄σµνχ q̄σµνq SD —

Of10 = χ̄iσµνγ5χ q̄σµνq SI q2

Table 4.2: Operators relevant for fermionic dark matter detection. Operators
Of5 , Of7 , Of9 , Of10 only exist if the dark matter is Dirac. Notations as in Table 4.1.

137, 113]. We present it here as a guide to possible types of underlying structure.
We assume that the mediator is heavy enough so that for the purposes of direct detection,

describing the interaction of dark matter via a contact term is a reasonable approximation.
Beyond this, we want to consider interactions with dark matter of arbitrary spin, without
making additional assumptions, such as parity conservation. At the structural level of the
operators this encompasses both elastic and inelastic scattering. Having two (or more) fields
of different mass in the DM sector only leads to differences in kinematics and the presence
of operators that are otherwise zero for Majorana fermions and real bosons for symmetry
reasons (discussed below).

The smallest number of possible operators, as expected, are furnished by scalar dark
matter candidates. These are listed in Table 4.1. Note that Os3 and Os4 are nonvanishing
only if the dark matter candidate is complex.

For fermionic dark matter, the possible operators are listed in Table 4.2. If the dark
matter candidate is a Majorana fermion, the operators Of5 , Of7 , Of9 , Of10 are absent, as
they are odd under charge conjugation. There are only two operators with tensor couplings.
Since σµνγ5 = iεµνρσσρσ/2, not all (pseudo)tensor-(pseudo)tensor combinations are linearly

independent. In addition, Of7 has separate SD terms suppressed independently by v2 and
q2, while Of6 , commonly referred to as the anapole moment coupling, has contributions to
both SI and SD cross sections with different suppression factors. (Here, as elsewhere in this
chapter, v is the velocity of DM in the halo, approximately 10−3, while q is the momentum
transfer in the interaction.)

Finally, in Table 4.3, we give the possible operators for vector dark matter candidates.
Similar to the case of scalar dark matter, the operators Ov3 and Ov4 are only present if the
vector is complex.
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Operator SI / SD Suppression
Ov1 = BµBµ q̄q SI —
Ov2 = BµBµ q̄γ

5q SD q2

Ov3 = B†µ∂
νBµ q̄γνq SI —

Ov4 = B†µ∂
νBµ q̄γνγ

5q SD v2

Ov5 = Bµ∂µB
ν q̄γνq SI v2q2

Ov6 = Bµ∂µB
ν q̄γνγ

5q SD q2

Ov7 = εµνρσB
µ∂νBρ q̄γσq

SI v2

SD q2

Ov8 = εµνρσB
µ∂νBρ q̄γσγ5q SD —

Table 4.3: Operators relevant for vector dark matter detection. Operators Ov3 and Ov4 only
exit for complex vectors fields. Notations as in Table 4.1.

There are a large number of operators that could mediate SD interactions. However, for
our purposes, some of these may be ignored right away. For example, Of6 and Ov7 lead to both
SD and SI interactions of comparable magnitudes. It may naively seem that all operators
that come with kinematic suppression factors can be dismissed just as easily. After all, with
DM in the galactic halo at such low velocities, the nonrelativistic limit is appropriate for
detection, and traditionally such operators have indeed been neglected. Let us examine this
assumption more carefully.

Within the dominant WIMP paradigm, the mediator has typically been assumed to be
at the weak scale, with direct detection occurring with O(100 MeV) momentum transfers
and O(100 keV) recoil energies. In that case, the integrated-out mediator sets the scale
of the operators through a factor of 1/m2

W . In the nonrelativistic limit, terms like ψ̄γ5ψ
are suppressed by factors of |~q |/2mN or |~q |/2mDM, while others, like ψ̄γµγ5ψ, have some
components scale as v. Operators with any of these factor can typically be dismissed, because
they are suppressed by O(103). This means that, even if present, such interactions can be
ignored. For example, in the case of Majorana fermion dark matter, such as the neutralino in
supersymmetric models, the only two operators that need to be considered are scalar – scalar
and axial-vector – axial-vector [138, 122, 139]; all others are highly suppressed.

However, recent interest in explaining various possibly DM-related anomalies have intro-
duced models with O(GeV) mediator particles. In this case, if the leading operators were
suppressed or forbidden for some symmetry reason, the traditionally subleading operators
could lead to contributions of the correct magnitude to be accessible to current or future
direct detection experiments. As pointed out in Ref. [140], these two statements may in fact
be connected, since the spontaneous breaking of a symmetry forbidding the appearance of
certain operators can provide for a natural explanation for the presence of light (pseudo)
Nambu–Goldstone scalars.

This opens up new possibilities. If SI operators without kinematic suppression actors are
forbidden or highly suppressed for other reasons, the set of operators which may lead to a
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detectable SD signal becomes much larger.

4.3.2 Renormalizable Models

If we wish to remain agnostic about the nature of the DM-nucleon interactions, we can
say no more. However, if a further step is to be taken, it seems most conservative to assume
that the DM comes from some theory with renormalizable interactions in which the operators
leading to direct detection come from heavy states that have been integrated out. One can
then ask what sort of renormalizable interactions could lead to the operators given above.
Such a procedure was followed in Ref. [116]. Here we quote their results, along with the
additional possibilities afforded by interactions yielding kinematically suppressed operators.

For scalar DM, the only option for generating solely SD operators seems to be a t-channel
exchange of a light pseudoscalar, which yields Os2. While such an interaction breaks parity,
given that parity is badly broken already in the standard model (SM), this is not a serious
concern.

For fermionic DM, several possibilities present themselves. Once again a t-channel light
pseudoscalar exchange produces solely SD interactions via Of4 . Additionally, for Majorana
fermions, the t-channel exchange of a vector with axial couplings, either the SM Z or a
new Z ′, will generate only a single kinematically unsuppressed operator, Of8 . Other options
are an s or u-channel coupling through either a scalar or vector, provided the couplings are
chiral, in which case Of8 is generated again. If the couplings are not chiral, Of1 is produced
as well.

Finally, for vector DM, a light pseudoscalar in the t channel produces only Ov2 , which
breaks parity as in the scalar case. Alternatively an s or u-channel coupling through a
fermion makes Ov8 the leading operator, if the coupling is chiral while the vector boson is
real.

4.3.3 Loops and Subleading Interactions

Suppose that one is presented with a model in which one of the above SD interactions is
the only one present, or dominant over other by many orders of magnitude. Does that mean
that only an experiment sensitive to SD interactions would see a signal? Not necessarily.

The bounds on SI cross sections are currently 5 – 7 orders of magnitude higher than
the SD ones, and this looks to continue to be the case in the future. Therefore if any of
the SD interactions discussed above induce subleading SI couplings, such an effect could
potentially be visible in a SI experiment. There are two sources for such effects. First,
there are kinematically suppressed contributions of tree level scattering that were ignored
above. These are easily estimated from Tables 4.1–4.3 given earlier. Second, the tree-level
SD interactions can induce SI couplings at loop level. These are not as simple to estimate,
and should be calculated to confirm their effect.

Let us consider a Z (or Z ′ exchange) with a Majorana fermion, as in Fig. 4.1a. While the
dominant contribution comes from Of8 , also present is Of6 , the anapole coupling. We see that
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(a) Tree level (b) Loop processes

Figure 4.1: The tree and loop level contributions to scattering of Majorana fermions through
a Z boson. For all box diagrams, the crossed box diagram is included in calculations but
not depicted. In the last diagram, a Higgs mediates the scattering through a Z loop.

this gives rise to a SI interaction suppressed by v2. Similarly, both the scalar exchange of
Fig. 4.2a and the equivalent diagram for vector exchange give an anapole coupling after using
Fiertz identities. A fermion exchange of the same form in the case of vector DM produces
Ov7 as well as Ov8 in the chiral limit, which again mediates a v2 suppressed SI coupling. In all
of these cases, there is a SI scattering cross section no more than O(106) smaller than the SD
one, independent of any other field content of a model. This means that such interactions
would be seen in SI experiments simultaneously or in the next generation of experiements
after they appear in SD ones. Only the pseudoscalar exchanges evade this, as they lead to
no v2 suppressed subleading contributions to DM-nucleon scattering at all.

All the aforementioned interactions should also be computed at the one-loop level. While
these will be suppressed by loop factors and extra couplings, they may also generate SI
interactions. For large enough couplings, these loops might even give rise to interactions
larger than the kinematically-suppressed ones discussed above, and so might be even more
readily detectable.

Without making any further assumptions about the underlying model, we can already
identify diagrams which will produce SI interactions at loop-level. For SD interactions in-
volving a t-channel exchange, at a minimum, exchanging two mediators in a box diagram
will give rise to a SI interaction. For an s or u-channel processes, a SI loop level contribution
can come from a loop with W or Z bosons exchanged between the quarks.

Consider the exchange of a Z with axial couplings to quarks. (We will discuss the case
of a Z ′ shortly.) In that case, the quark level operator for tree-level scattering (Fig. 4.1a) is

g2
2

2 cos2 θW
T q3

Q

2

1

m2
Z

χ̄γµγ5χ q̄γµγ
5q , (4.1)

where Q is the coupling of the DM to the Z. Then the DM-proton SD cross section generated
is (see Apps. C.1 and C.2 for details)

σχpSD ≈ (1.5× 10−39 cm2)

(
Q

0.1

)2

, (4.2)
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(a) Tree level (b) Loop processes

Figure 4.2: The tree and loop level contributions to scattering of Majorana fermions through
a s-channel scalar.

with the DM-neutron cross sections about 20% smaller. In this case, two one-loop processes
lead to SI effective interactions: one with two Z exchanges, and a Higgs coupling through
a Z loop to the DM (Fig. 4.1b). We work in the limit mq � mZ � mDM. (This limit
is generally the one in which the DM has the correct relic abundance in models where the
only coupling of the DM to the quarks is through electroweak bosons, while foregoing the
last inequality only yields O(1) changes, see Ref. [141].) The SI contribution to the effective
coupling is then [142, 141]2

1

4π

g4
2 Q

2

cos4 θW mZ

[
(T q3 )2

2m2
Z

+
1

4m2
h

]
mq χ̄χ q̄q . (4.3)

Taking a reference value of mh = 120 GeV, this interactions will induce a SI cross section of

σχNSI = (4× 10−47 cm2)

(
Q2

0.1

)2

. (4.4)

Asking that the SD signal be just beyond current SD experimental bounds implies Q ∼ 0.3,
giving a SI cross section of 4×10−47 cm2. This, while not detectable in experiments underway,
is feasible with ones in preparation.

This result would make the v2-suppressed constribution to SI scattering dominant. How-
ever, it is worth mentioning that this cross section acts as a lower bound — it could be that
the DM particle is part of larger representation of SU(2), in which case additional loops
involving W s would also contribute. Generally, the size off the cross section grows as n2,

2In deriving this result, along with those following, we have set several quark operators, such as

mqχ̄χq̄q, χ̄χq̄i/∂q,

4

3mDM
χ̄i∂µγνχ q̄i

(
i∂µγν + ∂νγµ − 1

2
gµν /∂

)
q,

which all simplify to mq χ̄χ q̄q on shell, but can have different nuclear matrix elements, to their on-shell
value. In fact this seems to yield a conservative estimate, as out of the nuclear matrix elements known, the
first one has the smallest value (for a detailed discussion of these issues see Ref. [143]).
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(a) Tree level (b) Loop processes

Figure 4.3: The tree and loop level contributions to scattering DM mediated by a light
pseudoscalar. The dotted line can represent either a scalar, fermion, or vector boson.

with n the dimension of the representation [142], making it possible for the loop contribution
to be dominant, and not merely competitive with the kinetically suppressed contribution,
and even being large enough to be discovered simultaneously with the SD signal.

If one wishes to consider models with a new Z ′, then the existence of a Z ′ with Higgs
coupling becomes model dependent. To talk about a lower bound, we can then ignore the
contribution of the second term in the effective coupling. The heavier mediator mass that
such a model would entail would have to be offset with a larger coupling in order to be
detectable. Thus, at loop level, one would generally expect the effective interaction to be of
at least similar size, or possibly larger, due to the higher power of the coupling appearing in
the loop-induced term.

If one considers the possibility of a light Z ′, which are not ruled out by collider constraints
down to the GeV range for gauge couplings smaller than the SM by 10−2, the situation dis-
cussed above would be reversed, and one would expect a smaller loop-induced contribution.
However, the SI contribution due to kinematically suppressed operators is insensitive to
changes in the mediator mass, and would still be present. Constructing a model without
such operators and without significant fine-tuning seems extremely difficult. It is difficult
to say more in generality, due to the large freedom in assigning masses and charges under a
new gauge group.

Now let us consider DM with chiral couplings to the SM via an s or u-channel. The
most model-independent loop-level processes here come from box diagrams with the quarks
exchanging a W or Z boson, an example of which is given in Fig. 4.2b. The contributions
of the loops have completely different forms depending on whether the coupling of the DM
is left- or right-handed. However, in all cases the loop-level processes only give rise to
suppressed SD contributions. In addition to DM of the form in Fig. 4.2, this is also true for
the cases of fermionic DM with a vector mediator and vector DM with a fermion mediator
of similar topologies. In this case, we find that the most reliable lower bound on a SI cross
section in this case comes from the v2 suppressed contribution to the tree-level interaction
discussed earlier.

Finally, let us turn to the box diagrams induced in the cases of light pseudoscalar ex-
change, Fig. 4.3b. First, we consider the case of scalar DM. At tree level, the operator
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obtained after integrating out the pseudoscalar is

1

m2
a

ξ yqmφ φ
†φ q̄iγ5q, (4.5)

where yq is the Yukawa coupling of the quark, so ξ absorbs both the coupling of the DM
and mediator, and any scaling to Yukawas of the mediator-quark coupling. This leads to a
a tree-level cross section of

σφpSD ≈ (8× 10−37 cm2)

(
ξ

0.1

)2(
1 GeV

ma

)4

. (4.6)

(See App. C.2 for the definition of the cross section in cases of kinematically suppressed
operators.) For a mediator with mass of a few GeV and ξ = 0.01, this would be accessible
to currently running searches.

The calculation of the loop diagram in the same limits as the previous Z-mediated case
does not give as compact of an answer, but can be expressed in closed form in terms of
Passarino–Veltman scalar integrals [144], computed with the use of FeynCalc [145] as

1

(4π)2
ξ2 y2

q

[
C0(m2

φ, 0,m
2
φ;m2

φ,m
2
a, 0)− C0(m2

φ,m
2
φ, 0;m2

a,m
2
φ,m

2
a)

+m2
aD0(m2

φ,m
2
φ, 0, 0, 0,m

2
φ;m2

a,m
2
φ,m

2
a, 0)

]
φ†∂µφ q̄γµq.

(4.7)

A numerical evaluation of the coefficients show the C0 and D0 functions with these pa-
rameters to scale as ln(ma/mφ) and ln2(ma/mφ), respectively, beyond their overall 1/m2

φ

dependence. Using a fiducial value of ma/mφ = 0.01 gives

1

(4π)2

ξ2 y2
q

m2
φ

CS φ
†∂µφ q̄γµq , (4.8)

where CS ≈ 80. Note that if the DM were real, this operator vanishes identically, and there
is no loop induced coupling at one loop order at all. If present, the cross section induced is

σφNSI ≈ (4× 10−54 cm2)

(
ξ

0.1

)4(
100 GeV

mφ

)4

, (4.9)

undetectable for any any choice of parameters that would make the SD cross section de-
tectable.

The case of vector DM is very similar. For

1

m2
a

ξ yqmB B
†
µB

µ q̄iγ5q, (4.10)
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the tree-level cross section takes the same value as Eq. (4.6). Meanwhile, the loop induced
coupling is

1

(4π)2
ξ2 y2

q

{
C0(m2

B, 0,m
2
B;m2

B,m
2
a, 0)− C0(m2

B,m
2
B, 0;m2

a,m
2
B,m

2
a)

+m2
aD0(m2

B,m
2
B, 0, 0, 0,m

2
B;m2

a,m
2
B,m

2
a, 0)

+
1

4m2
B

[
B0(m2

B;m2
a,m

2
B)−B0(m2

B; 0,m2
B)
]}

B†ν ∂
µBν q̄γµq ,

(4.11)

which numerically evaluates to

1

(4π)2

ξ2 y2
q

m2
B

CVB
†
ν ∂

µBν q̄γµq , (4.12)

with CV ≈ 80 very close to the scalar case, giving a loop induced SI cross section as in
Eq. (4.9), and similarly giving no contribution if the DM were real.

The case of fermionic DM is slightly different. This is because the tree-level operator
responsible for scattering is

1

m2
a

ξ yq χ̄iγ
5χ q̄iγ5q, (4.13)

and, therefore, is parametrically suppressed by q4, instead of the previous cases’ q2. The tree
level cross section then becomes

σχpSD ≈ (3× 10−43 cm2)

(
ξ

0.1

)2(
1 GeV

ma

)4

. (4.14)

We see that due to the greater momentum suppression, we require a lighter mediator mass
and cannot afford the coupling of the DM to be as small as in the bosonic case above. In this
case a cross section detectable in current experiments would require, for example, a mediator
with ma = 100 MeV and ξ = 0.1.

Meanwhile, the effective coupling from computing the loop diagram in the same limits
as the other cases is

1

(4π)2

ξ2 y2
q

m2
χ

{[
1

2
+
m2
χ

2
C0(m2

χ,m
2
χ, 0;m2

a,m
2
χ,m

2
a)−m2

χC0(0,m2
χ,m

2
χ; 0,m2

a,m
2
χ)

]
χ̄γµχ q̄γµq

+
3

8

[
1 +B0(m2

χ; 0,m2
χ)−B0(0;m2

a,m
2
a)

+ 4m2
χC0(m2

χ, 0,m
2
χ;m2

χ,m
2
a, 0)−m2

χC0(m2
χ,m

2
χ, 0;m2

a,m
2
χ,m

2
a)

+ 3m2
am

2
χD0(m2

χ,m
2
χ, 0, 0, 0,m

2
χ;m2

a,m
2
χ,m

2
a, 0)

] mq

mχ

χ̄χ q̄q

}
(4.15)
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which numerically yields

1

(4π)2

ξ2 y2
q

m2
χ

(
CF1 χ̄γ

µχ q̄γµq + CF2

mq

mχ

χ̄χ q̄q

)
, (4.16)

with CF1 ≈ 4.8 and CF2 ≈ 170. The magnitudes of these coefficients can be understood as
arising from the ln(ma/mφ) and ln2(ma/mφ) behavior of C0 and D0 mentioned above. The
loop-level cross section is then

σχNSI ≈ (3× 10−56 cm2)

(
ξ

0.1

)4(
100 GeV

mχ

)4

. (4.17)

We will confirm below in the explicit model of Sec. 4.4 that the loop induced coupling is
indeed tiny, but it is simple to see here why this is generically so.

Unlike in the massive mediator cases, there are two mass scales in the dark sector, that
of the DM itself and that of the mediator. At tree level, the lighter mediator mass is the one
that appears in the denominator of the operator. However, at loop level, the value of the loop
integral is parametrically controlled by the mass of the DM, the heaviest particle in the loop.
Additionally, a pseudoscalar which is the Nambu–Goldstone boson of a broken symmetry
would be expected to couple to quarks proportional to the masses of the quarks. Thus, at
loop level, the effective operator would be expected to be suppressed by extra factors of
quark Yukawa couplings. Together, both effects combine to make the loop-level coupling to
be as many as 20 orders smaller than the tree level one, with higher order corrections to
the non-relativistic scattering approximation coming at similar orders as q2v4, so that the
SI induced interaction is expected to be completely negligible.

4.4 The Axion Portal

We have just seen that without tuning of couplings, models with light pseudoscalar
mediators provide the unique method of avoiding any SI signal, while still producing a SD
direct detection signature. Now we turn to the question of whether a viable model producing
DM with the correct abundance can have these features.

Coupling a light pseudoscalar to quarks is most efficiently achieved by adding a scalar
field which spontaneously breaks a global symmetry, and which, by mixing with the Higgs,
gets a coupling to the SM. Allowing this scalar to have a new global charge, while adding
new fermions charged under the same symmetry, ensures that the new scalar field is the only
method for the new fermions to interact with the SM.

As a simple realization of such a mechanism, where the dominant interaction is Of4 via
a pseudoscalar interaction, we introduce, following Ref. [30], a scalar field charged under a
new global U(1)X charge that is spontaneously broken to

S =

(
fa +

s√
2

)
exp

(
ia√
2fa

)
. (4.18)
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This scalar field is coupled to a new fermion, which is vector-like under the SM, through
L = −ξSχχc + h.c., so that after the scalar field acquires a vacuum expectation value, the
fermion receives a mass of mχ = ξfa, allowing it to act as dark matter, with stability ensured
by the remnant of U(1)X after breaking.

In order for the pseudoscalar to interact with the SM, some known particles must also
carry charges under the new U(1)X . In a two Higgs doublet model, this can be accomplished
by adding a term of the form

L = λSnHuHd + h.c., (4.19)

by assigning the appropriate charges to the Higgses and SM fermions, and promoting the
U(1)X to a Peccei-Quinn (PQ) symmetry. For n = 2, this coupling is of the same form
as in the case of the DFSZ axion [83, 84], while the n = 1 case functions like that of the
PQ-symmetric limit of the next-to-minimal supersymmetric standard model [97] We now
have a dark matter candidate coupling to the SM though a massive scalar and an axionlike
Nambu–Goldstone boson. The Nambu–Goldstone boson is assumed to get a small mass
through an unspecified mechanism. Anticipating making the scalar heavy, by virtue of

〈σv〉χχc→sa =
m2
χ

64πf 4
a

(
1− m2

s

4m2
χ

)
+O(v4) , (4.20)

a choice of, say, ms = fa = 1 TeV and mχ = 1.1 TeV (corresponding to ξ = 1.1) yields a
cross section of 3× 10−26 cm3/s and so generates the correct order of magnitude for the relic
abundance [30].

For direct detection, two channels present themselves. The scalar gives a SI cross section
through the operator Of1 , due to mixing of the scalar with the two CP -even Higgses, while
the light axionlike state yields a SD interaction, Of4 , by a similar mixing with the CP -odd
Higgs. For our purposes, we need check whether this tree-level SI cross section can be small
enough to be completely negligible.

The mixing of the scalar with the two CP -even Higgs has a lot of arbitrariness to it due to
the 11 constants in the most general U(1)PQ-preserving two-Higgs-doublet and one-singlet
potential. However, we can say that barring accidental cancellations, this mixing will be
ε = O(vew/fa), so that we may write the tree-level SI cross section as

σχNSI ≈ (2× 10−42 cm2) ξ2 ε2
(

100 GeV

ms

)4

, (4.21)

(See App. C.1 for a caveat on the values of the nuclear matrix elements in this calculation.)
In the model considered in Ref. [30], ms needed to be light, O(10 GeV), in order to provide
a mechanism for Sommerfeld enhancement to explain astrophysical anomalies. In that case,
the direct detection cross section was in tension with the SI bound and could only be slightly
beyond current limits, at a few × 10−43 cm2. However, if we impose no such condition,
ms could be larger. If it is at the electroweak scale, then the cross section is at most
a few × 10−45 cm2, smaller than the sensitivity of the next generation of direct detection
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experiments. If ms ∼ O(1 TeV), a reasonable choice given the scale of fa in this setup, then
the cross section becomes undetectably small, below the irreducible atmospheric neutrino
limit.

Let us next consider the pseudoscalar channel. With the interaction kinetically sup-
pressed by the momentum transfer as q4, we cannot merely compute the cross section in
the limit of q2 → 0 as we did in the scalar exchange case. Instead, we must define a cross
section at a fixed momentum transfer. (See App. C.2 for a more thorough discussion.) We
choose to do so at q2

ref = (100 MeV)2. Because the signal is different from that of unsup-
pressed interactions relative to the expected recoil energies, the sensitivities of experiments
are modified. This was studied in Ref. [140], with the result that at the same reference
momentum transfer, optimal sensitivities of SD experiments to pseudoscalars remained at
the same order of magnitude as in the unsuppressed case, but with 1/mDM scaling of the
limits.

With this definition, we can compute the SD cross section for q2 = q2
ref as

σχpSD ≈ (2× 10−37 cm2) ξ2 sin2 θ
q2

ref

4m2
χ

(
1 GeV

ma

)4

, (4.22)

where tan θ = n sin 2β [vew/(2fa)] is the mixing of the s with the Higgses [74]. From this
we see that given a DM mass mχ = 1.1 TeV, a pseudoscalar with a mass ma ≈ 300 MeV
generates a cross section of 3× 10−40 cm2, within the range of the next generation of direct
SD detection experiments. In fact, in a two Higgs doublet model like this, the nuclear matrix
element also has a dependence on β as up-type quarks couple with a coefficient proportional
to cot β, while down type ones couple proportional to tan β. We have evaluated the matrix
elements for the above cross section at tan β = 1. At large values of tan β the cross section
can rise by almost 2 orders of magnitude.

Given the tiny size of the tree-level SI cross section, and in keeping with the discussion
of the previous section, we should confirm that the loop-induced couplings fail to produce
a detectable SI cross section. The calculation mostly mirrors that of Sec. 4.3.3. The only
substantial difference is the aforementioned different coupling to up and down type quarks.
As before, we evaluate the nuclear matrix elements at tan β = 1, but this time, varying tan β
cannot only modify the cross section by a factor of O(1) as the suppression of sin2 θ at high
tan β is too strong, so we find

σχNSI ≈ (3× 10−56 cm2)

(
ξ sin θ

0.1

)4(
100 GeV

mχ

)4

(4.23)

with no additional implicit tan β dependence.

4.5 Conclusions

As the sensitivity of both SI and SD direct DM detection experiments increases, it is
worth asking to what extent the discovery potential of the two methods is complementary.
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In this work we have pointed out that when one considers the full range of possible mediators,
instead of being confined to new weak-scale particles, the range of possible viable interactions
generating SD cross sections increases. At the same time, when one searches for interactions
for which SD experiments are complimentary for discovery—ones which could not be seen in
any SI experiments without the need for accidental cancellations or other tuning—it becomes
necessary to take into account subleading contributions to scattering, such as suppressed
operators and loop processes. The outcome is that the traditional models considered also
generically produce SI interactions whose suppression is counterbalanced by the greater
sensitivity of SI experiments. The list of viable candidates whose interaction with the SM
can be described by tree-level mediators integrated out in a renormalizable model is then
reduced to merely ones mediated by light pseudoscalars.

We have presented a realistic model of such interactions that generates the right DM
abundance with a fermionic DM candidate without having other interactions generating
detectable SI interactions.

Similar scenarios can also be considered with a scalar or vector dark matter candidate.
Just as in the case of fermionic DM, Os,v1 gives the leading interaction in the nonrelativistic
limit, while Os,v2 is kinematically suppressed. The necessary couplings between the pseu-
doscalar and the scalars or vectors cannot be generated in as simple a manner as those
used above, so more model building will be required. However, the suppression is only by
q2, so the mass differences between the scalar and pseudoscalar do not have to be quite as
large, and the couplings themselves can be smaller, so that the parameter space of couplings
and the pseudoscalar mass are not as tightly limited by experiment, potentially making the
exercise worthwhile.
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Chapter 5

Summary and Outlook

In this dissertation, I considered several different plans of attack for the detection of
either dark matter itself or light states present in the dark sector of a number of models
proposed in the last several years. Together the different observations considered provide
broad coverage of the available theory space.

I argued that an X boson with αX ∼ 10−8 and 10 MeV < mX < 100 MeV could
be discovered in a low-energy, high-intensity ep scattering experiment with around 1 ab−1

of data assuming 1 MeV invariant mass resolution. Since the search for X → e+e− is
background limited, it is crucial to have an experiment with good energy resolution and
very high statistics. In fact, an experiment following these lines has been approved, and the
DarkLight collaboration is currently in the midst of implementing a search at the Jefferson
Lab free electron laser facility [146]. Such a search is complementary to the beam dump
experiments envisioned in Refs. [43, 50], which are better suited for smaller value of αX and
larger values of mX , and have also lead to active experimental efforts of their own.

To detect light states which the experimental efforts above miss, I looked at the utility
of flavor-changing neutral current b → s decays to place bounds on axion-like states. I
found that the exclusive B → K`+`− decay is particularly well-suited to constrain such
contributions. In the case of the axion portal (or equivalently, any DFSZ-type axion), I
derived a bound from current B-factory data on the axion decay constant fa. The bound
is in the multi-TeV range, gets stronger for small tan β, and depends sensitively on the
value of the charged Higgs boson mass, making it complementary to Υ(nS) → γa searches
performed by BaBar [96]. This places tension on the axion portal model of dark matter in
the parameter space given in Eq. (3.1). Such a bound has more general applicability as well,
as there is a constraint on any pseudoscalar with 2mµ < ma < mB −mK whose couplings to
standard model fermions arise via mixing with the CP -odd Higgs A0. Since the derivation
of out bounds, analyses of B → K`+`− with larger datasets have been performed [147], but
resonances in the lepton spectrum or hadronic final states have not yet been considered, still
leaving the possibility of improvement.

As an alternative set of considerations which lead one to consider light axion-light states,
I pointed out that when considering the full range of possible mediators, instead of being
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confined to new weak-scale particles, new classes of interactions that could lead to signals in
spin-dependent dark matter detection experiments appear. The requirement that so signal is
also observed in spin-independent experiments on similar timescales lead me to consider loop-
and kinematically-suppressed contributions, and uniquely points to a light axion-light state
coupling the DM to the standard model. In this way, the observation of a DM signal solely
in spin-dependent scattering experiments would lead to a much more precise identification
of the nature of dark matter interactions than was previously realized.
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Appendix A

Exact Expressions for ep Scattering

A.1 Finite Mass Calculations

A.1.1 Anomalous Magnetic Moment

A new light boson, whether it is a scalar or vector, will contribute to the anomalous
magnetic moment (a = g−2

2
) of leptons at the one-loop level. In the low masses being

considered for the X boson, limits on new contributions to the moment are the main indirect
constraint and must be calculated accurately. In the scalar/pseudoscalar case, a convenient
choice of parameterization yields [58]

δas/p =
m2
`

16π2

∫ 1

0

dz
λ2
s(1− z)(1− z2)− λ2

p(1− z)3

zm2
X + (1− z)2m2

`

(A.1)

≈ 1

16π2

m2
`

m2
X

(
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s

(
log
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X

− 7

6

)
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p

(
log
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`
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X

− 11

6

))
. (A.2)

This final form only holds in the limit m` � mX , and is thus not appropriate for aµ.
For the case of a vector coupling, the term proportional to pµpν in the numerator of

the propagator drops out of the calculation entirely due to the Ward identity. However, for
axial coupling this is not the case. At the same time, the extra factor of 1/m2

X this term
introduces means it only contributes at O(m4

e/m
4
X). Thus, it can be safely ignored in the

electron case, but for constraints from the muon anomalous magnetic moment it must be
included for accurate results. The full calculation yields [59]

δav/a =
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20
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, (A.4)

where again the approximate form only holds for m` � mX .
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Figure A.1: Curves of constant X boson lifetime on the αX vs. mX plane.

A.1.2 Lifetime

If mX < 2mµ, then for the couplings envisioned in Sec. 2.3, the only allowed decay
mode of the X boson is X → e+e−. In more general scenarios, the X boson might decay
to neutrinos or photons or other new light fields, but such final states face very different
backgrounds and are outside the scope of this study.

The tree-level widths from the couplings described in Sec. 2.3 are

Γs/p =
mX

8π

(
(λ2

s + λ2
p)− λ2

s

4m2
e

m2
X

)√
1− 4m2

e

m2
X

, (A.5)

Γv/a =
mX

12π

(
(λ2

v + λ2
a) + 2(λ2

v − 2λ2
a)
m2
e

m2
X

)√
1− 4m2

e

m2
X

. (A.6)

In the limit me � mX , these simplify to Γs/p = mX

8π
(λ2

s + λ2
p) and Γv/a = mX

12π
(λ2

v + λ2
a). A

plot of the X lifetime is shown in Fig. A.1 with full me dependence, which introduces small
differences in the scalar/pseudoscalar and vector/axial-vector cases at masses close to the
electron mass.

A.2 Signal Calculation

In this appendix, we review the narrow width approximation and apply it to X boson
production. The signal for X boson production is e−p→ e−p+X → e−p e+e−. While other
diagrams with internal X boson propagators can contribute to the e−p e−e+ final state, only
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the diagrams shown in Fig. 2.5 yield a narrow peak in the e+e− invariant mass distribution
near mX .

It is well-known that processes involving a resonance with a small width can be treated
by the so-called narrow width approximation (see Ref. [158] and references therein). In the
case of X boson production, the idea is to write the square of the full two-to-four matrix
element of diagrams in Fig. 2.5 as

|M(2→ 4)|2 = |M̃ |2(q, ...)×D(q), D(q) =
1

(q2 −m2
X)2 + Γ2

Xm
2
X

, (A.7)

where q is the four-momentum flowing through the X boson propagator. One then approx-
imates the square of the X boson propagator as

D(q) ≈ π

mXΓX
δ(q2 −m2

X). (A.8)

Using the cluster decomposition of four-body phase space into a product of three-body and
two-body phase space,

dΦ4 =
1

2π
dΦ3 dq2 dΦ2, (A.9)

the fully differential cross section takes the form

σsignal =
1

F

∫
dΦ4

1

4

∑
spins

|M(2→ 4)|2

=
1

F

1

ΓX

∫
dΦ3

∫
dΦ2

1

4

∑
spins

|M̃(q, ...)|2 1

2mX

. (A.10)

Here, F is the incoming flux, which in the case of a fixed target experiment with incoming
electron energy Ee equals

F = 4Eemp. (A.11)

When the X boson has scalar or pseudoscalar couplings, the matrix element of the full
two-to-four process takes a convenient factorized form:

|M̃(q, ...)S|2 = |MS(2→ 3)|2 |MS(1→ 2)|2. (A.12)

For calculating the total cross section, one can perform the dΦ2 integral in Eq. (A.10)
analytically:

σsignal scalar =
1

F

∫
dΦ3

1

4

∑
spins

|MS(2→ 3)|2
(

ΓX→e+e−

ΓX

)
. (A.13)

The factor in parentheses is just the branching fraction of X to the e+e− final state. Of
course, for any real observable, there are always cuts present, at minimum on the detector
geometry. So in practice, one must use the full formula in Eq. (A.10) and multiply the
integrand by the desired observable function.
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When the X boson has vector or axial-vector couplings, the matrix element does not
factorize, but the amplitude does factorize into a contraction between the production of the
resonance, the decay of the resonance, and the numerator of the X boson propagator:

|M̃V (q, ...)|2 =
∣∣∣Mµ

V (2→ 3)Mν
V (1→ 2)

(
gµν −

qµqν
M2

X

) ∣∣∣2. (A.14)

It is worth mentioning that in the vector case, the qµqν term in the propagator vanishes
because of Ward identity:

qνM
ν
V (1→ 2) = 0, (A.15)

since the external electron/positron are on-shell. In the axial-vector case, the Ward identity
is no longer true, but because of chiral symmetry, the correction from the qµqν term is
suppressed by powers of me and therefore small. Because of the X boson propagator factor,
there are non-trivial angular correlations in the X boson decay.

There is one subtlety in using the narrow width approximation with identical particles
in the final state. Experimentally, we cannot determine which final state electron came from
the decay of the resonance and which one is the scattered incoming electron. Therefore, in
principle, we must add to the diagrams in Fig. 2.5 another two diagrams with the electron legs
in the final state interchanged. However, the effect of adding these diagrams but including
a symmetry factor of 1/2 into the phase space for identical electrons leaves Eq. (A.10)
unchanged. Since Eq. (A.10) is valid for all regions of phase space, the differential distribution
in me+e− will include not just a delta function spike at mX , but also the correct combinatoric
background. For any real experimental observable, this delta function spike will be properly
smeared out by the experimental resolution, as long as the experimental resolution is coarser
than ΓX .

A.3 Background Calculation

The background to X boson production consists of quasi-elastic QED interactions, with
example diagrams given in Fig. 2.6. Since we are considering incoming beam energies below
the pion mass, no QCD interaction are relevant, and the proton remains intact after being
struck by the electron. This simplifies the analysis of the standard model background to
the proposed signal dramatically. Also, since our target is hydrogen gas, we do not have to
worry about nuclear excitations.

Given that the background is QED, we can safely consider tree-level diagrams alone,
since loops are suppressed by the small electromagnetic coupling. That said, while the one-
loop corrections to the background are much smaller than the tree-level result, they are also
expected to be much larger than our signal. However, one-loop corrections are not expected
to dramatically change the shape of the background (and certainly not give a peak at finite
me+e−), so for the purposes of extracting a signal peak in the invariant mass distribution,
the tree-level background result will suffice.



79

The largest correction we are neglecting comes from the electric form factor of the proton

fE(q2) '
(

m2
0

m2
0 + q2

)2

, (A.16)

which had been included in the study in Ref. [51]. With m0 ∼ 700 MeV and q . Ee =
100 MeV, this will at most yield a 5% change in the background calculation. Like the one-
loop effects, though, the electromagnetic form factor is not expected to dramatically change
the background shape.

There are twelve QED diagrams that contribute to the process e−p → e−p e+e−. Just
as in Møller scattering, one must be mindful that the interchange of identical fermionic legs
adds an additional minus sign to the Feynman rules [153]. The background cross section
equals

σbackground(O) =
1

F

∫
dΦ4

1

2

1

4

∑
spins

|Mbackground|2O(Φ4), (A.17)

where 1/2 is a symmetry factor from having two identical electrons in the final state, 1/4
the average over initial polarizations and O(Φ4) is an arbitrary observable. Since, unlike the
signal calculation, the narrow width approximation does not apply, no ad hoc steps need to
be taken to account for combinatorics in the background. The factor of 1/2 above with a
sum over all diagrams suffices to reproduce the full background.

In particular, for calculating the background in the signal bin for a given value of mX ,
we use the theta function

O(Φ4) = θ
(
(mX −∆m/2)2 < q2 < (mX + ∆m/2)2

)
, (A.18)

where q2 is the invariant mass of an outgoing e+e− pair, and ∆m is the invariant mass
resolution. (Since there are two outgoing electrons, this theta function could pick up either
e+e− pair.) Because the background is a steeply falling distribution in q2, as shown in
Fig. 2.12, this way of calculating the binned background gives slightly more realistic values
than

O(Φ4) = 2mX∆mδ(q2 −m2
X), (A.19)

though both measurements agree in the small ∆m limit.

A.4 Matrix Element Method

In this appendix, we derive the ideal weighting function to be used in the matrix element
method from Sec. 2.4.3. To start, consider an unweighted measurement

S =

∫
dΦS(Φ), B =

∫
dΦB(Φ). (A.20)
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The statistical uncertainty in the background δB can be determined in terms of the Poisson
uncertainty at each point in phase space δB(Φ),

δB(Φ) =
√
B(Φ), δB =

√∫
dΦ [δB(Φ)]2 =

√
B, (A.21)

and we recover the familiar formula that S/δB = S/
√
B.1

Now imagine doing a weighted measurement over phase space:

Seff =

∫
dΦS(Φ)w(Φ), Beff =

∫
dΦB(Φ)w(Φ). (A.22)

The statistical uncertainty in Beff is

δBeff =

√∫
dΦ [δB(Φ)]2w(Φ)2 =

√∫
dΦB(Φ)w(Φ)2. (A.23)

Note that the reach in Seff/δBeff is independent of the normalization of w(Φ).
To find the ideal measurement function, we simply need to use a variational method to

solve for the condition
d

dw(Φ)

(
Seff

δBeff

)
= 0. (A.24)

Using the fact that

d

dw(Φ)
Seff = S(Φ),

d

dw(Φ)
δBeff =

B(Φ)w(Φ)

δBeff

, (A.25)

it is straightforward to solve Eq. (A.24) to find

wbest(Φ) =
(δBeff)2

Seff

S(Φ)

B(Φ)
⇒ S(Φ)

B(Φ)
, (A.26)

where we have used the fact that the overall normalization of wbest(Φ) is irrelevant for
determining the reach. Plugging wbest(Φ) into Seff/δBeff , we find[

Seff

δBeff

]
best

=

√∫
dΦ

S(Φ)2

B(Φ)
. (A.27)

For S(Φ) proportional to B(Φ) (i.e. no kinematic shape differences between the signal and
background), this formula reverts to the standard S/

√
B.

1Strictly speaking, we should really consider statistical uncertainties in both the signal and background,
but the background is so much larger than the signal that this is superfluous.
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When we plot the weighting function in Figs. 2.14, 2.15, 2.16, and 2.17, we are actually
plotting ∫

dΦwbest(Φ)O(Φ), (A.28)

where O(Φ) is the observable corresponding to a histogram bin. As a cross check of the
weighting function, we checked that for most observables, this function is well-approximated
by ∫

dΦS(Φ)O(Φ)∫
dΦB(Φ)O(Φ)

∫
dΦO(Φ), (A.29)

i.e. the binned signal over background ratio corrected by a phase space volume factor.

A.5 Generalized Couplings

In order to study the X boson phenomenology in a model-independent way, we assumed
in Sec. 2.3 that the X boson only had couplings to electrons and not to protons. Here,
we relax this assumption within the context of several proposed models, to see how the X
boson reach using ep scattering is affected. We find that, for varying reasons, couplings to
the proton can be ignored.

A.5.1 Kinematic Mixing

In some of the best motivated dark force scenarios, the couplings of the X boson are
proportional to the electromagnetic couplings [28, 29]. This occurs when the X is a vector
boson that kinematically mixes with the photon. That is, the vector Xµ couples directly to
the electromagnetic current, albeit with a suppression factor ε,

L = εgemJ
µ
emXµ. (A.30)

This yields αX = ε2αEM, where in concrete models, typical ε values are 10−3 to 10−4.2

Adding the X boson coupling to the proton allows for additional diagrams for X boson
production. Therefore, there is the potential for noticeable contributions to the signal cross
section from the proton coupling, whether through a direct contribution to the cross section
or through constructive or destructive interference. By explicit computation, however, we
have checked that the proton coupling is largely irrelevant, and the essential physics can be
understood by working out the kinematics of the relevant situations.

The two differences in producing an X off the photon or electron are the presence of an
electron versus a proton propagator and the momentum transfer through the exchanged t-
channel photon. If one notes that neither the proton nor the X boson are very relativistic in
the energy range under consideration, one can approximately say that Ep ' mp, EX ' mX ,

2In these models, the typical X boson mass is around 1 GeV. However, models with lighter X bosons
closer to 100 MeV are still plausible.
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and Ee ' mX at any point along the electron line. Then, the fermion propagator can be
shown to be O(1/mX) in both cases. However, by seeing how momentum flows through the
t-channel photon propagator, one can show that in the case of X boson production off the
electron line, |t| ' O(m2

X), while off the proton line, |t| ' O(mXmp). Thus, the cross section
for X boson production off the proton line is suppressed by O(m2

X/m
2
p).

This suppression can be understood intuitively as arising from the fact that with a proton
at rest, enough energy needs to be exchanged in the t-channel to actually create an X boson,
while with the electron already having sufficient energy, one only needs enough momentum
transfer to move the electron into a kinematically valid region for X radiation.

One might worry that because of interference terms, the suppression would only be
O(mX/mp). However, in addition to the mass dependence, the momentum exchanged
through the t-channel photon has angular dependence. This is minimized when the X
boson is produced collinearly with the fermion line off which it is produced. This means
that the matrix elements for X production off the electron and off the proton are peaked
in entirely different regions of phase space, producing little overlap. The interference terms
end up being suppressed by another 2 orders of magnitude when the diagrams are explic-
itly calculated and integrated over. Thus for mX . 100 MeV, the corrections to the cross
sections from including proton couplings are around 1%, and do not measurably change the
reach plots displayed earlier.

A.5.2 Axion-Like Coupling

An alternative framework for theX boson is where the dark sector couples to the standard
model through a pseudo Nambu-Goldstone boson, termed an axion portal [30]. In that case,
one expects a coupling of λp = m`/fa for elementary fermions, where fa is the axion decay
constant. In such a setup, the constraints from the muon anomalous magnetic moment
completely rules out the region of electron couplings that might be probed in our setup, as
discussed in Sec. 2.3.1.

However, most axion portal models predict couplings of λp ∼ mf/fa for composite par-
ticles like the proton. Thus, with the coupling to the proton O(103) greater than to the
electron, one might think it possible to still see a signal from X boson production off the
proton, despite the kinematic suppression discussed above. It turns out, though, that a
decay constant small enough for this to be possible has already been ruled out by K decay
branching ratios [154], which placed a lower bound of fa = O(100 TeV) for axion masses
≤ 2µ. This leads to a coupling to the proton of at most αX = O(10−10) which, combined
with the kinematic suppression, would not be detectable with this search.
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Appendix B

Decay Rates for B Mesons

In this appendix, we list the B decay rates to K(∗)A0 and XsA
0 in the 2HDM, using the

effective Hamiltonian in Eq. (3.12). These should be combined with Eq. (3.14) to bound the
axion models.

Defining

Γ0 =
G3
F |V ∗tsVtb|2√
2 212 π5

m4
t m

3
B

(
X1 cot β +X2 cot3 β

)2
, (B.1)

and

λK(∗) =

√(
m2
B −m2

A0 −m2
K(∗)

)2 − 4m2
A0m2

K(∗) , (B.2)

the B → KA0 decay rate is given by

Γ(B → KA0) = Γ0
λK(m2

B −m2
K)2

m6
B

[
f0(m2

A0)
]2
. (B.3)

The B → K∗a decay rate is

Γ(B → K∗A0) = Γ0
λ3
K∗

m6
B

[
A0(m2

A0)
]2
. (B.4)

In both decays we used the standard definitions [101] of the form factors,

〈K(p− q)|s̄ q/PLb |B(p)〉 =
1

2
(m2

B −m2
K) f0(q2) , (B.5)

〈K∗(p− q)|s̄ q/PLb |B(p)〉 = −imK∗(ε∗ · p)A0(q2) .

(We caution the reader not to confuse A0 and A0, each of which are standard in the respective
contexts.)

In Eq. (B.1) it is the MS top quark mass which enters, appropriate both for the coupling
to Higgses and in loop integrals. While this distinction is formally a higher order correction,
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since the rates are proportional to m4
t , we use the Tevatron average top mass, converted to

MS at one-loop, mt = mt[1− 4αs/(3π)] ≈ 165 GeV.
The largest hadronic uncertainty in evaluating the implication of the bound in Eq. (3.15)

is the model dependence in the calculations of the form factor f0(m2
a), which is an increasing

function of q2. For f0(0), QCD sum rule calculations obtain values around 0.33, with an
order 10% uncertainty [108]. To be conservative, in evaluating the bound on fa, we only
assume f0(0) > 0.25 for ma � mB (which also covers lower values motivated by SCET-
based fits [157]). For ma & 2mτ , relevant for Eq. (3.18), we use the approximation f0(q2) =
f0(0)/(1 − q2/37.5 GeV2) [108], which should be good enough for our purposes. For recent
QCD sum rule calculations of A0(q2), relevant for setting a bound using B → K∗`+`−, see
Ref. [156].

The inclusive B → Xs a decay rate, which can be calculated (strong interaction) model
independently in an operator product expansion, is given at leading order in ΛQCD/mb by

Γ(B → XsA
0) = 2Γ0

m3
b

m3
B

(
1− m2

A0

m2
b

)
. (B.6)
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Appendix C

Dark Matter Detection Formulæ

C.1 Nuclear Matrix Elements

Here we summarize how to compute the dark matter-nucleon interaction cross sections
from quark-level interactions. Much of this has been discussed in the DM literature, with
the exception of the pseudoscalar matrix element, as it only plays a role in momentum
suppressed cross sections.

For a vector coupling, nuclear matrix elements are straightforward to compute, since a
vector coupling to quarks is a conserved current, so the coupling to a nucleon is obtained
from the sum of the currents of the valence quarks.

In the case of a scalar coupling to quarks, we are interested in the effective nucleon
coupling induced by a quark level coupling:

aqmq q̄q → fN mN N̄N. (C.1)

We define the nuclear matrix elements conventionally by

〈N |mq q̄q|N〉 = mNf
(N)
Tq . (C.2)

On including the coupling to gluons induced by integrating out heavy quark loops, fN is
given by

fN =
∑

q=u,d,s

f
(N)
Tq aq +

2

27
f

(N)
TG

∑
q=c,b,t

aq , (C.3)

where f
(N)
TG = 1−∑q=u,d,s f

(N)
Tq .

Unlike the u and d matrix elements, which can be extracted from πN scattering, the
uncertainty associated with the strange quark matrix element f

(N)
Ts is higher, which introduces

a substantial uncertainty in the SI coupling to nucleons. Most studies use numerical values
f

(N)
Ts � f

(N)
Tu,d based on older calculations. A representative set of values is that used by the
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DarkSUSY package [155], wherein,

f
(p)
Tu = 0.023 , f

(p)
Td = 0.034 , f

(p)
Ts = 0.14 ,

f
(n)
Tu = 0.019 , f

(n)
Td = 0.041 , f

(n)
Ts = 0.14 . (C.4)

These are the values used for the numerical estimates given above, and in most of the
literature. However, recent lattice QCD results give substantially smaller values, f

(N)
Ts =

0.013±0.020 [162, 163] (see also [159, 160]), and so the SI cross section from scalar exchange
(if it couples proportionally to mass) may be smaller by a factor of 2 – 5 than numerical
results quoted by many calculations.

For SD interaction we need to consider the nuclear matrix elements induced by the quark
level axial-vector and pseudoscalar couplings,

dq q̄γµγ
5q → aN N̄s

(N)
µ N, (C.5)

and
cqmq q̄iγ

5q → gN mN N̄iγ
5N. (C.6)

For the axial-vector current, defining

〈N |q̄γµγ5q|N〉 = s(N)
µ ∆q(N), (C.7)

where s
(N)
µ is the spin of the nucleon, we have

aN =
∑

q=u,d,s

dq ∆q(N). (C.8)

The matrix elements coming from polarized deep inelastic scattering carry much smaller
uncertainties than for the scalar SI interaction above. For our numerical results, we use
again the DarkSUSY values,

∆u(p) = ∆d(n) = 0.77 ,

∆d(p) = ∆u(n) = −0.40 ,

∆s(p) = ∆s(n) = −0.12 . (C.9)

More recent determinations favor slightly different values, and the PDG quotes ∆s(n) =
−0.09, ∆d(n) = 0.84, ∆u(n) = −0.43, with a 0.02 uncertainty for each [161]; the effect on our
numerical results is negligible.

For the pseudoscalar current in Eq. (C.6) the nucleon-level coupling is determined by the
same axial-vector matrix elements above. The relationship is established through generalized
Goldberger–Treiman relations. While not normally considered in dark matter detection, it
has been well-studied in the axion literature [151, 149]. Taking divergences of the axial
currents and using the equations of motion for the quarks yields [152]

gN = (cu − c̄qη) ∆u(N)

+ (cd − c̄qηz) ∆d(N) + (cs − c̄qηw) ∆s(N) , (C.10)
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where η = (1 + z + w)−1, z = mu/md, and w = mu/ms, while c̄q is the mean of the quark
coupling coefficients. Due to uncertainties in the value of z, the value of gN can vary by as
much as a factor of 2.

C.2 Cross Sections

In this Appendix, we provide a summary of cross sections for DM-nucleon interactions
relevant for calculating the various cross sections discussed above in the non-relativistic limit.

We first consider the unsuppressed operors in the limit of zero momentum transfer. SI
cross sections can come from either scalar or vector quark couplings. Effective DM-nucleon
scalar interactions for fermions of the form

fN χ̄χ N̄N, (C.11)

which are derived from the quark-level couplings using nuclear matrix elements, as explained
in App. C.1, lead to a DM-nucleus cross section

σ̂ =
4

π
µ̂2
[
Zfp + (A− Z)fn

]2
, (C.12)

for Majorana DM fermions. (For Dirac fermions, all results for Majorana fermions are
divided by 4.) Here µ̂ is the reduced mass of the DM-nucleus system. The per-nucleon cross
section, which is usually quoted for comparisons, is

σ =
4

π
µ2 1

A2

[
Zfp + (A− Z)fn

]2
, (C.13)

where µ is the reduced mass of the DM-nucleon system.
For scalar or vector dark matter, the relevant operators are (we include the DM mass to

give all operators the same dimension)

fN mφ φφ N̄N or fN mB B
µBµ N̄N, (C.14)

the nucleon cross section for either operator is

σ =
1

π
µ2 1

A2

[
Zfp + (A− Z)fn

]2
. (C.15)

Vector interactions for fermions only exist in the case of Dirac DM:

bN χ̄γ
µχ N̄γµN, (C.16)

where, bp = 2bu + bd and bn = bu + 2bd, due to vector current conservation, as discussed
above in App. C.1. Then

σ =
1

π
µ2 1

A2

[
Zbp + (A− Z)bn

]2
. (C.17)
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For the operators
bN φ

†∂µφ N̄γ
µN or bN B

†
ν∂µB

ν N̄γµN, (C.18)

which only exist for complex scalars or vectors, the cross section is

σ =
1

π
µ2 1

A2

[
Zbp + (A− Z)bn

]2
. (C.19)

Unsuppressed SD interactions come solely from the quarks’ axial currents. In the case of

aN χ̄γ
µγ5χ N̄γµγ

5N, (C.20)

the DM-nucleus cross section is

σ̂ =
16

π
µ̂2 a2

N JN(JN + 1), (C.21)

and for a nucleon

σ =
12

π
µ2 a2

N . (C.22)

The only other unsuppressed SD interaction is for vector DM and comes from

aN ε
µνσρBµ∂νBσ N̄γργ

5N . (C.23)

Here, the DM-nucleon cross section is

σ =
2

π
µ2 a2

N . (C.24)

All of the above cross sections are quoted in the q2 → 0 limit. In this limit, interactions
mediated by light pseudoscalars are all zero, so we need another way of expressing such
cross sections. To do so, we will use the fact that while in the nonrelativistic limit ψ̄ψ ∼
2m, ψ̄γ5ψ ∼ qiξ†σiξ, so that using the results above we can write (since q2 ≈ |~q |2 in the
nonrelativistic limit).

χ̄γ5χ N̄γ5N ∼ q2

4m2
χ

q2

4m2
N

χ̄γµγ5χ N̄γµγ
5N . (C.25)

We then compute the cross section as above, and quote a result at a reference value of q2.
We have chosen q2 = (100 MeV)2 since with q2 = 2mNER, where ER is the recoil energy
of the nucleus, this is a typical value for most SD detectors. Other momentum-suppressed
operators can be handled the same way.
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