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Thermal depth profiling of vascular lesions: automated
regularization of reconstruction algorithms

Wim Verkruysse, Bernard Choi, Jenny R Zhang, Jeehyun Kim, and J Stuart Nelson
Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612, USA

Abstract
Pulsed photo-thermal radiometry (PPTR) is a non-invasive, non-contact diagnostic technique used
to locate cutaneous chromophores such as melanin (epidermis) and hemoglobin (vascular structures).
Clinical utility of PPTR is limited because it typically requires trained user intervention to regularize
the inversion solution. Herein, the feasibility of automated regularization was studied. A second
objective of this study was to depart from modeling port wine stain PWS, a vascular skin lesion
frequently studied with PPTR, as strictly layered structures since this may influence conclusions
regarding PPTR reconstruction quality. Average blood vessel depths, diameters and densities derived
from histology of 30 PWS patients were used to generate 15 randomized lesion geometries for which
we simulated PPTR signals. Reconstruction accuracy for subjective regularization was compared
with that for automated regularization methods. The objective regularization approach performed
better. However, the average difference was much smaller than the variation between the 15 simulated
profiles. Reconstruction quality depended more on the actual profile to be reconstructed than on the
reconstruction algorithm or regularization method. Similar, or better, accuracy reconstructions can
be achieved with an automated regularization procedure which enhances prospects for user friendly
implementation of PPTR to optimize laser therapy on an individual patient basis.

Introduction
Most port wine stains (PWS), congenital vascular malformations of human skin, are still
resistant, or respond poorly to laser therapy while a sub-group of lesions responds quite
satisfactorily. It is believed that the vast heterogeneity in PWS lesion characteristics such as
depth and diameter of ecstatic vessels are the underlying cause for the highly variable and
unpredictable response to laser therapy. A suitable diagnostic technique may enable physicians
to make a knowledge-based choice regarding laser wavelength, pulse duration and radiant
exposure in an effort to optimize therapy on an individual patient basis.

Pulsed photo-thermal radiometry (PPTR) is a non-contact technique in which skin is irradiated
with laser light of sub-therapeutic radiant exposure and the temporal evolution of the surface
radiometric temperature is measured with an infrared detector (Tam and Sullivan 1983, Imhof
et al 1984). The laser light is selectively absorbed in subsurface chromophores such as
epidermal melanin and hemoglobin in vascular structures causing a spatial distribution of
temperature increases which are similar to those which occur during an actual therapeutic pulse.
This spatial temperature distribution can then be determined by applying an inversion algorithm
to the measured temporal evolution of the surface radiometric temperature.

PPTR has been considered a promising technique for PWS characterization because its contrast
mechanism (optical absorption) is directly linked to the laser treatment mechanism: selective
photo-thermolysis (Anderson and Parrish 1981, 1983). For example, the wavelength and pulse
duration used for PPTR diagnostics are usually the same as those used for PWS laser therapy.
PPTR, similar to photo-acoustic methods (Viator et al 2003, 2004), may thus have an important
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advantage over other candidate diagnostic methods which mostly rely on optical scattering
(optical coherence tomography and reflectance spectrometry) and are thus only indirectly
related to the therapeutic pulse.

Unfortunately, determination of the spatial temperature distribution from the measured
radiometric signals is difficult. In mathematical terms, it is often described as a ‘severely ill-
posed inverse problem’ which explains why a large number of inversion methods have been
investigated (Jacques et al 1993, Milner et al 1995, 1996, Xiao and Imhof 1999, Xiao et al
2001, Cui et al 2003, Li et al 2004a, Verkruysse et al 2005). In simpler terms, the ‘ill-posedness’
means that an inversion algorithm produces several different spatial profiles as solutions to the
measured temporal profiles. ‘Regularization’, a term describing the process of making an
informed choice from the different spatial profiles is considered to be of critical importance in
PPTR (Milner et al 1995, Li et al 2004a, Li et al 2004b, Verkruysse et al 2005). Many existing
regularization techniques require some degree of skill by the user and are inherently subjective.
For successful clinical implementation of PPTR, user intervention is undesirable. The first
objective of this study is, therefore, to investigate if an objective, and thus automatable,
regularization method can be used without compromising reconstruction accuracy.

As with any diagnostic method, it is important to have a realistic impression of the general
accuracy of the diagnostic information. PPTR has been typically evaluated on a few rather
simplified ‘layered’ PWS geometries (Milner et al 1995, Sathyam and Prahl 1997, Smithies
et al 1998, Xiao and Imhof 1999, Xiao et al 2001, Majaron et al 2002, Cui et al 2003,
Verkruysse et al 2005) on the basis of which it is not possible to determine PPTR’s ability to
produce useful diagnostic information. Therefore, a second objective of this study is to
rigorously and systematically test PPTR on a large number of realistic PWS geometries to
allow different inversion and regularization methods to be objectively compared.

Methods
Simulation of PWS geometries and corresponding infra-red temporal signals

As a basis for ‘realistic’ PWS geometries, we chose to use data published by Fiskerstrand et
al (1996) in which histological data of 32 PWS patients were stratified by response to laser
treatment. The resulting data for each response group were presented as distributions of vessel
diameter and depth. Under the assumption that no correlation exists between vessel depth,
diameter and dermal blood volume fraction, this information allows us to simulate ‘realistic’
PWS vessel distributions. A simplification in our approach is that we assumed all vessels to
be horizontally positioned and parallel to each other. Using the vessel diameter and depth
distributions published by Fiskerstrand et al (1996) as a basis, we randomly resampled five
geometries for each of the following response groups to laser treatment. Three resampled
geometries are illustrated in figures 1(A), (D) and (G) for ‘poor’, ‘moderate’ and ‘good’
responders, respectively. The vessel positions were allowed to be positioned within a rectangle
representing a lateral dimension of 0.3 mm and a depth dimension of 1 mm. The ‘poor’
responder geometries are characterized by a relatively large number of smaller vessels while
the ‘good’ responders have vessels located at relatively shallow depths.

Subsequently, we used these vessel geometries as input to a Monte Carlo algorithm to compute
energy deposition distributions, simulating a PPTR laser pulse. The skin depth in these
simulations was 2 mm while the epidermal thickness and absorption coefficient were fixed at
60 µm and 16.2 cm−1, respectively. Other skin optical properties used were the same as used
in a previous study on light distributions using Monte Carlo for a laser wavelength of 585 nm
(Verkruysse et al 1993). The Monte Carlo algorithm was adapted such that light exiting the
0.3 mm by 2 mm rectangle laterally re-enters the rectangle at the laterally opposite side, thus
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simulating a lateral repetition of the pattern in a semi-infinite layered geometry (Verkruysse
et al 1999).

Herein, only one-dimensional PPTR was considered so the energy distribution was laterally
averaged, obtaining a temperature increase (relative to the initial body temperature) versus skin
depth profile, referred herein as ΔT (z, t = 0) or simply T. To account for the duration of the
laser pulse, we allowed the T profiles to relax by modeling heat diffusion (using finite
differences) for a period of 1.5 ms (a pulse duration often used in our PPTR measurements).
The 15 generated temperature profiles are shown in figures 1(B), (E) and (H). For each T
profile, the associated radiometric signal ΔS(t) or simply S was computed (shown in figures 1
(C), (F) and (I)) using a well-described model (Milner et al 1995, Verkruysse et al 2005),
described briefly in the following section. Finally, we created for each profile two additional
signals by adding noise with corresponding signal-to-noise ratios (SNR) of 100 and 1000. The
final result was a set of 45 simulated S(t) signals: 5 per each laser treatment response group
and each at 3 SNR values of 100, 1000 and infinity.

Reconstruction algorithms and regularization methods
As described above, a relatively large number of reconstruction (inversion) algorithms as well
as regularization methods have been previously proposed and used in the past. We chose to
evaluate three different reconstruction algorithms (table 1). With each algorithm, we applied
three different regularization approaches (table 2).

In order to clarify the algorithms used in this study, a brief review of the fundamental equations
involved is warranted and given below. The measured signal ΔS(t) can be expressed in terms
of the temperature distribution ΔT (z, t = 0) and a kernel function K (z, t) (equation (1)). A
detailed description of K (z, t) is given in multiple references (e.g. Verkruysse et al (2005))
and will therefore not be repeated here:

(1)

Equation (1) can conveniently be written as a simple matrix multiplication where ΔS(t), K(z,
t) and ΔT (z, t = 0) are discretized as S, K and T, respectively:

(2)

Since T is the vector that displays the chromophore distribution, we wish to obtain this vector
from S through an inversion algorithm. A brief description of the three algorithms used in this
study is as follows.

Conjugate gradient (CG) minimization—This iterative method (Milner et al 1995) refers
to a minimization algorithm and is used in our application to minimize the norm of the residue
R (equation (3)),

(3)

where Smeas is the measured signal and the double bars indicate the Euclidean norm.

Hereafter, we refer to CG as the minimization algorithm that finds T by minimizing R.
Regularization with this method is done by limiting the number of iteration steps.

SVD methods—Since the inverse problem is severely ill-posed, a simple inversion T =
K−1S results in highly variable results. However, in such cases, the pseudo-inverse of K using
singular value decomposition (SVD) of K (equation (2)) is often used to express T in a
straightforward way (Verkruysse et al 2005) (equation (4) and (equation 5)):
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(4)

(5)

In this approach, regularization is easily implemented by limiting the number of p (i.e., the
number of singular vectors u and v used in the composition of T(p)). The desired vector
describing the temperature immediately after laser exposure as a function of skin depth can
thus easily be expressed in an analytical fashion.

Both CG and SVD methods often produce temperature profiles with negative values, which
would correspond to temperature reductions as a result of laser exposure. Since this is clearly
not realistic, the solutions are typically non-negatively (NN) constrained which has been
demonstrated previously with CG (Milner et al 1995). We recently demonstrated (Verkruysse
et al 2005) that a combination of SVD techniques with CG iteration can alsoimplement a NN
constraint. The latter method has been described in detail (Verkruysse et al 2005) and will be
referred to herein as SVDi.

In this study, we introduce an alternative method that also uses SVD techniques but is
analytical, i.e. non-iterative. This method will be referred to as SVDa and implements the NN
constraint in a very simple way by setting the negative values in T(p) to 0. Regularization in
SVDi as well as SVDa is done by limiting the number p, and often referred to as ‘Truncated
SVD’

Regularization methods
Regularization is necessary for both iterative reconstruction algorithms such as CG and SVD.
Over-iteration in CG and inclusion of too many singular vectors in SVDi or SVDa (too large
a number for p) typically lead to unphysical oscillations in T (Milner et al 1995). Large
oscillations cause the Euclidean norm of T (referred to herein as Tnorm) to be very large, so
Tnorm can be used as a monitoring parameter in the regularization.

A popular regularization method known as the L-curve (Lawson and Hanson 1974) plots
Tnorm versus R (equation (3)). As the inversion procedure progresses (by iteration or
incrementing the value of p), R decreases while Tnorm increases. The resulting shape often
resembles the letter ‘L’. The solution T associated with the ‘knee’ (the corner of the ‘L’) of
the L-curve is supposedly optimal. Typically, the location of the ‘knee’ is subjectively assessed
by an operator.

Unfortunately, the ‘knee’ is often not very sharp and, therefore, subjective bias introduced by
different operators often leads to different ‘solutions’. In an attempt to make regularization
objective, we introduce an alternative regularization method which is also based on the
quantities R and Tnorm. and we refer to this regularization method as RTnorm. In this approach,
the product of R and Tnorm is plotted versus the number of iterations for iterative reconstruction
algorithms (Johnston and Gulrajani 2000) or the p value for SVD-based algorithms. When the
product RTnorm is at a minimum we define this point as the end point for iteration and refer to
this point as RTnorm0 or simply RT0. An alternative end point with this method and which was
evaluated herein is defined by the iteration point at which RTnorm is 1% higher than the value
at the minimum. This endpoint is referred to as RTnorm1 or simply RT1. For the SVD methods,
RT0 and RT1 are defined as the results for p at which RTnorm is at its minimum and p+1,
respectively.
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For the L-curve regularization, which is the only subjective regularization method in our study,
the 45 simulated signals (15 profiles × 3 SNR levels) were offered to four trained individuals
for reconstruction with each of the three reconstruction algorithms. Thus, a total of 540 (4 × 3
× 45) subjectively regularized profiles were produced. The total number of objectively
regularized profiles was 270 (2 × 3 × 45), for 2 (RT0 and RT1) regularization methods and
three reconstruction algorithms.

Quantification of reconstruction results
In order to compare objectively reconstructed profiles T with their corresponding original
profiles Torig, we define a parameter Q (equation (6)) as a measure of the reconstruction quality.
Q is calculated as the average discrepancy between the original and reconstructed temperature
increases. A Q value of 0 indicates a perfect reconstruction while larger Q-values indicate poor
reconstructions.

Depending on the epidermal melanin concentration, the physician treating PWS may
sometimes be more interested in an accurate prediction of the epidermal temperature rise during
treatment, than PWS depth. Moreover, it is also expected that the temperature profiling
accuracy decreases with depth (Smithies et al 1998). To account for this, we used exponential
weighting functions ω (equation (6) and (equation 7)) with two different k values for the
attenuation with depth: 0.05 and 0.4 mm for the epidermal temperatures and PWS
reconstructions, respectively. The two different Q values for the two k values will be referred
to as Qepi and QPWS for ‘epidermal’ weighting and ‘PWS’ weighting respectively.

(6)

(7)

A graphic example of the calculation of Q is shown in figure 2 using arbitrary examples of
original and reconstructed temperature depth profiles.

Results
From a total of 810 reconstructed profiles, we selected a small number that illustrates the impact
of several of the study parameters on reconstruction quality. An example of how subjective
regularization using the L-curve can lead to different reconstruction profiles is shown in figure
3(A). Two operators (a and b) determined the ‘knee’ to be at two different positions, leading
to considerably different reconstruction profiles. Differences were also noted in reconstructed
profiles when two different objective regularization methods (RT0 and RT1) are used as shown
in figure 3(B). In this example, the inversion algorithm used is SVDa and the values for p are
6 and 7 for RT0 and RT1, respectively.

It is important to note that the illustrated differences between operators (figure 3(A)) are not
typical. In fact, we found that for most profiles, the expected differences caused by subjectivity
for the L-curve did not show up in a significant way, nor did we find an operator induced bias
when all 15 profiles were considered. The superior reconstruction profile for RT1 with respect
to RT0 with the SVDa algorithm was found to be significant on average only (paired, two tailed
t-test, p < 0.05). There are many profiles for which RT0 resulted in better profiles than RT1.
The overall comparisons of average reconstruction quality for the combinations will be
discussed in the next section.

The reconstruction profiles shown in figure 4(A) are typical in the sense that there are no big
differences in reconstruction quality for whichever combination of regularization and inversion
methods was used in the presence of some noise in the signal S. Local chromophore

Verkruysse et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2009 March 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



concentrations at depths greater than approximately 0.1 mm could typically not be
reconstructed very well. Examples of such features are the peaks at a depth of 0.3 mm in figure
4(A) and 0.2 and 0.35 mm in figure 4(B). However, depth determination of superficial peaks
was generally determined well while the overall amplitude and shape were often reconstructed
poorly.

These features could typically not be resolved even in the absence of noise with all inversion
algorithms with the exception of SVDa in which the reconstruction profiles for infinite SNR
matched the original profiles surprisingly well. An illustration of this is given by the dashed
line in figure 4(B) showing that two peaks at 0.2 and 0.35 mm are resolved almost perfectly.

A surprising result is that the particular shape of a temperature profile affects the reconstruction
quality more than any combination of regularization or inversion methods, and even the SNR
level in the measured signal S. This is illustrated in figure 5 in which Qepi values for all
reconstructed profiles are plotted, categorized by SNR level (columns) and inversion algorithm
(rows). For the L-curve regularization, the results for all four operators were averaged. The
choice of the regularization method is virtually irrelevant for the CG and SVDi methods.
However, for SVDa, the objective regularization approaches RT0 and RT1 are superior to the
subjective L-curve method. Conclusions for QPWS (values not shown) are the same as for
Qepi.

A final objective comparison between regularization and inversion methods can be made by
considering the average of all Q values for the 15 profiles. The results are shown in figure 6
for quality metrics Qepi and QPWS (figures 6(A)–(C) and (C)–(F), respectively) and for SNR
= infinite, 1000 and 100. The observation that SVDa performs well for infinite SNR is
confirmed (figures 6(A) and (D)) while its advantage over CG and SVDi disappears for SNR
= 1000 (figures 6(B) and (E)) and SNR = 100 (figures 6(C) and (F)). While there are no
significant differences between the regularization methods for CG and SVDi, the L-curve and
RT0 methods perform significantly worse (paired, two tailed t-test, p < 0.05) than RT1 when
combined with SVDa

Values for QPWS are significantly higher than for Qepi which reflect the fact that superficial
chromophore concentrations (e.g. epidermal melanin) are reconstructed better than deeper
chromophore concentrations (hemoglobin in blood vessels) (Smithies et al 1998).

Discussion
The first objective of this study was to evaluate if an objective regularization approach could
be used in PPTR without compromising reconstruction quality. Our results indicate that this
seems indeed possible. On average, reconstruction quality was even slightly better for the
objective regularization approach (paired, two tailed t-test, p <0.05). The difference, however,
is hardly relevant since it is considerably smaller than the variation in reconstruction quality
caused by different PWS depth profiles.

The latter notion leads to the conclusion for our second aim which was to rigorously study
PPTR using multiple realistic profiles. Our finding that the critical determinant of
reconstruction quality is neither the regularization method nor the inversion algorithm but the
particular shape of the simulated depth profile itself is somewhat surprising us, to our
knowledge this has never been reported in the PPTR literature. In contrast, it was often tacitly
assumed that the choice of regularization and inversion algorithms was critical because a
certain choice will produce reconstructions of approximately equal quality, regardless of the
actual depth profile. The simulations in this study show that the actual depth profile is more
critical to the reconstruction accuracy than the inversion approach used.
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It is important to note that the simulated ‘realistic’ profiles may represent only a small fraction
of actual PWS geometries which were all simulated at 5% dermal blood volume fraction.
Human PWS may have considerably lower as well as higher dermal blood volume fractions.
It is possible that conclusions derived from this study may not hold had variation in this
parameter been modeled. Similarly, if the lateral dimension of the rectangle in which we
resampled the PWS geometries had been larger than the 0.3 mm as used in this study, the
original profiles Torig would have shown fewer features which would likely have affected the
Q values. In typical PPTR measurements, the interrogated areas are typically larger. However,
we chose the relatively small lateral dimension because we wanted to test the reconstruction
methods with ‘feature rich’ profiles.

Majaron et al (2002) demonstrated that 2 wavelength excitation PPTR can enhance the
accuracy of reconstructed temperatures by separating the epidermal signal from that of
underlying vascular structures. A study similar to the present one for 2 wavelength excitation
is important and being performed at our institute.

The definition of Q is somewhat arbitrary and does not necessarily reflect whether the depth
location of a chromophore ‘peak’ is reconstructed accurately. We tried briefly to incorporate
the depth accuracy of a chromophore peak in the reconstruction quality parameter to meet the
physician’s need to know PWS ‘depth’. However, this proved cumbersome because very often
the depth location of a peak shifts dramatically or a peak may even disappear with a small
difference in regularization. This is illustrated in figure 4(B) where the reconstruction profile
for CG is not appreciably different from that obtained with SVDa (SNR = 1000) while the
curve for CG would have defined only one peak at 0.35 mm depth and the SVDa curve would
have defined two peaks. However, despite its limitations, we believe that our definition of Q
is sufficient to support the general conclusions of this study.

The differentiation between Qepi and QPWS shows that PPTR provides significantly more
accurate predictions for the epidermal temperature increase in response to pulsed laser exposure
than for deeper skin layers. This suggests that the value of PPTR may be to provide the
physician with guidelines regarding the maximum safe radiant exposure (the epidermal
temperature increase is the main limitation in terms of maximizing radiant exposure) rather
than to inform about PWS ‘depth’ or even peak temperatures in a reconstructed vessel or ‘layer’
of vessels. In this context, it is important to keep in mind that one-dimensional PPTR by
definition provides an estimate for the average temperature increase at a certain depth. The
actual temperature in vascular structures is likely to be much higher while the peri-vascular
dermis experiences much lower temperature increases than indicated by the PPTR
reconstruction profile. In our institute we are currently indeed focusing our efforts to relate
PPTR-obtained information on the maximum safe laser radiant exposures as opposed to
predicting PWS ‘depth’ (Verkruysse et al 2007).

There are many other ways to approach the inverse problem of PPTR and this study does not
claim that the studied algorithms are optimal or even close to optimal. However, the finding
that reconstruction quality for all three algorithms, almost independent of the regularization
mechanism, depends strongly on the actual profile to be reconstructed suggests that in the
evaluation of solutions to the inverse problem of PPTR, it is important to model more realistic
profiles than simple discrete layers of chromophores as has been done typically.

Conclusions
The goal of this study was to test if PPTR depth profiling accuracy is compromised when
objective rather than subjective regularization methods are used. Objective regularization
methods performed equally well in this study, if not better than the more conventional
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subjective L-curve method. Reconstruction quality of simulated one-dimensional depth
profiles of realistic PWS geometries depends on the actual shapes of the profiles rather than
the combination of regularization and inversion methods.
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Figure 1.
(A) Simulated PWS geometry based on statistical characteristics for ‘poor responders’. (B)
Temperature depth profile T for the geometry in (A) is indicated by the thick solid curve (‘p1’).
Four additional profiles for ‘poor responders’ are included. (C) Temporal radiometric signals
S for the temperature depth profiles in (B). (D), (E), (F) and (G), (H), (I) are similar to (A), (B)
and (C) but were simulated for ‘good’ and ‘moderate responders’ respectively.
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Figure 2.
(A) Original temperature depth and an associated reconstructed temperature profile. (B) To
quantify the discrepancy between original and reconstruction, the norm of the absolute
difference is computed, weighted by a weighting curve being either ωepi or ωpws, emphasizing
accuracy of the superficial chromophores and deeper chromophores, respectively (equation
(6)). The resulting quality value Q is large and small for a poor and good reconstruction,
respectively.
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Figure 3.
(A) Original profile, simulated with ‘good responder’ characteristics, along with two
reconstructions obtained with the CG inversion method and L-curve as regularization. The two
reconstructed profiles are for two different operators who subjectively determined the ‘knee’
in the L-curve. (B) The same original profile as in (A), along with two reconstructed profiles
obtained with SVDa and regularization methods RT0 and RT1. RT1 resulted in a better match
with the original.
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Figure 4.
(A) Typical examples of reconstructed profiles in which temperature reconstruction close to
the surface is better than that in the deeper dermis. Differences between inversion methods are
marginal. (B) A second example in which two sharp peaks in the dermis are reconstructed as
one broad layer. Differences between CG and SVDa are small for SNR = 1000. When no noise
is simulated, SVDa can reconstruct the two peaks exceptionally well whereas for CG, the
elimination of noise barely improved the reconstruction (not shown).
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Figure 5.
Reconstruction quality values Qepi obtained for all 15 profiles for CG ((A)–(C)), SVDa ((D)–
(F)) and SVDi ((G)–(I)). The columns from left to right are for decreasing SNR levels as
indicated. In each figure, the Qepi values are shown for each of the three regularization methods
studied. In (A), (B), (D) and (G), the values for the different regularization methods are so
similar that the curves overlap partly or completely.
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Figure 6.
Quality values Qepi ((A)–(C)) and QPWS ((C)–(E)) averaged over 15 profiles, categorized per
regularization/inversion method combination. (A)/(D), (B/(E) and (C)/(F) are for SNR =
infinite, 1000 and 100 respectively.
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Table 1
Reconstruction algorithms evaluated in this study.

Reconstruction algorithm Type

Conjugate gradient minimization (CG) Iterative
Singular value decomposition (SVDi) Iterative
Singular value decomposition (SVDa) Analytic
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Table 2
Regularization approaches evaluated in this study.

Regularization approach Type

L-curve Subjective, not automatable
RTnorm 0 Objective, automatable
RTnorm 1 Objective, automatable

Phys Med Biol. Author manuscript; available in PMC 2009 March 7.




