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Introduction
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation and 
joint destruction (1). While the prevalence and disease burden vary considerably between geographic 
regions and populations (2), RA affects approximately 1.3 million adults in the United States, representing 
0.6%–1% of  the country’s population (3, 4). RA is a debilitating condition and a major socioeconomic 
burden, with a prevalence of  work disability around 35% (5). Effective RA management necessitates early 
diagnosis, a treat-to-target approach, and the attainment of  remission or low disease activity (6). Achieving 
optimal therapeutic success remains the main challenge in RA, as only 16 % of  patients reach sustained 
remission or low disease activity (7, 8). This has been particularly underscored by the recent recommenda-
tions from the European Alliance of  Associations for Rheumatology (EULAR), particularly concerning 
the management of  difficult-to-treat patients with RA (9).

Rheumatoid arthritis (RA) management leans toward achieving remission or low disease activity. In 
this study, we conducted single-cell RNA sequencing (scRNA-Seq) of peripheral blood mononuclear 
cells (PBMCs) from 36 individuals (18 patients with RA and 18 matched controls, accounting for age, 
sex, race, and ethnicity), to identify disease-relevant cell subsets and cell type–specific signatures 
associated with disease activity. Our analysis revealed 18 distinct PBMC subsets, including an 
IFN-induced transmembrane 3–overexpressing (IFITM3-overexpressing) IFN-activated monocyte 
subset. We observed an increase in CD4+ T effector memory cells in patients with moderate-high 
disease activity (DAS28-CRP ≥ 3.2) and a decrease in nonclassical monocytes in patients with 
low disease activity or remission (DAS28-CRP < 3.2). Pseudobulk analysis by cell type identified 
168 differentially expressed genes between RA and matched controls, with a downregulation 
of proinflammatory genes in the γδ T cell subset, alteration of genes associated with RA 
predisposition in the IFN-activated subset, and nonclassical monocytes. Additionally, we identified 
a gene signature associated with moderate-high disease activity, characterized by upregulation of 
proinflammatory genes such as TNF, JUN, EGR1, IFIT2, MAFB, and G0S2 and downregulation of 
genes including HLA-DQB1, HLA-DRB5, and TNFSF13B. Notably, cell-cell communication analysis 
revealed an upregulation of signaling pathways, including VISTA, in both moderate-high and 
remission-low disease activity contexts. Our findings provide valuable insights into the systemic 
cellular and molecular mechanisms underlying RA disease activity.
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The understanding of  cellular and molecular mechanisms underlying disease activity has garnered sub-
stantial attention. Notably, specific cell subsets, such as synovial tissue macrophages, have been associated 
with both remission and disease activity (10). Additionally, several synovial molecular and pathobiological 
markers have shown promise in predicting treatment response (11–13). The emergence of  bulk transcrip-
tomic data has further revealed that alterations in synovial and blood transcriptomic profiles were closely 
associated with disease activity and flares (14–16). In the pursuit of  comprehensive insights, single-cell 
RNA-Seq (scRNA-Seq) emerges as a powerful tool to simultaneously profile cell subset compositions and 
cell type–specific transcriptional states, enabling a deeper understanding of  mechanisms associated with 
nonremission. Several studies have utilized single-cell resolution to investigate RA, although the majority 
of  research has focused on synovial tissue and none specifically studied disease activity (17–19).

Recent cross-tissue metaanalyses of  transcriptome data, encompassing samples from both human and 
murine models, have uncovered genes associated with disease activity and have underscored a divergence 
between synovium and peripheral blood profiles (20, 21). Consequently, it is crucial to recognize that mark-
ers identified in the synovium cannot be directly extrapolated to those found in peripheral blood. The 
accessibility of  peripheral blood, compared with the more invasive nature of  synovial sampling, emphasiz-
es its practical advantage for both research and potential clinical applications. An additional challenge in 
studying RA disease activity is the inherent heterogeneity of  the condition and the potential influence of  
demographic factors, such as sex, age, ethnicity, and race, on disease activity (22–25). A critical aspect of  
addressing this challenge involves promoting the establishment of  more standardized and diverse cohorts, 
enabling a better exploration of  specific cell subsets and biomarkers that contribute to disease activity.

In this study, we describe a comprehensive analysis of  disease activity using scRNA-Seq of  peripheral 
blood mononuclear cells (PBMC) in a diverse cohort of  patients with RA, matched with controls based on 
age, sex, race, and ethnicity. Our primary objective was to identify specific cell subsets and biomarkers asso-
ciated with disease activity. Additionally, we aimed to assess the specific RA cell subsets and gene signa-
tures in a diverse population, providing valuable insights into the multifaceted nature of  RA pathogenesis.

Results
Experimental study design. We performed a single-cell analysis on PBMC samples from 36 participants (18 
RA and 18 controls matched on age, sex, ethnicity, and race). Study design and population character-
istics are described in Figure 1A and Table 1. The mean age was 53.75 ± 15.9 (mean ± SD), the study 
was composed of  66.7% (n = 24) women, 11.1% Asian Americans, 83.3% White, and 5.6% Latinx pop-
ulation. There was no significant difference in population characteristics between patients with RA and 
matched controls (Supplemental Table 1; supplemental material available online with this article; https://
doi.org/10.1172/jci.insight.178499DS1). Among the patients with RA, 62.5% (n = 10) presented a positive 
rheumatoid factor (RF) and 87.5% (n = 14) presented positive anti-citrullinated antibodies (ACPA). RA 
disease activity was evaluated using the Disease Activity Score (DAS) on 28 joints using C-reactive protein 
(CRP) (DAS28-CRP) (26). Clinical data regarding disease activity were available for 16 of  the 18 patients 
with RA included in our study. The mean DAS28-CRP was 3.3 ± 1.0. Patients were stratified in remis-
sion-low disease activity (DAS28-CRP < 3.2) (n = 9) and moderate-high disease activity (DAS28-CRP 
≥ 3.2) (n = 7). Erosive disease was present in 62.5% of  patients (n = 10). The mean time since diagnosis 
was 4.13 ± 4.41 years. Seven patients were treated by conventional disease-modifying antirheumatic drugs 
(DMARDs) (38.9%), only 1 patient was treated by a biological DMARDs (TNF inhibitor: etanercept), and 
6 (33.3 %) patients were also treated with oral corticosteroids (prednisone ≥ 5 mg)

Identification of  18 PBMC cell subtypes. PBMCs collected on peripheral blood were pooled, profiled, and 
barcoded in 3 batches with 12 lanes using the 10X Genomics Chromium Single Cell technology. RA and 
matched controls were evenly split within each batch and within lanes. Cell Ranger v3 was used for demul-
tiplexing and read mapping to the human genome. The mean number of  cells for all samples described was 
5,990.7 (SD, 1842.8) before filtering and 3,307.8 (SD, 1031.7) afterward. An average of  1,259.2 cells were fil-
tered out per sample as doublets, and an average of  1,423.7 cells per sample were filtered out due to low qual-
ity (Supplemental Figure 14 and Supplemental Tables 8 and 9). Following 10X sequencing and preprocessing 
with Scanpy, our data set consisted of  125,698 cells and 22,159 genes (Supplemental Figure 1 and Supple-
mental Tables 6 and 7). Leiden community detection was used to group cells into clusters, and annotation 
using established cell markers showed the presence of  all major PBMC cell types (Supplemental Figure 2). All 
major cell types, annotated using established cell markers, were present in our data set. Further clustering and 
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annotation were used to identify cell subsets, including 5 CD4+ T cell subsets (CD4+ T central memory, CD4+ 
T effector memory, CD4+IFIT+ T cells, CD4+ naive T cells, γδ T cells), 3 CD8+ T cell subsets (CD8+ early T 
effector memory, CD8+ naive T cells, terminally differentiated effector memory [TEMRA]), 2 NK cell subsets 
[CD56bright NK cells,CD56lo NK cells), 3 B cell subsets (naive B cells, memory B cells, and plasmabasts), and 
5 monocyte subsets (classical monocytes, IFN-induced transmembrane 3–positive [IFITM3+] IFN-activat-
ed, IL-1B, myeloid DCs, nonclassical monocytes) (Figure 1B and Supplemental Table 10). For the control 
sample that was replicated across batches, we found no statistically significant differences in cell proportions. 
Each of  the cell subsets presented a distinct expression profile (Figure 1C and Supplemental Figure 2). CD4+ 
and CD8+ T cell and NK cell subtypes showed higher similarity profiles, and the expression profiles of  γδ 
T cells exhibited a stronger correlation within the CD8+ T cells (Figure 1C). Cell subsets and top genes of  
each cell subset identified through Wilcoxon ranked sum analysis are included in Figure 2, A and B. We 
identified 2 cell subtypes (CD4+IFIT+ cells and IFITM3+ IFN-activated monocytes) associated with genes 

Figure 1. Identification of 18 PBMCs cell subsets. (A) UMAP embeddings and subset annotations of scRNA-Seq data set from patients with rheumatoid 
arthritis (n = 18) and healthy controls (n = 18) matched on age, sex, and ethnicity. (B) Normalized expression of the top 40 ranked genes in different cell 
subsets (Wilcoxon rank test, FDR ≤ 0.05). (C) Correlation heatmap of gene expression across cells subsets (Spearman correlation). CD, cluster differentia-
tion; IFIT, IFN-induced proteins with tetratricopeptide repeats; IFITM, IFN-induced transmembrane; Tem, T effector memory; TEMRA, terminally differen-
tiated effector memory; RA, rheumatoid arthritis.
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related to IFN-pathway activation in RA. The proinflammatory CD4+IFIT+ cell subtype presented signifi-
cant expression of  several genes associated with inflammatory response and immune regulation, including 
IFIT2, PMAIP1, NFKBIZ, TNFAIP3, and ZC3HAV1. IFITM3+ IFN-activated monocytes had elevated levels 
of  IFITM3, ISG15, FTL, TYMP, and FTH1. In addition, IFITM3 expression was specific to this monocyte 
subset (Supplemental Figure 4). Nonclassical monocytes cell proportions were significantly lower in patients 
with RA compared with controls (Wilcoxon-signed rank analysis P = 0.024) (Supplemental Figures 3 and 5). 
There were no significant differences in the proportion of  other cell types.

Pseudobulk differential expression analysis reveals a specific downregulation of  proinflammatory genes related to γδ 
T cells in patients with RA in comparison with healthy controls. By performing pseudobulk differential expression 
analysis on 18 cell subtypes, we identified a total of  168 genes that exhibited differential expression between 
individuals with RA and the control group (FDR ≤ 0.05, |log2FC| ≥ log2[1.6]). The majority of  those genes 
were expressed in monocytes (n = 94) and CD8+ T cells (n = 39); 26 genes were expressed in CD4+ T cells, 
6 were expressed in B cells, and 3 were expressed in NK cells (Figure 3, A–C; Supplemental Tables 2 and 3; 
and Supplemental Figure 6). In total, 121 genes were unique, and 47 genes were expressed across multiple cell 
types. Patients with RA had higher expression of  genes associated with inflammation and cardiovascular risk 
in IL-1B and classical monocytes, including IFITM2, TXNIP, EAF1, RIT1, EGR1, TLE3, and SLA. In addi-
tion, they showed overexpression of  cytotoxic genes KLRD1, GZMH, and EBP in CD8+ T cells. Patients with 
RA also displayed significant downregulation of  proinflammatory genes such as IFNG, IFIT2, TNF, GZMA, 
ISG15, and S100A4 exclusively in the γδ T cells. Nonclassical monocytes showed a specific transcriptomic 
profile of  19 differentially expressed genes not shared with other cell subsets (Figure 3, B and C), including 
a downregulation of  ETNK1, TNFSF13B, DUSP7, and IGSF6 and an upregulation of  CXCR4 in RA. Inter-
estingly, the IFN-activated subset also presented a cell type–specific downregulation of  HLA-DQB1, LRRK2, 
MS4A7, and G0S2 in RA.

Overrepresentation analysis finds significant upregulation of  B cell activation in patients with RA. Functional 
analysis derived from pseudobulk differential expression analysis (FDR ≤ 0.05) identified 25 significantly 

Table 1. Clinical characteristics of patients with RA and patients with remission-low and moderate-high disease activity

Rheumatoid arthritis 
(n = 18)

RA remission and low 
disease activity 

(DAS28-CRP < 3.2) 
(n = 9)

RA moderate and 
high disease activity 

(DAS28-CRP ≥ 3.2) 
(n = 7)

P value Missing values (%)

Sex (%) Female 12 (66.7 %) 7 (77.8 %) 4 (57.1 %) ns 0
Male 6 (33.33) 2 (22.2 %) 3 (42.9 %)

Age (years) (mean [SD]) 51.7 (15.3) 46.3 (15.4) 59.2 (14.3) ns 0
Race (%) Asian 2 (11.1 %) 1 (11.1 %) 1 (14.3 %) ns 0

White 15 (83.3 %) 8 (88.9 %) 6 (85.7 %)
Other 1 (5.6 %) 0 (0.0 %) 0 (0.0 %)

Ethnicity (%) Hispanic 1 (5.6 %) 0 (0.0 %) 0 (0.0 %) ns 0
Not Hispanic 17 (94.4 %) 9 (100.0 %) 7 (100.0 %)

BMI kg/m2 (mean [SD]) 26.7 (10.3) 24.41 (4.5 %) 24.1 (5.4 %) 5.6
DAS4-28-CRP (mean [SD]) 3.3 (1.0) 2.6 (0.5) 4.2 (0.6) <0.001 11.1
RF (%) 10 (62.5) 4 (44.4 %) 5 (71.4 %) ns 11.1
ACPA (%) 14 (87.50) 7 (77.8 %) 6 (85.8 %) ns 11.1
Erosive status (%) 10 (62.5) 3 (33.3 %) 5 (71.4 %) ns 11.1
Oral corticosteroids 
(Prednisone ≥ 5 mg) (%)

6 (27.8 %) 3 (33.3 %) 2 (28.6 %) ns 5.6

cDMARDs (%) 7 (38.9 %) 5 (55.6 %) 2 (33.3 %) ns 5.6
bDMARDs (%) 1 (5.6 %) 0 (0 %) 1 (14.3 %) ns 11.1
Disease duration (years) 4.13 (4.41) 3.61 (4.31) 4.80 (5.22) ns 5.3

The table presents demographic data for a total of 18 patients with RA. Disease activity information is available for 16 of them. A subanalysis was 
conducted, stratifying patients into 2 groups: those in remission or with low disease activity (n = 7) and those with moderate-high disease activity (n = 9) 
using a DAS28-CRP threshold of 3.2. A P value threshold for significance was set at < 0.05. Student’s t test was conducted to analyze continuous variables. 
For categorical variables, a χ2 test was performed. ACPA, anti-citrullinated antibodies; bDMARDs, biological disease-modifying antirheumatic drugs; 
cDMARDS, conventional disease-modifying antirheumatic drugs; DAS, disease activity score; RA, rheumatoid arthritis; RF, rheumatoid factor.
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upregulated pathways across cell subsets in patients with RA compared with the control group. Among 
these pathways, 11 were upregulated in B cells, 10 in monocytes, and 4 in CD4+ T cells. Additionally, 
21 pathways were significantly downregulated, with 16 in monocytes, 13 in CD4+ T cells, 1 in CD8+ T 
cells, and 1 in B cells (FDR ≤ 0.01, gene ratio ≥ 15, counts ≥ 5) (Figure 4 and Supplemental Table 4). We 
observed a noteworthy abundance of  upregulated pathways specifically in B cells of  patients with RA as 
compared with the control group. These pathways primarily encompassed immune response, B cell activa-
tion, B cell receptor pathways, antigen-receptor–mediated signaling pathways, and immune response regu-
lating cell surface receptor signaling pathways. Furthermore, within the γδ T cell population, we observed 
a significant downregulation of  pathways involved in positive regulation of  myeloid and leukocyte differ-
entiation as well as cytokine production regulation in patients with RA. Finally, in nonclassical monocytes, 
we observed an upregulation of  cytokine-mediated signaling pathways and a downregulation of  pathways 
involved in T cell activation, lymphocyte regulation and mononuclear cell proliferation, and leukocyte cell-
cell adhesion in patients with RA.

Figure 2. Cell subsets and top marker genes identified in Wilcoxon rank sum. (A) UMAP embedding for cell subsets in B cells, monocytes, CD4 T cells, 
CD8 T cells, and NK cells. (B) Dot plots of top ranking genes in each cell subset. CD, cluster differentiation; IFIT, IFN-induced proteins with tetratricopeptide 
repeats; IFITM, IFN-induced transmembrane; Tem, T effector memory; TEMRA, terminally differentiated effector memory; RA, rheumatoid arthritis.
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Figure 3. Pseudobulk analysis between patients with RA and matched controls for each subsets. (A) Single-cell UMAP of patients with RA and 
matched controls. (B) Differentially expressed genes between patients with RA and matched controls. (C) UpSet plots of upregulated and downreg-
ulated genes across different cell subsets. CD, cluster differentiation; IFIT, IFN-induced proteins with tetratricopeptide repeats; IFITM, IFN-induced 
transmembrane; Tem, T effector memory; TEMRA, terminally differentiated effector memory; RA, rheumatoid arthritis.
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CD4+ central memory cell and nonclassical monocytes proportions are associated with disease activity in patients 
with RA. We performed a stratified analysis based on disease activity comparing individuals with active 
versus inactive disease. Information regarding DAS4-28-CRP was available in 16 of  18 patients with RA 
included in the study. Patients with RA were divided into 2 groups: one consisting of  individuals in remis-
sion or with low disease activity, characterized by a DAS28-CRP <3.2 (n = 9), and the other group com-
posed of  patients with moderate and high disease activity, indicated by DAS28-CRP ≥ 3.2 (n = 7). There 
was no significant statistical difference between the 2 groups in terms of  age, sex, race, ethnicity, BMI, 

Figure 4. Functional analysis between RA and matched controls. Pathways and overrepresentation analysis for each cell subtype (gene ratio > 0.15, FDR 
≤ 0.05, 0.08 < base mean < 4). CD, cluster differentiation; IFIT, IFN-induced proteins with tetratricopeptide repeats; IFITM, IFN-induced transmembrane; 
Tem, T effector memory; TEMRA, terminally differentiated effector memory; RA, rheumatoid arthritis.



8

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2024;9(16):e178499  https://doi.org/10.1172/jci.insight.178499

proportions of  ACPA or RF, erosive disease, treatment strategy, or disease duration (Table 1). We com-
pared differences in cell density and cell subset proportions between those 2 groups and the control group 
(Figure 5, A–C). Additionally, we conducted a nonparametric Spearman correlation analysis to evaluate 
the association between cell proportions and DAS28-CRP as a continuous score (Supplemental Figure 7). 
Although there was no statistical significance in B cell proportion across groups, we observed a clear densi-
ty shift between patients with remission-low disease activity versus moderate and high activity from naive 
to activated memory B cells (Figure 5B). Patients with RA with moderate-high disease activity showed 
a significantly increased proportion of  CD4+ central memory cells (P = 0.034) (Figure 5C). Conversely, 
nonclassical monocytes were significantly lower in patients in the remission-low disease activity group 
compared with both the control group and the group with moderate-high disease activity (P = 0.022).

Identification of  a gene signature specific to moderate and high disease activity in RA. Using a gene list consist-
ing of  121 unique genes that exhibited differential expression between individuals with RA and matched 
controls in our pseudobulk analysis, we conducted a subanalysis focusing on patients with different disease 
activity levels: those in remission or with low disease activity and those with moderate-high disease activity. 
Among the 121 genes, 75 were significantly associated with low disease activity, and 89 were associated 
with high disease activity (FDR ≤ 0.05, |log2[FC]| ≥ log2[1.6], 0.08 ≤ base, mean < 4). Interestingly, 52 
genes were significantly upregulated in patients within the moderate-high disease activity group. These 
genes included G0S2, THBS1, DUSP7, IFIT2, IGSF6, MAFB, RIT1, TNF, JUN, CXCR4, and TLE3 (Fig-
ure 6 and Supplemental Figure 8). Furthermore, we observed a separate set of  37 genes that exhibited 
a significant downregulation in patients with moderate-high disease activity compared with the control 
group. These downregulated genes included TRBC1, KLRB1, IL32, HLA-DQB1, HLA-DRB5, TNFSF13B, 
CCL3, LRRK2, and TMA7. Additionally, we identified 12 genes that were significantly overexpressed only 
in patients with remission or low disease activity; they included TXNIP, LGALS2, and AREG.

CD4+ T cells and B cell subsets are associated with the highest levels of  cell-cell communication in patients with 
RA. To gain a comprehensive understanding of  immune cell communication, we conducted a cell-cell 
communication inference analysis using CellChat, which uses a repeated permutation to identify signif-
icant cell-cell communications. We found a statistically significant increase in cell-cell communication in 
patients with RA as compared with healthy controls in 35 pairs of  cell types. One cell-cell pair showed 
no difference, and 255 pairs had less communication in RA (Figure 7A). The largest increase in commu-
nication was found in CD4+ naive T and CD4+ T central memory cells along with naive and memory B 
cells both as senders and receivers. In addition, there was an increase between classical, nonclassical, and 
IL-1β monocytes as senders and naive CD4+ T cells as receivers. When stratifying patients based on disease 
activity, we found similar patterns. In patients with low disease activity, 28 pairs had statistically significant 
increases and 286 pairs had statistically significantly decreased in communication as compared with con-
trols (Supplemental Figure 9). In patients with moderate and high disease activity, 37 pairs had statistically 
significant increases in communication and 259 pairs presented with statistically significant decreases in 
communication, while 1 pair had a similar amount of  communication as compared with controls. For the 
high activity states, a decrease as both sender and receiver was observed in particular for CD8+ T naive and 
early T effector memory (TEM) and CD4+ TEM as well as CD56bright NK cells and IFITM3 IFN-activated 
monocytes, whereas the low disease activity state had a decrease of  both sending and receiving commu-
nication of  IFIT+CD4+ T cells, myeloid DCs, and IFITM3 IFN-activated monocytes. On the other hand, 
myeloid DCs appeared to be more involved in communication in high disease activity as both a sender and 
receiver, while NK cells and CD4+ naive T cells were more involved in sending and receiving communica-
tion in low disease activity.

Cell-cell communication reveals an upregulation of  VISTA and IFN-II pathways in patients with RA with mod-
erate and high disease activity. CellChat utilizes a curated database of  ligand-receptor pairs, grouped into 
communication pathways that may contain multiple ligand-receptor pairs. The change in communication 
pathways between disease states was then calculated as the relative contribution per disease state to the 
total communication amount for a specific communication pathway. We used a threshold for significant 
contribution at less than 35% or more than 65% of  the total communication and P < 0.05. We found sev-
eral distinct communication pathways to be up- or downregulated in RA, with 7 pathways showing more 
communication and 14 showing less communication as compared with controls (Figure 7B and Supple-
mental Figure 10). Upregulated pathways included neurotrophic (NT), hepatocyte growth factor (HGF), 
V-domain immunoglobulin suppressor of  T cell activation (VISTA), interferon II (IFN-II), and WNT. 
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When comparing moderate-high disease activity to low disease activity, we found the highest number of  
changed pathways to be in moderate-high (36 versus 22) (Figure 7C and Supplemental Figure 11, A–C). 
Many pathways from the initial comparison remained significantly and solely expressed in RA, including 
NT, HGF, VISTA, and IFN-II, although PECAM-1 also became significant. For each pathway, specific 
ligand-receptor pairs were considered main contributors (Supplemental Figure 12).

For most pathways, the direction of  dysregulation was similar in both high and low disease activity 
(n = 12). However, the thrombospondin (THBS), CD99, and growth hormone (GH) pathways were 
upregulated in high disease activity but downregulated in low disease activity. On the other hand, there 
was more communication in TGF-β, activin, granulin (GRN), and IL-2 pathways in low disease activ-
ity as compared with high disease activity. Although the direction of  dysregulation was alike for high 
and low disease activity, the cells contributing to communication pathways differed. For IFN-II, naive 
CD4+ T cells, and CD56bright NK cells sent signals to primarily IL-1B and nonclassical monocytes in 
high disease activity (Figure 7D). In low disease activity, most signaling came from classical and IL-1B 
monocytes and was received by IFITM3 IFN-activated monocytes (Figure 7D). In other pathways, such 
as VEGF and NT, the involved cells remained unchanged across disease states; however, small changes 
in importance were observed (Figure 7, C and D, and Supplemental Figure 13). For IL-2, most commu-
nication was between CD4+ cells, although myeloid DCs also played a large role in high disease activity 
(Supplemental Figure 13). Another upregulated pathway across disease states was the VISTA pathway, 
for which we found discrepancies in the involved cells, as nonclassical and IFITM3 IFN-activated mono-
cytes were the primary senders in high disease activity as opposed to low disease activity, during which 
nonclassical monocytes were out shadowed by classical and IL-1B monocytes (Figure 7E). For both 
disease states, however, the main receivers were within the CD4+ and myeloid subsets, although CD4+ 
naive T cells were more prominent receivers in low disease activity and CD4+ memory T cells were more 
prominent in high disease activity.

Discussion
Here we describe a data set of  scRNA-Seq of  PBMCs from a diverse population of  36 patients with 18 
RA and 18 matched controls on age, sex, race, and ethnicity. Of  these subsets, we found that nonclassical 
monocyte proportions were significantly lower in patients with RA compared with controls. This is in line 
with other studies of  RA biomarkers, which hypothesize that inflammatory cell subsets may migrate from 
blood to synovial tissue (20, 21, 26). Our findings showing increased CD4+ central memory cell propor-
tions and decreased nonclassical monocytes specifically in patients with moderate-high disease activity 
compared with controls provide further evidence aligned with these hypotheses. However, unlike previous 
studies (27), we did not find statistically significant enrichment of  plasmablasts or other cell subsets in RA 
patient populations, which may be due to low sample sizes or differing patient demographics from previ-
ous studies. One other subset of  interest identified in our study was an IFITM3-expressing IFN-activated 
monocyte subset. IFITM3 is associated with type I IFN response and viral restriction (28). Associations 
between IFITM3 haplotypes and RA, particularly in the context of  a Korean population (29). Additionally, 
Zhang and colleagues (17) identified upregulation of  IFITM3 in synovial IL-1B+ monocytes from a subset 
of  patients in RA, prompting interest in whether differences in IFITM3+ cell proportions could be contrib-
uting to these differences in expression. Other IFN-induced genes, particularly OAS1, ISG15, IFI44L, and 
IFI6 (30), have also been shown to be upregulated in whole blood samples from patients with RA, although 
these studies did not find any association with disease activity. Studies on IFN-activated monocytes have 
also suggested their role in antigen presentation through upregulation of  CD86 and HLA-DR and driving 
the differentiation of  Th17 cells in the synovium of  patients with RA (31).

While we did not find differences in IFITM3+ monocyte proportions or upregulation of  the IFITM3+ 
gene specifically, our other findings described below did show significant differences in VISTA signaling in 
this subset and showed upregulation of  IFN-induced genes in pseudobulk analysis from patients exhibiting 
moderate and high disease activity. The differences between our study and previous findings from Zhang 

Figure 5. Cell proportion and cell density between patients with remission-low and moderate-high disease activity and matched controls. (A) UMAP 
representation of cell subsets. (B) Compositional and density analysis between control patients with low and high disease activity. (C) Cell proportion anal-
ysis between controls and patients with RA with ow and high disease activity. Each point represents the cell subset proportion of each patient normalized 
to the total number of cells for that patient (Mann-Whitney U test, *P ≤ 0.05). CD, cluster differentiation; IFIT, IFN-induced proteins with tetratricopeptide 
repeats; IFITM, IFN-induced transmembrane; Tem, T effector memory; TEMRA, terminally differentiated effector memory; RA, rheumatoid arthritis.
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and colleagues may be explained by varying study design, including cohort selection and control popula-
tions (17). While we compared PBMC samples between patients with RA stratified by disease activity and 
healthy controls, upregulation of  IFITM3 shown by Zhang and colleagues was only shown in synovial 
samples from leukocyte-rich RA compared with control samples obtained from patients with osteoarthritis. 
Further studies of  IFITM3 and other IFN-related genes are needed to better elucidate the global role of  
IFN and IFN-activated monocytes in RA pathophysiology.

In our pseudobulk differential expression analysis, we observed a specific downregulation of  proin-
flammatory genes in the γδ T cells subsets, including IFNG, IFIT2, TNF, GZMA, ISG15, S100A4. Interest-
ingly Mo et al. described that peripheral Vδ2T cells were significantly lower in patients with RA and were 
negatively correlated with disease activity. In addition, they described that Vδ2 T cells from RA accumu-
lated in the synovium and produced high levels of  proinflammatory cytokines including IFN-γ and IL-17 
and also showed elevated chemotaxis potential (32). Our results could reinforce the potential chemotaxis 
role of  Vδ2 T cells in the synovium. However, it is essential to acknowledge that this remains a hypothesis, 
since we lacked matched tissue data in our study to confirm this hypothesis conclusively. Similarly, we 
observed a lower proportion of  nonclassical monocytes in PBMCs from patients within the remission-low 
disease activity groups compared with both controls and moderate-high disease activity. Guła et al. have 
reported that the absolute number of  circulating nonclassical monocytes negatively correlates with DAS28 
and swollen joint count in patients with peripheral spondyloarthritis (26). Nonclassical monocytes have 
also been associated as key mediators of  tissue destruction in osteoclasts in murine models of  RA (33). In 
addition, we found a specific downregulation in the nonclassical monocytes subsets of  several genes such 
as IGFS6, ETNK1, DUSP7, and TNFSF13B. IGFS6 expression has been significantly associated with RA 
fibroblast cells in humans (34). Etnk1 has been associated as a candidate gene in collagen-induced arthritis 
(35). DUSP7 is involved in MAPK signaling, and low levels of  mRNA of  DUSP7 have been associated with 
RF ACPA+ patients with RA (36). TNFSF13B variants have been associated with RA in several studies and 
also with other autoimmune diseases such as systemic erythematous lupus (37, 38).

We also identified a gene signature of  89 genes specific to disease activity, including an upregulation of  
proinflammatory genes such as TNF, JUN, EGR1, IFIT2, IGSF6, TMX1, and MAFB as well as potential genes 
associated as therapeutic targets or in treatment response such as G0S2, PTGS2, and THBS1. Mafb has been 
associated with monocytes and macrophage differentiation but also involved in the activation of  myeloid 
cells associated with joint destruction such as RANK+TLR2– cells in murine models of  RA (38, 39). G0S2 
has been associated with anti-TNF response prediction in a metaanalysis of  11 studies (40). Thrombospon-
din-1 expression has been associated with NR4A2 activity and is modulated by TNF inhibitors (41). We also 
observed several genes downregulated in patients with high disease activity such as HLA-DQB1, HLA-DRB5, 
and TNFSF13B. Similarly, Klimenta et al. also found a protective role of  HLA-DRB5 in RA (42). In an inde-
pendent single cell study, Wu et al. showed that HLA-DRB5+ expression was lower in the synovial tissues 
of  ACPA– patients with RA (18). A thorough analysis of  these gene signatures enables the identification of  
various functional groups, notably the upregulation of  IFN-induced genes in patients exhibiting moderate to 
high disease activity. These findings align with existing literature that emphasizes the significant role of  IFN 
in both RA and disease activity (31, 43). Furthermore, they underscore the potential of  cutting-edge RA treat-
ments, such as JAK inhibitors, as IFN exerts its effects through the JAK/STAT pathway (44).

Cell-cell communication allowed us to confirm several well-known signaling pathways from the RA lit-
erature, including type II IFN (IFN-γ), TGF-β, and VEGF (43, 45, 46). Additionally, our findings reveal an 
upregulation of  the IL-2 signaling pathway in patients with remission and low disease activity, whereas a 
downregulation was observed in patients with moderate and high disease activity compared with controls. 
IL-2 has been correlated with disease activity and severity in several studies (47, 48). The IL-2 pathway 
plays a pivotal role in Treg response and holds significance in rheumatic diseases (49). IL-7 is known to play 
a significant role in the activation and proliferation of  many cells, and notably T cells, including Tregs (50).

IL-7 is also important for the development and differentiation of  Tregs, their homeostatic mainte-
nance, and their expansion, although to a lesser extent than IL-2, which is indispensable (51, 52). In 
addition, the IL-7R shares the common γ chain and, thus, part of  the downstream activation pathway. 

Figure 6. Gene signature associated with disease activity and percentage of expression across cell subsets. Gene expression heatmap between controls 
and RA with low and high disease activity and average expression across cell subtypes. CD, cluster differentiation; IFIT, IFN-induced proteins with tetratrico-
peptide repeats; IFITM, IFN-induced transmembrane; Tem, T effector memory; TEMRA, terminally differentiated effector memory; RA, rheumatoid arthritis.
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Our results underscore the intricate interplay between these cytokines and their downstream signaling 
cascades and may signify that the shared IL-2/IL-7 pathways and genes are particularly relevant in the 
context of  RA pathogenesis. However, it should be acknowledged that our study lacked sufficient power to 
identify specific memory and Treg subsets and did not identify IL-2 or IL-7 in our differential expression 
gene list. Thus, further research is warranted to refine and enhance this hypothesis.

We also found an upregulation of  the VISTA signaling pathway in patients with RA. VISTA is a neg-
ative checkpoint regulator, playing a key role in suppressing T cell–mediated immune responses, and its 
disruption has been linked to proinflammatory phenotypes and a susceptibility to autoimmune diseases 
(53). In a recent groundbreaking study, ElTanbouly et al. investigated the role of  VISTA expression in 
T cells and found that VISTA expressed on naive T cells was playing a critical role in quiescence and 
peripheral tolerance and, hence, that blocking or knocking out VISTA exacerbates inflammation in mice 
models (54). However, results from Ceeraz et al. have found a significant reduction of  arthritis score in 
VISTA-deficient mice in a collagen antibody–induced arthritis model independent of  T and B cells (55). 
Taken together, those results could suggest that VISTA may have immunoregulatory roles on naive T 
cells but inflammatory roles on myeloid cells. In our signaling network analysis, however, CD4+ T cells 
subsets were the main receivers of  VISTA signaling. CD4+ naive T cells were the primary receiver pop-
ulation in the remission-low disease activity group, while CD4+ T central memory was the predominant 
group in moderate-high disease activity. Interestingly, the monocyte cell population was associated as the 
main sender in the VISTA signaling network — in particular, IL-1β monocytes and classical monocytes 
in remission-low disease activity and nonclassical and IFITM3+ monocytes in moderate and high disease 
activity groups. Targeting VISTA shows promising potential as an innovative immunoregulatory therapy 
(56, 57). Our findings further support the involvement of  VISTA in RA and its potential effect on the com-
munication between monocytes and CD4+ T cells, possibly indicating a more significant role of  VISTA 
on monocytes as compared with T cells in RA; however, this finding needs confirmation in laboratory 
studies. Additional research is necessary to gain a comprehensive understanding of  VISTA’s role in RA 
and its apparent multifaceted role in autoimmunity.

Several limitations should be acknowledged in our study. First, it is challenging to use scRNA-Seq of  
unsorted PBMCs to study very small cell subsets, such as B cells subsets or Tregs, which may have led to 
their role in disease activity being underestimated and not extensively explored. Additionally, the relative-
ly small sample size of  our study may have limited the statistical power to detect subtle differences. This 
limitation also restricted our ability to thoroughly explore potential differences associated with sex, race, 
and ethnicity, emphasizing the need for more inclusive representation in future investigations to ensure a 
comprehensive understanding of  RA across diverse populations.

Finally, we acknowledge that RA treatments could be expected to modify the phenotype of  PBMCs 
and that the small sample size of  this study doesn’t allow us to explore these differences analytically. Future 
studies should be designed specifically to explore the effects of  treatments on cell type–specific expression 
at a single-cell level. Prospective single-cell study and longitudinal data on flare and treatment response 
could also provide further insight, could reinforce previous findings from the work form Orange et al., 
and could deepen our understanding of  RA disease activity (15). Another limitation is the absence of  
matched disease synovial tissue, which could have provided more comprehensive insights into how pat-
terns in PBMCs relate to cellular and molecular mechanisms involved in RA synovium. Also, we have 
looked strictly at PBMCs, but a significant role of  neutrophils in RA has been proposed and future studies 
should explore this potential interaction (58).

Nonetheless, our study provides valuable insights into the cellular and molecular mechanisms associ-
ated with disease activity in RA. We carefully considered matched controls on age, sex, race, and ethnicity, 
and our work has identified key cell subsets and genes that may be associated with disease activity. These 

Figure 7. Cell-cell communications between patients with remission-low and moderate-high disease activity and matched controls. (A) Heatmap rep-
resenting the relative number of interactions between RA and matched controls. (B) Bar plot illustrates statistically significant communication pathways 
based on the weight of interactions between patients with RA and controls. (C) Dot plot of the relative contribution of communication pathways based 
on weight of interactions between high and low disease activity compared with controls. (D) Heatmaps of the relative importance of cells as senders and 
receivers for the IFN-II, the VEGF, and the NT signaling pathway network in high and low disease activity. (E) Circle plots representing the relative impor-
tance of cells as senders and receivers for the VISTA signaling pathway network in high and low disease activity and overall. CD, cluster differentiation; 
IFIT, IFN-induced proteins with tetratricopeptide repeats; IFITM, IFN-induced transmembrane; Tem, T effector memory; TEMRA, terminally differentiated 
effector memory; RA, rheumatoid arthritis.
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findings have the potential to serve as new biomarkers and therapeutic targets. We are optimistic that our 
research will contribute to advancing our understanding of  RA pathogenesis and lead to the development 
of  more effective treatments for this complex autoimmune disease.

Methods
Study design. Patients with RA meeting the American College of  Rheumatology (ACR) classification crite-
ria (59) were recruited from the UCSF rheumatology clinic between 2016 and 2020 (60). Healthy controls 
were recruited through local advertising and through the database ResearchMatch (61). Controls were 
matched to patients with RA by age, sex, race, and ethnicity. The uses of  the words “women” and “men” 
in this study are utilized as proxies for biological sex and do not represent gender identity. Blood samples 
and participant level data were collected at time of  enrollment. Clinical data including demographics, 
medication status, and laboratory values, such as erythrocyte sedimentation rate, CRP, RF, ACPA, and 
clinical measurements of  disease activity with the Disease Activity Score in 28 joints using CRP (DAS28-
CRP). Patients were stratified in remission or low disease activity (DAS28-CRP < 3.2) and moderate and 
high disease activity (DAS28-CRP ≥ 3.2) according to the 2019 updated ACR recommendation on disease 
activity measures (62).

Sample processing and 10X scRNA-Seq. PBMCs were isolated from peripheral blood samples by UCSF 
Bay Area Center for AIDS Research Specimen Processing and Banking Subcore (previously AIDS spec-
imen bank). Blood samples were collected in EDTA tubes, processed per manufacturer’s guidelines, and 
cryopreserved in liquid nitrogen. scRNA-Seq was performed using the 10X Chromium microfluidics 
system (10X Genomic). PBMCs from 18 patients with RA and 18 healthy controls were thawed, count-
ed, pooled, and profiled in 3 batches and 12 lanes, using 10X Genomics Chromium Single Cell 3′V3. 
Barcoded cDNA libraries were prepared using the single cell 3′mRNA kit. Cell Ranger v3 (3.1.0) was 
used to demultiplex cellular barcodes and map reads to the human (GRCh38-3.0.0) genome (63). Sample 
deconvolution and doublet identification was performed using demuxlet (64). RA and matched control 
samples were evenly split within each batch to limit technical and biological bias in our analysis. The 
first batch consisted of  14 individuals (7 RA and 7 controls), the second batch included 8 individuals (3 
RA and 5 controls), and the third batch included 16 individuals (8 RA and 8 controls). One control was 
sequenced across 3 batches as a technical replicate to control for batch effect.

Preprocessing. Preprocessing was performed using Scanpy (1.9.1) (65) following previously published 
single-cell workflows (66). Additional details on these methods can be found in Supplemental Figures 
1–3 and Supplemental Tables 6–9. Genes found in fewer than 3 cells were filtered out, as well as cells 
containing fewer than 100 genes or more than 1,000 genes. Cells with platelet or megakaryocyte gene 
markers (PF4, GNG11, PPBP, SDPR) were also removed. Additionally, cells containing greater than 
20% mitochondrial genes or less than 3% ribosomal genes were removed. Following filtering, the data 
were normalized to counts per million and were log transformed. Technical variation from sequencing 
depth, mitochondrial percentage, and ribosomal percentage were regressed out during scaling. Cell 
cycle scoring was performed using Scanpy using standard genes (67) and was also regressed out. Batch 
correction was then performed using HarmonyPy (68), and samples were clustered in an unsupervised 
manner using leiden clustering with a resolution of  3.0. Each cluster was assigned as CD4+ T cells, 
CD8+ T cells, monocytes, NK cells, or B cells using manual annotation with predefined marker genes 
according to the human protein atlas. Clusters of  platelets, erythrocytes, and suspected doublets were 
removed from further analysis based on the presence of  marker genes. Subclustering was repeated for 
each cell type to allow for fine annotations of  cell subsets, again based on referenced marker genes and 
leiden clustering. No size cutoff  was used to remove small clusters. Highly expressed genes within each 
subset were identified using Wilcoxon rank testing implemented in Scanpy.

Compositional analysis. Cell densities in each subset were calculated and plotted for RA samples ver-
sus controls using Scanpy embedding density functions. The proportion of  each cell type within a sam-
ple relative to the total number of  annotated cells for that sample was also calculated. Cell proportions 
were compared using Wilcoxon signed rank tests between RA and their matched controls. Additional-
ly, Mann-Whitney U tests were used for cell proportions comparison among controls, patients with RA 
with remission-low disease activity, and patients with RA with moderate-high disease activity. Correlation 
between cell type proportion and DAS28-CRP was also performed by calculating Spearman rank-order 
coefficient. Two-sided P < 0.05 was the threshold for statistical significance.
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Differential gene expression analysis. Differential gene expression analysis was performed between RA 
and matched controls using a pseudobulk approach using the bulk RNA-Seq tool DESeq2 (1.38.3) (69). 
Pseudobulk methods outperform mixed models and limit pseudoreplication bias (70, 71). For each cell 
subtype, read counts were summed across each sample to create a pseudobulk count matrix. DESeq2 was 
applied, using a likelihood ratio test corrected on batch effect with an additional fit of  a Gamma-Pois-
son generalized linear model (GLM) (72). P values were adjusted using Benjamini-Hochberg method, and 
genes with a FDR ≤ 0.05 were selected. Additional filtering was applied with an absolute log2fold-change 
≥ log2(1.6) and a base mean expression between 0.08 and 4.

Overrepresentation analysis. Functional and overrepresentation analysis was performed on differentially 
expressed genes for each cell subtype using clusterprofiler (4.6.2) (73) and Gene Ontology (GO) database 
(74). We selected up- and downregulated pathways related to biological processes, with a gene ratio ≥ 0.15, 
count ≥ 5, and FDR ≤ 0.01.

Cell-cell communication analysis using CellChat. Cell-cell communication inference and visualization was 
performed using the CellChat R package (version 1.6.0) (75). CellChat uses the log-normalized expression 
matrix as input and predicts cell-cell communication based on ligand-receptor pairs in a curated database. 
For each pair of  ligands and receptors, the communication probability is calculated based on the average 
expression of  the ligand in one cell type and the average expression of  the receptor in another cell type, 
taking into account the law of  mass action. CellChat also considers other important signaling factors such 
as heteromeric complexes and cell type proportion in the estimation of  the strength of  interactions. We 
followed the standardized CellChat workflow, including the “projectData” function, which allows for pro-
jecting the gene expression onto a validated protein-protein interaction network to impute the data. Cell-
cell pairwise communication was visualized as the relative number of  communications between groups of  
interest (RA versus control, low disease activity versus controls, and high disease activity versus controls). 
Statistical significance (FDR-adjusted P ≤ 0.05) of  cell type sender and receivers was assessed by perform-
ing 50 permutations and comparing the results using a Student’s 2-tailed t test. Only pathways that were 
statistically significant (P ≤ 0.05) and with a relative contribution in the RankNet-function of  either more 
than 0.65 or less than 0.35 were considered.

Statistics. Comparisons of  clinical data between groups were performed using 2-tailed Student’s t test for 
continuous variables and χ2 test for categorical variables. Differences in cell proportions based on disease 
activity were assessed using the nonparametric Mann-Whitney U test. Correlations between variables were 
evaluated using Spearman’s rank correlation coefficient. Differential gene expression according to disease 
activity state was analyzed using the Mann-Whitney U test. For differential gene expression, functional, 
and cell-cell communication analyses, P values were adjusted using the FDR with the Benjamini-Hochberg 
correction. A P value of  less than 0.05 was considered statistically significant. All statistical analyses were 
conducted using Python and R programming languages.

Study approval. The study was conducted in accordance with the principles outlined in the Declaration 
of  Helsinki and was granted ethical approval by the Human Research Protection Program and the IRB of  
UCSF (IRB project no. 15-17175). All participants provided written informed consent.

Data availability. Data presented in this study are deposited in the CellxGene Discover resource at 
https://cellxgene.cziscience.com/collections/e1a9ca56-f2ee-435d-980a-4f49ab7a952b. The code used for 
this analysis is publicly available on GitHub at https://github.com/BMiao10/RASingleCell; commit ID 
0543692. Values for all data points in graphs are reported in the Supporting Data Values file.
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