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Abstract

Two probabilistic models of competition

by

Tonci Antunovic

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Sourav Chatterjee, Co-chair

Professor Yuval Peres, Co-chair

In this thesis we introduce and study two probabilistic models of competition and their
applications. The first model is a particular contact process, and is intended to simulate
propagation dynamics in real social networks. The second one stems from game theory and
is of more theoretical value, as it is used to prove the existence of solutions to a certain
non-linear partial differential equation.

The first model consists of two competing first passage percolation processes started
from uniformly chosen subsets of a random regular graph on N vertices. The processes
are allowed to spread with different rates, start from vertex subsets of different sizes or at
different times. We obtain tight results regarding the sizes of the vertex sets occupied by each
process, showing that in the generic situation one process will occupy Θ(1)Nα vertices, for
some 0 < α < 1. The value of α is calculated in terms of the relative rates of the processes,
as well as the sizes of the initial vertex sets and the possible time advantage of one process.

The second model is a version of the stochastic “Tug-of-War” game, played on graphs and
smooth domains, with the empty set of terminal states. We prove that, when the running
payoff function is shifted by an appropriate constant, the values of the game after n steps
converge in the continuous case and the case of finite graphs with loops. Using this we prove
the existence of solutions to the infinity Laplace equation with vanishing Neumann boundary
condition.
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Chapter 1

Introduction

Modern probability theory provides us with numerous models which simulate competitive
aspects of interesting systems. These models are particularly important for studying highly
complex systems whose structure is not well understood. For instance, many prominent
examples arise as stochastic evolutionary models which have recently been a focus of sub-
stantial amount of research. In this thesis we will introduce and analyze two stochastic
competition models.

The first one is a competing first passage percolation model, and is intended to model
the spread of two competing products in a social network (or a spread of two viruses in a
large population). We consider this model quite natural, as it is a finite graph version of
the well studied Two Type Richardson Model introduced by Häggstrom and Pemantle [34]
(which was also introduced to model similar dynamics). Apart from studying this process
on a uniformly chosen d-regular graph, we also show striking difference in the behavior with
respect to the same process on the large tori. This part of the thesis is based on a joint work
with Yael Dekel, Elchanan Mossel and Yuval Peres [1].

The second process is a version of the stochastic “Tug-of-War” game, first introduced
by Peres, Schramm, Sheffield and Wilson in [52]. While certainly an interesting model from
the game-theoretic viewpoint, the main motivation for studying versions of this game is its
close connection to the non-linear infinity Laplace equation. This observation, first made and
exploited in [52], has lead to breakthrough results and completely new level of understanding
of the solutions to this equation. In this text we introduce a study a new version of this
game, and then use the obtained results to obtain novel results for the solutions of the infinity
Laplace equation with pure Neumann boundary conditions. This part of the thesis is based
on a joint work with Yuval Peres, Scott Sheffield and Stephanie Somersille [2].

1.1 Competing first-passage percolation

First passage percolation is one of the best studied discrete models in probability theory. It
can be realized as a random graph metric when edges have independent identically distributed
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weights. Often the distribution is assumed to be exponential and then the ball of a radius
t (from a fixed vertex) is a Markov set process R, in which new vertices are occupied at a
rate proportional to the number of their neighbors already in R(t). Apart from the classical
shape problem on infinite transitive graphs (see [18]), recently there was substantial interest
in estimating diameter, typical distance, flooding times and related quantities for the process
on large finite (and possibly random) graphs [41, 38, 7, 8, 10, 9].

In a related two type Richardson model, introduced in [34], one considers two first passage
percolation processes on Zd, a blue and a red one, with possibly different rates, spreading
through the graph and capturing non-colored vertices. Each non-colored vertex becomes
colored with color c at the rate proportional to the number of c colored neighbors (this
can also be viewed as the Voronoi tessellation of two independent first passage percolation
metrics). A significant amount of work on this model has been devoted to identifying the
cases in which both colors grow indefinitely [33, 20, 21, 22, 28, 36, 37]. Here we initiate the
study of this model on large finite graphs. We are interested in the sizes of each colored
component, while allowing the processes to start at different times, from sets of different
sizes and spread with different rates. We mostly focus on the case of large d-regular graphs
(which are objects of independent interest [13, 42]), due to the fact that these graphs exhibit
certain properties observed in real world networks and are amenable to theoretical study via
the so-called configuration model.

From an applied point of view, this model can be viewed to simulate spreading of two
products (or viruses) through a social network. In recent years, diffusion processes on social
networks have been the focus of intense study in a variety of areas. Traditionally these
processes have been of major interest in epidemiology where they model the spread of diseases
and immunization [49, 47, 48, 25, 6, 26]. Much of the recent interest has resulted from
applications in sociology, economics, and engineering [15, 5, 31, 30, 23, 53, 44, 43].

The interpretations of the diffusion process in terms of product marketing and in terms of
virus spread lead to some natural questions we address in this paper. What is the advantage
that the first product (the first virus) has in terms of the initial time it can spread with
no competition? What is the effect of one of them starting with larger initial size (initial
seed sets) than the other one or having a larger rate (higher quality of a product)? What is
the effect of the structure of the social network on the outcome of the competition between
the two products? To answer the last question we compare the results for the model on
large random regular graphs to the same model on large d dimensional tori. The first family
of graphs model some (but not all) features of current social networks (small diameter,
expansion etc.) while the second family models traditional spatial graph processes that are
traditionally studies in epidemiology, ecology and statistical physics.

Definition of the process and the results

Let G = (V,E) be a graph with |V | vertices and |E| edges, and let B0 and R0 be disjoint sets
of vertices (we think of B0 as a set of blue vertices and of R0 as a set of red vertices). Denote
by N(v) the set of neighbors of v. Competing first passage percolation (CFPP) considered in



CHAPTER 1. INTRODUCTION 3

this thesis is a Markov process, whose state space is the family of subsets of V , which evolves
by coloring an uncolored vertex blue (red) at the rate equal to β (ρ) times the number of
neighbors of v which are already blue (red). That is, at any time t, each vertex v /∈ Bt ∪Rt

becomes an element of Bt at the rate equal to β|N(v)∩Bt|, and an element of Rt at the rate
equal to ρ|N(v) ∩ Bt|. Here β and ρ are parameters fixed throughout, called rates of B and
R respectively. Sets Bt and Rt are increasing in t, that is once a vertex gets colored with a
certain color it does not change its state again.

A more precise description of the process requires assigning, for every pair (u, e) ∈ V ×E
such that u is incident to e, two exponential random variables, τβu,e with mean 1/β and τ ρu,e
with mean 1/ρ. Assume that the clocks are all independent. Up to a time parametrization
the above process can be realized as follows. Set B̃0 = B0 and R̃0 = R0 and T (u) = 0 for all
u ∈ B0 ∪R0. At every time step n ≥ 0 choose the vertex v which minimizes the value

min
(
{T (u1) + τβu1,e

: u1 ∈ B̃n ∩N(v)} ∪ {T (u2) + τ ρu2,e
: u2 ∈ R̃n ∩N(v)}

)
.

Then set T (v) to be this minimal value and B̃n+1 = B̃n ∪ {v}, R̃n+1 = R̃n if the minimum
is achieved for some u1 ∈ B̃n ∩ N(v) and B̃n+1 = B̃n, R̃n+1 = R̃n ∪ {v} otherwise. Finally
define Bt =

⋃
n{v ∈ B̃n : T (v) ≤ t} and Rt =

⋃
n{v ∈ R̃n : T (v) ≤ t}.

Note that (B̃n, R̃n) above is a discretized version of this process, which records its state
only at times when a change happens. This discretized process has very simple jump rules.
At each integer n, choose an edge connecting a vertex u in B̃n ∪ R̃n to a vertex v in the
complement

(
B̃n ∪ R̃n

)c
. The edges incident to a vertex in B̃n are chosen with probability

proportional to β and those incident to a vertex in R̃n with probability proportional to ρ.
If u ∈ B̃n then set B̃n+1 = B̃n ∪ {v} and R̃n+1 = R̃n. If u ∈ R̃n then set R̃n+1 = R̃n ∪ {v}
and B̃n+1 = B̃n.

By Bfin and Rfin denote the final set of blue and red vertices when the whole graph is
exhausted, and their sizes by Bfin and Rfin respectively. We are interested in the asymptotic
behavior of Bfin and Rfin as the size of the graph tends to infinity, and how it depends on
the choice of initial sets B0 and R0 and rates β and ρ. Observe that time parametrization
is irrelevant for the sets Bfin and Rfin. In particular, we will be mainly studying the process
through its discretized version (B̃n, R̃n), which will be denoted by (Bn,Rn) (as opposed to
(Bt,Rt) for the continuous process).

Consider the (finite) set of all simple d-regular vertex-labeled graphs with the vertex set
{1, . . . , N}. The random d-regular graph on N vertices is a random graph chosen uniformly
from this set (here we assume that dN is even, as otherwise such graphs do not exist). We
will study the above process on the random d-regular graphs. Sets B0 and R0 will be chosen
random as well. This all means that we will first choose a d-regular graph graph on N
vertices from the uniform distribution, conditioned on its realization we will sample sets B0

and R0 using a certain rule, and conditioned on the realization of this coupling we will run
the competing first passage percolation process (CFPP) described above. Note that we will
always assume that d ≥ 3. The reason for this assumption is that 2-regular graphs are just
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disjoint unions of cycles. As these graphs (except in the case of one cycle) are not connected,
the process can not spread throughout the whole graph.

Here we state one of our results which is a special case of Theorem 2.1.4, but which nicely
describes the type of results we obtain. It refers to the case when the sets B0 and R0 are
chosen uniformly of large prescribed size (in Section 2.1 we will allow more general rules
for choosing the initial sets to model certain aspects of competitive behavior in real-world
networks).

As our theorems give the asymptotics of Bfin and Rfin as the graph sizes N →∞, values
such as B0, R0, Bfin and Rfin will in general depend on N . However, to keep the formulas
more readable, we will not always emphasize this dependence explicitly.

Theorem 1.1.1. For d ≥ 3 and a random d-regular graph on N vertices, assume that the
sets B0 = B0(N) and R0 = R0(N) are chosen uniformly at random among all disjoint vertex
subsets of sizes B0 = B0(N) and R0 = R0(N) respectively. Assume that there are constants
c1, C1 such that c1N

αb ≤ B0 ≤ C1N
αb and c1N

αr ≤ R0 ≤ C1N
αr . Then there exist constants

c2, C2 such that with probability converging to 1 as N →∞

i) c2N
αb+(1−αr)β/ρ ≤ Bfin ≤ C2N

αb+(1−αr)β/ρ, in the case β(1− αb) ≤ ρ(1− αr),

i) c2N
αr+(1−αb)ρ/β ≤ Rfin ≤ C2N

αr+(1−αb)ρ/β, in the case β(1− αb) ≥ ρ(1− αr).

This result shows that typically one process occupies only o(N) vertices, and the other
one everything else. From the applied perspective, the results of this type can be interpreted
as one of the two products taking the lion share of the market. This result stands in striking
contrast with the ones that we obtained in the case when the underlying graph is a large
torus. Our results (see Theorem 2.1.6) show that even if we start one of the processes earlier
than the other and we give it a much higher rate, the other process will still occupy a linear
fraction of vertices with high probability.

1.2 Tug-of-War

For a (possibly infinite) graph G = (V,E), the stochastic tug-of-war game, as introduced
in [52], is a two-player zero-sum game defined as follows. At the beginning there is a token
located at a vertex x ∈ V . At each step of the game players toss a fair coin and the winning
player gets to move the token to an arbitrary neighbor of x. At the same time Player II
pays Player I the value f(x), where f : V → R is a given function on the set of vertices,
called the running payoff. The game stops when the token reaches any vertex in a given set
W ⊂ V , called the terminal set. If y ∈ W is the final position of the token, then Player II
pays Player I a value of g(y) for a given function g : W → R called the terminal payoff. One
can show that, when g is bounded and either f = 0, inf f > 0 or sup f < 0, this game has a
value (Theorem 1.2 in [52]), which corresponds to the expected total amount that Player II
pays to Player I when both players “play optimally”.
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Among other reasons, these games are interesting because of a connection between the
game values and viscosity solutions of the infinity Laplace equation. Let Ω ⊂ Rd be a domain
(open, bounded and connected set) with C1 boundary ∂Ω, and let f : Ω→ R and g : ∂Ω→ R
be continuous functions. Define the graph with the vertex set Ω so that two points x, y ∈ Ω
are connected by an edge if and only if the intrinsic path distance between x and y in Ω is
less than ε. Playing the game on this graph corresponds to moving the token from a position
x ∈ Ω to anywhere inside the ball with the center in x and radius ε, defined with respect to
the intrinsic path metric in Ω. Consider this game with the running payoff ε2f , the terminal
set ∂Ω and the terminal payoff g. By Dynamic programming principle if the value of this
game exists then it is a solution to the finite difference equation

u(x)− 1

2

(
min
B(x,ε)

u+ max
B(x,ε)

u

)
= ε2f(x),

for all x ∈ Ω, and u(y) = g(y), for all y ∈ ∂Ω. In [52] it was shown that, under certain
assumptions on the payoff function f , the game values with step size ε converge as ε converges
to zero appropriately. Moreover the limit u is shown to be a viscosity solution to the non-
linear partial differential equation{

−∆∞u = f in Ω,

u = g on ∂Ω

(one can intuitively think of ∆∞u as the second derivative of u in the direction of the gradient
of u, see Definition 3.1.4 for the precise definition). Using finite difference approach and
avoiding probabilistic arguments, Armstrong and Smart [3] obtained general existence results
for this equation and the uniqueness for typical shifts of the function f . Several modifications
of this game have also been studied, including using biased coins, which corresponds to
adding a gradient term to the equation (see [51]) and taking the terminal set W to be a
non-empty subset of ∂Ω, which corresponds to Dirichlet boundary conditions on W and
vanishing Neumann boundary conditions on ∂Ω \W (see [4] and [16]).

A crucial property of these games is the fact that the terminal set is non-empty which
ensures that the game can stop in finite time. However to use the above connection in order
to study the infinity Laplace equation with pure vanishing Neumann boundary conditions,
one would have to consider this game without the terminal set.

We circumvent this problem by considering a version of the game with finite horizon.
This game is played on a graph (with empty terminal set) the same way as the original
tug-of-war game described above, but only for a finite prescribed number of steps n. Each
time Player II pays to Player I the value of f at the current position of the token. At the
end of the game Player II pays to Player I value u0(x), where x is the final n-th position
of the token. The value un of this game with horizon n then satisfies the following simple
recursion (see Section 3.1 for the game theoretic background)

un+1(x) =
1

2

(
min
y∼x

un(y) + max
y∼x

un(y)
)

+ f(x). (1.2.1)
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The following result then gives the notion of the game value as the horizon n tends to
∞.

Theorem 1.2.1. Let G = (V,E) be a finite graph with a loop at each vertex, and let f : V →
R be a function on the set of vertices. Then there exists a constant c, such that for any
function u0 : V → R the following holds. In the finite horizon tug-of-war game played on G
with the terminal and running payoffs u0 and f − c respectively, the sequence of game values
(un) converges.

This theorem follows readily from Theorem 3.1.7. It is also true for adjacency graphs,
which have uncountably many vertices of uncountable degree, which arise by connecting
points of the closure of a bounded domain in Rd if their distance in the intrinsic metric is
less than ε > 0. Studying the limits (as n → ∞) of the game values, and taking ε ↓ 0 we
prove the following result.

Theorem 1.2.2. Let Ω be a domain of finite diameter with C1 boundary ∂Ω and f1 : Ω→ R
a continuous function. Then there exists a constant c such that the equation (3.1.5) with
f(x) = f1(x) − c has a viscosity solution u which is Lipshitz continuous, with Lipshitz
constant depending on Ω and the norm ‖f‖∞. If Ω is convex, then c is unique.

The above theorem is a corollary of Theorem 3.1.12.
Precise definitions are given in Section 3.1. In Section 3.2 we prove the convergence of

game values as horizon tends to∞. The results we obtain are used in Section 3.3 to prove the
existence of solutions of infinity Laplace equations with pure vanishing Neumann boundary
conditions. Section 3.4 contains a discussion about uniqueness.
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Chapter 2

Competing first-passage percolation

2.1 Statements of results

In this chapter we study the CFPP model, as introduced in Section 1.1. Recall that we want
from our model to handle situations which arise in cases when one of the processes starts
earlier than the other. Therefore we start by discussing how we choose the initial random
sets B0 and R0.

Definition 2.1.1. For a graph G = (V,E) we say that the pair (B0,R0) of subsets of V ,
is uniform of size (B0, R0) if it is chosen uniformly at random among all pairs of disjoint
subsets of V of the sizes B0 and R0.

For the case when one process (say B) starts earlier than the other, the idea is to let B
evolve from a uniformly chosen subset of some size, until it reaches a certain prescribed size.
Then we define B0 to be the occupied set and take R0 to be a uniform subset of Bc0. The
first phase in which only B grows is simply the CFPP process in which R starts from the
empty set of vertices. This leads to the following definition.

Definition 2.1.2. For a graph G = (V,E) we say that the pair (B0,R0) of subsets of V , is
uniform of size (B0, R0) with B0 center of size k0 if

i) B0
0 is a uniformly chosen subset of V of the size k0,

ii) B0 = B0
T , where (B0,R0) is the CFPP process ran from (B0

0, ∅), and T is the first time
k that |B0

k| = B0,

iii) R0 is the uniformly chosen subset of Bc0 of size R0.

For a sequence of graphs GN = (VN , EN) we say for (B0(N),R0(N)) a sequence of pairs of
disjoint subsets of VN , that B0 has a small center if

i) for every N , (B0(N),R0(N)) is uniform of some size (B0(N), R0(N)) with B0(N) center
of size k0(N),
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ii) limN→∞ k0(N)/B0(N) = 0.

For our results we need to either choose the pair of initial sets uniformly of prescribed
size, or always allow one of the processes to have a significant advantage. This is captured
by the following definition.

Definition 2.1.3. For a sequence of graphs GN = (VN , EN) we say that (B0(N),R0(N)) a
sequence of pairs of disjoint subsets of VN is admissible if B0 has a small center, or R0 has a
small center, or for everyN the pair (B0(N),R0(N)) is uniform of some sizes (B0(N), R0(N)).

We now state our main results. In the statements of Theorems 2.1.4 and 2.1.5 we assume
that G is a random d-regular graph on N vertices, and (B,R) a competing first passage
percolation process on G with parameters (β, ρ).

The first theorem covers the case when both processes start from a large size.

Theorem 2.1.4. Let (LN)N be a sequence converging to ∞ and B0 = B0(N) and R0 =
R0(N) be two sequences of positive integers such that

B0 ≥ LN , R0 ≥ LN , and lim
N→∞

B0

N
= lim

N→∞

R0

N
= 0.

Fix an integer d ≥ 3 and rates β > 0 and ρ > 0. If (B,R) are started from admissible pairs
of sizes (B0, R0) then there exists sequences B = B(N) and R = R(N), such that for every
ε > 0 the final sizes Bfin = Bfin(N) and Rfin = Rfin(N) satisfy

lim
N→∞

P(|Bfin −B| > εB) = lim
N→∞

P(|Rfin −R| > εR) = 0.

If β = ρ then

R =
R0

B0 +R0

N, if B0 and R0 are chosen uniformly,

R =
dR0

(d− 2)B0 + dR0

N, if B0 has a small center,

R =
(d− 2)R0

dB0 + (d− 2)R0

N, if R0 has a small center.

For any β 6= ρ there are positive constants c and C depending only on ρ/β and d such that

cmin
(
R0(N/B0)ρ/β, N

)
≤ R ≤ min

(
CR0(N/B0)ρ/β, N

)
.

The following theorem covers the case when both processes start from fixed sizes, that is
both sequences B0 = B0(N) and R0 = R0(N) are constant. Here of course, we don’t need
to worry about the possibility of one process starting earlier - such a version wouldn’t be
admissible.
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Theorem 2.1.5. Assume that B0, R0 and d ≥ 3 are fixed positive integers, and β > 0,
ρ > 0 fixed rates. If β = ρ then Rfin/N and Bfin/N converge in distribution, as N → ∞
to Beta( dR0

d−2
, dB0

d−2
) and Beta( dB0

d−2
, dR0

d−2
) respectively. If ρ < β then the sequence of random

variables Rfin/N
ρ/β is tight as N →∞.

The following theorem about the behavior of the processes on the torus stands in contrast
with the above two theorems. In its statement we assume thatG = T(N, d) is a d-dimensional
torus with N vertices, and (B,R) a CFP process on G with parameters (β, ρ).

Theorem 2.1.6. Let T(N, d) =
(
Z/nZ

)d
for n such that N = nd, be the d-dimensional

torus with N vertices, and fix the rates β > 0, ρ > 0. Then for any ε > 0 there exists δ > 0
such that

lim inf
n→∞

P(Bfin > δN,Rfin > δN) > 1− ε,
if one of the following two conditions hold

i) B0 and R0 are fixed positive integers, and (B0,R0) are chosen uniformly of size (B0, R0),

ii) R0 and k0 are fixed positive integers, sequence B0 converges to ∞ and it satisfies
limN B0/N = 0 and (B0,R0) are chosen uniformly of size (B0, R0), with B0 center of
size k0.

Remarks and follow up work

We note that the results of all the theorems above cannot hold if the sets B0 and R0 are
arbitrary. Consider for example the case where B0 is the ball of radius r in the graph around
a vertex v and R0 consists of all vertices at distance exactly r+ 1 from v. While the set R0

is not much bigger than B0 - clearly the remaining vertices will all become red.
The fact that the results do not hold for arbitrary sets raise various game theoretic

questions. For example, consider a game where player B has to choose the set B0 and player
R has to choose the set R0. Suppose player B can choose up to Nα1 initial vertices and
player R can choose up to Nα2 initial vertices. What are the Nash Equilibrea of this game?
Are the payoffs in the Nash Equilibrea close to the payoffs obtained if the two players place
the initial sets at random? Similar game theoretic questions may be asked if players alternate
in placing the elements of B0 and R0.

As far as we know this game was first defined by Bharathi, Kempe and Salek in [11]. Their
paper provides an approximation algorithm for the best response and shows that the social
price of competition is at most 2 but does not analyze the utilities of each of the players in a
Nash Equilibrea. A different direction of future study is extending the result in the current
work to more realistic models of social networks and marketing. In particular it would be
interesting to study the same question on preferential attachment random graphs and other
more realistic models of social networks. We expect that for such graphs, game theoretic
consideration can play an important role due to the different degrees and connectivity of
different vertices.
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Related work

As mentioned earlier, diffusion and growth processes have been studied intensely in the past
few years in relation to many areas such as sociology, economics and engineering. Among the
models studied are stochastic cellular automata (see, for example [55], [31], [30]), the voter
model which was first introduced by Clifford and Sudbury in [17] and has been much studied
since in, for example, [39], [24], the contact process (see, for example, [32]), the stochastic
Ising model (see [29], [14]), and the influence model (see [5]).

Recently, a strong motivation for analyzing diffusion processes has emanated from the
study of viral marketing strategies in data mining (see, for example, [23], [53], [44], [43]). In
this model one takes into account the “network value” of potential customers, that is, it seeks
to target a set of individuals whose influence on the social network through word-of-mouth
effects is high. For a given diffusion process, we define the influence maximization problem.
For each initial set of active nodes S, we define σ(S) to be the expected size of the set of
active nodes at the end of the process. In the influence maximization problem, we aim to find
a set S of fixed size that maximizes σ(S). In attempts to find a set of influential individuals,
heuristic approaches such as picking individuals of high degree or picking individuals with
short average distance to the rest of the network have been commonly used, typically with
no theoretic guarantees (see [54]). In [44] it was shown that the influence maximization
problem is NP-hard to approximate within a factor of 1− e−1 + ε for all ε > 0. On the other
hand, in [43] it was shown that under the assumption that the function σ is submodular, for
every ε > 0 it is possible to find a set S of fixed size that is a (1 − e−1 − ε)-approximation
of the maximum in random polynomial time. In [50] it was proven that the function σ is
indeed submodular.

As mentioned earlier the paper [11] defines the competitive influence maximization prob-
lem on general graphs. We believe that an interesting research direction is to show that
for random d-regular graphs, the payoffs of the two players at each Nash Equilibrea are
essentially the same as the payoff obtained by playing according to random strategies.

2.2 Coupling with the configuration model

The configuration model (CM), introduced by Bollobás in [12], is a randomized algorithm
used to construct a uniform random d-regular labeled graph on N vertices (we always assume
that dN is even, as otherwise there is no such graph). In this model we view each vertex
i ∈ [N ] = {1, 2, . . . , N} of the graph as a set H(i) of d half-edges. We pick a uniform perfect
matching on the set ∪i∈[N ]H(i) of all dN half-edges (recall that dN is even), and contract each
d-tuple of half-edges H(i) back to a single vertex. This yields a d-regular graph on N vertices
with the vertex set [N ], and in which every coupled pair of a half-edge in H(i) and H(j) gives
an edge connecting the vertices i and j. Note that this algorithm does not have to produce
a simple graph. Each matching of a half-edge in H(i) and H(j) produces one edge between
i and j, so the graph can have multiple edges. Also any matchings of two half-edges in



CHAPTER 2. COMPETING FIRST-PASSAGE PERCOLATION 11

H(i) will result in a loop at the vertex i. However, it is shown in [12] that with probability

that tends to e
1−d2

4 as N → ∞, this process yields a simple d-regular graph. Moreover,
conditioning on the event that the graph is simple, it is uniformly distributed among all
simple d-regular labeled graphs on N vertices. The great power of configuration model
(CM), for both simulations and theoretical considerations, comes partially from the fact
that the uniform matching can be chosen by matching half-edges sequentially (for example,
choosing an available half-edge in some way and matching it to a uniform available half-edge
and then declaring both of them to be unavailable).

We will couple the configuration model and the competing process, and will prove the
results for the coupled process. Recall that all the results stated in the previous section hold
asymptotically almost surely, and that the probability of generating a simple graph using the
configuration model is bounded away from zero. Thus our proofs will work asymptotically
almost surely on a probability space that couples the graphs produced by CM and the
competing first passage percolation process, and we don’t need to worry about the possibility
that the generated graph is not simple.

To make the coupling easier we will slightly modify the competing first passage perco-
lation model we study (CFPP introduced in Section 1.1). Recall that (Bn,Rn) in CFPP
evolves by choosing an edge connecting a vertex u in Bn ∪ Rn with a vertex v in the com-
plement

(
Bn ∪Rn

)c
, with probabilities proportional to β and ρ depending on the color of u,

and then coloring the vertex v in the corresponding color. In the modification of CFPP (call
it MCFPP) we describe now, we also color the edges. We start like before with two disjoint
subsets B0 and R0 of the vertex set colored blue and red respectively, and initially we set all
the edges uncolored. At the n-th step we choose a pair (u, e) of a vertex u in Bn ∪ Rn and
an incident uncolored edge e. We use the same probabilities as before; every pair for which
u ∈ Bn is chosen with the probability proportional to β and every pair for which u ∈ Rn

is chosen with the probability proportional to ρ. Then we color the edge e in the color of
u. Furthermore, if the other end of e is uncolored, we also color it into the color of u. In
this modification we can have steps that do not yield to coloring of new vertices, but it is
easy to see that when Bn and Rn do grow, the transition probabilities are the same as in
the original model. Thus, the distribution of (Bfin,Rfin) is unchanged.

Therefore, it can be assumed for the competing first passage percolation model on a ran-
dom regular graph (in Theorems 2.1.4 and 2.1.5) to first generate a random graph according
to the configuration model (CM), and conditioned on its realization run the MCFPP process.
This will be denoted by CM×MCFPP.

We now describe the coupling which we will refer to as CP. We first focus on the case
when (B0,R0) is chosen uniformly of size (B0, R0). Have in mind that the described coupling
also works when one of B0 or R0 is empty, that is one of B0 or R0 is equal to zero (this
is important as it will correspond to the evolution of the process when one set is given an
advantage). The coupling CP goes as follows.

i) Start with the pair of disjoint sets (B0,R0) which are uniformly chosen subsets of
[N ] of size (B0, R0) in the spirit of Definition 2.1.1. Denote by X0 and Y0 the half-
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edges corresponding to vertices in B0 and R0 respectively, that is X0 = ∪i∈B0H(i)
and Y0 = ∪i∈R0H(i). Color the half edges in X0 and Y0 in blue and red respectively.
Define the set of uncolored half-edges initially as Z0 =

(
X0 ∪ Y0

)c
, and the set of

inactive half-edges initially as W0 = ∅.

ii) At every time step n ≥ 0 choose a half edge x in Xn∪Yn, the ones in Xn with probability
proportional to β, and the ones in Yn with probability proportional to ρ. Match the
chosen half edge to a uniformly chosen half edge y in Xn ∪Yn ∪Zn\{x}. Let x ∈ H(i)
and y ∈ H(j), for some i, j ∈ [N ]. Make x and y inactive. If y ∈ Zn then color all the
half-edges in H(j) with the color of x. To state it more precisely, assume x ∈ Xn and
set

Xn+1 = Xn ∪H(i)\{x, y}, Yn+1 = Yn, Zn+1 = Zn\H(i), if y ∈ Zn,
Xn+1 = Xn\{x, y}, Yn+1 = Yn, Zn+1 = Zn, if y ∈ Xn,
Xn+1 = Xn\{x}, Yn+1 = Yn\{y}, Zn+1 = Zn, if y ∈ Yn,

and Wn+1 =Wn ∪ {x, y} in every case. If x ∈ Yn we proceed equivalently.

iii) Connect vertices i and j with an edge and color this edge in the color of i (which is
the same as the color of x). Furthermore, if j is uncolored color it into the color of i.
More precisely set

Bn+1 = Bn,Rn+1 = Rn, if j ∈ Bn ∪Rn (⇔ y ∈ Xn ∪ Yn),

Bn+1 = Bn∪{j},Rn+1 = Rn, if j /∈ Bn∪Rn (⇔ y /∈ Xn∪Yn), and i ∈ Bn (⇔ x ∈ Xn),

Bn+1 = Bn,Rn+1 = Rn∪{j}, if j /∈ Bn∪Rn (⇔ y /∈ Xn∪Yn), and i ∈ Rn (⇔ x ∈ Yn).

iv) We stop the algorithm when X0 = Y0 = Z0 = ∅.

Note the algorithm can fail to reach the stopping state in iv) if, for some n, we have Xn =
Yn = ∅ and Zn 6= ∅. If this happens for some n then simply color some uncolored vertices
into blue or red and proceed. This is of no concern, since after erasing the colors the above
algorithm produces a uniform matching on the set of half-edges (see also the computations
that justify the coupling below). If for some n we indeed have Xn = Yn = ∅ and Zn 6= ∅,
then the random graph produced by CM would be disconnected. However, for any d ≥ 3
the probability of this event converges to 0, as N →∞, see [13, 42].

By Xn, Yn and Zn denote the sizes of Xn, Yn and Zn respectively. Denoting M =
X0 + Y0 + Z0, and observing that at each time two half-edges become inactive we have
Xn + Yn + Zn = M − 2n. The process (Xn, Yn, Zn) is a Markov chain with the following
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transition probabilities

P(Xn+1 = Xn + d− 2, Yn+1 = Yn, Zn+1 = Zn − 2) =
βXn

βXn + ρYn

Zn
M − 2n− 1

P(Xn+1 = Xn, Yn+1 = Yn + d− 2, Zn+1 = Zn − 2) =
ρYn

βXn + ρYn

Zn
M − 2n− 1

P(Xn+1 = Xn − 2, Yn+1 = Yn, Zn+1 = Zn) =
βXn

βXn + ρYn

Xn − 1

M − 2n− 1

P(Xn+1 = Xn, Yn+1 = Yn − 2, Zn+1 = Zn) =
ρYn

βXn + ρYn

Yn − 1

M − 2n− 1

P(Xn+1 = Xn − 1, Yn+1 = Yn − 1, Zn+1 = Zn) =
(ρ+ β)XnYn

(βXn + ρYn)(M − 2n− 1)
.

In case that (B0,R0) are chosen uniformly of size (B0, R0) the initial condition is X0 = dB0

and Y0 = dR0. One advantage of this coupling is that the process (Bn, Rn) can be studied
through the process (Xn, Yn, Zn). This process in turn, is completely described by the above
transition probabilities. Indeed, most of the technical work in this chapter is devoted to
establishing maximal inequalities for the process (Xn, Yn, Zn).

Next we justify the coupling, that is explain why stage iii) of CP produces the graph with
the set of blue and red vertices, which is equal in distribution to (G,Bfin,Rfin) produced by
CM×MCFPP. To see this, denote by An the cluster formed by the colored edges and colored
vertices at time n in CM×MCFPP. Also denote by A′n the cluster formed by the colored edges
and colored vertices at time n in CP (both An and A′n contain the information about the
color of each edge and vertex). It suffices to show that An and A′n have the same distribution
for every n. We show this inductively. For n = 0 the claim is obvious, as both A0 and A′0
consist of uniform disjoint subsets of [N ] of prescribed size colored blue and red respectively,
and all the edges are uncolored. Condition on some realization A′n = A. Observe that the
probability that A′n+1 is formed by connecting a vertex i ∈ A to an uncolored vertex j (which
results in coloring both j and edge (i, j)) is given by

τEn(i)

βXn + ρYn

d

M − 2n− 1
,

where τ = β if i is blue and τ = ρ if i red, and En(i) is the number half-edges incident to i
and not present in A (that is |(Xn∪Yn)∩H(i)|). In other words En(i) = d minus the degree
of i in A.

To study the same conditional probability for CM×MCFPP observe that the event {An =
A} happens if and only if the graph generated by CM supports the cluster A, and MCFPP
on this graph generates A in the n-th step. The event that An+1 is formed by joining a
vertex i ∈ A with an uncolored vertex j happens if and only if CM produces a graph in
which there is at least one edge connecting i and j (as j is uncolored, such edges can not
be a part of the cluster A), and in the next step MCFPP spreads along one of this edges.
From the configuration model we know that, conditioned on the event that CM supports
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the cluster A, the probability that i and j are connected by k edges is just the probability
CM has created k pairs of half-edges, which consists of one of d half-edges in H(j) and one
of the En(i) half-edges in H(i) not already matched into an edge of A. This probability is
simply (

En(i)

k

)
d · · · (d− k + 1)(M − 2n− d− 1) · · · (M − 2n− En(i) + k)

(M − 2n− 1)(M − 2n− 2) · · · (M − 2n− En(i))
,

If there are k of such matchings, the probability that one of them is chosen (together with
i) in the n+ 1-st step is equal to

τk

βXn + ρYn
.

To see that these probabilities are the same one only has to check that

En(i)∑
k=1

(
En(i)

k

)
d · · · (d− k + 1)(M − 2n− d− 1) · · · (M − 2n− En(i) + k)

(M − 2n− 1)(M − 2n− 2) · · · (M − 2n− En(i))

τk

βXn + ρYn

=
τEn(i)

βXn + ρYn

d

M − 2n− 1
,

which follows by a simple algebra. Similar calculations show that the conditional probabilities
agree for the events that j is already chosen red or blue.

The situation when one process starts earlier than the other is handled in almost exactly
the same way. First observe that the above coupling makes sense even ifR0 = ∅. To generate
random subsets (B0,R0) as in Definition 2.1.2 simply run CP with B0

0 as a uniformly chosen
subset of [N ] of size k0, R0

0 = ∅ until B0
k grows to the prescribed size B0. More precisely we

define the stage 0 of CP as follows.

i) Take B0
0 as a uniformly chosen subset of [N ] of size k0, R0

0 = ∅, X 0
0 = ∪i∈B0

0
H(i),

Y0
0 = ∅, Z0

0 = (X 0
0 )c, W0

0 = ∅.

ii) Run CP with the above initial conditions.

iii) Stop CP at T when |B0
T | = B0. Set B0 = B0

T , X0 = X 0
T , W0 =W0

T .

By the strong Markov property, CP for the initial conditions when (B0,R0) is chosen as a
uniform subset of size (B0, R0), with B0 center of size k0 goes as follows

i) Run stage 0 of CP.

ii) Take B0, X0 and W0 as produced in stage 0, R0 as a uniform subset of Bc0 of size R0,
Y0 = ∪i∈R0H(i) and Z0 =

(
X0 ∪ Y0 ∪W0

)c
.

iii) Run CP with the initial conditions from ii).
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As in the usual CP we denote the sizes of corresponding sets by the same letter in the normal
font and set M = X0 + Y0 + Z0 = dN −W0.

The following strong result shows how one can estimate the final sizes simply from X0 =
|X0| and Y0 = |Y0|. From this theorem we will derive all our results about the competing
process on the random regular graph. Note that the notation x = (1 ± ε)y means that
(1− ε)y ≤ x ≤ (1 + ε)y, and that the quantity Rfin−R0

N−R0−B0
represents the fraction of added red

vertices and the total number of added vertices.

Theorem 2.2.1. Let (LN) be a sequence converging to ∞. Assume that in a CP process,
with the admissible initial conditions, sequences X0 = X0(N), Y0 = Y0(N) and Z0 = Z0(N)
satisfy min(X0, Y0) ≥ LN and Z0 ≥M/LN . Then for any ε > 0 asymptotically almost surely
(as N →∞) we have

Rfin −R0

N −R0 −B0

= (1± ε) Y0

X0 + Y0

, for β = ρ, (2.2.1)

and

Rfin −R0

N −R0 −B0

= (1± o(1))

∫ 1

0

φ−1
β,ρ

(
MX

ρ/β
1−ρ/β
0 Y

β/ρ
1−β/ρ

0

(
t1/d − Z0

M
t(d−1)/d

))
dt, (2.2.2)

for β 6= ρ, where φβ,ρ : (0, 1)→∞ is a one-to-one function defined as

φβ,ρ =
( βs

ρ(1− s)
) 1

1−β/ρ
+
(ρ(1− s)

βs

) 1
1−ρ/β

.

The speed of convergence depends only on the values of β, ρ, d and the sequence (LN).

To prove the main theorems from Theorem 2.2.1 one needs to relate X0 and Y0 to B0 and
R0. In the setting of Theorem 2.1.4 when (B0,R0) are chosen uniformly, this is trivial as
X0 = dB0 and Y0 = dR0. If one of the initial sets, say B0, is assumed to have a small center
then we still have Y0 = dR0. However, to estimate X0 one needs to understand the evolution
of the number of active edges, in the stage 0 of CP when only the blue set evolves. The
small center assumption yields X0 = (1 + o(1))(d− 2)B0 with high probability, see Lemma
2.2.5 below.

If both of the processes start from a small size (Theorem 2.1.5), one needs to be a bit
more careful. The idea for this case is to control the processes Xn and Yn by a comparison to
a certain urn model, as long as Xn = o(

√
N) and Yn = o(

√
N). Then, by the strong Markov

property, we can apply Theorem 2.2.1.
First we introduce the notion of an urn model that will be used throughout the chapter.

Definition 2.2.2. We say that a process (Sn, Zn)n is a Pólya urn process with a replacement

matrix A =

(
a11 a12

a21 a22

)
if conditioned on (Sn, Zn) with probability Sn/(Sn + Zn) we have

(Sn+1, Zn+1) = (Sn, Zn) + (a11, a12) and otherwise (Sn+1, Zn+1) = (Sn, Zn) + (a21, a22).
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From the jump probabilities of (Xn, Yn, Zn) we obtain the following lemma, which is true
even in the stage 0 of CP, that is for Y0 = 0.

Lemma 2.2.3. The process (Xn + Yn − 1, Zn) is an urn model with the replacement matrix

A =

(
−2 0

d− 2 −d

)
.

The following result will be of crucial importance. Having in mind Lemma 2.2.3 it follows
directly from Theorem 2.6.1. Note that this theorem is simply a statement on the process
(Xn, Yn, Zn) which can be studied through its jump probabilities given above. Also the role
of N is replaced by M = X0 + Y0 + Z0.

Corollary 2.2.4. In the CP model started with X0 blue and Y0 red half-edges and Z0 =
M −X0 − Y0 uncolored half-edges, for any ε > 0 we have that the events{

Zn = (1± ε)Z0(1− 2n/M)d/2, for all 0 ≤ n ≤ (M −MZ
−2/d
0 logM)/2,

}
and {

Xn + Yn = (1± ε)
(

(M − 2n)− Z0(1− 2n/M)d/2
)
, for all 0 ≤ n < M/2

}
have probabilities converging to 1, as M →∞.

We end this section by proving an estimate on the number of active half-edges in the
stage 0 of CP, when the active processes starts from a small center.

Lemma 2.2.5. Assume that (B0,R0) = (B0(N),R0(N)) is a sequence of uniform subsets
of size (B0, R0) with B0 of small center (as in Definition 2.1.2). Then, for any ε > 0 the
probability that the stage 0 of CP that generates B0 ends with

X0 = (1± ε)(d− 2)B0,

converges to 1, as N →∞.

Proof. Recall that the stage 0 of CP consists of choosing B0
0, a uniform vertex subset of size

B0
0 = k0, and R0

0 = ∅. Then we run CP until the stopping time T which is the first time that
|B0

T | = B0. Recall that X0
n denotes the number of active half-edges in stage 0 CP (therefore

X0
0 = dk0) and B0

n = |B0
n|. If at the n-th step of stage 0 CP we spread to a new vertex then

we have B0
n+1 = B0

n + 1 and X0
n+1 = X0

n + d− 2. Otherwise, B0
n+1 = B0

n and X0
n+1 = X0

n− 2.
This leads to a simple deterministic relation

X0
n −X0

0 = d(B0
n −B0

0)− 2n. (2.2.3)

In particular we have

X0 = X0
T = d(B0

T −B0
0)− 2T +X0

0 = d(B0 −B0
0)− 2T +X0

0 . (2.2.4)
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Next we will show that for every ε > 0 there exists δ > 0 such that

X0
n −X0

0 = (1± ε)(d− 2)n, for all 0 ≤ n ≤ δN, (2.2.5)

has probability which converges to 1, as N →∞. This will suffice since then by (2.2.3) the
event in (2.2.5) will imply

(1− ε)(d− 2)n ≤ d(B0
n −B0

0)− 2n ≤ (1 + ε)(d− 2)n, for all 0 ≤ n ≤ δN,

which, for such n yields
(1− ε)n ≤ B0

n −B0
0 ≤ (1 + ε)n. (2.2.6)

The lower bound above can reach the value of (1 − ε)δN and since limN B0/N = 0, for N
large enough we have B0 < (1− ε)δN . This means that the inequality in (2.2.6) is also true
for n = T and thus

lim
N→∞

P
(
B0 −B0

0

1 + ε
≤ T ≤ B0 −B0

0

1− ε

)
= 1.

Then (2.2.4) gives that with the probability converging to 1

(B0 −B0
0)
(
d− 2

1− ε
)

+X0
0 ≤ X0 ≤ (B0 −B0

0)
(
d− 2

1 + ε

)
+X0

0 .

Recalling that X0
0 = dB0

0 and that B0
0/B0 → 0 the claim follows.

Thus we are left to prove the claim in (2.2.5). Observe that from Corollary 2.2.4 we have

X0
n = (1± ε/2)

(
(M0 − 2n)− Z0

0(1− 2n/M0)d/2
)
, for all 0 ≤ n < M/2,

with the probability converging to 1. Recalling that Z0
0 = M0 −X0

0 the above event yields

(1− ε/2)(M0 − 2n)

(
1−

(
1− 2n

M0

)d/2−1
)
−X0

0 ≤ X0
n −X0

0

≤ (1 + ε/2)(M0 − 2n)

(
1−

(
1− 2n

M0

)d/2−1
)
. (2.2.7)

As M/N → d, we can choose δ small enough so that for all 0 ≤ n ≤ δN we have

(1− ε/2)
(d− 2)n

M
≤ 1−

(
1− 2n

M

)d/2−1

≤ (1 + ε/2)
(d− 2)n

M
.

Then the event in (2.2.7) yields

(1− ε/2)2
(

1− 2n

M

)
(d− 2)n ≤ X0

n −X0
0 ≤ (1 + ε/2)2

(
1− 2n

M

)
(d− 2)n.

Reducing δ if needed yields (2.2.5).
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2.3 Deducing the main theorems

The main goal of this section is to deduce Theorems 2.1.4 and 2.1.5 from Theorem 2.2.1.
First, we rewrite Theorem 2.2.1 in the form in which assume that the red rate ρ = 1. We
can do this without the loss of generality, as we simply need to scale the rates from (β, ρ)
to (β/ρ, 1). The assumption ρ = 1 will used throughout the whole chapter (except in the
proofs of Theorems 2.1.4 and 2.1.5).

Theorem 2.3.1. Let (LN) be a sequence converging to ∞. Assume that in a CP process,
with the admissible initial conditions, sequences X0 = X0(N), Y0 = Y0(N) and Z0 = Z0(N)
satisfy min(X0, Y0) ≥ LN and Z0 ≥M/LN . Then for any ε > 0 asymptotically almost surely
(as N →∞) we have

Rfin −R0

N −R0 −B0

= (1± ε) Y0

X0 + Y0

, for β = 1, (2.3.1)

and

Rfin −R0

N −R0 −B0

= (1± ε)
∫ 1

0

φ−1
β

(
MX

1/(β−1)
0

Y
β/(β−1)

0

(
t1/d − Z0

M
t(d−1)/d

))
dt, when β 6= 1, (2.3.2)

where φβ : (0, 1)→∞ is a one-to-one function defined as

φβ(s) = (βs+ (1− s))
( 1− s

(βs)β

)1/(β−1)

. (2.3.3)

The speed of convergence depends only on the values of β, d and the sequence (LN).

First, observe that we could redefine the function φβ in (2.3.2) and the expression inside
the φβ appearing in the integral at our convenience. One reason we choose this form is
because these expressions behave naturally if we switch the roles of processes X and Y .
More precisely, by symmetry and scaling of the rates we expect from (2.3.2) to obtain

Bfin −B0

N −R0 −B0

= (1± o(1))

∫ 1

0

φ−1
1/β

(
MY

1/(β−1−1)
0

X
(β)−1/(β−1−1)
0

(
t1/d − Z0

M
t(d−1)/d

))
dt, when β 6= 1.

(2.3.4)
Indeed, the above formula is equivalent to (2.3.2). To see this first observe that

MY
1/(β−1−1)

0

X
β−1/(β−1−1)
0

=
MY

β/(β−1)
0

X
1/(β−1)
0

=
MX

1/(1−β)
0

Y
β/(1−β)

0

.

Next (2.3.4) will follow from (2.3.2) if we show that φ−1
1/β(s) = 1−φ−1

β (s) (because Bfin+Rfin =

N). This in turn follows from the fact φβ(t) = φβ−1(1− t), which is easy to check.
The following corollary clarifies the asymptotic behavior of Rfin−R0

N−B0−R0
. Note that s ∧ t =

min(s, t).
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Corollary 2.3.2. Let (LN) be a sequence converging to ∞, and assume that min(X0, Y0) ≥
LN and Z0 ≥ M/LN . Then there are constants c and C such that asymptotically almost
surely (as N →∞)

c
Y0

M

(M
X0

)1/β

∧ c ≤ Rfin −R0

N −R0 −B0

≤ C
Y0

M

(M
X0

)1/β

∧ 1. (2.3.5)

To prove Corollary 2.3.2. we need the following simple estimate.

Lemma 2.3.3. Let β 6= 1 and the function φβ : (0, 1)→ R+ as in (2.3.3). Then φβ is one-to-
one and onto and there are constants c1 < c2 such that the inverse function φ−1

β : R+ → (0, 1)
satisfies

c1

(
s1/β−1 ∧ 1

)
≤ φ−1

β (s) ≤
(
c2s

1/β−1
)
∧ 1.

Proof. For β > 1 the function φβ is decreasing and φβ(1) = 0 and limt↓0
φβ(t)

tβ/(1−β) = 1.

Therefore φ−1
β is decreasing with φ−1

β (0) = 1 and lims→∞
φ−1
β (s)

s1/β−1 = 1. This proves the claim

for β > 1. For β < 1 the function φβ is increasing with φ(0) = 0, limt↓0
φβ(t)

tβ/(1−β) = 1 and

limt↑1 φβ(t) = ∞. This implies that φ−1
β is also increasing and φ−1

β (0) = 0, lims↓0
φβ(s)

s1/β−1 = 1

and lims→∞ φ
−1
β (s) = 1, which is enough to deduce the claim in the case β < 1.

Proof of Corollary 2.3.2. For β = 1 the inequalities in (2.3.5) are easy to check from (2.3.1),
so we focus on the case β 6= 1. By (2.3.2) and Lemma 2.3.3 we have

c1

∫ 1

0

M1/β−1Y0

X
1/β
0

(
t1/d − Z0

M
t(d−1)/d

)1/β−1

∧ 1 dt ≤ Rfin −R0

N −R0 −B0

≤
∫ 1

0

c2
M1/β−1Y0

X
1/β
0

(
t1/d − Z0

M
t(d−1)/d

)1/β−1

∧ 1 dt.

The trivial inequality Rfin −R0 ≤ N −R0 −B0 yields 1 for the upper bound in (2.3.5). For
the second part of the upper bound in (2.3.5), it is enough to prove that the integral∫ 1

0

(
t1/d − Z0

M
t(d−1)/d

)1/β−1

dt (2.3.6)

is bounded from above by a constant depending on β and d only. This follows from the
inequalities

t1/d − t(d−1)/d ≤ t1/d − Z0

M
t(d−1)/d ≤ t1/d,

and the fact that both functions t 7→ t(1/β−1)/d and t 7→ (t1/d − t(d−1)/d)(1/β−1) are integrable
on (0, 1), for any β > 0. Actually the inequalities above imply that the minimum of the

function
(
t1/d − Z0

M
t(d−1)/d

)1/β−1

is bounded from below on [1/2, 3/4]. Thus the integral
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in (2.3.6) is bounded from below by a positive constant depending only on d and β. By

considering the cases when M1/β−1Y0X
−1/β
0 is smaller or greater than 1, the lower bound in

(2.3.5) follows.

Now we prove Theorem 2.1.4.

Proof of Theorem 2.1.4. First we consider the case of equal rates. If the pair of initial sets
is chosen uniformly then the claim follows from (2.3.1) and the fact that X0 = dB0 and
Y0 = dR0. If one of the initial sets has a small center, then use (2.3.1) together with Lemma
2.2.5. If the rates are different, in either case, the claim follows from Corollary 2.3.2.

To prove Theorem 2.1.5 we compare the process (Xn, Yn) from the coupled process CP to
an urn model. For the case of equal rates β = ρ, recall that in the Pólya urn process (Sn, Zn)

with the replacement matrix

(
α 0
0 α

)
random variable Sn/(αn) converges in distribution

to Beta(S0/α, Z0/α). If the rates are different, we use the following result by Svante Janson
(part of Theorem 1.4 in [40]). Here Γ(m, 1) denotes the Gamma distribution with parameter
m, that is a probability distribution with the density tm−1e−tΓ(m)−1, t > 0, where Γ(m) is
the Gamma function.

Theorem 2.3.4 (Janson). Consider the Pólya urn process (Sn, Zn) with the replacement

matrix

(
α 0
0 δ

)
, where α > 0, δ > 0, S0 > 0 and Z0 > 0. Let U ∼ Γ(S0/α, 1) and V ∼

Γ(Z0/δ, 1) be two independent random variables with Gamma distribution and parameters
S0/α and Z0/δ respectively. If α < δ then in distribution

Sn
nα/δ

→ α
U

V α/δ
.

Remark 2.3.5. The process (Xn, Yn) such that (Xn+1, Yn+1) = (Xn + a1, Yn), with the prob-
ability α1Xn/(α1Xn + α2Yn) and (Xn+1, Yn+1) = (Xn, Yn + a2) otherwise, can be thought of
as an urn process in which we draw balls with different weights. It is easy to observe that
the process (Sn, Zn) = (α1Xn, α2Yn) is indeed an urn process with S0 = α1X0, Z0 = α2Y0

and the replacement matrix

(
α1a1 0
0 α2a2

)
.

Proof of Theorem 2.1.5. Consider the process (Xn,1, Yn,1) such that (X0,1, Y0,1) = (dB0, dR0)
and that (Xn+1,1, Yn+1,1) = (Xn,1 + d− 2, Yn,1) happens with probability βXn/(βXn + ρYn),
and (Xn+1,1, Yn+1,1) = (Xn,1, Yn,1 + d − 2) otherwise. First we show that we can couple the
processes (Xn, Yn) and (Xn,1, Yn,1) so that with probability converging to 1, as M →∞, we
have (Xn, Yn) = (Xn,1, Yn,1) for all 0 ≤ n ≤M1/4. The construction of the coupling is simple:
we set (Xn+1,1, Yn+1,1) = (Xn,1 + d− 2, Yn,1) if in the step ii) of CP process the first chosen
half-edge was blue (that is in Xn) and we set (Xn+1,1, Yn+1,1) = (Xn,1, Yn,1 +d−2) otherwise.
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Then we have that (Xn, Yn) = (Xn,1, Yn,1) if for all k ≤ n, in the step ii) of the k-th round of
CP we colored a new vertex, that is coupled a half-edge in Zn. The conditional probability
that this does not happen is

βXk(Xk − 1) + Yk(Yk − 1) + (1 + β)XkYk
(βXk + Yk)(Xk + Yk + Zk − 1)

≤ 2
Xk + Yk

Xk + Yk + Zk
≤ 4(d− 2)

M3/4
.

Here we used the fact that Xn + Yn can increase by at most d − 2 in each step and that
2M1/4 < M/2 for M large enough. Now the probability that in each of the first M1/4 rounds
of CP we color a new vertex is bounded from below by

1−M1/4 4(d− 2)

M3/4
,

which converges to 1 as M → ∞. Thus setting n(M) to be the integer part of M1/4, beta
convergence of equal rate Pólya urns and Remark 2.3.5 yield that

Xn(M)

Xn(M) + Yn(M)

converges to Beta( dB0

d−2
, dR0

d−2
) in distribution. Stopping the CP process at n(M), and starting

it again with the initial Xn(M) and Xn(M), apply the Markov property and Theorem 2.2.1
to get the claim. The proof for the different rates is analogous if one uses non-balanced urn
result in Theorem 2.3.4 and Lemma 2.3.2.

2.4 Proof of the main estimate

This whole section is devoted to the proof of Theorem 2.3.1. The proof of Theorem 2.3.1
is based on a martingale method. In short we will identify two observables in our model
that will “behave like martingales”. More precisely, we will be able to effectively bound the
conditional first and second moments of the step sizes in each process.

First we present a general lemma bounding the conditional expectation and variance of
the differences in a general random process.

Lemma 2.4.1. Let (Kn)n≥0 be a positive process such that K0 is a constant, and pn and rn
positive real numbers defined for n ≥ 0, such that

|E(Kn+1 −Kn|Fn)| ≤ pnKn, and E((Kn+1 −Kn)2|Fn) ≤ rnKn.

Consider the process I0 = K0, In = Kn −
∑n−1

k=0 E(Kk+1 − Kk|Fk). Then process In is a
martingale and for every positive integer n we have

|Kn − In| ≤
n−1∑
k=0

pkqk+1,n−1Ik, and E((In − I0)2) ≤ K0

n−1∑
k=0

rkq0,k−1,

where q`,k =
∏k

i=`(1 + pi) for ` ≤ k and qk,k−1 = 1, for all k ≥ 0.
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Proof. It is trivial to check that the process In is a martingale. Furthermore it can be shown
by induction that for every k ≤ n

qk,n − 1 =
n∑
`=k

p`q`+1,n =
n∑
`=k

p`qk,`−1. (2.4.1)

Using the first inequality in the statement we have that

|Kn − In| ≤
n−1∑
k=0

pkKk. (2.4.2)

In particular we have

Kn − In ≤
n−1∑
k=0

pkKk =
n−1∑
k=0

pk(Kk − Ik) +
n−1∑
k=0

pkIk. (2.4.3)

Using (2.4.3) inductively we can show that Kn − In ≤
∑n−1

k=0 an,kIk whenever the sequence
(an,k)0≤k<n satisfies an,n−1 = pn−1 and an,k =

∑n−1
`=k+1 p`a`,k + pk. Using (2.4.1) it is easy to

check that an,k = pkqk+1,n−1 satisfies these conditions. Thus we have

Kn ≤ In +
n−1∑
k=0

pkqk+1,n−1Ik. (2.4.4)

Plugging this back into (2.4.2) and using (2.4.1) we get

|Kn − In| ≤ pn−1In−1 +
n−2∑
k=0

pk

(
1 +

n−1∑
`=k+1

p`qk+1,`−1

)
Ik =

n−1∑
k=0

pkqk+1,n−1Ik,

which proves the first claim.
Note that (2.4.4) and (2.4.1) imply that

E(Kn) ≤
(

1 +
n−1∑
k=0

pkqk+1,n−1

)
I0 = q0,n−1K0. (2.4.5)

Thus the condition in the statement implies that

E((Kn+1 −Kn)2) ≤ rnE(Kn) ≤ rnq0,n−1K0.

It is easy to check that E((In+1 − In)2|Fn) ≤ E((Kn+1 −Kn)2|Fn) which then yields

E((In − I0)2) =
n−1∑
k=0

E((Ik+1 − Ik)2) ≤ K0

n−1∑
k=0

rkq0,k−1.

This concludes the proof.
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As we mentioned before, the key to the proof of Theorem 2.3.1 is to identify two processes
for which we can estimate the conditional first and second moments or their step sizes. Then
martingale methods (including the above lemma) will enable us to bound the maximal
displacements of the processes throughout the whole relevant time regime. These processes
are

Kn =
Xn

Y β
n (1− 2n/M)(1−β)/2

. (2.4.6)

and

Ln =
Xn + Yn

(M − an)− Z0(1− an/M)b/a
,

Note that once we managed to bound the values of processes we can “solve for Xn and Yn”
to estimate their values and obtain Theorem 2.3.1. The processes Kn and Ln tell us how
Xn + Yn and XnY

−β
n behave. It is actually quite natural to study these processes. The

process Xn +Yn corresponds to the pure configuration model, that is to erasing the colors of
half-edges, and can is equivalent to an urn model (see Lemma 2.2.3). The motivation for the
considering the process XnY

−β
n can be given as follows. After removing the interaction and

self-interaction of the colored half-edges, the whole model reduces to an (unbalanced) urn
model with a diagonal replacement matrix. Consider the Poissonized version of that model
and define continuous time processes Xt and Yt as the number of balls of each color. Then
the process XtY

−β
t is a continuous time martingale [40]. The factor (1− 2n/M)−(1−β)/2 thus

accounts for the interaction and self-interaction of colors. From this discussion it follows
for β < 1, that the value of the process XnY

−β
n is smaller in our model than in the model

with interactions and self-interactions removed. Thus, compared to the dynamics on disjoint
d-regular trees, interactions and self-interactions on the random d-regular graph give the
process with a faster rate Xn an additional “boost” relative to Yn.

Estimates for the process Ln are given in Corollary 2.2.4 and proven in the final section
of this chapter.. Process Kn will be estimated in this section. First we estimate its steps to
be able to apply Lemma 2.4.1.

Lemma 2.4.2. For the process Kn as defined in (2.4.6), there exists a constant C > 0
depending on β and d, such that for all integers n, on the event that Yn ≥ 2d we have both

|E(Kn+1 −Kn|Fn)| ≤ CKn

Yn(Xn + Yn)
, (2.4.7)

and

E((Kn+1 −Kn)2|Fn) ≤ CKn

Y 1+β
n (1− 2n/M)(1−β)/2

. (2.4.8)

Proof. Throughout the proof we assume that M − 2n ≥ Yn ≥ 2d. To prove (2.4.7) we
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calculate(
1− 2n+ 2

M

)(1−β)/2

(βXn + Yn)(M − 2n− 1)E(Kn+1|Fn) =

Xn + d− 2

Y β
n

βXn(M − 2n−Xn − Yn) +
Xn

(Yn + d− 2)β
Yn(M − 2n−Xn − Yn)

+
Xn − 2

Y β
n

βXn(Xn − 1) +
Xn − 1

(Yn − 1)β
(1 + β)XnYn +

Xn

(Yn − 2)β
Yn(Yn − 1). (2.4.9)

It can be easily verified that(
1− 2n+ 2

M

)(1−β)/2

(βXn + Yn)(M − 2n− 1)Kn

=
Xn

Y β
n

(βXn + Yn)
(

1− 2

M − 2n

)(1−β)/2

(M − 2n− 1)

=
Xn

Y β
n

(βXn + Yn)(M − 2n− 2 + β +O((M − 2n)−1)), (2.4.10)

where the absolute value of the term O((M − 2n)−1) is bounded by a constant multiple of
(M − 2n)−1. To prove (2.4.7) it is enough to show that the absolute value of the difference
of the terms in (2.4.9) and (2.4.10) is bounded by

CXn(M − 2n)

Y β+1
n

(2.4.11)

for some constant C. First note that, since Xn + Yn ≤M − 2n, the expression

XnY
−β
n (βXn + Yn)(M − 2n)−1

is bounded by (2.4.11), for some C > 0. Thus we can disregard the term O((M − 2n)−1) in
(2.4.10).

By Taylor expansion we know that for any compact interval containing 1 there is a
constant C1 such that for all t in this interval∣∣∣1− βt− 1

(1 + t)β

∣∣∣ ≤ C1t
2

(1 + t)β

(actually by a slightly more careful argument one can argue that C1 does not depend on the
interval). Now fix any k ≥ −2 and choose t = kY −1

n and a constant C1 to obtain∣∣∣∣ 1

Y β
n

(
1− kβ

Yn

)
− 1

(Yn + k)β

∣∣∣∣ ≤ C1k
2

(Yn + k)βY 2
n

.

For k = d− 2 this in particular implies that∣∣∣∣XnY
1−β
n (M − 2n−Xn − Yn)

(
1− β(d− 2)

Yn

)
− XnYn(M − 2n−Xn − Yn)

(Yn + d− 2)β

∣∣∣∣
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is at most
C2Xn(M − 2n)

Y β+1
n

,

for a constant C2 = (d−2)2C1. Therefore we can replace the term Xn
(Yn+d−2)β

Yn(M−2n−Xn−
Yn) on the right hand side of (2.4.9) by XnY

−β
n (M − 2n−Xn−Yn)(Yn− β(d− 2)). Arguing

similarly we see that we can replace the terms Xn−1
(Yn−1)β

(1 + β)XnYn and Xn
(Yn−2)β

Yn(Yn− 1) on

the right hand side of (2.4.9) by Xn−1

Y βn
(1+β)Xn(Yn+β) and Xn

Y βn
(Yn−1)(Yn+2β) respectively.

Therefore it is enough to prove

(M − 2n−Xn − Yn)
(Xn + d− 2

Y β
n

βXn +
Xn

Y β
n

(Yn − β(d− 2))− Xn

Y β
n

(βXn + Yn)
)

+
Xn − 2

Y β
n

βXn(Xn − 1) +
Xn − 1

Y β
n

(1 + β)Xn(Yn + β) +
Xn

Y β
n

(Yn − 1)(Yn + 2β)

− Xn

Y β
n

(βXn + Yn)(Xn + Yn − 2 + β) ≤ CXn(M − 2n)

Y β+1
n

,

for a large enough constant C. Expanding the expressions in the left hand side above we see
that it is equal to β(β + 1)XnY

−β
n . This proves the claim.

Now we prove (2.4.8). First note that it is enough to prove that

E((Kn+1 −Kn)2|Fn) ≤ CK2
n

XnYn
. (2.4.12)

Analyzing all the cases we see that the value of |Kn+1 −Kn| is∣∣∣∣∣ Xn + d− 2

Y β
n (1− 2n+2

M
)(1−β)/2

− Xn

Y β
n (1− 2n/M)(1−β)/2

∣∣∣∣∣ ≤ C1Kn

( 1

Xn

+
1

M − 2n

)
,

∣∣∣∣ Xn

(Yn + d− 2)β(1− 2n+2
M

)(1−β)/2
− Xn

Y β
n (1− 2n/M)(1−β)/2

∣∣∣∣ ≤ C2Kn

( 1

Yn
+

1

M − 2n

)
,∣∣∣∣∣ Xn − 2

Y β
n (1− 2n+2

M
)(1−β)/2

− Xn

Y β
n (1− 2n/M)(1−β)/2

∣∣∣∣∣ ≤ C3Kn

( 1

Xn

+
1

M − 2n

)
,

∣∣∣∣ Xn − 1

(Yn − 1)β(1− 2n+2
M

)(1−β)/2
− Xn

Y β
n (1− 2n/M)(1−β)/2

∣∣∣∣ ≤ C4Kn

( 1

Xn

+
1

Yn
+

1

M − 2n

)
,

or ∣∣∣∣ Xn

(Yn − 2)β(1− 2n+2
M

)(1−β)/2
− Xn

Y β
n (1− 2n/M)(1−β)/2

∣∣∣∣ ≤ C5Kn

( 1

Yn
+

1

M − 2n

)
,
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with probabilities

βXn(M − 2n−Xn − Yn)

(βXn + Yn)(M − 2n− 1)
,
Yn(M − 2n−Xn − Yn)

(βXn + Yn)(M − 2n− 1)
,

βXn(Xn − 1)

(βXn + Yn)(M − 2n− 1)
,

(1 + β)XnYn
(βXn + Yn)(M − 2n− 1)

,
Yn(Yn − 1)

(βXn + Yn)(M − 2n− 1)
,

respectively. Here C1, C2, C3, C4 and C5 are constants depending only on β and d. Therefore
for a large constant C0 we have

E((Kn+1 −Kn)2|Fn) ≤ C0K
2
n

( 1

(M − 2n)2
+

1

X2
n

Xn

βXn + Yn
+

1

Y 2
n

Yn
βXn + Yn

)
≤ C0K

2
n

( 1

(M − 2n)2
+

Xn + Yn
XnYn(βXn + Yn)

)
,

which, together with the fact XnYn ≤ (M − 2n)2, yields (2.4.12) .

Unfortunately Lemma 2.4.1 will not allow us to directly estimate the process Kn. A
reason for this is that using bounds in Lemma 2.4.2 depend on the values of Xn and Yn
themselves. Lemma 2.4.4 is a first attempt along these lines.

We introduce a function which will appear quite often in the analysis in this section.
Define

f(t) =
√
t− Z0

M
t(d−1)/2. (2.4.13)

Clearly f is a positive concave function on (0, 1). The following estimate will be used in the
proof of Lemma 2.4.4.

Lemma 2.4.3. Let n be such that M − 2n ≥ 1, and γ > 1. Then there is a constant
C0 = C0(d, γ) such that

n−1∑
k=0

1

(M − 2k)f(1− 2k/M)γ
≤ C0

(( M

M − 2n

)γ/2
+
( M

X0 + Y0

)γ−1
)
.

Proof. It is easy to check that the summand corresponding to k = 0 is equal to Mγ−1(X0 +
Y0)−γ, and therefore we get neglect this term in the sum. Define

g(t) =
1

tf(t)γ
=

1

t1+γ/2
(

1− Z0

M
td/2−1

)γ .
One can calculate

g′(x) = x−2−γ/2
(

1− Z0

M
xd/2−1

)−γ−1
(
xd/2−1

(Z0

M
+
Z0γd

2M
− Z0γ

2M

)
− 1− γ

2

)
,
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so g(x) is either decreasing on (0, 1) or decreasing on an interval (0, x0) and increasing on
(x0, 1), for some 0 < x0 < 1. Therefore, we can bound the sum by the integral

n−1∑
k=1

1

(M − 2k)f(1− 2k/M)γ
=

1

2

n−1∑
k=1

2

M
g
(

1− 2k

M

)
≤ 1

2

∫ 1

1−2n/M

g(t) dt. (2.4.14)

We split the integral into two parts. First we consider∫ 1/2

(1−2n/M)∧1/2

g(t) dt =

∫ 1/2

(1−2n/M)∧1/2

1

t1+γ/2
(

1− Z0

M
td/2−1

)γ dt
≤ 1(

1− 21−d/2
) ∫ 1/2

(1−2n/M)∧1/2

t−1−γ/2 dt

≤ 2

γ
(

1− 21−d/2
)( M

M − 2n

)γ/2
,

To analyze the other part we use a simple inequality td/2−1 ≤ (t + 1)/2, which holds for all
0 ≤ t ≤ 1 and d ≥ 3. We get∫ 1

1/2

g(t) dt =

∫ 1

1/2

1

t1+γ/2
(

1− Z0

M
td/2−1

)γ dt
≤ 21+γ/2

∫ 1

1/2

1(
1− Z0

2M
(1 + t)

)γ dt
≤ 22+γ/2M

Z0

∫ 1

1−Z0/M

s−γ ds

≤ 22+γ/2

γ − 1

M

Z0

(( M

M − Z0

)γ−1

− 1

)
.

Now we use the inequality ((1− t)−α−1)t−1 ≤ (1∧α)(1− t)−α, which holds for all 0 < t < 1
and all α > 0 (this inequality follows easily from the fact that (1− t)α ≥ 1− t for α ≤ 1 and
(1 − t)α ≥ 1 − αt for α > 1). We apply this inequality for t = Z0/M and α = γ − 1. The
above expression is then bounded by∫ 1

1/2

g(t) dt ≤ 22+γ/2(1 ∧ (γ − 1))

γ − 1

( M

M − Z0

)γ−1

=
22+γ/2(1 ∧ (γ − 1))

γ − 1

( M

X0 + Y0

)γ−1

Adding both parts to (2.4.14) yields the claim.
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Lemma 2.4.4. Let 0 < ε ≤ 1/2. For a positive real number c assume that the condition

Kk

M (1−β)/2
≤ c(M − 2k)(1−β)/2

(
1− Z0

M
(1− 2k/M)d/2−1

)1−β
(2.4.15)

is satisfied for k = 0 and define the stopping time τ as the smallest positive integer k for which
(2.4.15) is not satisfied. Then there exists a sequence (δM) converging to 0 and depending
only on M , and a constant C depending only on β, d and c such that for any positive integer
n

P(|Kk∧τ−K0| ≥ εK0, for some 0 ≤ k ≤ n) ≤ C

ε2

( M (1−β)/2

(M − 2n)(1+β)/2K0

+
1

X0

)
+δM , (2.4.16)

whenever

ε ≥ C
( 1

M − 2n
+

1

X0 + Y0

)
. (2.4.17)

Proof. We begin by showing that for any C0 > 0 we can choose C so that (2.4.17) implies(
1− 2k

M

)(
1− Z0

M

(
1− 2k

M

)d/2−1)
≥ C0

Mε
, (2.4.18)

for all 0 ≤ k ≤ n. Since the function φ(t) = t− td/2Z0/M is concave on [0, 1] the minimum
of the left hand side in (2.4.18) is either

φ(1− 2n/M) ≥ (1− 2n/M)− (1− 2n/M)d/2, or φ(1) = (M − Z0)/M = (X0 + Y0)/M.

Clearly both of these values are bounded from below by the right hand side of (2.4.18) when
the constant C is chosen to be large enough.

Now define σ as the first time k that

Xk + Yk ≤
M − 2k

2

(
1− Z0

M
(1− 2k/M)d/2−1

)
or Yk ≤ 2d,

and define the process K ′k = Kk∧τ∧σ. Since σ and τ are stopping times with respect to the
filtration Fk, the process K ′k is adapted to this filtration.

Next we show that there is a positive constant c1 such that for all k < σ ∧ τ we have

Yk ≥ c1(M − 2k)
(

1− Z0

M
(1− 2k/M)d/2−1

)
. (2.4.19)

Assume, for the sake of contradiction, that for some k < σ ∧ τ we have

Yk < c1(M − 2k)
(

1− Z0

M
(1− 2k/M)d/2−1

)
.

Then since k < τ we have

Xk ≤ Y β
k (M − 2k)(1−β)/2c(M − 2k)(1−β)/2

(
1− Z0

M
(1− 2k/M)d/2−1

)1−β

< ccβ1 (M − 2k)
(

1− Z0

M
(1− 2k/M)d/2−1

)
.
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Since k < σ we have Xk +Yk >
M−2k

2

(
1− Z0

M
(1− 2k/M)d/2−1

)
which implies ccβ1 + c1 ≥ 1/2.

When c1 is small enough we obtain a contradiction and prove (2.4.19). Lemma 2.4.2 now
implies that for all 0 ≤ k ≤ n

|E(K ′k+1 −K ′k|Fk)| ≤
C1K

′
k

(M − 2k)2
(

1− Z0

M
(1− 2k/M)d/2−1

)2 =
C1K

′
k

M(M − 2k)f(1− 2k/M)2
,

(2.4.20)
and

E((K ′k+1 −K ′k)2|Fk) ≤
C1M

(1−β)/2K ′k

(M − 2k)(3+β)/2
(

1− Z0

M
(1− 2k/M)d/2−1

)1+β

=
C1K

′
kM

−β

(M − 2k)f(1− 2k/M)1+β
, (2.4.21)

for some constant C1 = C1(β, d, c). Define

pk =
C1

M(M − 2k)f(1− 2k/M)
.

By Lemma 2.4.3 for γ = 2

n−1∑
k=0

pk =
n−1∑
k=0

C1

M(M − 2k)f(1− 2k/M)2
≤ C0C1

M

(
M

M − 2n
+

M

X0 + Y0

)
(2.4.22)

Combining this with (2.4.17) yields
∑n−1

k=0 pk ≤ ε/3, for a large enough constant C. Defining

qk,l =
∏`

i=k(1 + pi) as in Lemma 2.4.1 we have for all 1 ≤ k ≤ ` ≤ n− 1

qk,` ≤ e
∑n−1
k=0 pk ≤ eε/3 ≤ 3

2
. (2.4.23)

Define the martingale I0 = K ′0, Ik = K ′k −
∑k−1

`=0 E(K ′`+1 − K ′`|F`) as in Lemma 2.4.1,
which together with (2.4.23) implies

|K ′k − Ik| ≤
3

2

k−1∑
`=0

p`I`. (2.4.24)

Next estimate the second moment of jumps. Define

rk =
C1M

(1−β)/2

(M − 2k)f(1− 2k/M)1+β
,

so that by Lemma 2.4.3 for γ = 1 + β we have

n−1∑
k=0

rk ≤ C0C1M
(1−β)/2

(( M

M − 2n

)(1+β)/2

+
( M

X0 + Y0

)β)
.
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Lemma 2.4.1 now yields

E((In − I0)2) ≤ 3C0C1I0

2Mβ

(( M

M − 2n

)(1+β)/2

+
( M

X0 + Y0

)β)
Combined with Doob’s maximal inequality, this implies

P(|Ik − I0| ≥
ε

3
I0, for some 0 ≤ k ≤ n) ≤ 27C0C1Y

β
0

2MβX0ε2

(( M

M − 2n

)(1+β)/2

+
( M

X0 + Y0

)β)
≤ C2

ε2

( M (1−β)/2

(M − 2n)(1+β)/2K0

+
1

X0

)
,

for some constant C2 = C2(β, d, c). If |Ik − I0| ≤ ε
3
I0, for all 0 ≤ k ≤ n, then (2.4.24) and

the inequality
∑n−1

k=0 pk ≤ ε/3 imply

|K ′k −K ′0| ≤ |K ′k − Ik|+ |Ik − I0| ≤
3

2

(
1 +

ε

3

)
I0
ε

3
+
ε

3
I0 ≤ εK0.

Thus we have

P(|K ′k −K ′0| ≥ εK0, for some 0 ≤ k ≤ n) ≤ C2

ε2

( M (1−β)/2

(M − 2n)(1+β)/2K0

+
1

X0

)
.

Define 1− δM to be the probability that

Xk + Yk ≥
1

2

(
M − 2k − Z0(1− 2k/M)d/2

)
(2.4.25)

holds for all 0 ≤ k ≤ n. By Theorem 2.6.1 we have that limM→∞ δM = 0. Since K ′k = Kk∧τ
for k ≤ σ ∧ n it is enough to show that P(σ < τ ∧ n) ≤ δM . To this end simply observe that
on the event in (2.4.25), inequality (2.4.19), σ < τ ∧ n and the fact that Yσ ≤ 2d imply

c1(M − 2k)
(

1− Z0

M
(1− 2k/M)d/2−1

)
≤ Yk ≤ 2d+ 2,

for k = σ− 1. However, by (2.4.18) and the fact that ε ≤ 1/2, this is impossible for C large
enough in (2.4.17) (recall that the value of c1 depended only on c and β).

Remark 2.4.5. A more careful analysis of the process Kn would allow one to replace Doob’s
maximal inequality with Freedman’s inequality (see [27]), and obtain exponential bound in
the statement of Lemma 2.4.4. However the bound above suffices to our purposes and, to
avoid even more tedious analysis, we use Doob’s maximal inequality.

It is perhaps inconvenient to apply Lemma 2.4.4 as the assumption (2.4.15) already
involves an estimate on Kk one would have to check. Fortunately, the following easy corollary
handles this problem.
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Corollary 2.4.6. Let 0 < ε ≤ 1/2. Assume that for a positive real number C0 and an
integer n the inequality

K0

M (1−β)/2
≤ C0f

(
1− 2k

M

)1−β

is satisfied for 0 ≤ k ≤ n. Then there exists a sequence (δM) converging to 0 and depending
only on M , and a constant C, depending on β, d and C0, such that

P(|Kk −K0| ≥ εK0, for some 0 ≤ k ≤ n) ≤ C

ε2

( M (1−β)/2

(M − 2n)(1+β)/2K0

+
1

X0

)
+ δM , (2.4.26)

whenever

ε ≥ C
( 1

M − 2n
+

1

X0 + Y0

)
.

Proof. The assumption in the statement simply reads

K0

M (1−β)/2
≤ C0(M − 2k)(1−β)/2

(
1− Z0

M
(1− 2k/M)d/2−1

)1−β
.

Define stopping time τ as the smallest integer k such that

Kk

M (1−β)/2
> 2C0(M − 2k)(1−β)/2

(
1− Z0

M
(1− 2k/M)d/2−1

)1−β
.

Applying Lemma 2.4.4 we conclude that the event

|Kk∧τ −K0| ≤ εK0, for all 0 ≤ k ≤ n, (2.4.27)

has probability of at least

1− C

ε2

( M (1−β)/2

(M − 2n)(1+β)/2K0

+
1

X0

)
− δM ,

for an appropriately chosen constant C. Since τ < n implies Kτ > 2K0, on the event in
(2.4.27) we have that τ ≥ n. Thus in the event in (2.4.27) we can replace Kk∧τ by Kk which
completes the proof.

As we said the assumption in the previous corollary is quite an improvement over (2.4.15).
However, the problem is that it might fail to hold throughout the time regime. To overcome
this problem, we switch the roles of processes X and Y and the value of the parameter β to
1/β when this condition fails to hold. This gives Lemma 2.4.7.

Lemma 2.4.7. Let β be any positive real number. Let (LM) be a sequence of positive
numbers converging to ∞ and such that limM LMM

−γ = 0, for any γ > 0. Assume that

L
(1+β)4

β2

M ≤ X0 ≤ Y0. Define n0 as the largest integer such that

M − 2n0 ≥ LM

(M (1−β)/2

K0

∨ K0

M (1−β)/2

)2/(1+β)

.
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Then for any ε > 0 there is a sequence of numbers ηM converging to zero such that

P(|Kn −K0| ≤ εK0, for all 0 ≤ n ≤ n0) ≥ 1− ηM .

Remark 2.4.8. The choice of the exponent (1+β)4

β2 in the lower bound for X0 is just a tech-
nical condition. Actually given X0 one can always decrease the value of LM so that the

inequality in the statement holds. Nevertheless the assumption that Y0 ≥ L
(1+β)4/β2

M and

X0 ≥ L
(1+β)4/β2

M implies that

L
(1+β)4/β2

M M−β ≤ K0 ≤ML
−(1+β)4/β
M

and
M − 2n0 ≤ L

1−2(1+β)3/β
M M ∨ L1−2(1+β)3/β2

M M. (2.4.28)

In particular we know that 1− 2n0/M is converging to 0, a fact which will be useful in our
proofs.

First we prove a few technical details. We start by recalling Theorem 2.6.1 we know that
for any ε > 0 there is a sequence (δM) converging to 0 such that with probability of at least
1− δM we have that for every 0 ≤ n ≤ M

2
− 1

1− ε ≤ Xn + Yn
M − 2n− Z0(1− 2n/M)d/2

=
Xn + Yn

f(1− 2n/M)
√
M(M − 2n)

≤ 1 + ε . (2.4.29)

The following two simple claims will be helpful when switching the roles of the processes
X and Y .

Lemma 2.4.9. There exists a sequence δM depending only on ε, converging to zero such that
for any non-negative integers n and k such that M − 2n− 2k > 1 we have

(1− ε) ≤
1− Zn

M−2n

(
1− 2k

(M−2n)

)d/2−1

1− Z0

M

(
1− 2(n+k)

M

)d/2−1
≤ (1 + ε) (2.4.30)

Proof. Using the fact that Xn + Yn = M − 2n−Zn inequalities (2.4.29) can be rewritten as

(1 + ε)
Z0

M

(
1− 2n

M

)d/2−1

− ε ≤ Zn
M − 2n

≤ ε+ (1− ε)Z0

M

(
1− 2n

M

)d/2−1

.

It is not hard to check that this in turn implies (2.4.30).

Lemma 2.4.10. Suppose the assumptions of Lemma 2.4.7 hold. Assume that β 6= 1 and let
c > 1. Then there is a positive constant c′ = c′(β, c, d) such that for any 0 ≤ k ≤ n0

1

c
f(1− 2k/M) ≤ K

1/(1−β)
k

M
≤ cf(1− 2k/M)⇒ Xk ∧ Yk ≥ c′LM . (2.4.31)
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Proof. We first show that if the assumptions hold then for a constant c′′ = c′′(β, c, d)

1

c
f(1− 2k/M) ≤ K

1/(1−β)
k

M
≤ cf(1− 2k/M)⇒ Xk ∧ Yk ≥ c′′(Xk + Yk).

If Xk < c′′(Xk + Yk) then Yk > (1− c′′)(Xk + Yk) and

K
1/(1−β)
k

M
=

(
Xk

Y β
k

)1/(1−β)
1√

M(M − 2k)
≶

c′′1/(1−β)

(1− c′′)β/(1−β)

Xk + Yk√
M(M − 2k)

,

where the inequality in ≶ is < for β < 1 and > for β > 1. Using (2.4.29) to bound the term
(Xk + Yk)(M(M − 2k))−1/2 we obtain a contradiction with the left hand side of (2.4.31) for
c′′ such that c′′(1 − c′′)−β ≤ (c/(1 − ε))−|1−β|, which yields Xk ≥ c′′(Xk + Yk). In the same
way one can show that Yk ≥ c′′(Xk + Yk) for an appropriately chosen c′′.

To finish the proof we show that or every 0 ≤ n ≤ n0

Xn + Yn ≥ LM/3 .

To check this, by (2.4.29) it is enough to check that φ(t) ≥ 2LM
3M

for 1 − 2n0/M ≤ t ≤ 1,
where φ(t) = t − td/2Z0/M . By the concavity of φ and the fact that M − 2n0 ≥ LM it is
enough to check the lower bound for t = LM/M and t = 1 for which the claim is obvious.

Lemma 2.4.11. Suppose the assumptions in Lemma 2.4.7 hold. Then, f(1) ≥ K
1/(1−β)
0 M−1

for β < 1, and f(1) ≤ 2K
1/(1−β)
0 M−1 for β > 1.

Proof. To prove the statement for β < 1 simply observe that it is equivalent to X0Y
−β

0 ≥
(X0 + Y0)1−β and to

X0

X0 + Y0

≤
( Y0

X0 + Y0

)β
,

which, because of X0 ≤ Y0 surely holds for β < 1. The statement for β > 1 is similarly
equivalent to

2X0

X0 + Y0

≤
( 2Y0

X0 + Y0

)β
,

which again holds, since the left hand side is smaller than 1 and the right hand side is larger
than 1.

Proof of Lemma 2.4.7. Throughout the proof we assume that M is sufficiently large for the
estimates to hold. We can assume ε < 1/2 and ηM ≥ C ′L−1

M ε−1, for any constant C ′ (at
different stages in the proof we choose convenient values for C ′). Since we can also assume
that ηM < 1 (otherwise there is nothing to prove), we can assume that

ε ≥ C ′

LM
. (2.4.32)
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First we present the bound for the simplest case when β = 1. Because X0 ≤ Y0 we have
K0 ≤ 1 and in this case n0 is the largest integer with the property that M − 2n0 ≥ LM/K0.
By Corollary 2.4.6 applied with C0 = 1 we have that with probability at least

1− C

ε2

( 1

(M − 2n0)K0

+
1

X0

)
− δM ≥ 1− 2C

ε2LM
− δM ,

we have
|Kk −K0| ≤ εK0, for all 0 ≤ k ≤ n0,

which proves the claim when β = 1.
Next we analyze the case of β 6= 1. Fix numbers 0 < c2 < 1 and c1 > 2. Note that f

is a concave nonnegative function on [0, 1] and f(0) = 0. By Lemma 2.4.11 if β < 1 there

is a unique point 0 < t2 < 1 such that f(t2) = c2K
1/(1−β)
0 /M . If β > 1 then in the case

when max[0,1] f ≥ c1K
1/(1−β)
0 /M denote by t2 the smallest element in f−1(c2K

1/(1−β)
0 /M)

and by t1 the largest element in f−1(c1K
1/(1−β)
0 /M). Define n1 as the largest integer such

that M − 2n1 ≥ Mt1, and n2 the largest integer such that M − 2n2 ≥ t2M . Furthermore,
define n1 = n1 ∧ n0 and n2 = n2 ∧ n0.

We also need the following inequality which is a technical detail left as an exercise for
the reader.

c2K
1/(1−β)
0 /M ≤ f(1− 2ni/M) ≤ c1K

1/(1−β)
0 /M, (2.4.33)

whenever ni < n0, for i = 1, 2.
We separate the analysis into three cases:

a) β > 1 and max[0,1] f ≤ c1K
1/(1−β)
0 /M ,

b) β > 1 and max[0,1] f > c1K
1/(1−β)
0 /M ,

c) β < 1.

To summarize, in case a) we have

f(1− 2k/M) ≤ c1K
1/(1−β)
0 /M, for 0 ≤ k ≤M/2− 1, (2.4.34)

in case b)

f(1− 2k/M)


≤ c1K

1/(1−β)
0 /M, for 0 ≤ k ≤ n1,

≥ c2K
1/(1−β)
0 /M, for n1 ≤ k ≤ n2, if n1 < n0,

≤ c1K
1/(1−β)
0 /M, for n2 ≤ k ≤M/2− 1, if n2 < n0,

(2.4.35)

and in the case c)

f(1− 2k/M)

{
≥ c2K

1/(1−β)
0 /M, for 0 ≤ k ≤ n2,

≤ c1K
1/(1−β)
0 /M, for n2 ≤ k ≤M/2− 1, if n2 < n0.

(2.4.36)
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For the case a) note that (2.4.34) can be rewritten as

K0

M (1−β)/2
≤ cβ−1

1 (M − 2k)(1−β)/2
(

1− Z0

M
(1− 2k/M)d/2−1

)1−β
. (2.4.37)

Because M − 2n0 ≥ LM and (2.4.32) we can apply Corollary 2.4.6 to get that the event that
|Kk −K0| ≤ εK0 for 0 ≤ k ≤ n0 has probability at least

1− C

ε2

( M (1−β)/2

(M − 2n0)(1+β)/2K0

+
1

X0

)
− δM ≥ 1− C

ε2

( 1

L
(1+β)/2
M

+
1

LM

)
− δM .

The inequality above follows from the definition of n0. This suffices for the case a).
Next we assume that we are under the assumptions of case b). From the first inequality

in (2.4.35) we obtain that (2.4.37) holds for 0 ≤ k ≤ n1. Because M−2n1 ≥M−2n0 we can
apply Corollary 2.4.6 like in the case a) and conclude that the event that |Kk −K0| ≤ ε

3
K0

holds for all 0 ≤ k ≤ n1, has probability of at least

1− 9C

ε2

( M (1−β)/2

(M − 2n1)(1+β)/2K0

+
1

X0

)
− δM ≥ 1− 9C

ε2

( 1

L
(1+β)/2
M

+
1

LM

)
− δM .

Now if n1 = n0 we are done with the analysis in the case b).
Otherwise assume that |Kk −K0| ≤ ε

3
K0 holds for all 0 ≤ k ≤ n1 indeed, and note that

(2.4.33) implies that

(1 + ε)1/(1−β)

c1

f(1− 2n1/M) ≤ K
1/(1−β)
n1

M
≤ (1− ε)1/(1−β)

c2

f(1− 2n1/M), (2.4.38)

which then by (2.4.31) implies that both Xn1 and Yn1 are at least c′LM for some constant c′.
Define M ′ = M − 2n1, X ′k = Xn1+k, Y

′
k = Yn1+k, Z

′
k = Zn1+k and

K ′k =
Y ′k

X
′1/β
k (1− 2k/M ′)(1−1/β)/2

.

It is easy to check that in fact

K ′k = K
−1/β
n1+k

(M ′

M

)(1−1/β)/2

. (2.4.39)

Similarly to (2.4.37), the second inequality in (2.4.35) implies that for n1 ≤ k ≤ n2

K0

M (1−β)/2
≥ cβ−1

2 (M − 2k)(1−β)/2
(

1− Z0

M
(1− 2k/M)d/2−1

)1−β
.

Combined with the inequality Kn1 ≥ (1− ε)K0,

Kn1 ≥ (1− ε)cβ−1
2 M (1−β)/2(M − 2(n1 + k))(1−β)/2

(
1− Z0

M
(1− 2(n1 + k)/M)d/2−1

)1−β
,
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for 0 < k ≤ n2 − n1. Raising the above inequality to the power of −1/β and using (2.4.30)
and (2.4.39) we obtain

K ′0
M ′(1−1/β)/2

≤ (1 + ε)1−1/β

(1− ε)1/βc
1−1/β
2

(M ′ − 2k)(1−1/β)/2
(

1− Z ′0
M ′ (1− 2k/M ′)d/2−1

)1−1/β

, (2.4.40)

for all 0 ≤ k ≤ n2 − n1. By Corollary 2.4.6 we have that the event |K ′k −K ′0| ≤ ε
2β+3K

′
0, for

all 0 ≤ k ≤ n2 − n1, is of probability at least

1− 4β+3C

ε2

( M ′(1−1/β)/2

(M ′ − 2(n2 − n1))(1+1/β)/2K ′0
+

1

Y ′0

)
− δM ′

≥ 1− 4β+3C

ε2

( (1 + ε)1/βK
1/β
0

(M − 2n2)
1+β
2β M

1−β
2β

+
1

Yn1

)
− δLM

≥ 1− 4β+3C

ε2

(
(1 + ε)1/βL

− 1+β
2β

M + (c′LM)−1
)
− δLM , (2.4.41)

where we used the fact that n2 ≥ n0, the definition of n0 and the lower bound Yn1 ≥ c′LM .
Then this event can be rewritten as∣∣∣∣(Kn1+k

Kn1

)−1/β

− 1

∣∣∣∣ ≤ ε

2β+3
, for all 0 ≤ k ≤ n2 − n1,

which, using the fact that ε ≤ 1/2 easily implies that

|Kn1+k −Kn1| ≤
ε

4
Kn1 , for all 0 ≤ k ≤ n2 − n1,

and

|Kk −K0| ≤ |Kk −Kn1|+ |Kn1 −K0| ≤
ε

4

(
1 +

ε

3

)
K0 +

ε

3
K0 ≤

2ε

3
K0, for all n1 ≤ k ≤ n2.

(2.4.42)
If n2 = n0 we are done.

Otherwise, assume that the event in (2.4.42) holds and observe that (2.4.38) holds when
n1 is replaced by n2. Thus again we have that Xn2 ≥ c′LM .

Define M ′′ = M − 2n2, X ′′k = Xn2+k, Y
′′
k = Yn2+k, Z

′′
k = Zn2+k and

K ′′k =
X ′′k

Y ′′βk (1− 2k/M ′′)(1−β)/2
= Kn2+k

(M ′′

M

)(1−β)/2

.

Following the argument that lead to (2.4.40), and using the third inequality in (2.4.35) we
can deduce that

K ′′0
M ′′(1−β)/2

≤ (1 + ε)(1− ε)1−βcβ−1
1 (M ′′ − 2k)(1−β)/2

(
1− Z ′′0

M ′′ (1− 2k/M ′′)d/2−1
)1−β

.
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By Corollary 2.4.6 we have that with probability at least

1− 16C

ε2

( M ′′(1−β)/2

(M ′′ − 2(n0 − n2))(1+β)/2K ′′0
+

1

X ′′0

)
− δM ′′

≥ 1− 16C

ε2

( M (1−β)/2

(1− ε2)(M − 2n0)
1+β

2 K0

+
1

Xn1

)
− δLM

≥ 1− 16C

ε2

(
(1− ε2)−1L

−(1+β)/2
M + (c′L−1

M )
)
− δLM .

the event
|K ′′k −K ′′0 | ≥

ε

4
K ′′0 , for some 0 ≤ k ≤ n0 − n2

occurs. After a glance at the definition of K ′′k we proceed as in the previous step and finish
the analysis in the case b).

The case c) is handled in the same way. The first inequality in (2.4.36), inequality (2.4.32),
the fact that M − 2n0 ≥ LM and Corollary 2.4.6 imply that the event |Kk −K0| ≤ εK0/3,
for 0 ≤ k ≤ n2, has probability at least

1− 9C

ε2

( M (1−β)/2

(M − 2n2)(1+β)/2K0

+
1

X0

)
− δM ≥ 1− 9C

ε2

( 1

L
(1+β)/2
M

+
1

LM

)
− δM .

This finishes the proof if n2 = n0. Otherwise, observe that (2.4.38) holds and thus we have
Yn2 ≥ c′LM . Then define X ′k = Xn2+k, Y

′
k = Yn2+k, Z

′
k = Zn2+k, M

′ = M − 2n2 and

K ′k =
Y ′k

X
′1/β
k (1− 2k/M ′)(1−1/β)/2

= K
−1/β
k

(M
M ′

) 1−β
2β
.

The second inequality in (2.4.36) and (2.4.29) now imply

K ′0
M ′(1−1/β)/2

≤ c
(1−β)/β
1 (1 + ε)1−1/β

(1− ε)1/β
(M ′ − 2k)(1−1/β)/2

(
1− Z ′0

M ′ (1− 2k/M ′)d/2−1
)1−1/β

.

Now we can apply Corollary 2.4.6 and conclude that with probability at least

1− 4β+1C

ε2

( M ′(1−1/β)/2

(M − 2n0)(1+1/β)/2K ′0
+

1

Y ′0

)
− δM ′

≥ 1− 4β+1C

ε2

( (1 + ε)1/βK
1/β
0

(M − 2n0)
1+β
2β M

1−β
2β

+
1

c′LM

)
− δLM

≥ 1− 4β+1C

ε2

((1 + ε)1/β

L
1+β
2β

M

+
1

c′LM

)
− δLM ,

we have that |K ′k −K ′0| ≤ ε2−β−1K ′0 for all 0 ≤ k ≤ n0 − n2. Using the analysis similar to
the case b) we see that this event implies |Kn2+k −K0| ≤ εK0, for 0 ≤ k ≤ n0 − n2. This
finishes the proof.
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The next lemma controls the size of processes for large times.

Remark 2.4.12. Starting in the proof of Lemma 2.4.13 and further we will use the following
simple fact. Let Ln be any process adapted to a filtration Fn. Assume that for any ε we have
a sequence of events (ΩM,ε) such that P(ΩM,ε)→ 1 as M →∞, and such that on the event
ΩM,ε we have pM(n)− ε ≤ P(Ln+1 − Ln ∈ A|Fn) ≤ pM(n) + ε. Then the number of indices
1 ≤ n ≤ N(M) → ∞ such that Ln+1 − Ln ∈ A is on ΩM,ε stochastically bounded from
above (below) by a sum of N(M) independent Bernoulli random variables with parameters
pM(n)+ε (pM(n)−ε). In particular, if N(M)→∞ then by Hoeffding’s inequality (see [35]),

the number of such indices is equal to 1 + o(1) times limM→∞
∑N(M)

n=1 p(n) asymptotically
almost surely.

Lemma 2.4.13. Suppose the conditions of Lemma 2.4.7 hold. Then there is a sequence
(ηM) converging to zero such that with the probability at least 1− ηM we have

(i) Xn+1 ≤ Xn for all n ≥ n0, in the case K0 ≤M (1−β)/2,

(ii) Yn+1 ≤ Yn for all n ≥ n0, in the case K0 ≥M (1−β)/2.

Proof. When K0 ≤M (1−β)/2, the inequality Yn0 ≤M − 2n0 implies

Kn0 ≥ Xn0M
(1−β)/2(M − 2n0)−(1+β)/2,

which, by the definition of n0 and the fact that Kn0 ≤ (1+ε)K0, yields Xn0 ≤ (1+ε)L
(1+β)/2
M .

When K0 ≥M (1−β)/2 then the inequality Xn0 ≤M − 2n0 implies

Kn0 ≤M (1−β)/2(M − 2n0)(1+β)/2Y −βn0
,

which, by the definition of n0 and the fact that Kn0 ≥ (1−ε)K0, yields Yn0 ≤ (1−ε)−1/βL
1+β
2β

M .
If K0 ≤ M (1−β)/2 denote by U the process X and τ = 1+β

2
and if K0 ≥ M (1−β)/2 denote by

U the process Y and τ = 1+β
2β

. (if K0 = M (1−β)/2 do either). Furthermore denote by n′ and
n′′ the largest integers such that

M − 2n′ ≥M
(LτM
Z0

)2/d

, and M − 2n′′ ≥M
( 1

LMZ0

)2/d

.

First denote the event U3 = {Uk+1 ≤ Uk : n′′ ≤ k}. As the value of U can grow only
if the value of Z decreases, the event U3 contains the event that {Zk = 0 : k ≥ n′′}. By
Theorem 2.6.1 i) the probability of this event converges to 1. This handles the time regime
k ≥ n′′. In particular, the claim is proved if n0 ≥ n′′, so we assume n0 < n′′.

To finish the proof denote the events

U1 = {Uk+1 ≤ Uk : n0 ≤ k ≤ n′},U2 = {Uk+1 ≤ Uk : n′ ≤ k ≤ n′′},

in the case n0 ≤ n′, and just

U2 = {Uk+1 ≤ Uk : n0 ≤ k ≤ n′′},
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if n0 > n′.
Since with high probability Zk is bounded by a constant multiple of Z0(1 − 2k/M)d/2,

for k ≤ n′, by Remark 2.4.12, the probability of the event U1 can be estimated as

P(U1) ≥
n′∏

k=n0

(
1− c2L

τ
MZ0(1− 2k/M)d/2

(M − 2k − Z0(1− 2k/M)d/2)(M − 2k)

)

≥ 1− c2

1− 2−d/2+1

n′∑
k=n0

LτMZ0(1− 2k/M)d/2

(M − 2k)2
,

where we used that fact that Z0 ≤ M and M − 2k ≤ M/2, for k ≥ n0, which follows from
(2.4.28). It suffices to prove that the above sum converges to 0. To estimate it calculate

LτMZ0

M2

n′∑
k=n0

(
1− 2k

M

)d/2−2

≤ LτMZ0

M

∫ 1−2(n0−1)/M

1−2(n′+1)/M

td/2−2dt

≤ 2

d− 2
LτM

(M − 2n0 + 2

M

)d/2−1

, (2.4.43)

where the first inequality follows by monotonicity of the function t 7→ td/2−2. From (2.4.28)
it is easy to see that the last term converges to 0 (the only thing to check is that (d/2 −
1)(1− 2(1 + β)3/β) + τ < 0 and (d/2− 1)(1− 2(1 + β)3/β2) + τ < 0).

Next we bound the probability of U2. Using the inequality

M − 2n′′ ≥ M

Z
2/d
0 L

2/d
M

≥ M1−2/d

L
2/d
M

, (2.4.44)

we obtain M − 2n′′ ≥ 2LM , for M large enough and, since with probability converging to 1
we have Zn ≤ 2LτM , for n ≥ n′

P(U2) ≥
n′′∏
k=n′

(
1− c3L

2τ
M

(M − 2k)(M − 2k − LM)

)
≥ 1− 2c3L

2τ
M

n′′∑
k=n′

1

(M − 2k)2

≥ 1− 4c3
L2τ
M

M − 2n′′ − 2
≥ 1− 4c3

L
2τ+2/d
M

M1−2/d
.

The right hand side clearly converges to 1 which finishes the analysis of the event U2.

Remark 2.4.14. Note that the replacing the roles of processes X and Y and setting X to
have rate 1 and Y to have the rate 1/β in Lemma 2.4.7 causes the process Kn to become

K
−1/β
n and the value of n0 and the exponents on LM to remain unchanged. Therefore if

both X0 and Y0 are bounded from below by an appropriate power of LM we do not need to
assume that X0 ≤ Y0 for Lemma 2.4.7 to hold.
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We are now ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. To have notation more compatible with the previous results in this
section (which will be heavily used) we change the notation from LN in the statement to
LM . Throughout the proof we assume that the sequence (LM) grows slowly enough, so that
it satisfies the assumptions in Lemma 2.4.7, and so that, similarly to Remark 2.4.8 we can
conclude that LκMM

−β ≤ K0 ≤ ML−κM and 1− 2n0/M ≤ L−κM for κ > 0 appropriate for our
calculations.

Define n1 as the largest integer such that M − 2n1 ≥M(Z0LM)−2/d. By the assumptions

it follows that εL
2/d
M MZ

−2/d
0 converges to∞ and thus we can apply Theorem 2.6.1 to conclude

that for any ε > 0 asymptotically almost surely we have

Zn
Z0

= (1± ε)
(

1− 2n

M

)d/2
, for 0 ≤ n ≤ n1.

Also define m = n0 ∧ n1.
We will prove all the results with Rfin replaced by Rm. Then we show that (Rfin−Rm)/Z0

is small and also small compared to M1/β−1K−1/β, which by Z0/d = N −R0 −B0 allows us
to replace Rm with Rfin.

By Lemma 2.4.7 and Theorem 2.6.1 for any ε > 0 asymptotically almost surely we have

1− Yn/(Xn + Yn)(
Yn/(Xn + Yn)

)β = (1± ε) K0

M1−β(1− 2n/M)(1−β)/2
(

1− Z0

M
(1− 2n/M)d/2−1

)1−β

for 0 ≤ n ≤ m. For β = 1 this yields

Yn
Xn + Yn

= (1± ε) 1

1 +K0

= (1± ε) Y0

X0 + Y0

, for 0 ≤ n ≤ m.

For β 6= 1, define the function ϕβ : (0, 1) → R by ϕβ(t) = (1 − t)1/β−1t−β/(β−1) and observe
that the derivative of ϕβ is bounded from below. Then the derivative of the inverse function
ϕ−1
β is bounded from above, which gives that asymptotically almost surely

Yn
Xn + Yn

= (1± ε)ϕ−1
β

(
MK

1/(β−1)
0

(
(1− 2n/M)1/2 − Z0

M
(1− 2n/M)(d−1)/2

))
for 0 ≤ n ≤ m. Define the function ξβ(s) = βs

βs+(1−s) which has a derivative bounded away

from 0 on (0, 1). Since

Yn
βXn + Yn

=
1

1 + β
Yn/(Xn+Yn)

= ξ−1
β

( Yn
Xn + Yn

)
,

and φβ = ϕβ ◦ ξβ we have asymptotically almost surely

Yn
βXn + Yn

= (1± ε)φ−1
β

(
MK

1/(β−1)
0

(
(1− 2n/M)1/2 − Z0

M
(1− 2n/M)(d−1)/2

))
.
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At the n-th step the conditional probability that in the n + 1-th step we add a new red
vertex is equal to

Yn
βXn + Yn

Zn
M − 2n− 1

,

for M large enough. By Remark 2.4.12 for β = 1 asymptotically almost surely

|Rm−R0| = (1± ε)
m∑
n=0

Y0

X0 + Y0

Z0

M
(1− 2n/M)d/2−1 → (1± ε) Y0

X0 + Y0

Z0

2

∫ 1

1−2m/M

td/2−1dt

= (1± ε) Y0

X0 + Y0

Z0

d

(
1− (1− 2m/M)d/2

)
.

Since (1− 2m/M)d/2 converges to 0 we can disregard this term, which proves (2.3.1).
For β 6= 1 we proceed as follows. By Remark 2.4.12 asymptotically almost surely we have

|Rm −R0| = (1± ε)
m∑
n=0

φ−1
β

(
MK

1/(β−1)
0

(
(1− 2n

M
)1/2 − Z0

M
(1− 2n

M
)(d−1)/2

))
Z0

M
(1− 2n

M
)d/2−1.

The sum on the right hand side above converges to the integral

Z0

2

∫ 1

1−2m/M

φ−1
β

(
MK

1/(β−1)
0

(
s1/2 − Z0

M
s(d−1)/2

))
sd/2−1ds

=
Z0

d

∫ 1

(1−2m/M)d/2
φ−1
β

(
MK

1/(β−1)
0

(
t1/d − Z0

M
t(d−1)/d

))
dt,

which proves (2.3.2), except for the different lower bound in the integral. Note that for the
convergence of Riemann sums to the corresponding integral we used the piecewise convexity
and concavity of subintegral functions.

Now we come back to fixing the lower bound in the integral to get the on in (2.3.2). By
Lemma 2.3.3 it suffices to prove that∫ (1−2m/M)d/2

0

M1/β−1

K
1/β
0

(
t1/d − Z0

M
t(d−1)/d

)1/β−1

∧ 1 dt ≤ δM

(M1/β−1

K
1/β
0

∧ 1
)
, (2.4.45)

for a sequence (δM), converging to 0 and depending only on β, d and LM . When M1/β−1

K
1/β
0

≥ 1

then (2.4.45) holds as long as we take δ ≥ (1 − 2m/M)d/2. When M1/β−1

K
1/β
0

< 1 then (2.4.45)

holds for

δM ≥
∫ (1−2m/M)d/2

0

h(s)1/β−1ds,

where h(s) = s1/d, for β < 1 and h(s) = s1/d − s(d−1)/d, for β > 1 (in either case h(s)1/β−1 is
integrable in the neighborhood of 0).
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To conclude the proof we need to give appropriate upper bounds on (Rfin − Rm)/Z0,
to replace Rm by Rfin above. Indeed it suffices to prove that (Rfin − Rm)/Z0 and (Rfin −
Rm)K

1/β
0 M1−1/βZ−1

0 converge to 0 (and the convergence depends only on β, d and (LM)).
Recall that the value of R can increase (always by 1) only if a new uncolored half-edge

is matched, that is the value of Z decreases (always by d). Therefore Rfin − Rm ≤ Zm. If
n1 ≤ n0 (that is m = n1), then by Theorem 2.6.1 we know that Zn1 ≤ 2LM , and so it suffices

to prove that both LM/Z0 and LMK
1/β
0 M1−1/βZ−1

0 converge to 0. The first convergence is
follows from the assumption, and for the second on calculate

LM

(K0

M

)1/βM

Z0

≤ L
2−κ/β
M ,

which converges to 0 for κ > 2β large enough.
Now assume that n0 < n1. In the case K0 ≥ M (1−β)/2, by Lemma 2.4.13, the sequence

Yn is decreasing so n ≥ n0, which means that no new red color vertex can be captured. Thus
Rm = Rn0 = Rfin. If K0 < M (1−β)/2 then we will simply prove that M − 2n0 converges

to 0 when divided by either Z0 or Z0M
1/β−1K

−1/β
0 . This yields the claim as Rfin − Rm =

Rfin−Rn0 ≤M −2n0. The first convergence follows trivially from the fact that Z0 ≥M/LM
and M − 2n0 ≤ ML−κM , for κ large enough. The second convergence boils down to showing
that

LM

(
M(1−β)/2

K0

)2/(1+β)

Z0M1/β−1K
−1/β
0

=
LM
Z0

(K0

M

) 1−β
β(1+β)

converges to 0. Knowing that Z0 ≥M/LM , the inequality follows by using K0/M ≤ L−κM for
β ≤ 1 and K0M

β ≥ LκM for β > 1, when κ is large enough.

2.5 Dynamics on the torus

As mentioned in the introduction, the behavior of the competing infection process is ex-
tremely different when the underlying graph is a d dimensional torus, and not a random
d-regular graph. The difference is stated in Theorem 2.1.6, which is proved in this section.
The proof relies on the following shape theorem from [18], due to Cox and Durrett.

In the following theorem we consider the continuous time, rate 1, first passage percolation
process on Z2 started from he origin. Let St be the set that the process occupies at time t,
thickened by 1/2, that is St is the union of closed hipercubes of side length 1 centered at the
points explored by the first passage percolation process at time t. The result was originally
proven for more general distributions for edge weights, and holds in higher dimensions as
well.

Theorem 2.5.1 (Cox, Durrett). There exists a non-trivial, convex set A ⊂ R2 which is
symmetric around the origin, and such that for any δ > 0

lim
t→∞

P
(
(1− δ)tA ⊂ St ⊂ (1 + δ)tA

)
→ 1.
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This theorem was generalized for every d ≥ 3, see for example [45]. The theorem can
be understood in the following way. For x ∈ Rd, define d(x) = {min t|x ∈ tA}. Since A is
convex and symmetric, it is an easy exercise to show that x 7→ d(x) is a norm on Rd, and
thus d(x, y) = d(y − x) is a metric on Rd. Then Theorem 2.5.1 says that with probability
converging to 1 as t→∞, the ball in the random first-passage percolation metric of radius
t contains the d-metric ball of radius (1− δ)t and is contained in the d-metric ball of radius
(1+δ)t. Furthermore, observe that changing the rate of the first-passage percolation process
to β simply corresponds to scaling of the set A by a factor of β.

Assume that in Theorem 2.1.6 we start both processes simultaneously from two uniformly
chosen vertices B0 = {x} and R0 = {y} (that is B0 = R0 = 1). Then by Theorem 2.5.1 it
is easy to see that for any t0 > 0 and ε > 0, with probability converging to 1 as n → ∞,
every vertex v ∈ T(N, d) such that d(x, v) < (t − ε)βn and d(y, v) > (t + ε)ρn, for some
t > t0 satisfies v ∈ Bfin, and every vertex v ∈ T(N, d) such that d(x, v)/β > (t + ε)n and
d(y, v)/ρ < (t−ε)n, for some t > t0 satisfies v ∈ Rfin. Also observe that for any δ > 0 we can
find r > 0 such that the probability that d(x, y) < rn is less than δ. It follows that by scaling
the torus by the factor 1/n (to a unit torus), and sending n → ∞, Theorem 2.5.1 and the
discussion in the previous paragraph imply that the pair of sets (Bfin/n,Rfin/n) converge in
Hausdorff metric to the Voronoi partition of the continuous unit torus in the metric d. More
precisely, the limiting set for Bfin/n is a set of points v on the unit torus Rd/[0, 1]d for which
d(x, v)/β < d(y, v)/ρ, where x and y are two points chosen uniformly and independently on
the torus. This in particular yields Theorem 2.1.6 in this special case, and the proof of the
general case presented below is essentially the same.

Proof of Theorem 2.1.6. Fix ε > 0. Assume first that (B0,R0) are chosen uniformly at
random of size (B0, R0). Then there exists δ′ > 0 such that, with probability at least 1−ε/2,
the Euclidean distance between any pair of points in B0 ∪R0 is at least δ′n. For δ′′ > 0 and
every x ∈ B0 define the ball Bx = {v ∈ T(N, d) : d(x, v) < nβδ′′}, and for every y ∈ R0

define Ry = {v ∈ T(N, d) : d(y, v) < nδ′′ρ}. It is not hard to see that one can choose
δ′′ small enough so that all the sets Bx for x ∈ B0 and Ry, for y ∈ R0 are disjoint with
probability at least 1− ε/2. Conditioned on this event, Theorem 2.5.1 yields that for n large
enough, with probability at least 1 − ε/2 for t = 3δ′′n/4, the set Bt contains all the balls
1
2
Bx = {v ∈ T(N, d) : d(x, v) < nβδ′′/2}, x ∈ B0 and is contained in ∪x∈B0Bx (and the

analogous claim holds for Rt). As all sets Bx and Ry have size linear in N , the claim follows.
If on the other hand we select (B0,R0) uniformly of size (B0, R0) with B0 center of size

k0, then simply apply the above argument with sets Bx = {v ∈ T(N, d) : d(x, v) < nβδ′′}
defined for x ∈ B0

0.
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2.6 The configuration model as an urn process

Finally we discuss the urn result we used extensively. The urn model discussed here is finite,
i.e., its matrix has negative eigenvalues, which means that eventually there will be no balls
left in the urn. The next theorem defines the urn model, and provides a concentration result
for the values of Sn, Zn throughout the process.

Theorem 2.6.1. Assume 0 < a < b are positive integers. Let Sn and Zn be the number

of balls in the urn process with scheme

(
−a 0

b− a −b

)
and let M = S0 + Z0. Denote the

processes

Kn =
Zn

Z0(1− an/M)b/a
, and Ln =

Sn
(M − an)− Z0(1− an/M)b/a

,

and the stopping time σZ0,M as the smallest integer n such that Zn = 0. For fixed positive

ε < 1/2 and t define n1,t = bM(1− tZ−a/b0 )/ac and n2,t = bM(1− t−1Z
−a/b
0 )/ac and consider

the event
KZ0,M,t,ε = {|Kn − 1| ≤ ε, for all 0 ≤ n ≤ n1,t}.

Then

a) There exists a universal constant C = C(a, b) (depending on a and b, but not on Z0,
M , ε and t) such that

P(KZ0,M,t,ε) ≥ 1− C

tb/aε2
, for all t ≥ CZ

a/b
0

Mε
(2.6.1)

and

P(σZ0,M ≥ n2,t) ≤
C

tb/(2b−a)
, for all t ≥ 1. (2.6.2)

b) For any ε > 0 there is a positive sequence (λε,M)M such that limM→∞ λε,M = 0 and
that for all 0 ≤ Z0 ≤M

P(|Ln − 1| ≤ ε, for all 0 ≤ n < M/a) ≥ 1− λε,M .

Proof. a) The condition on t in (2.6.1) ensures that when C is large enough, we have

M − an1,t ≥
C

ε
> 2a+ 2b,

so we assume this condition throughout the proof of (2.6.1). Define the stopping time τ as
the first time n such that Zn ≤ 2a+ 2b and K ′n = Kn∧τ . First observe that K ′0 = 1 and that
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Zn + Sn = M − an. Denote by Fn the σ-algebra generated by the first n draws. It is easy
to check that

E(K ′n+1 −K ′n|Fn) =

(
Zn

Z0(1− an+a
M

)b/a
− Zn
Z0(1− an

M
)b/a
− bZn
Z0(1− an+a

M
)b/a(M − an)

)
1τ>n

=
Zn

Z0(1− an
M

)b/a

((
1 +

a

M − an− a
)b/a(

1− b

M − an
)
− 1

)
1τ>n.

(2.6.3)

Take a constant C1 (which depends on a and b only) such that for any n satisfying M−an ≥
2a+ 2b we have∣∣∣(1 +

a

M − an− a
)b/a
− 1− b

M − an− a
∣∣∣ ≤ C1

(M − an− a)2
,

which after plugging in (2.6.3) gives

|E(K ′n+1 −K ′n|Fn)| ≤ Zn∧τ

Z0(1− a(n∧τ)
M

)b/a

( b

M − an− a −
b

M − an +
C1

(M − an− a)2

)
.

This implies that for some constant C2 = C2(a, b) and any n satisfying M − an ≥ 2a + 2b
we have

|E(K ′n+1 −K ′n|Fn)| ≤ K ′n
C2

(M − an)2
. (2.6.4)

Furthermore we have

E((K ′n+1 −K ′n)2|Fn) ≤
( Zn∧τ

Z0(1− a(n∧τ)+a
M

)b/a
− Zn∧τ

Z0(1− a(n∧τ)
M

)b/a

)2

+
( b

Z0(1− a(n∧τ)+a
M

)b/a

)2 Zn∧τ
M − a(n ∧ τ)

≤ 2K ′2n

(((
1 +

a

M − a(n ∧ τ)− a
)b/a
− 1
)2

+
b2

Zn∧τ (M − a(n ∧ τ))

)
Using the same arguments as before and that Zk ≤M −ak, we have that there is a constant
C3 = C3(a, b) such that whenever M − an ≥ 2a+ 2b we have

E((K ′n+1 −K ′n)2|Fn) ≤ K ′2n
C3

Zn∧τ (M − a(n ∧ τ))
≤ K ′n

C3M
b/a

Z0(M − an)b/a+1
. (2.6.5)

Define pn = C2

(M−an)2 , q`,k =
∏k

i=`(1 + pi) for ` ≤ k and qk+1,k = 1 and rn = C3Mb/a

Z0(M−an)b/a+1 .

Since q`,k ≤ exp
(∑k

i=` pi

)
we see that there is a constant C4 = C4(a, b) such that q`,k ≤ C4

for any n, and ` and k such that M − a`,M − ak > 2a+ 2b. Then we have

n1,t−1∑
k=0

rkq0,k−1 ≤ C4
C3M

b/a

Z0

n1,t−1∑
k=0

1

(M − ak)b/a+1
≤ C5M

b/a

Z0(M − an1,t)b/a
≤ C5

tb/a
,
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for some C5 = C5(a, b) Defining I0 = K ′0 = 1 and In = K ′n −
∑n−1

k=0 E(K ′k+1 −K ′k|Fk), as in
Lemma 2.4.1 we have that

E((In1,t − 1)2) ≤ C5

tb/a
,

and by a Doob’s maximal theorem we have that for any δ > 0

P( max
0≤n≤n1,t

|In − 1| ≥ δ) ≤ δ−2E( max
0≤n≤n1,t

|In − 1|2) ≤ 2C5

tb/aδ2
.

Next note that for any 0 ≤ n ≤ n1,t we have

n−1∑
k=0

pkqk+1,n−1 ≤
n1,t−1∑
k=0

C4C2

(M − an)2
≤ C6

M − an1,t

≤ C6Z
a/b
0

Mt
,

for some C6 = C6(a, b). Conditioned on the event that |In − 1| ≤ δ, for all 0 ≤ n ≤ n1,t by
Lemma 2.4.1 we have for all 0 ≤ n ≤ n1,t that

|K ′n − 1| ≤ δ + (1 + δ)
n−1∑
k=0

pkqk+1,n−1 ≤ δ + (1 + δ)
C6Z

a/b
0

Mt
.

Fix ε > 0 and take t ≥ CZ
a/b
0

Mε
for sufficiently large C, so that the right hand side above

is equal to ε for some δ ≥ ε/2. Thus with probability of at least 1 − 8C5

tb/aε2
we have that

|K ′n − 1| ≤ ε for all 0 ≤ n ≤ n1,t. The claim in (2.6.1) is trivial if tb/a ≤ Cε−2. Surely by
increasing C if necessary we can conclude that for any ε < 1/2 and tb/a > Cε−2 we have
2(a+ b)t−b/a < 1− ε. Since assuming τ < n1,t implies

K ′n1,t
= Kτ ≤

2(a+ b)

Z0

(
1− an1,t

M

)b/a ≤ 2(a+ b)

tb/a
< 1− ε,

we conclude that the condition that |K ′n − 1| ≤ ε for all 0 ≤ n ≤ n1,t implies τ ≥ n1,t and
thus also K ′n = Kn for all 0 ≤ n ≤ n1,t. Thus

P(KZ0,M,t,ε) ≥ 1− C

tb/aε2
,

for C large enough, which proves the inequality in (2.6.1).
To prove that P(σZ0,M ≥ n2,t) ≤ C

tb/(2b−a) , first observe that the proportion of Z-type balls
Zn/(M − an) is a supermartingale if M − an > a. To check this calculate

E
( Zn+1

M − a(n+ 1)

∣∣∣Fn)− Zn
M − an =

Zn
M − a(n+ 1)

− b

M − a(n+ 1)

Zn
M − an −

Zn
M − an

= − (b− a)Zn
(M − an)(M − a(n+ 1))

.



CHAPTER 2. COMPETING FIRST-PASSAGE PERCOLATION 47

This implies that for n1 < n2,t we have

E(Zn2,t |Fn1) ≤ M − an2,t

M − an1

Zn1 . (2.6.6)

Next define s = ta/(2b−a). Since t ≥ 1, we have n2,t ≥ n1,s1 . Using (2.6.6) for n1 = n1,s, we
see that conditioned on the event KZ0,M,s,1/2 we have

E(Zn2,t |KZ0,M,s,1/2) ≤ 3

2

(
1−an2,t

M

)
Z
a/b
0

(
1−an1,s

M

)b/a−1

Z
a/b−1
0 ≤ 3

2
t−1sb/a−1 ≤ 3

2
t−b/(2b−a).

(2.6.7)

Since s ≥ 1 ≥ 2CZ
a/b
0 M−1 for M large enough, by (2.6.1) we have P(Kc

Z0,M,s,1/2) ≤ 4C
sb/a

and

(2.6.7) with Markov inequality implies

P(Zn2,t > 0) ≤ E(Zn2,t |KZ0,M,s,1/2) + P(Kc
Z0,M,s,1/2) ≤ C

tb/(2b−a)
,

for large enough C, which proves (2.6.2) (note that the proof works if M − an2,t ≥ a, which
is something we can assume since the last drawn ball can not be of Z-type).

b) We start by writing

Ln =
(M − an)− Zn

(M − an)− Z0

(
1− an

M

)b/a ,
from where we easily get

Ln − 1 =
Z0

(
1− an

M

)b/a
− Zn

(M − an)− Z0

(
1− an

M

)b/a , and
|Kn − 1|
|Ln − 1| =

M

Z0

(
1− an

M

)b/a−1
− 1. (2.6.8)

First consider all n such that

logM

Z
a/b
0

≤ 1− an

M
≤
( M

2Z0

)a/(b−a)

. (2.6.9)

From the second relation in (2.6.8) it is easy to check that the event KZ0,M,logM,ε implies
that |Ln − 1| ≤ ε for all n satisfying (2.6.9). For a given ε > 0 choose M large enough so

that logM ≥ C
M1−a/bε

≥ CZ
a/b
0

Mε
, where C is the constant from part a). Then by (2.6.1) we

have that

P(|Ln − 1| ≤ ε, for all n satisfying (2.6.9)) ≥ 1− C

(logM)b/aε2
. (2.6.10)
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Recall the definition of n1,t from the statement. Now conditioned on the event KZ0,M,logM,ε

we have that

Zn1,logM
≤ (1 + ε)Z0

(
1− a(n1,logM + 1)

M
+

a

M

)b/a
≤ (1 + ε)2b/a−1Z0

((
1− a(n1,logM + 1)

M

)b/a
+
( a
M

)b/a)
≤ (1 + ε)2b/a−1(logM)b/a + (1 + ε)2b/a−1Z0

( a
M

)b/a
≤ 2b/a(logM)b/a.

Thus, conditioned on KZ0,M,logM,ε/2, we have that for all n satisfying

1

Z
a/b
0 logM

≤ 1− an

M
≤ logM

Z
a/b
0

, (2.6.11)

holds 0 ≤ Zn ≤ (2 logM)b/a, and from the first relation in (2.6.8) we get

− (2 logM)b/a

M

Z
a/b
0 logM

− (logM)b/a
≤ Ln − 1 ≤ (logM)b/a

M

Z
a/b
0 logM

− (logM)b/a
.

The denominator of both the left and the right hand side above is bounded from below by
M1−a/b/ logM − (logM)b/a. Since limM→∞ P(KZ0,M,logM,ε) = 1, we conclude that for any
ε > 0 with probability converging to 1 we have that |Ln−1| ≤ ε, for all n satisfying (2.6.11).

Next consider n such that

0 < 1− an

M
≤ 1

Z
a/b
0 logM

. (2.6.12)

By (2.6.2), with probability of at least 1− C
(logM)b/(2b−a) we have that Zn = 0 and Sn = M−an

for all n satisfying (2.6.12). Therefore, with probability converging to 1, for all such n, we
have that

1 ≤ Ln =
1

1− Z0

M

(
1− an

M

)b/a−1
≤ 1

1− Z
a/b
0

M(logM)b/a−1

≤ 1

1−M−1+a/b(logM)−b/a+1
,

which converges to 1 as M → ∞. The above arguments show that for a fixed ε > 0 with
probability converging to 1 (uniformly in Z0) as M →∞, we have that |Ln − 1| ≤ ε for all
n such that 0 < 1 − an

M
≤ (M/2Z0)a/(b−a). If Z0 ≤ M/2 there is nothing left to prove, so

assume Z0 ≥M/2.
Now consider the case when( M

2Z0

)a/(b−a)

≤ 1− an

M
≤ 1− logM√

M
. (2.6.13)
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By the second relation in (2.6.8) the condition that

|Kn − 1| ≤ ε

2

(
MZ−1

0

(
1− logM√

M

)−b/a+1

− 1
)

(2.6.14)

holds for all n satisfying (2.6.13), implies that |Ln − 1| ≤ ε for all n satisfying (2.6.13).
Denote the right hand side of (2.6.14) by δM . Clearly, for a positive constant C ′′ = C ′′(a, b)
we have δM ≥ C ′′M−1/2 logM . To calculate the probability of (2.6.14) holding for all n

satisfying (2.6.13), we can apply (2.6.1) with t = (MZ
−a/b
0 /2)a/(b−a) and ε = δM . To justify

this application we need to check that δM ≤ 1/2, for M large enough. This follows easily from
the fact that ε ≤ 1/2 and Z0 ≥M/2. Furthermore, using the fact that δM ≥ C ′′M−1/2 logM ,

we have for M large enough t ≥ CZ
a/b
0

MδM
. Since for the above t all n1,t satisfy (2.6.13), we get

P(|Ln − 1| ≤ ε for all n satisfying (2.6.13)) ≥ 1− C

tb/aδ2
M

≥ 1− 2b/(b−a)CZ
a/(b−a)
0 M

C ′′2M b/(b−a)(logM)2
≥ 1− 2b/(b−a)C

C ′′2(logM)2
. (2.6.15)

Since the right hand side converges to 1, we are left to consider the case when 0 ≤ n ≤
(
√
M logM)/a. To this end write

Ln =
Sn(

1− an
M

)(
S0

(
1− an

M

)b/a−1

+M
(

1−
(

1− an
M

)b/a−1)) .
Consider the case when S0 ≥

√
M(logM)2 and so S0(1 − ε/2) ≤ Sn ≤ S0(1 + ε/2), for

M large enough and all n such that 0 ≤ n ≤ (
√
M logM)/a. Furthermore, for such n the

denominator satisfies(
1− logM√

M

)b/a
S0 ≤

(
1− an

M

)(
S0

(
1− an

M

)b/a−1

+M
(

1−
(

1− an

M

)b/a−1))
≤ S0 +M

(b− a)n

M
≤ S0 +

b− a
a

√
M logM,

and so it is bounded by S0(1 − ε/2) from below and by S0(1 + ε/2) from above, for M
large enough. This now implies the deterministic fact that |Ln − 1| ≤ ε for all 0 ≤ n ≤
(
√
M logM)/a.
We are left to consider S0 ≤

√
M(logM)2, so from now on we assume this. The last two

cases we consider are
0 ≤ n ≤

√
M/(logM)3, (2.6.16)

and √
M/(logM)3 ≤ n ≤ (

√
M logM)/a. (2.6.17)
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Clearly, for M large enough, and all n which satisfy either (2.6.16) or (2.6.17) we have
Sn ≤ 2

√
M(logM)2. Thus the probability of drawing an S-type ball at the nth step for

n satisfying (2.6.16) is bounded from above by 3(logM)2/
√
M and the expectation of the

total number of S-type balls drawn in this time interval is less than 3/ logM . By Markov
inequality, with probability converging to 1, in this time interval we will draw only Z-type
balls which implies that with probability converging to 1 as M → ∞ we have for all n
satisfying (2.6.16)

Ln =
S0 + (b− a)n(

1− an
M

)(
S0

(
1− an

M

)b/a−1

+M
(

1−
(

1− an
M

)b/a−1)) .
For M large enough and for all n satisfying (2.6.16) or (2.6.17) we have

1

1 + ε/2
≤
(

1− an

M

)b/a
≤ 1

1− ε/2 , and
(b− a)n

1 + ε/2
≤M

(
1−

(
1− an

M

)b/a−1)
≤ (b− a)n

1− ε/2 .
(2.6.18)

The last inequality follows from the fact that∣∣∣∣1− (1− an

M

)b/a−1

− (b− a)n

M

∣∣∣∣ ≤ C ′n2

M2
≤ C ′ logM

a
√
M

n

M
,

for some constant C ′ > 0. From (2.6.18) it is clear that |Ln − 1| ≤ ε for all n satisfying
(2.6.16).

Using similar arguments as above we see that the expected number of S-type balls drawn
for ns satisfying (2.6.17) is no more than 3(logM)3 for large M . Thus with high probability
we have

S0 + (b− a)n− (logM)4 ≤ Sn ≤ S0 + (b− a)n.

The upper bound on Ln − 1 follows from the arguments above and for the lower bound we
only need to modify the second inequality in (2.6.18) as

(b− a)n− (logM)4

1 + ε/2
≤M

(
1−

(
1− an

M

)b/a−1)
≤ (b− a)n− (logM)4

1− ε/2 ,

which holds for M large enough and all n satisfying (2.6.17).
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Chapter 3

Tug-of-War

3.1 Statements of results

Setting and notation

All graphs that we consider in this chapter will be connected and of finite diameter (in
graph metric), but we allow graphs to have an uncountable number of vertices (and vertices
with uncountable degrees). However, for most of the main results we will need additional
assumptions.

Definition 3.1.1. Let (V, d) be a compact length space, that is, a compact metric space
such that for all x, y ∈ V the distance d(x, y) is the infimum of the lengths of rectifiable
paths between x and y. For a fixed ε > 0, the ε-adjacency graph is defined as a graph with
the vertex set V , such that two vertices x and y are connected if and only if d(x, y) ≤ ε.
When the value of ε is not important we will simply use the term adjacency graph.

A particular example of ε-adjacency graphs, already described in the previous subsection,
corresponds to taking (V, d) to be a closure of a domain Ω ⊂ Rd with C1 boundary ∂Ω and
the intrinsic metric in Ω. This means that d(x, y) is equal to the infimum of the lengths
of rectifiable paths contained in Ω, between points x and y. We will call these graphs
Euclidean ε-adjacency graphs. Note that we will limit our attention to domains with C1

boundary (meaning that for any x ∈ ∂Ω we can find open sets U ⊂ Rn−1 and V ⊂ Rn

containing 0 and x respectively, a C1 function φ : U → Rn−1 and an isometry of Rn which
maps (0, φ(0)) to x and the graph of φ onto V ∩ ∂Ω).

While the fact that (Ω, d) is a metric space is fairly standard, at this point we need to
argue that this space is compact. Actually one can see that the topology induced by this
metric space is the same as the Euclidean topology, and we only need to show that it is finer.
To end this assume that (xn) is a sequence of points such that limn |xn − x| = 0, for some
x ∈ Ω. If x ∈ Ω it is clear that limn d(xn, x) = 0. On the other hand if x ∈ ∂Ω then let yn
be the closest point on ∂Ω to xn. It is clear that d(xn, yn) = |xn − yn| converges to zero as
n→∞ and limn |x− yn| = 0. To complete the argument simply consider the paths between
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x and yn contained in ∂Ω, which are obtained by composing a C1 parametrization of ∂Ω in
a neighborhood of x and an affine function. The lengths of these paths converge to zero.

Another interesting class of graphs will be finite graphs with loops at each vertex. Intu-
itively, these graphs might be thought of as ε-adjacency graphs where (V, d) is a finite metric
space with integer valued lengths and ε = 1.

Note that for two vertices x and y we write x ∼ y if x and y are connected with an edge.
The graph metric between vertices x and y will be denoted by dist(x, y) in order to distinguish
it from the metric in Definition 3.1.1. The diameter of a graph G will be denoted by diam(G).
We consider the supremum norm on the space of functions on V , that is ‖u‖ = maxx |u(x)|.
When V is compact length space, this norm makes C(V,R), the space of continuous functions
on V , a Banach space. We also use the notation B(x, ε) = {y ∈ V : d(x, y) ≤ ε} (we want
to emphasize that, in contrast with [52], the balls B(x, ε) are defined to be closed) .

We consider a version of the tug-of-war game in which the terminal set is empty, but in
which the game is stopped after n steps. We say that this game has horizon n. At each
step, if the token is at the vertex x Player II pays Player I value f(x). If the final position
of the token is a vertex y then at the end Player II pays Player I value g(y). Here f and g
are real bounded functions on the set of vertices called the running and the terminal payoff.
Actually this game can be realized as the original stochastic tug-of-war game introduced in
[52] played on the graph G × {1, 2, . . . , n} (the edges connecting vertices of the form (v, i)
and (w, i+ 1), where v and w are neighbors in G), for the running payoff f(v, i) := f(v), the
terminal set V × {n} and the terminal payoff g(v, n) := g(v).

Define strategy of a player to be a function that, for each 1 ≤ k ≤ n, at the k-th step
maps the previous k positions and k coin tosses to a vertex of the graph which neighbors
the current position of the token. For a Player I strategy SI and Player II strategy SII

define Fn(SI,SII) as the expected payoff in the game of horizon n, when Players I and
II play according to strategies SI and SII respectively. Define the value for Player I as
uI,n = supSI

infSII
Fn(SI,SII), and the value for Player II as uII,n = infSII

supSI
Fn(SI,SII).

Note that we consider both uI,n and uII,n as functions of the initial position of the token.
Intuitively uI,n(x) is the supremum of the values that Player I can ensure to earn and uII,n(x)
is the infimum of the values Player II can ensure not to overpay, both in the game of horizon
n that starts from x ∈ V . It is clear that uI,0 = uII,0 = g and one can easily check that
uI,n ≤ uII,n. In a game of horizon n+ 1 that starts at x, if Players I and II play according to
the strategies SI and SII which, in the first step, push the token to xI and xII respectively,
we have

Fn+1(SI,SII)(x) = f(x) +
1

2

(
F2,n+1(SI,SII)(xI) + F2,n+1(SI,SII)(xII)

)
, (3.1.1)

where F2,n+1(SI,SII)(y) is the expected payoff between steps 2 and n + 1 conditioned on
having position y in the second step of the game. It is easy to see that using the above
notation uI,n = supSI

infSII
F2,n+1(SI,SII) and uII,n = infSII

supSI
F2,n+1(SI,SII), where SI and

SII are strategies for Player I and Player II in the game that lasts for n+ 1 steps. Now using
induction in n and (3.1.1) one can check that un := uI,n = uII,n for any n, and that the
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sequence (un) satisfies u0 = g and

un+1(x) =
1

2

(
min
y∼x

un(y) + max
y∼x

un(y)
)

+ f(x). (3.1.2)

Furthermore the infima and the suprema in the definitions of uI,n and uII,n are achieved
for the strategies that at step k of the game of horizon n pull the token to a neighbor that
maximizes (minimizes) the value of un−k (such a neighbor exists for finite degree graphs, and
also in the case of an ε-adjacency graph provided un−k is known a priori to be continuous).

In this paper we will mainly study the described game through the recursion (3.1.2).

Remark 3.1.2. In the case of ε-adjacency graphs we will normally assume that the terminal
and the running payoff are continuous functions on V and heavily use the fact that the
game values un are continuous functions. To justify this it is enough to show that, if u is
a continuous function on V , then so are uε(x) = maxB(x,ε) u and uε(x) = minB(x,ε) u. For
this, one only needs to observe that for any two points x, y ∈ V such that d(x, y) < δ, any
point in B(x, ε) is within distance of δ from some point in B(y, ε), and vice versa. Now the
(uniform) continuity of uε and uε follows from the uniform continuity of u, which holds by
compactness of V .

For a game played on an arbitrary connected graph of finite diameter, if the sequence of
game values (un) converges pointwise, the limit u is a solution to the equation

u(x)− 1

2
(min
y∼x

u(y) + max
y∼x

u(y)) = f(x). (3.1.3)

The discrete infinity Laplacian ∆∞u is defined at a vertex x as the negative left hand side
of the above equation. As mentioned before, the case of Euclidean ε-adjacency graphs is
interesting because of the connection between the game values and the viscosity solutions of
(3.1.5) defined in Definition 3.1.4. To observe this it is necessary to scale the payoff function
by the factor of ε2. Therefore in the case of ε-adjacency graphs we define the ε-discrete
Laplace operator as

∆ε
∞u(x) =

(miny∈B(x,ε) u(y) + maxy∈B(x,ε) u(y))− 2u(x)

ε2
,

and consider the equation
−∆ε

∞u = f. (3.1.4)

Remark 3.1.3. Observe that, compared to the discrete infinity Laplacian, we removed a
factor 2 from the denominator. This definition is more natural when considering the infinity
Laplacian ∆∞ described below. As a consequence we have that the pointwise limit u of
the game values (un)n played on an ε-adjacency graph with the payoff function ε2f/2 is a
solution to (3.1.4).
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We will consider the infinity Laplace equation on a connected domain Ω with C1 boundary
∂Ω, with vanishing Neumann boundary conditions{

−∆∞u = f in Ω,

∇νu = 0 on ∂Ω.
(3.1.5)

Here ν (or more precisely ν(x)) denotes the normal vector to ∂Ω at a point x ∈ ∂Ω. The
infinity Laplacian ∆∞ is formally defined as the second derivative in the gradient direction,
that is

∆∞u = |∇u|−2
∑
i,j

uxiuxixjuxj . (3.1.6)

We will define the solutions of (3.1.5) and prove the existence in the following viscosity sense.
First define the operators ∆+

∞ and ∆−∞ as follows. For a twice differentiable function u and a
point x such that ∇u(x) 6= 0 define ∆+

∞u and ∆−∞u to be given by (3.1.6), that is ∆+
∞u(x) =

∆−∞u(x) = ∆∞u(x). For x such that ∇u(x) = 0 define ∆+
∞u(x) = max{∑i,j uxixj(x)vivj}

and ∆−∞u(x) = min{∑i,j uxixj(x)vivj}, where the maximum and the minimum are taken
over all vectors v = (v1, . . . ,vd) of Euclidean norm 1.

Definition 3.1.4. A continuous function u : Ω → R is said to be a (viscosity) subsolution
to (3.1.5) if for any function ϕ ∈ C∞(Ω) (infinitely differentiable function on an open set
containing Ω) and a point x0 ∈ Ω, such that u − ϕ has a strict local maximum at x0, we
have either

a) −∆+
∞ϕ(x0) ≤ f(x0) or

b) x0 ∈ ∂Ω and ∇ν(x0)ϕ(x0) ≤ 0.

A continuous function u : Ω→ R is said to be a (viscosity) supersolution if −u is a (viscosity)
subsolution when f is replaced by −f in (3.1.5). A continuous function u is said to be a
(viscosity) solution to (3.1.5) if it is both a subsolution and a supersolution.

Note that the notion of (sub, super)solutions does not change if one replaces the condition
ϕ ∈ C∞(Ω) with ϕ ∈ C2(Ω).

Remark 3.1.5. The above definition, while having the advantage of being closed under taking
limits of sequences of solutions, might be slightly unnatural because the condition in a) is
sufficient for x0 ∈ ∂Ω at which u−ϕ has a strict local maximum. Following [19] we can define
the strong (viscosity) subsolution as a continuous function u such that, for any ϕ ∈ C∞(Ω)
and any x0 ∈ Ω, at which u− ϕ has a strict local maximum, we have

a’) −∆+
∞ϕ(x0) ≤ f(x0), if x0 ∈ Ω,

b’) ∇νϕ(x0) ≤ 0, if x0 ∈ ∂Ω.
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Strong (viscosity) supersolutions and solutions are defined analogously. While it is clear
that the requirements in this definition are stronger than those in Definition 3.1.4, it can
be shown that, when Ω is a convex domain, any (sub, super)solution is also a strong (sub,
super)solution. To show this assume that u is a viscosity subsolution to (3.1.6) in the
sense of Definition 3.1.4 and let x ∈ ∂Ω and ϕ ∈ C∞(Ω) be such that u − ϕ has a strict
local maximum at x and ∇νϕ(x) > 0. Without the loss of generality we can assume that
x = 0 and that the normal vector to ∂Ω at 0 is ν = −ed, where ed is the d-th coordinate
vector. Thus by the convexity, the domain Ω lies above the coordinate plane xd = 0. Now
define the function φ ∈ C∞(Ω) as φ(y) = ϕ(y) + αyd − β(yd)

2, for positive α and β. Since
∇φ(0) = ∇ϕ(0) + αed, for α small enough we still have ∇νφ(0) > 0. Moreover the Hessian
matrix of φ is the same as that of ϕ, with the exception of the (d, d)-entry which is decreased
by 2β. Since ∇νφ(0) > 0 and ∇νφ(0) does not depend on β, for β large enough we will have
−∆+

∞φ(0) > f(0). Moreover since we can find an open set U such that ϕ(y) ≤ φ(y) for all
y ∈ Ω∩U , we have that u−φ has again a strict local maximum at 0. Since it doesn’t satisfy
the conditions in Definition 3.1.4, this leads to a contradiction.

Statements of results

We want to study the values of games as their horizons tend to infinity. Clearly taking payoff
function f to be of constant sign will make the game values diverge. Since increasing the
payoff function by a constant c results in the increase of the value of the game of horizon n
by nc, the most we can expect is that we can find a (necessarily unique) shift f + c of the
payoff function f for which the game values behave nicely. The first result in this direction
is the following theorem which holds for all connected graphs of finite diameter.

Theorem 3.1.6. For any connected graph G = (V,E) of finite diameter and any bounded
function f : V → R there is a constant cf , such that the following holds: For any bounded
function u0 : V → R, if (un) is the sequence of game values with the terminal and running
payoffs u0 and f respectively, then the sequence of functions (un − ncf ) is bounded.

We will call cf from Theorem 3.1.6 the Player I’s long term advantage for function f .
For both adjacency graphs and finite graphs with loops we have convergence of the game
values.

Theorem 3.1.7. Let G = (V,E) be either an adjacency graph, or a finite graph with a loop
at each vertex. Let f, u0 : V → R be functions on the set of vertices, which are assumed to
be continuous if G is an adjacency graph. Assume cf = 0. In a game played on G with
the terminal and running payoffs u0 and f respectively, the sequence of game values (un) is
uniformly convergent.

The following theorem gives the correspondence between the tug-of-war games and the
equation (3.1.3). While for adjacency graphs and finite graphs with loops this is a straight-
forward corollary of Theorem 3.1.7, this result also holds for all finite graphs, even when
Theorem 3.1.7 may fail to hold (see Example 3.2.9).
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Theorem 3.1.8. Let G = (V,E) be either an adjacency graph, or a finite graph. Let
f, u0 : V → R be functions on the set of vertices, which are assumed to be continuous if G is
an adjacency graph. Then the equation (3.1.3) has a solution u if and only if cf = 0.

Let V be a compact length space and a consider a function f ∈ C(V ). To emphasize
the dependence on ε define cf (ε) as the Player I’s long term advantage for a game played
on the ε-adjacency graph defined on V with the running payoff f . As already mentioned,
to study the limiting case ε ↓ 0 for ε-adjacency graphs, we need to scale the running payoff
function by a factor of ε2, that is, the we take ε2f as the running payoff function. Note that
the Player I’s long term advantage corresponding to this game is equal to ε2cf (ε).

The first problem one encounters is the fact that cf (ε) depends on the value of ε (see
Example 3.3.1). The following theorem gives meaning to the notion of Player I’s long term
advantage in the continuous case.

Theorem 3.1.9. For any compact length space V and any continuous function f : V → R
the limit limε↓0 cf (ε) exists.

We will denote the limit from the above theorem by cf = limε↓0 cf (ε).

Theorem 3.1.10. Let V be a compact length space, and (εn) a sequence of positive real
numbers converging to zero. Any sequence (un) of continuous functions on V satisfying
−∆εn

∞un = f − cf (εn) and such that 0 is in the range of un for all n, has a subsequence
converging to a Lipshitz continuous function. Moreover the Lipshitz constant is bounded by
a universal constant multiple of diam(V )‖f‖.

For Euclidean ε-adjacency graphs, the limits from Theorem 3.1.10 give us viscosity solu-
tions of (3.1.5).

Theorem 3.1.11. Let Ω be a domain of finite diameter with C1 boundary ∂Ω and f : Ω→ R
a continuous function, such that cf = 0. Then the equation (3.1.5) has a viscosity solution
u which is Lipshitz continuous, with Lipshitz constant depending on Ω and the norm ‖f‖.

It is natural to expect the existence of viscosity solutions to (3.1.5) only for one shift of
the function f . This is proven in the following theorem for convex domains Ω.

Theorem 3.1.12. Let Ω be a convex domain of finite diameter with C1 boundary ∂Ω and
f : Ω→ R a continuous function. Then the equation (3.1.5) has a viscosity solution u if and
only if cf = 0.

Remark 3.1.13. Directly from Theorem 3.1.6 one can deduce that cλf = λcf and cf+λ = cf+λ
for any λ ∈ R. For compact length spaces, after taking an appropriate limit, we obtain the
same properties for cf . Thus Theorem 3.1.8 tells us that, under its assumptions, for any
function g on the vertex set (continuous in the case of adjacency graphs), there is a unique
constant c, such that equation (3.1.3) can be solved when f = g − c. Theorems 3.1.11 and
3.1.12 tell us that any function g ∈ C(Ω) can be shifted to obtain a function f ∈ C(Ω) for
which (3.1.5) can be solved, and that this shift is unique when Ω is convex.
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Remark 3.1.14. In the case of finite graphs and for a fixed f (such that cf = 0), the solutions
to the equation (3.1.3) are not necessarily unique (even in the case of finite graphs with self
loops). A counterexample and a discussion about the continuous case is given in Section 3.4.

3.2 The discrete case

Since the terminal payoff can be understood as the value of the game of horizon 0, we will
not explicitly mention the terminal payoff when it is clear from the context.

Lemma 3.2.1. Let G = (V,E) be a connected graph of finite diameter and let f , g, u0 and
v0 be bounded functions on V .

(i) Let (un) and (vn) be the sequences of values of games played with the running payoff
f . If u0 ≤ v0, then un ≤ vn for all n > 0. Furthermore, if for some c ∈ R we have
v0 = u0 + c, then vn = un + c for all n > 0.

(ii) Let (u1
n) and (u2

n) be sequences of values of games played with the terminal payoffs
u1

0 = u2
0 = u0 and the running payoffs f and g respectively. If f ≤ g then u1

n ≤ u2
n, for

all n. Furthermore if for some c ∈ R we have g = f + c, then u2
n = u1

n + nc for all
n > 0.

Proof. All statements are easy to verify by induction on n using relation (3.1.2).

Lemma 3.2.2. For a connected graph G = (V,E) of finite diameter and bounded functions
f, u0 : V → R, let (un)n be the sequence of values of games played on G with running payoff
f . Then for all n ≥ 0 we have

maxun −minun ≤ (maxu0 −minu0) + diam(G)2(max f −min f).

Proof. Consider the sequence of game values (vn) played with the running payoff f and zero
terminal payoff. From part (i) of Lemma 3.2.1 we get vn + minu0 ≤ un ≤ vn + maxu0. This
implies that

maxun −minun ≤ (max vn −min vn) + (maxu0 −minu0).

From this it’s clear that it is enough to prove the claim when u0 = 0. Furthermore, by
part (ii) of Lemma 3.2.1 it is enough to prove the claim for an arbitrary shift of the payoff
function f , and therefore we assume that min f = 0. This implies that un ≥ 0, for n ≥ 0.
Now, for a fixed n, by Lemma 3.2.1 (i), playing the game of horizon n− k with the running
payoff f and the terminal payoffs uk and 0, gives the game values un and un−k respectively,
and

un−k ≤ un. (3.2.1)

Fix a vertex z ∈ V . For a vertex y ∈ V pick a neighbor z(y) ∈ V of y so that
dist(z(y), z) = dist(y, z) − 1 (if y and z are neighbors then clearly z(y) = z). Let S0

II,k
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be the optimal strategy for Player II in the game of horizon k. For any Player I strategy
SI,k for a game of horizon k, we have Fk(SI,k,S0

II,k) ≤ uk. Now define the “pull towards z”
strategy SII for a game of length n as follows. At any step of the game if the token is at the
vertex y 6= z and if z is not among the past positions of the token, then strategy SII takes the
token to the vertex z(y). If T is the first time at which the token is at the vertex z, at this
point Player II starts playing using the strategy S0

II,n−T . If Xt is the position of the token at
time t, then it can be easily checked that for Yt = (diam(G)− dist(Xt, z))

2 − t, the process
Yt∧T is a submartingale, with uniformly bounded differences. Moreover the stopping time T
has a finite expectation since it is bounded from above by the first time that Player II has
won diam(G) consecutive coin tosses (partition coin tosses into consecutive blocks of length
diam(G) and notice that the order of the first block in which Player II wins all the coin tosses
has exponential distribution with mean 2diam(G)). Therefore applying the optional stopping
theorem we get E(YT ) ≥ E(Y0), hence E(T ) ≤ diam(G)2. Now consider the game in which
Player I plays optimally and Player II plays according to the above defined strategy SII.
Since each move in the optimal strategies depends only on the current position of the token,
by the independence of the coin tosses, we have that conditioned on T = k, the expected
payoff in steps k + 1 to n is bounded from above by un−k(z). Clearly the total payoff in the
first k steps is bounded from above by kmax f . For x 6= z the strategy S0

II is suboptimal and

un(x) ≤
n∑
k=1

P(T = k)(kmax f + un−k(z)) + P(T ≥ n)nmax f.

Since f is a non-negative function, so is un for any n. Using this with (3.2.1) we get

un(x) ≤
n∑
k=1

P(T = k)kmax f + un(z) + P(T ≥ n)nmax f

≤ un(z) + E(T ) max f.

Since x and z are arbitrary and E(T ) ≤ diam(G)2 for all x and z, the claim follows.

Proof of Theorem 3.1.6. As in the proof of Lemma 3.2.2, we can assume that u0 = 0. Denote
Mk = maxuk and mk = minuk. By part (i) of Lemma 3.2.1, playing the game with the
constant terminal payoff Mk gives the sequence of game values (un +Mk)n. Comparing this
to the game with the terminal payoff uk we obtain un+k(x) ≤ un(x) +Mk. Taking maximum
over all vertices x leads to the subaditivity of the sequence (Mn), that is Mn+k ≤Mn +Mk.
In the same way we can prove that the sequence (mn) is superaditive. By Lemma 3.2.2 we
can find a constant C so that Mn −mn ≤ C for any n, and thus we can define

cf := lim
n

Mn

n
= inf

n

Mn

n
= lim

n

mn

n
= sup

n

mn

n
. (3.2.2)

Then, for any n ≥ 0 we have

ncf ≤Mn ≤ mn + C ≤ ncf + C,
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and therefore, for any x ∈ V

|un(x)− ncf | ≤ max{|Mn − ncf |, |mn − ncf |} ≤ C.

For an arbitrary graph G = (V,E) and a function f on V , define the (non-linear) operator
Af acting on the space of functions on V , so that for each x ∈ V

Afu(x) =
1

2

(
max
y∼x

u(y) + min
y∼x

u(y)
)

+ f(x).

Lemma 3.2.3. Assume G = (V,E) is either an adjacency graph or a finite graph. Let f ,
u and v be functions on V , which are also assumed to be continuous if G is an adjacency
graph. Then we have

min(v − u) ≤ min(Afv − Afu) ≤ max(Afv − Afu) ≤ max(v − u), (3.2.3)

and
‖Afv − Afu‖ ≤ ‖v − u‖. (3.2.4)

Moreover for x ∈ V we have Afv(x) − Afu(x) = max(v − u) if and only if for any two
neighbors y1 and y2 of x such that u(y1) = miny∼x u(y), and v(y2) = maxy∼x v(y), we also
have v(y1) = miny∼x v(y), and u(y2) = maxy∼x u(y) and v(yi) − u(yi) = max(v − u), for
i ∈ {1, 2}.
Proof. Fix a vertex x ∈ V and note that maxy∼x v(y) ≤ maxy∼x u(y) + max(v − u) and
miny∼x v(y) ≤ miny∼x u(y) + max(v − u). Adding these inequalities one obtains Afv(x) ≤
Afu(x)+max(v−u). The inequality min(v−u) ≤ min(Afv−Afu) now follows by replacing
u and v by −u and −v respectively, and (3.2.4) follows directly from (3.2.3). It is clear that
the equality Afv(x)− Afu(x) = max(v − u) holds if and only if both

max
y∼x

v(y) = max
y∼x

u(y) + max(v − u) (3.2.5)

and
min
y∼x

v(y) = min
y∼x

u(y) + max(v − u) (3.2.6)

hold. It is obvious that the conditions in the statement are sufficient for (3.2.5) and (3.2.6)
to hold, and it is only left to be proven that these conditions are also necessary. To end this
assume that both (3.2.5) and (3.2.6) hold and take y1 and y2 to be arbitrary neighbors of x
such that u(y1) = miny∼x u(y) and v(y2) = maxy∼x v(y). Clearly we have

min
y∼x

v(y) ≤ v(y1) ≤ u(y1) + max(v − u) = min
y∼x

u(y) + max(v − u),

and moreover all the inequalities in the above expression must be equalities. This implies
both v(y1) = u(y1) + max(v − u) and v(y1) = miny∼x v(y). The claim for y2 can be checked
similarly.



CHAPTER 3. TUG-OF-WAR 60

The following proposition proves Theorem 3.1.7 in the case of finite graphs with loops. For
a sequence of game values (un)n with the running payoff f , define M f

n (u0) = maxx∈V (un(x)−
un−1(x)) and mf

n(u0) = minx∈V (un(x)− un−1(x)).

Proposition 3.2.4. Under the assumptions of Theorem 3.1.7 the sequence of game values
converges if it has a convergent subsequence.

Proof. If M f
n (u0) = −δ < 0 for some n ≥ 1, we have un ≤ un−1 − δ and by applying part (i)

of Lemma 3.2.1 we obtain um ≤ um−1 − δ, for any m ≥ n. This is a contradiction with the
assumption that cf = 0. Therefore M f

n (u0) ≥ 0 and similarly mf
n(u0) ≤ 0. By Lemma 3.2.3

the sequences (M f
n (u0))n and (mf

n(u0))n are bounded and non-increasing and non-decreasing
respectively and therefore they converge.

Let w be the limit of a subsequence of (un)n. Assume for the moment that M f
1 (w) =

mf
1(w) = 0, or equivalently Afw = w. Now Lemma 3.2.3 implies

‖un+1 − w‖ = ‖Afun − Afw‖ ≤ ‖un − w‖.

Therefore ‖un −w‖ is decreasing in n and, together with the fact that 0 is its accumulation
point, this yields limn ‖un−w‖ = 0. Therefore it is enough to prove that M f

1 (w) = mf
1(w) =

0. The rest of the proof will be dedicated to showing M f
1 (w) = 0 (the claim mf

1(w) = 0
following analogously).

First we prove that (M f
n (w)) is a constant sequence. Assume this is not the case, that is

for some k we have M f
k+1(w) < M f

k (w). For any n ≥ 1 the mapping v 7→M f
n (v) is continuous

and therefore we can find a neighborhood U of w (U ⊂ C(V,R) in the adjacency case) and
δ > 0 such that M f

k+1(v) < M f
k (v)− δ, for any v ∈ U . Observing that M f

k (un) = M f
n+k(u0),

and that un ∈ U for infinitely many positive integers n, we have M f
`+1(u0) < M f

` (u0)− δ for
infinitely many positive integers `. This is a contradiction with the fact that (M f

n (u0))n is a
nonnegative decreasing sequence.

Now let M = M f
n (w) ≥ 0 and denote by (wn) the sequence of game values with terminal

and running payoffs w0 = w and f respectively. Define the compact sets Vn = {x ∈ V :
wn+1(x) = wn(x) + M} and tn = minx∈Vn wn(x). Taking x ∈ Vn we have M = wn+1(x) −
wn(x) = max(wn − wn−1) and thus we can apply Lemma 3.2.3 to find y ∼ x such that
wn(y) = minz∼xwn(z) and y ∈ Vn−1. Because the graph G satisfies x ∼ x for any vertex x,
we obtain

wn(x) ≥ wn(y) = wn−1(y) +M ≥ tn−1 +M, (3.2.7)

for any x ∈ Vn. Taking the minimum over x ∈ Vn yields tn ≥ tn−1 +M . For M > 0 this is a
contradiction with the boundedness of the sequence (wn), which in turn follows from cf = 0.
Thus M = 0 which proves the statement.

Remark 3.2.5. Note that in the case of finite graphs, the first inequality in (3.2.7) is the only
place where loops were used.

The existence of accumulation points will follow from Lemma 3.2.7, which in turn will
use the following lemma. Note that these two lemmas can replace the last paragraph in the
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proof of Lemma 3.2.4. However we will leave the proof of Lemma 3.2.4 as it is, since it gives
a shorter proof of Theorem 3.1.7 for finite graphs with loops.

Lemma 3.2.6. Under the assumption of Theorem 3.1.7 we have

lim
n

(un+1 − un) = 0.

Proof. We will prove that limn max(un+1 − un) = 0. The claim then follows from the fact
that limn min(un+1 − un) = 0 which follows by replacing un by −un and f by −f .

First assume that for some real numbers λ1 and λ2, a vertex x ∈ V and a positive integer n
we have un+1(x)−un(x) ≥ λ1 and M f

n (u0) ≤ λ2. Since maxz∼x un(z)−maxz∼x un−1(z) ≤ λ2,
by (3.1.2) we see that

min
z∼x

un(z)−min
z∼x

un−1(z) ≥ 2λ1 − λ2.

This implies that for a vertex y ∼ x, such that un−1(y) = minz∼x un−1(z), we have

min{un(x), un(y)} ≥ min
z∼x

un(z) ≥ un−1(y) + 2λ1 − λ2. (3.2.8)

We will inductively apply this simple argument to prove the statement.
As argued in the proof of Proposition 3.2.4 the sequence (M f

n (u0)) is non-increasing and
nonnegative and therefore converges to M = limnM

f
n (u0) ≥ 0. For a fixed δ > 0 let n0 be

an integer such that M f
n (u0) ≤ M + δ, for all n ≥ n0. For a given positive integer k, let x0

be a point such that un0+k(x0)− un0+k−1(x0) ≥M . Then applying the reasoning that leads
to (3.2.8) for λ1 = M and λ2 = M + δ, we can find a point x1 such that

min{un0+k−1(x0), un0+k−1(x1)} ≥ un0+k−2(x1) + (M − δ).
If k ≥ 3 we can apply the same argument for functions un0+k−1, un0+k−2 and un0+k−3, point
x1, λ1 = M − δ and λ2 = M + δ. Inductively repeating this reasoning we obtain a sequence
of points (x`), 1 ≤ ` ≤ k − 1 such that

min{un0+k−`(x`−1), un0+k−`(x`)} ≥ un0+k−`−1(x`) +M − (2` − 1)δ.

Summing the inequalities

un0+k−`(x`−1) ≥ un0+k−`−1(x`) +M − (2` − 1)δ,

for 1 ≤ ` ≤ k − 1 and un0+k(x0)− un0+k−1(x0) ≥M leads to

un0+k(x0) ≥ un0(xk−1) + kM − 2kδ, (3.2.9)

for all k ≥ 1. Taking k(δ) to be the smallest integer larger than log(M/δ)
log 2

we obtain

un0+k(δ)(x0) ≥ un0(xk(δ)−1) +M
( log(M/δ)

log 2
− 2
)
. (3.2.10)

If M > 0 then limδ↓0M
(

log(M/δ)
log 2

−2
)

=∞, which by (3.2.10) implies that the sequence (un)

is unbounded. This is a contradiction with the assumption that cf = 0.
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Lemma 3.2.7. The sequence of game values (un) for a game on an adjacency graph is an
equicontinuous sequence of functions.

The proof of this lemma uses an idea similar to the proof of Lemma 3.2.6. We obtain a
contradiction by constructing a sequence of points along which the function values will be
unbounded. Since the induction step is more complicated we put it into a separate lemma.
First define the oscillation of a continuous function v : V → R as osc(v, δ) = supd(x,y)≤δ |v(x)−
v(y)|.

Lemma 3.2.8. Let (un) be a sequence of game values played on an adjacency graph. Assume
that for positive real numbers λ1, λ2, λ3, ρ < ε and a positive integer n we have

osc(f, ρ) ≤ λ1, osc(un, ρ) ≤ λ2, and un ≤ un+1 + λ3. (3.2.11)

Let (x, y) be a pair of points which satisfies d(x, y) < ρ and un+1(x)− un+1(y) ≥ δ, for some
δ > 0. Then there are points (x1, y1) which satisfy d(x1, y1) < ρ, and the inequalities

un(x1)− un(y1) ≥ 2δ − 2λ1 − λ2, (3.2.12)

and
un+1(y)− un(y1) ≥ 2δ − 2λ1 − λ2 − λ3. (3.2.13)

Proof. If δ ≤ λ1 + λ2/2 then consider the set S = {z : un(z) ≤ un+1(y) + λ3}, which is
nonempty by the last condition in (3.2.11). If S is equal to the whole space V , then (3.2.13)
will be satisfied automatically, and take x1 and y1 to be any points such that d(x1, y1) < ρ
and un(x1) ≥ un(y1) (so that (3.2.12) is satisfied). Otherwise, since V is path connected we
can choose points x1 and y1 so that d(x1, y1) < ρ and y1 ∈ S (so that (3.2.13) is satisfied)
and x1 /∈ S (so that (3.2.12) is satisfied). In the rest of the proof we will assume that
δ > λ1 + λ2/2.

Choose points xm, xM , ym, and yM so that

un(xm) = minz∼x un(z), un(xM) = maxz∼x un(z),
un(ym) = minz∼y un(z), un(yM) = maxz∼y un(z).

Take a point zm such that d(y, zm) ≤ ε−d(x, y) and d(zm, ym) < ρ, which surely exists, since
d(x, y) < ρ and d(y, ym) ≤ ε. By the triangle inequality this point satisfies d(x, zm) ≤ ε.
Therefore we have zm ∼ x, zm ∼ y and

d(ym, {z : z ∼ x, z ∼ y}) < ρ. (3.2.14)

Analogously we construct a point zM such that d(xM , zM) < ρ and d(zM , y) ≤ ε. Now we
have

un(xM)− un(yM) ≤ un(xM)− un(zM) ≤ λ2. (3.2.15)



CHAPTER 3. TUG-OF-WAR 63

Next calculate

(un(xM)− un(yM)) + ( min
z∼x,z∼y

un(z)− un(ym))

≥ (un(xM)− un(yM)) + (un(xm)− un(ym))

= 2(un+1(x)− f(x)− un+1(y) + f(y))

≥ 2δ − 2λ1. (3.2.16)

Plugging (3.2.15) into (3.2.16) we get

min
z∼x,z∼y

un(z)− un(ym) ≥ 2δ − 2λ1 − λ2. (3.2.17)

Now define r as the supremum of the values r̃ such that for every z0 ∈ B(ym, r̃) we have
un(z0) < minz∼x,z∼y un(z). By (3.2.14), (3.2.17) and the assumption on δ it follows that r
is well defined and 0 < r < ρ. Finally we take a point x1 such that d(ym, x1) = r with
un(x1) = minz∼x,z∼y un(z) (which exists by the definition of r). By (3.2.17) we have

un(x1) = min
z∼x,z∼y

un(z) ≥ un(ym) + 2δ − 2λ1 − λ2.

Furthermore (3.2.17) also implies

un+1(y) ≥ un(y)− λ3 ≥ min
z∼x,z∼y

un(z)− λ3 ≥ un(ym) + 2δ − 2λ1 − λ2 − λ3.

This proves the claim with y1 = ym.

Proof of Lemma 3.2.7. By part (ii) of Lemma 3.2.1 it is enough to prove the claim for an
arbitrary shift of the payoff function f , so by the definition of cf , we can assume that cf = 0
(see Remark 3.1.13).

By Lemma 3.2.6, for a given λ3 > 0 choose n0 large enough so that ‖un − un−1‖ ≤ λ3,
for all n ≥ n0. Assume that the sequence (un) is not equicontinuous. Then there is a δ0 > 0
such that for any ρ > 0 there are infinitely many integers k satisfying osc(un0+k, ρ) ≥ δ0.
Fix such a k and ρ and define δ1 = osc(un0+k, ρ). Since ‖un0+k − un0+`‖ ≤ (k − `)λ3, for all
0 ≤ ` ≤ k we get that

osc(un0+`, ρ) ≤ δ1 + 2(k − `)λ3. (3.2.18)

Now fix an arbitrary τ and let x0 and y0 be points that satisfy d(x0, y0) < ρ and

un0+k(x0)− un0+k(y0) ≥ δ1 − τ. (3.2.19)

Applying Lemma 3.2.8 to the pair (x0, y0) with δ = δ1− τ , λ2 = δ1 + 2λ3, λ1 = osc(f, ρ) and
λ3 defined as before we obtain points x1 and y1 such that d(x1, y1) < ρ, and

un0+k−1(x1)− un0+k−1(y1) ≥ δ1 − 2τ − 2λ1 − 2λ3,
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and
un0+k(y0)− un0+k−1(y1) ≥ δ1 − 2τ − 2λ1 − 3λ3.

Using (3.2.18) and applying the same arguments inductively, for λ1, λ3 and τ small enough,
we obtain a sequence of points (x`), 1 ≤ ` ≤ k, which satisfy the inequalities

un0+k−`(x`)− un0+k−`(y`) ≥ δ1 − a`τ − b`λ1 − c`λ3, (3.2.20)

and
un0+k−`+1(y`−1)− un0+k−`(y`) ≥ δ1 − a`τ − b`λ1 − (c` + 1)λ3, (3.2.21)

where the coefficients satisfy a1 = 2, b1 = 2, c1 = 2 and

a`+1 = 2a`, b`+1 = 2(b` + 1), c`+1 = 2(c` + `+ 1).

This leads to a` = 2`, b` = 2`+1 − 2 and c` = 2`+2 − 2` − 4. Summing (3.2.21) with these
values of coefficients for 1 ≤ ` ≤ k we obtain

un0+k(y0)− un0(yk) ≥ kδ1 − 2k(2τ + 4λ1 + 8λ3). (3.2.22)

Now taking k to be the largest integer not larger than log(δ1/(2τ+4λ1+8λ3))
log 2

and increasing the
value of n0 if necessary, leads to

un0+k(y0)− un0(yk) ≥ δ1

( log(δ1/(2τ + 4λ1 + 8λ3))

log 2
− 2
)
. (3.2.23)

Since the values of τ , λ1 and λ3 can be chosen arbitrarily small and δ1 is bounded from below
by δ0, the right hand side of (3.2.23) can be arbitrarily large. This is a contradiction with
the assumption that cf = 0.

Proof of Theorem 3.1.7. By Theorem 3.1.6, (un) is a bounded sequence of functions In the
case of finite graphs with loops the statement follows from Proposition 3.2.4. For the case of
adjacency graphs, note that, by Lemma 3.2.7 (un) is also equicontinuous and, by the Arzela-
Ascoli theorem, it has a convergent subsequence. Now the claim follows from Proposition
3.2.4.

Proof of Theorem 3.1.8 in the case of adjacency graphs. If u is a solution to (3.1.3) then
playing the game with terminal payoff u0 = u and running payoff f gives the constant
sequence of game values un = u. In the other direction, it is clear that the limit in Theorem
3.1.7 is a solution to the equation (3.1.3).

Example 3.2.9. Let G be a bipartite graph with partition of the vertex set into V1 and V2

(meaning V1 ∩ V2 = ∅, V = V1 ∪ V2 and all edges in the graph are connecting vertices in V1

and V2). Let f be a function on V having value 1 on V1 and −1 on V2. Then if u0 = 0 it is
easy to check from (3.1.2) that un = f if n is odd and un = 0 if f is even, and therefore the
sequence (un) does not converge. However u = f/2 is a solution to (3.1.3).
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From the proof of Lemma 3.2.6 we can extract the following result about the speed of
convergence.

Proposition 3.2.10. There is a universal constant C > 0 such that, under the assumptions
of Theorem 3.1.7, for n ≥ 2 we have

‖un+1 − un‖ ≤
AC

log n
, (3.2.24)

where A = (maxu0 −minu0) + diam(G)2(max f −min f).

Proof. Again, it is enough to prove the claim when ‖un+1 − un‖ is replaced by M f
n (u0) =

max(un − un−1). If maxum < minun for some m < n then by Lemma 3.2.3 we have
um+k(n−m) − um ≥ k(minun −maxum) for all k ≥ 0, which contradicts the boundedness of
(un) (which in turn follows from the assumption cf = 0). Similarly we get the contradiction
when maxum < minun for some n < m. Therefore we have minun ≤ maxum for all m and
n and Lemma 3.2.2 implies that

maxun+k −minun ≤ 2A. (3.2.25)

By Lemmas 3.2.3 and 3.2.6 we know that (M f
n (u0)) is a non-increasing sequence converging

to 0. For given r > δ assume n and k are such that for all n ≤ m ≤ n + k we have
r − δ ≤M f

m(u0) ≤ r. Now (3.2.9) implies that

maxun+k −minun ≥ kr − kδ − 2kδ.

Combining this with (3.2.25) we see that, if K(r− δ, r) is the number of indices m such that
r − δ ≤ M f

m(u0) ≤ r, then for all integers 0 ≤ k ≤ K(r − δ, r) we have kr − 2k+1δ ≤ 2A.
Taking δ = r2−2A/r−2 we get that K(r − δ, r) < 1 + 2A/r. Now let r0 > 0 and define the
sequence rn+1 = rn(1− 2−2A/rn−2), which is clearly decreasing and converging to 0. By the
above discussion we have

K(rn+1, rn) ≤ 2A

rn
+ 1. (3.2.26)

Furthermore define N(α, β) =
∑
K(rn+1, rn), where the sum is taken over all indices n for

which the interval [rn+1, rn] intersects the interval [α, β]. Defining sn = log(2A/rn) we have

sn+1 = sn − log
(

1 − 2−e
sn−2

)
. Since the function s 7→ log

(
1 − 2−e

s−2
)

is negative and

increasing, the number of indices n such that the interval [sn, sn+1] intersects a given interval
[a, b] is no more than

b− a
− log

(
1− 2−eb−2

) + 2 ≤ (b− a)2e
b+2 + 2,

where we used the inequality log(1 − x) ≤ −x, for 0 ≤ x < 1. This together with (3.2.26)
implies

N(2Ae−b, 2Ae−a) ≤
(

(b− a)2e
b+2 + 2

)(
eb + 1

)
.
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Therefore we have
N(2Ae−t, 2A) ≤ (4 + o(1))2e

t

et,

and since M f
1 (u0) ≤ 2A, there are no more than (4 + o(1))2A22A/rr−1 indices n such that

M f
n (u0) ≥ r, which then easily implies the claim.

Remark 3.2.11. From Lemma 3.2.1 (ii) it is clear that removing the assumption cf = 0
from the statements of Lemma 3.2.6 and Proposition 3.2.10 yields limn(un+1− un) = cf and
|‖un+1 − un‖ − cf | ≤ AC

logn
respectively.

One of the obstacles to faster convergence is the fact that for each vertex x the locations
where the maximum and the minimum values of un among its neighbors are attained depends
on n. However, in the case of finite graphs with loops, these locations will eventually be
“stabilized”, if (for example) the limiting function is one-to-one. Therefore after a certain
(and possibly very large) number of steps, we will essentially see a convergence of a certain
Markov chain, which is exponentially fast. To prove this in the next theorem recall some
basic facts about finite Markov chains. A time homogeneous Markov chain X on a finite
state space is given by its transition probabilities P (i, j) = P(X1 = j|X0 = i). Denote the
transition probabilities in k steps as P k(i, j) = P(Xk = j|X0 = i) (these are just entries of
the kth power of the matrix (P (i, j))ij). An essential class of a Markov chain is a maximal
subset of the state space with the property that for any two elements i and j from this set
there is an integer k such that P k(i, j) > 0. An essential class is called aperiodic if it contains
an element i such that the greatest common divisor of integers k satisfying P k(i, i) > 0 is 1.
The state space can be decomposed into several disjoint essential classes and a set of elements
i which are not contained in any essential class and which necessarily satisfy P k(i, j) > 0
for some integer k and some element j contained in an essential class. If all essential classes
of a Markov chain are aperiodic then the distribution of (Xn) converges to a stationary
distribution and, moreover this convergence is exponentially fast. This result is perhaps
more standard when the chain is irreducible (the whole state space is one essential class).
However the more general version we stated is a straightforward consequence of this special
case after we observe that the restriction of a Markov chain to an aperiodic essential class
is an irreducible Markov chain, and that for any element i not contained in any essential
class, conditioned on X0 = i, the time of the first entry to an essential class is stochastically
dominated from above by a geometric random variable. For more on this topic see [46].

Proposition 3.2.12. Let G be a finite graph with a loop at each vertex, f a function on the
set of vertices and (un) a sequence of game values played with running payoff f . Assuming
cf = 0, let u be the limit of the sequence (un) and assume that for each vertex x ∈ V there are
unique neighbors ym and yM of x, such that u(ym) = miny∼x u(y) and u(yM) = maxy∼x u(y).
Then there are constants C > 0 and 0 < α < 1 (depending on G, f and u0) such that
‖un − u‖ ≤ Cαn.

Proof. Let A = (axy) be the matrix such that axy = 1/2 if either u(y) = maxz∼x u(z) or
u(y) = minz∼x u(z) and 0 otherwise. The Markov process Xk on the vertex set, with the
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transition matrix A, has the property that all essential classes are aperiodic. To see this
fix an essential class I ⊂ V let x be a vertex such that u(x) = maxI u, and observe that
axx = 1/2. Therefore the distribution of Xk converges exponentially fast to a stationary
distribution.

Since u = limn un, there is an n0 such that for n ≥ n0 and any vertex x the unique
neighbors of x where u attains the value maxz∼x u(z) (minz∼x u(z)) and where un attains
the value maxz∼x un(z) (minz∼x un(z)) are equal. Writing functions as column vectors, this
means that un+1 = Aun + f for n ≥ n0. Thus, defining vn = un+1 − un, for n ≥ n0 we have

vn+1 = un+2 − un+1 = Aun+1 − Aun = Avn.

This means that for any k ≥ 0 we have vn0+k(x) = Ex(vn0(Xk)). Therefore the sequence of
functions (vn0+k)k converges exponentially fast. Since we necessarily have limn vn = 0 the
claim follows from ‖un − u‖ ≤

∑∞
k=n ‖vk‖.

Our next goal is to prove Theorem 3.1.8 for all finite graphs. Recall the (nonlinear)
operator Af from Lemma 3.2.3. For a real number c ∈ R, and a function u define Df (u, c) =
‖Af−cu − u‖. To prove the existence of a solution it is enough to prove that Df has a
minimum value equal to 0. First we use a compactness argument to prove that it really
has a minimum. For the rest of this section all the graphs will be arbitrary connected finite
graphs.

Lemma 3.2.13. Let G be a finite connected graph, and f and u functions on V . Then

maxu−minu ≤ 2diam(G)+1(‖f‖+Df (u, 0)). (3.2.27)

Proof. Assume that the function u attains its minimum and maximum at vertices xm and
xM respectively. Let xm = y0, y1, . . . , yk−1, yk = xM be a path connecting xm and xM with
k ≤ diam(G). Observe that

Afu(yi) ≥
u(xm) + u(yi+1)

2
+ f(yi),

for i = 0, . . . , k − 1. Estimating the left hand side of the above equations by Afu ≤ u +
Df (u, 0) we get

u(yi+1) ≤ 2u(yi) + 2Df (u, 0)− 2f(yi)− u(xm),

for i = 0, . . . , k− 1. Multiplying the i-th inequality by 2k−1−i, for i = 0, . . . k− 1 and adding
them we obtain

u(xM)− u(xm) ≤ (2k+1 − 2)(Df (u, 0)−min f),

which implies the claim.

Lemma 3.2.14. Under the assumptions of Lemma 3.2.13 the function Df (u, c) has a min-
imum value.
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Proof. Since Df is a continuous function, we only need to prove that τ := inf Df = infU×I Df ,
where the right hand side is the infimum of the values of Df over U × I for a bounded set
of functions U and a bounded interval I. First assume that c is a constant large enough so
that f + c has all values larger than τ + 1. If xm is a vertex where a function u attains its
minimum, we have

1

2
(max
y∼xm

u(y) + min
y∼xm

u(y)) + f(x) + c ≥ u(xm) + τ + 1.

This implies that Df (u,−c) ≥ τ + 1 for any function u. Similarly for sufficiently large c we
have that Df (u, c) ≥ τ + 1 for any function u. Therefore there is a bounded interval I such
that the infimum of values of D(u, c) over all functions u and c /∈ I is strictly bigger than τ .

Furthermore by Lemma 3.2.13 we can find a constant K such that for any c ∈ I we have
that maxu−minu ≥ K implies Df (u, c) ≥ τ + 1. Also since Df (u+λ, c) = Df (u, c) for any
λ ∈ R, we have that τ = infU×I Df where U is the set of functions such that minu = 0 and
maxu ≤ K. Since the set U is bounded the claim follows.

Proof of Theorem 3.1.8 in the case of finite graphs. Assuming the existence of a solution the
argument proceeds as in the proof of the adjacency case. By the same argument, to show
the other direction, it is enough to prove that there is a constant c for which there is a
solution to (3.1.3), when the right hand side f is replaced by f − c, since then we necessarily
have c = 0. In other words it is enough to show that minDf = 0. By Lemma 3.2.14
this minimum is achieved and denote it by m = minDf . Assume that m > 0. Fix a
pair (u, c) where the minimum is achieved and define S+

u,c := {x : Af−cu(x) − u(x) = m},
S−u,c := {x : Af−cu(x) − u(x) = −m} and Su,c := S+

u,c ∪ S−u,c. By definition Su,c 6= ∅. If
S+
u,c = ∅ then there is a δ > 0 small enough so that Af−c+δu − u < m, and of course
Af−c+δu − u > −m. This implies that Df (u, c − δ) < m, which is a contradiction with the
assumption that m = minD. Therefore S+

u,c 6= ∅, and similarly S−u,c 6= ∅.
Call a set Sr ⊂ S+

u,c removable for function u, if both of the following two conditions hold:

(i) For every x ∈ S+
u,c there is a y /∈ Sr so that y ∼ x and u(y) = minz∼x u(z).

(ii) There are no x ∈ S+
u,c and y ∈ Sr so that y ∼ x and u(y) = maxz∼x u(z).

By increasing values of the function u on Sr we can remove this set from S+
u,c. More precisely,

define the function ũδ so that ũδ(x) = u(x) for x /∈ Sr and ũδ(x) = u(x)+ δ for x ∈ Sr. Since
the graph G is finite, for δ small enough and all points x /∈ S+

u,c, we have Af−cũδ(x)− ũδ(x) <
m. Furthermore, by the above two conditions, if δ small enough, for any point x ∈ S+

u,c we
have Af−cũδ(x) = Af−cu(x). On the other hand for x ∈ Sr we have

Af−cũδ(x)− ũδ(x) = m− δ,

and therefore S+
ũδ,c

= S+
u,c\Sr. Moreover S−ũδ,c ⊂ S−u,c is obvious.

Similarly we can define removable sets S−r contained in S−u,c so that there are no x ∈ S−u,c
and y ∈ Sr such that u(y) = minz∼x u(z) and that for every x ∈ S−u,c there is a y /∈ Sr such
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that u(y) = maxz∼x u(z). This set can be removed from S−u,c be decreasing the value of u
on this set. Note that the removable sets in S+

u,c and S−u,c can be removed simultaneously as
described above. Thus if a pair (u, c) minimizes the value of Df , and ũ is obtained from u
by removing removable sets in S+

u,c and S−u,c, then the pair (ũ, c) also minimizes the value of
Df , and moreover Sũ,c ⊂ Su,c.

Call a function u tight (for f) if there is c ∈ R such that the pair (u, c) minimizes Df ,
and so that the set Su,c is of smallest cardinality, among all minimizers of Df . By the
discussion above, tight functions have no non-empty removable sets. For a tight function u
define v = Af−cu. By Lemma 3.2.3 we have that Df (v, c) = ‖Af−cv − v‖ ≤ m and because
m = minDf we have Df (v, c) = m.

Now observe that it is enough to prove that for any tight function u and v = Af−cu,
the set S+

v,c\S+
u,c is removable for function v. To see this first note that by symmetry the

set S−v,c\S−u,c is also removable for v. Let v1 be a function obtained by removing all these
vertices as described above. In particular we have v1(x) = v(x) = u(x) + m for x ∈ S+

u,c

and v1(x) = v(x) = u(x) −m for x ∈ S−u,c. The function v1 then satisfies S+
v1,c
⊆ S+

u,c and
S−v1,c

⊆ S−u,c. By tightness of u it follows that S+
v1,c

= S+
u,c and S−v1,c

= S−u,c and thus the
function v1 is also tight. Now we can repeat this argument to obtain a sequence of tight
functions (vk) such that S+

vk,c
= S+

u,c, S
−
vk,c

= S−u,c, vk(x) = u(x) + km for x ∈ S+
u,c and

vk(x) = u(x)−km for x ∈ S−u,c. Since D(vk, c) = m for all k and limk(max vk−min vk) =∞,
Lemma 3.2.13 gives a contradiction with the assumption that m > 0.

Thus it is only left to prove that for any tight function u and v = Af−cu the set S+
v,c\S+

u,c

is removable for function v. For this we need to check the conditions (i) and (ii) from the
definition of the removable sets. Take a vertex x ∈ S+

v,c and note that since Af−cv(x)−v(x) =
max(v − u) and v = Af−cu, by Lemma 3.2.3 for a y1 ∼ x such that u(y1) = minz∼x u(z), we
have v(y1) = minz∼x v(z) and y1 ∈ S+

u,c which checks the first assumption. Furthermore by
Lemma 3.2.3 for any y2 such that v(y2) = maxz∼x v(z) we have y2 ∈ S+

u,c which also checks
the second assumption in the definition of removable sets.

Next we present two examples for which we explicitly calculate the value of the Player
I’s long term advantage cf .

Example 3.2.15. If G is a complete graph with loops at each vertex and f a function on
the set of vertices, then cf = (max f + min f)/2. To see this, use the fact that cf defined
as above satisfies cf+λ = cf + λ for any λ ∈ R, and that cf = 0 implies that u = f solves
(3.1.3).

When G is a complete graph without loops the situation becomes more complicated. If
the function f attains both the maximum and the minimum values at more than one vertex
then again we have cf = (max f + min f)/2, and again in the case max f + min f = 0 the
function u = f satisfies equation (3.1.3).

If the maximum and the minimum values of f are attained at unique vertices then

cf =
max f + min f

3
+

max2 f + min2 f

6
, (3.2.28)
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where max2 f and min2 f denote the second largest and the second smallest values of the
function f respectively. To prove this assume the expression in (3.2.28) is equal to zero, and
let xM and xm be the vertices where f attains the maximum and the minimum value. Then
define a function u so that u(xM) = (2 max f + max2 f)/3, u(xm) = (2 min f + min2 f)/3
and u(x) = f(x), for x /∈ {xm, xM}. Now using the fact that cf = 0 and that u attains its
maximum and minimum values only at xM and xm respectively, it can be checked that u
solves (3.1.3).

Finally in the case when the maximum value of the function f is attained at a unique
vertex xM and the minimum at more than one vertex we have cf = (2 max f + max2 f +
3 min f)/6. When this expression is equal to zero, one solution u of the equation (3.1.3) is
given by u(x) = f(x) for x 6= xM and u(xM) = (2 max f + max2 f)/3. Similarly when the
maximum of f is attained at more than one vertex and minimum at a unique vertex we have
cf = (2 min f + min2 f + 3 max f)/6.

Example 3.2.16. Consider a linear graph of length n with loops at every vertex, that is take
V = {1, . . . , n} and connect two vertices if they are at Euclidean distance 0 or 1. Let f be a
non-decreasing function on the set of vertices, that is f(i) ≤ f(i+ 1), for 1 ≤ i ≤ n− 1. By
induction and (3.1.2), running the game with the vanishing terminal payoff and the running
payoff f gives sequence of game values (un), each of which is a non-decreasing function.
Representing functions un as column vectors, we have un+1 = Aun + f , where A = (aij)
is a matrix with a11 = ann = 1/2, aij = 1/2, if |i − j| = 1 and aij = 0 for all other
values of i and j. Therefore vn = un+1 − un satisfies vn+1 = Avn. Using this we see that
vn(x) = Ex(f(Xn)), where Xn is the simple random walk on the graph with the vertex set
{1, . . . , n} where i and j are connected with an edge if |i − j| = 1 and with loops at 1
and n. The stationary distribution of the random walk (Xn) is uniform on {1, . . . , n}, and
this is the limit of the distributions of Xn as n tends to infinity. From here it is clear that

limn vn(x) =
(∑n

i=1 f(i)
)
/n and cf is equal to the average of the values of function f .

The condition that f is monotone is necessary. Consider for example the linear graph
with loops and three vertices and the function (f(1), f(2), f(3)) = (−1, 2,−1). Then by
(3.1.2) we have u0 = 0, u1 = f and u2 = f + 1/2 which implies that un+1 = un + 1/2 for all
n ≥ 1 and by Lemma 3.2.1 (i) we have cf = 1/2.

3.3 The continuous case

The main goal of this section is to study the game values on Euclidean ε-adjacency graphs,
as defined in Section 3.1, to obtain the existence of viscosity solutions to the equation (3.1.5).
One of the main concerns will be the dependence of the game values and limits, obtained in
the previous section, on values of step sizes ε. The following example shows that the issue
starts already with the Player I’s long term advantage cf (ε) (recall that cf (ε) was defined
as the Player I’s long term advantage for a game played on an ε-adjacency graph with the
running payoff f).
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Example 3.3.1. This example shows that, in general, for Euclidean ε-adjacency graphs on
a domain Ω and a continuous function f : Ω → R, the value of cf (ε) depends on ε. First
observe a trivial fact that for any Ω of diameter diam(Ω) and f we have cf (diam(Ω)) =
(max f + min f)/2. Next let Ω = (0, 1) and let f be a piecewise linear function that is linear
on the intervals [0, 1/2] and [1/2, 1] and has values f(0) = f(1/2) = 1 and f(1) = −1. By
the above observation we have cf (1) = 0. However notice that from (3.1.2) it is clear that,
for any ε, playing the game with step size ε, the vanishing terminal payoff and the running
payoff f , the game values will be non-increasing functions on [0, 1]. Therefore in the game of
step size 1/2 the game values un at points 0, 1/2 and 1 are equal to the game values played
on the linear graph with three vertices and loops on each vertex, with terminal payoff zero
and running payoff equal to 1, 1 and −1 at the leftmost, central and the rightmost vertex
respectively. Using Example 3.2.16 and going back to the game on [0, 1] this implies that
cf (1/2) = 1/3.

For a more comprehensive example, construct a monotone function f on [0, 1] such that
no value of (2n + 1)−1

∑2n

k=0 f(k2−n) is attained for two distinct integers n. By the above
reasoning and Example 3.2.16 the value of cf (ε) varies for arbitrarily small values of ε.

For the remainder of this paper, all the graphs are assumed to be ε-adjacency graphs and
the dependence on ε will be explicitly specified.

Theorem 3.1.9 settles the issue raised in the above example. We will need several technical
lemmas for the proof of Theorem 3.1.9. The main ingredient of the proof is a comparison
between the values of discrete infinity Laplacian with different step sizes from Lemma 3.3.4.
The idea for (as well as one part of) this lemma came from [3].

Lemma 3.3.2. If f and u are continuous functions on a compact length space V such that
−∆ε

∞u ≤ f then cf (ε) ≥ 0. Similarly −∆ε
∞u ≥ f implies cf (ε) ≤ 0.

Proof. The second claim follows by replacing u and f by −u and −f respectively, so it is
enough to prove the first one. The condition −∆ε

∞u ≤ f can be rewritten as

1

2

(
max
z∼x

u(z) + min
z∼x

u(z)
)

+
ε2

2
f(x) ≥ u(x).

Thus the game value u1 of the first step of the game, played with the terminal payoff u0 = u,
running payoff ε2f/2 and step sizes ε satisfies u1 ≥ u0. By Lemma 3.2.3 we have un+1 ≥ un
for any n, hence cf (ε) ≥ 0 is clear.

Lemma 3.3.3. Mapping ε 7→ cf (ε) is continuous on R+.

Proof. For a given ε let uε ∈ C(V ) be a solution of −∆ε
∞uε = f − cf (ε), which exists

by Theorem 3.1.8 and Remarks 3.1.3 and 3.1.13. Since for any u ∈ C(V ), it holds that
ε 7→ −∆ε

∞u is a continuous function from R+ to (C(V ), ‖ · ‖∞), so for a fixed ε and any
δ > 0 we can find η > 0 such that | −∆ε1

∞uε| ≤ f − cf (ε) + δ whenever |ε1 − ε| ≤ η. Now by
applying Lemma 3.3.2 we see that for such ε1 we have |cf (ε1) − cf (ε)| ≤ δ, which gives the
continuity.
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As mentioned above, the main part of the proof of Theorem 3.1.9 is contained in the
following lemma. For Euclidean ε-adjacency graphs, the first inequality in (3.3.1) already
appeared as Lemma 4.1 in [3]. However since their definition of the discrete Laplacian was
somewhat different close to the boundary ∂Ω, their estimates held only away from ∂Ω. This
issue does not appear in our case and their proof goes verbatim. For reader’s convenience
we repeat their proof of the first inequality in (3.3.1).

For a function u : V → R we first define uε = maxz∈B(x,ε) u(z) and uε = minz∈B(x,ε) u(z).
Furthermore define T+

ε u(x) = uε(x)− u(x) and T−ε u(x) = u(x)− uε(x) (this corresponds to
εS+

ε and εS−ε in [3]). Now we can write −∆ε
∞u = (T−ε u− T+

ε u)/ε2.

Lemma 3.3.4. Suppose that u ∈ C(V ) satisfies −∆ε
∞u ≤ f1 for some f1 ∈ C(V ). Then we

have
−∆2ε

∞u
ε ≤ f1

2ε
and −∆ε

∞u
ε ≤ f1

ε
. (3.3.1)

If, in addition, we have −∆2ε
∞u ≤ f2 for some f2 ∈ C(V ) then

−∆3ε
∞u

ε ≤ (8f2
2ε

+ f1
ε
)/9. (3.3.2)

Proof. In the proof we will repeatedly use the following arguments. If z0, z1 ∈ V are such
that z1 ∈ B(z0, δ) and v(z1) = vδ(z0) then we have

T+
δ v(z0) = v(z1)− v(z0) ≤ T−δ v(z1). (3.3.3)

Furthermore the assumption −∆δ
∞v ≤ f implies that

T+
δ v(z0) ≤ T−δ v(z1) ≤ T+

δ v(z1) + δ2f(z1). (3.3.4)

Denote points y1 ∈ B(x, ε), y2 ∈ B(y1, ε), zM ∈ B(x, 2ε) and zm ∈ B(x, 2ε) so that
u(y1) = uε(x), u(y2) = uε(y1), u(zM) = u2ε(x) and u(zm) = u2ε(x). We calculate

T+
2εu

ε(x) = u3ε(x)− uε(x)

= (u3ε(x)− u(y2)) + (u(y2)− u(y1))

≥ T+
ε u(y2) + T+

ε u(y1)

≥ 2T+
ε u(y1)− ε2f1(y2)

≥ 2T+
ε u(x)− ε2(f1(y2) + 2f1(y1))

≥ T+
ε u(x) + T−ε u(x)− ε2(f1(y2) + 2f1(y1) + f1(x)). (3.3.5)

In the first inequality we used the fact that B(y2, ε) ⊂ B(x, 3ε) and in the second inequality
we used (3.3.4) with z0 = y1, z1 = y2 and δ = ε. In the next line we again used (3.3.4) with
z0 = x, z1 = y1 and δ = ε, and in the last line the assumption −∆ε

∞u ≤ f1.
Furthermore we have

T−2εu
ε(x) = uε(x)− min

B(x,2ε)
uε

≤ (uε(x)− u(x)) + (u(x)− uε(x))

= T+
ε u(x) + T−ε u(x). (3.3.6)
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The inequality above follows from the fact that for every z ∈ B(x, 2ε) we have maxB(z,ε) u ≥
minB(x,ε) u. Now the first inequality in (3.3.1) is obtained by subtracting (3.3.5) from (3.3.6).

For the second inequality in (3.3.1) note that

T+
ε u

ε(x) = u2ε(x)− u(y1) ≥ T+
ε u(y1),

and
T−ε u

ε(x) = uε(x)− min
B(x,ε)

uε ≤ u(y1)− u(x) ≤ T−ε u(y1).

Subtracting the above inequalities it follows that −∆ε
∞u

ε(x) ≤ −∆ε
∞u(y1) ≤ f1(y1) ≤ f

ε

1(x).
We prove the inequality (3.3.2) similarly. First we calculate

T+
3εu

ε(x) = u4ε(x)− uε(x)

= (u4ε(x)− u(zM)) + (u(zM)− u(y2)) + (u(y2)− u(y1))

≥ T+
2εu(zM) + T+

ε u(y1)

≥ T+
2εu(zM) + T−ε u(y1)− ε2f1(y1)

≥ T+
2εu(zM) + T+

ε u(x)− ε2f1(y1).

In the third line we used the fact that y2 ∈ B(x, 2ε) which implies that u(y2) ≤ u(zM), in
the fourth line the assumption and in the last line (3.3.3).

Using similar arguments again we have

T−3εu
ε(x) = uε(x)− min

B(x,3ε)
uε

≤ uε(x)− u2ε(x)

= (u(y1)− u(x)) + (u(x)− u(zm))

= T+
ε u(x) + T−2εu(x)

≤ T+
ε u(x) + T+

2εu(x) + (2ε)2f2(x)

≤ T+
ε u(x) + T−2εu(zM) + (2ε)2f2(x).

Now subtracting the above calculations and dividing by (3ε)2, we obtain

−∆3ε
∞u

ε(x) ≤ (T−2εu(zM)− T+
2εu(zM))/(9ε2) + 4f2(x)/9 + f1(y1)/9,

from where the fact follows directly.

Recall the notation osc(f, δ) = supd(x,y)≤δ |f(x)− f(y)|.

Proposition 3.3.5. For any f ∈ C(V ), ε > 0 and any positive integer n we have

max{|cf (ε2−n)− cf (ε)|, |cf (ε3−n)− cf (ε)|} ≤ osc(f, 2ε). (3.3.7)
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Proof. First note that the functions f
r

and f
r

differ from f by at most osc(f, r) at any point,
which easily implies

max{|cf (ρ)− cfr(ρ)|, |cf (ρ)− cf
r
(ρ)|} ≤ osc(f, r), (3.3.8)

for any ρ.
Taking u to be a continuous function such that −∆δ

∞u = f − cf (δ), by Lemma 3.3.4 we

have −∆2δ
∞u

δ ≤ f
2δ− cf (δ) and therefore also −∆3δ

∞u
2δ ≤ f

4δ− cf (δ). By Lemma 3.3.2 these
inequalities and their symmetric counterparts imply that

cf
2δ

(2δ) ≤ cf (δ) ≤ c
f

2δ(2δ) and cf
4δ

(3δ) ≤ cf (δ) ≤ c
f

4δ(3δ).

Applying these estimates inductively to δ = ε2−n, . . . ε/2 and δ = ε3−n, . . . ε/3 respectively,
we see that

cf
2ε

(ε) ≤ cf (ε2
−n) ≤ c

f
2ε(ε) and cf

2ε
(ε) ≤ cf (ε3

−n) ≤ c
f

2ε(ε).

Using (3.3.8) with r = 2ε and ρ = 2ε, these inequalities imply (3.3.7).

Proof of Theorem 3.1.9. Since min f ≤ cf (ε) ≤ max f , there are accumulation points of
cf (ε) as ε ↓ 0, and we only need to prove that there is only one. Suppose that there are
two such accumulation points c1 < c2 and denote δ = c2 − c1. Let I1 and I2 be disjoint
open intervals of length δ/2, centered around c1 and c2 respectively. Let ε0 be a positive
real number such that osc(f, ε0) ≤ δ/4, and consider the open sets J1 and J2 defined as
Ji = c−1

f (Ii) ∩ (0, ε0/2). First note that the set {2−m3n : m,n ∈ Z+} is dense in R+. This
follows from the fact that {n log 3−m log 2 : m,n ∈ Z+} is dense in R, which in turn follows
from the fact that log 3/ log 2 is an irrational number. Take an arbitrary t ∈ J1 and, since
{s/t : s ∈ J2} is an open set in R+, we can find non-negative integers m0 and n0 such that
3n02−m0t ∈ J2. Therefore

|cf (t)− cf (3n02−m0t)| > δ/2.

However this gives a contradiction, since both t and 3n02−m0t lie in the interval (0, ε0/2),
and so by Proposition 3.3.5 we have

max{|cf (2−m0t)− cf (t)|, |cf (3n02−m0t)− cf (2−m0t)|} ≤ osc(f, ε0) ≤ δ/4.

Proposition 3.3.6. For a sequence (εn) converging to zero, let (un) be a sequence of con-
tinuous functions on a compact length space V , satisfying −∆εn

∞un = f − c(εn). Then (un)
is an equicontinuous sequence and for all n large enough we have

maxun −minun ≤ 6 diam(V )2‖f‖.

Furthermore, any subsequential limit of the sequence (un) is Lipshitz continuous, with the
Lipshitz constant 5 diam(V )‖f‖.
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Proof. It is enough to prove that for n large enough and any x ∈ V , we have that

T+
εnun(x) ≤ 5 diam(V )‖f‖εn. (3.3.9)

This is because, for any two points x, y ∈ V and n such that εn < d(x, y) there are points
x = x0, x1, . . . , xk, xk+1 = y in V such that d(xi, xi+1) < εn and k = bd(x, y)/εnc. Assuming
that (3.3.9) holds we have that

un(y)− un(x) =
k∑
i=0

(un(xi+1)− un(xi)) ≤
k∑
i=0

T+
εnun(xi) ≤ Kd(x, y) +Kεn, (3.3.10)

where K = 5 diam(V )‖f‖. On the other hand for εn ≥ d(x, y) we have un(y)−un(x) ≤ Kεn.
These two facts then easily imply the equicontinuity, the required bound on maxun−minun,
for n large enough and the Lipshitz continuity of subsequential limits.

The rest of the proof will be devoted to establishing the bound in (3.3.9). We will use
the “marching argument” of Armstrong and Smart from Lemma 3.9 in [3]. First by (3.3.4)
if y ∈ B(x, εn) is such that un(y) = un

εn(x) then using the fact that min f ≤ cf (εn) ≤ max f
we have

T+
εnun(x) ≤ T+

εnun(y) + ε2n‖f − cf (εn)‖ ≤ T+
εnun(y) + 2ε2n‖f‖. (3.3.11)

For a fixed n let x0 ∈ V be a point where the value of T+
εnun is maximized (it’s a continuous

function so it can be maximized) and let Mn = T+
εnun(x0) be the maximal value. Using the

same argument as in (3.3.10) and the fact that V is bounded we have

un(y)− un(x) ≤
(d(x, y)

εn
+ 1
)
Mn. (3.3.12)

Then for any k let xk+1 ∈ B(xk, εn) be such that un(xk+1) = un
εn(xk). By (3.3.11) we have

that T+
εnun(xk+1) ≥ T+

εnun(xk) − 2εn
2‖f‖ and thus T+

εnun(xk) ≥ T+
εnun(x0) − 2kε2n‖f‖ which

implies that for any m ≥ 1

un(xm)− un(x0) =
m−1∑
k=0

T+
εnun(xk) ≥ mT+

εnun(x0)−m2ε2n‖f‖.

Combining this with (3.3.12) we obtain that

mMn −m2ε2n‖f‖ ≤
(diam(V )

εn
+ 1
)
Mn,

which gives

Mn ≤
m2ε2n‖f‖

m− 1− diam(V )/εn
.

Plugging in m = b2 diam(V )/εn + 2c proves (3.3.9) for εn small enough.
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Proof of Theorem 3.1.10. The claim follows directly from Proposition 3.3.6 using the Arzela-
Ascoli theorem.

Finally Theorem 3.3.9 below proves Theorem 3.1.11. However we will first need to state
an auxiliary result which appeared as Lemma 4.2 in [3]. For x ∈ Rd and ε > 0, define B(x, ε)
as the closed ball around x of Euclidean radius ε. Also define the discrete infinity Laplacian
∆̃ε
∞ on the whole Rd as

∆̃ε
∞v(x) =

1

ε2

(
max
B(x,ε)

v + min
B(x,ε)

v − 2v(x)
)
.

The first part of the following lemma is the content of Lemma 4.2 in [3], while the second
part is contained in its proof (see (4.5) in [3]).

Lemma 3.3.7 (Lemma 4.2 and (4.5) from [3]). For any open set U , function ϕ ∈ C3(U)
and ε0 > 0 there is a constant C > 0, depending only on ϕ, such that the following holds.

(i) For any point x ∈ U that satisfies B(x, 2ε0) ⊆ U and ∇ϕ(x) 6= 0 we have

−∆∞ϕ(x) ≤ −∆ε
∞ϕ(x) + C(1 + |∇ϕ(x)|−1)ε,

for all 0 < ε ≤ ε0.

(ii) For any 0 < ε ≤ ε0 if v = ∇ϕ(x)/|∇ϕ(x)| and w ∈ B(0, 1) is such that ϕ(x + εw) =
maxB(x,ε) ϕ, then |v −w| ≤ C|∇ϕ(x)|−1ε.

Next we give an auxiliary Lemma needed for the proof of Theorem 3.3.9. First define a
cone in Rd with vertex x, direction v ∈ Rd, |v| = 1, angle 2 arcsinα and radius r as

C(x,v, α, r) =
{
λw ∈ Rd : 0 ≤ λ ≤ r, |w| = 1,w · v ≥ 1− α

}
.

Lemma 3.3.8. Let Ω be a domain with C1 boundary ∂Ω, let x0 ∈ ∂Ω. Assume ϕ ∈ C∞(Ω)
is a smooth function on the closure of Ω and ∇νϕ(x0) > 0. Then we can find positive α
and r and an open set U containing x0 such that C(x,−∇ϕ(x)/|∇ϕ(x)|, α, r) ⊂ Ω, for all
x ∈ U ∩ Ω.

Proof. Denote v = ∇ϕ(x0)/|∇ϕ(x0)|. By the continuity of ∇ϕ it is enough to prove that
for some α and r and U we have Cx = C(x,−v, α, r) ⊂ Ω, for all x ∈ U ∩ Ω. Moreover
define the reverse cone C′x = C(x,v, α, r). It is clear that we can find α and r satisfying
Cx0 ⊂ Ω. Moreover, since the boundary ∂Ω is C1, it is easy to see that, by decreasing α and
r if necessary, we can assume that Cx ⊂ Ω and C′x ⊂ Ωc, for all x ∈ ∂Ω with |x− x0| < 2r.
Then if x ∈ Ω is such that |x− x0| < r and Cx 6⊂ Ω we can find a point y ∈ ∂Ω ∩Cx. Then
the fact that x ∈ C′y ∩ Ω and |y − x0| < 2r leads to contradiction.
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Theorem 3.3.9. Let Ω ⊂ Rd be a domain with C1 boundary, (εn) a sequence of positive
real numbers converging to zero and (un) a sequence of continuous functions on Ω satisfying
−∆εn

∞un = f − cf (εn). Any limit u of a subsequence of (un) is a viscosity solution to{
−∆∞u = f − cf in Ω,

∇νu = 0 on ∂Ω.

Proof. We denote the subsequence again by (un). To prove that u is a solution to (3.1.5) we
will check the assumptions from Definition 3.1.4 for local maxima. The conditions for local
minima follow by replacing u and f by −u and −f . Let ϕ ∈ C∞(Ω) be a smooth function
and x0 ∈ Ω be a point at which u− ϕ has a strict local maximum. We will prove the claim
for x0 ∈ ∂Ω. For the case x0 ∈ Ω see either of the two proofs of Theorem 2.11 in [3] (in
Sections 4 and 5).

Assume that ∇νϕ(x0) > 0. For k large enough we can find points xk so that limk xk = x0

and such that uk − ϕ has a local maximum at xk. We can assume that for all k we have
|∇ϕ(xk)| > c, for some c > 0. Denote vk = −∇ϕ(xk)/|∇ϕ(xk)| and for a given k large
enough, a point xk ∈ B(xk, εk) such that ϕ(xk) = minB(xk,εk) ϕ. By Lemma 3.3.7 (ii)
and Lemma 3.3.8 we can find α and r such that for k large enough we necessarily have
xk ∈ C(xk,vk, α, r) ⊂ Ω. For such k this readily implies that

−∆̃εk
∞ϕ(xk) ≤ −∆εk

∞ϕ(xk). (3.3.13)

Lemma 3.3.7 further yields that there is a constant C such that, for k large enough

−∆∞ϕ(xk) ≤ −∆̃εk
∞ϕ(xk) + C(1 + c−1)εk. (3.3.14)

Plugging (3.3.13) into (3.3.14) we obtain

−∆∞ϕ(xk) ≤ −∆εk
∞ϕ(xk) + C(1 + c−1)εk. (3.3.15)

Since uk − ϕ has a local maximum xk we have that

−∆εk
∞ϕ(xk) ≤ −∆εk

∞uk(xk) = f(xk)− cf (εk).

Inserting this into (3.3.15) and taking the limit as k tends to infinity then implies that
−∆∞ϕ(x0) ≤ f(x0)− cf .
Proof of Theorem 3.1.11. The claim follows directly from Theorems 3.1.10 and 3.3.9.

To prove Theorem 3.1.12 we will use Theorem 2.2 from [4]. A general assumption in [4]
is that the boundary ∂Ω is decomposed into two disjoint parts, ΓD 6= ∅ on which Dirichlet
boundary conditions are given and ΓN on which vanishing Neumann boundary conditions
are given. While the assumption ΓD 6= ∅ is crucial for their existence result (Theorem 2.4
in [4]) this assumption is not used in Theorem 2.2 from [4]. In the case when ΓD = ∅ their
result can be stated as follows.
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Theorem 3.3.10 (Case ΓD 6= ∅ of Theorem 2.2 in [4]). Let Ω be a convex domain and
f, u : Ω → R continuous functions such that u is a viscosity subsolution to the equation

(3.1.5). Then for any ε > 0 it holds that −∆ε
∞u

ε ≤ f
2ε

on Ω.

Proof of Theorem 3.1.12. By Theorem 3.1.11 the equation (3.1.5) has a solution when cf =
0. Now assume that u is a viscosity solution to (3.1.5). By Theorem 3.3.10 we have that
−∆ε

∞u
ε ≤ f + osc(f, 2ε). Now Lemma 3.3.2 implies that cf (ε) ≥ − osc(f, 2ε). Similarly one

can obtain cf (ε) ≤ osc(f, 2ε) and the claim follows by taking the limit as ε ↓ 0.

Remark 3.3.11. In the one dimensional case (say Ω = [0, r]) the viscosity solutions to the
equation (3.1.5) are standard solutions to the equation −u′′ = f where u′(0) = u′(r) = 0. It
is clear that in this case cf = 1

r

∫ r
0
f(x)dx. The fact that cf is a linear functional of f relies

heavily on the fact that the infinity Laplacian in one dimension is a linear operator. For
higher dimensional domains f 7→ cf is in general not a linear functional. Next we show that
a two dimensional disc is an example of a domain on which cf is a nonlinear functional of f
(essentially the same argument can be applied for balls in any dimension higher than one).

Take Ω to be a two dimensional disc of radius r centered at the origin, and assume that on
C(Ω) the mapping f 7→ cf is a linear functional. Since it is clearly a positive functional and
c1 = 1 by Riesz representation theorem it is of the form cf =

∫
Ω
fdµ, for some probability

measure µ on Ω. Let f be a radially symmetric function on Ω, that is f(x) = g(|x|), where
g : [0, r] → R is a continuous function. Let un : Ω → R and vn : [0, r] → R be the sequences
of game values with the running payoff f played on Ω and the running payoff g played on
[0, r] respectively, both games played with vanishing terminal payoff and step size ε. Using
induction and (3.1.2) one can see that for any n we have un(x) = vn(|x|). Thus, using
the expression for cf in the one dimensional case we have that µ is necessarily of the form
µ(dx, dy) = dxdy

rπ
√
x2+y2

, that is µ is a radially symmetric measure which assigns equal measure

to any annulus of given width.
Next let U1, U2, U3 and U4 be disjoint discs with centers at (0, r/2), (r/2, 0), (0,−r/2),

(−r/2, 0) and radii r/4. By Ω1 denote the smallest disc with the center (0, r/2) which
contains Ω. Let f1 : Ω1 → [0, 1] be a function with support in U1 and which values are
radially symmetric around (0, r/2), decreasing with the distance from (0, r/2) and such that
f1(x) = 1 whenever the distance between x and (0, r/2) is no more than r/4 − δ1. Playing
the game on Ω1 with running payoff f1 leads to

cf1 ≥
2

3r

∫ r/4−δ1

0

1dt =
1

6
− 2δ1

3r
. (3.3.16)

Let w1
n and wn be the sequences of game values with the running payoff f1 played on Ω1 and

the running payoff f1|Ω played on Ω respectively, both games played with vanishing terminal
payoff and step size ε. It is clear that w1

n are radially symmetric functions on Ω1 with values
decreasing with the distance from (0, r/2). Using this and the induction on n one can see
that w1

n(x) ≤ wn(x) for any x ∈ Ω. Therefore it holds that cf1 ≤ cf1|Ω , which together with
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Figure 3.1: Example of functions from Remark 3.3.11. Functions f1, f2, f3 and f4 have
supports in discs U1, U2, U3 and U4 respectively. The shaded area is the support of the
function g.

(3.3.16) implies

cf1|Ω ≥
1

6
− 2δ1

3r
.

Take f2, f3 and f4 to be equal to the function f1 rotated clockwise for π/2, π and 3π/4
respectively and f =

∑4
i=1 fi|Ω. By symmetry and the assumed linearity, the function

f : Ω→ R satisfies

cf ≥
2

3
− 8δ1

3r
. (3.3.17)

Now take g : Ω→ [0, 1] to be a radially symmetric function on Ω, such that g(x) > 0 if and
only if r/4− δ2 ≤ |x| ≤ 3r/4 + δ2 and such that f ≤ g. Again by the assumption we have

cg ≤
1

r

∫ 3r/4+δ2

r/4−δ2
1dt =

1

2
+

2δ2

r
. (3.3.18)

Since cf ≤ cg, for small δ1 and δ2, inequalities (3.3.17) and (3.3.18) give a contradiction with
the assumed linearity of the mapping f 7→ cf . See Figure 3.1.

3.4 Uniqueness discussion

As Figure 3.2 illustrates, in the graph case, once we are given f , we do not always have a
unique solution to

u(x)− 1

2
(min
y∼x

u(y) + max
y∼x

u(y)) = f(x),
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even in the case of a finite graph with self loops. When the running payoff at each vertex
is f , the corresponding “optimal play” will make u(xk) plus the cumulative running payoff
a martingale (xk is the position of the token at the kth step). Under such play, the players
may spend all of their time going back and forth between the two vertices in one of the
black-white pairs in Figure 3.2. (In the case of the second function shown, the optimal move
choices are not unique, and the players may move from one black-white pair to another.)
The basic idea is that as the players are competing within one black-white pair, neither
player has a strong incentive to try to move the game play to another black-white pair.

A continuum analog of this construction appeared in Section 5.3 of [52], where it was used
to show non-uniqueness of solutions to ∆∞u = g with zero boundary conditions. (In this
case, g was zero except for one “positive bump” and one symmetric “negative bump”. Game
players would tug back and forth between the two bumps, but neither had the ability to
make the the game end without giving up significant value.) It is possible that this example
could be adapted to give an analogous counterexample to uniqueness in our setting (i.e.,
one could have two opposite-sign pairs of bumps separated by some distance on a larger
domain with free boundary conditions — and players pulling back and forth within one pair
of bumps would never have sufficient incentive to move to the other pair of bumps — and
thus distinct functions such as those shown in Figure 3.2 could be obtained). However, the
construction seems rather technical and we will not attempt it here.



CHAPTER 3. TUG-OF-WAR 81

1

−1
0 0 0 0

−1

1

1

−1
1 3 5 7

7

9

1

−1
.5 2 3.5 5

4.5

6.5

Figure 3.2: The difference equation (3.1.3) does not always have a unique (up to additive
constant) solution. On each of the three copies of the same graph shown above (assume
self-loops are included, though not drawn), we define f to be the function which is −1 on
black vertices, 1 on white vertices, and 0 on gray vertices. Then each of the three functions
illustrated by numbers above solves (3.1.3). In each case, the value at a gray vertex is the
average of the largest and smallest neighboring values. The value at a black (white) vertex
is 1 less (more) than the average of the largest and smallest neighboring values.
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