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ABSTRACT OF THE THESIS

The Influences of Geospatial Location and Depth on Soil Microbial Community
Composition

by

Keshav Arogyaswamy

Master of Science, Graduate Program in Genetics, Genomics, and Bioinformatics
University of California, Riverside, June 2020

Dr. Emma Aronson, Chairperson

Soil microbial communities are vital to a wide range of ecosystems, but they are poorly

understood. Advances in high-throughput amplicon sequencing have enabled a greater un-

derstanding of how communities differ from each other. Previous studies have both found

important variations with depth within soil profiles and across geospatial location, but few

studies have examined both depth and location simultaneously. This study utilizes the

Critical Zone Observatory Network to assay a total of 18 sites at a continental scale, each

sampled to approximately 100 cm in 10-cm increments. Each of the approximately 180

biologically distinct samples was assessed for a variety of pedological variables including

pH, particle size distribution, and nutrient composition. In addition, 16S (prokaryotic) and

fungal ITS1 amplicons were sequenced to examine microbial community composition. Al-

though previous literature has seen a marked decrease in diversity with increasing depth for

16S communities, this study shows that such soil profiles form a distinct subset, and that in

many sites, there is no significant decrease in diversity with depth (termed “gradient” and

“uniform” profiles here, respectively). Futhermore, while site-to-site variations tend to be
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important drivers of community differences, there are also strong similarities between ex-

tremely geographically distant communities that share similarities in ecological setting. In

particular, soil taxonomic order and dominant vegetation types show strong correspondences

with similarities between communities, but the tendency towards distinction between such

groupings is overshadowed by the gradient-uniform dichotomy. This study, therefore, sug-

gests that future work in comparisons of microbial communities across geospatial gradients

needs to account for the ecological setting of selected sites, in particular accounting for soil

taxonomy and vegetation. Although there are hints that the gradient-uniform dichotomy is

linked to changes in soil texture and the relative availability of carbon and nitrogen, further

research is required to robustly explain this distinction.
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Introduction

Introduction

Soil microbial communities perform a vast variety of ecological functions. They demonstrate

a great degree of diversity both phylogenetically and functionally (Torsvik and Øvre̊as,

2002). Much of this diversity is only beginning to be understood with the advent of high-

throughput sequencing technology, because the vast majority of soil microbes have not

been successfully cultured (Torsvik and Øvre̊as, 2002; Daniel, 2005). While it has been

shown that microbes can have major impacts on the cycling of nutrients such as nitrogen

and carbon(Rothman et al., 2014; Placella et al., 2012; Bardgett et al.; Conrad, 2009),

much remains to be understood about the ways in which microbial communities and their

activities vary between terrestrial environments. Previous studies have demonstrated that

these communities show strong differences with increasing depth in soil profiles (Gabor et al.,

2014), and have found greater differences across depth than between locations (Eilers et al.,

2012). Studies at larger scales have found strong correlations between the environment and

microbial community composition (Thompson et al., 2017), but did not investigate the effect

of depth within soil profiles. Differences in the soil microbial communities’ composition and

function between ecologically distinct areas can be important for better understanding the

relationship of soil microbes and their macro-environment.

The Critical Zone

The Critical Zone (CZ) is defined as the three-dimensional part of the Earth situated be-

tween the highest treetops and the lowest groundwater (Anderson, 2015).In other words,

it is the zone of greatest heterogeneity and the highest concentration of life, encompassing

most terrestrial life, soil, regolith, and groundwater, as well as the vegetation-atmosphere

interface, and the bedrock weathering front. The primary objective of CZ science is to

characterize and understand how the reciprocal interactions among rock, soil, water, air,

and terrestrial organisms influence the Earth’s surface and near-surface environment. The
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Introduction

CZ perspective incorporates multiple spatial scales, both through a vertical profile, as well

as horizontally across the large environmental gradient of the Earth’s surface. Further, CZ

science examines interactions over multiple time scales, ranging from eons to seconds as it

incorporates geological and ecological time scales.

Generally, the Critical Zone Observatories (CZOs) have incorporated a watershed ap-

proach because watersheds can be treated as a cohesive system. Within that context,

various locations of the former CZOs offer a wide spectrum of tectonic, hydrological, bio-

logical, climatic, and anthropogenic processes driving both CZ and landscape evolution. In

the Southern Sierra CZO in California, there is a strong climate gradient and rain to snow

transition. Bedrock type drives critical differences at Luquillo CZO in Puerto Rico. At the

Jemez-Catalina CZO in Arizona and New Mexico, the focus has been on how subsurface

biogeochemistry determines changes in the CZ. The Calhoun CZO in South Carolina is in

a region that faced serious environmental degradation and recent reforestation. Finally,

Reynolds Creek CZO in Idaho has focused on how various drivers of the variation in CZ

properties impact soil carbon transformations and balance. For logistical reasons, the Eel

River CZO was not included in this study.

Soil microbial communities have been seen to vary strongly by depth (Fierer et al., 2003),

more so than by location. Previous studies have shown only modest differences between

microbial communities based on geospatial location, but those studies have either focused

on a smaller geospatial extent (Fierer et al., 2003; Eilers et al., 2012) or have focused on

surficial soil samples (Thompson et al., 2017; Keller et al., 2008; Seaton et al., 2020), rather

than examining the microbial communities that are unique to deeper soils.

Related analysis of these samples (Brewer et al., 2019) showed that geospatial location

had a strong influence on overall 16S community composition by site. A small subset of

phyla were found to increase in relative abundance with increasing depth, including a rela-

tively undescribed phylum, Dormibacteraeota, which had previously been described only in

2



Introduction

Antarctic soils and thawing permafrost (Ji et al., 2017; Woodcroft et al., 2018), and a gen-

eral shift in taxonomy with depth. However, while that analysis was focused on assembly

and characterization of Dormibacteraeota, it also reported a general decrease in diversity

with depth, as has been observed in previous studies (Fierer et al., 2003; Eilers et al., 2012).

The current study, although using the same underlying prokaryotic 16S sequencing data,

highlights differences between sites concerning the trend of diversity with depth—differences

that were not readily apparent from shotgun metagenomic sequencing and a solely amplicon

sequence variant (ASV)-based analysis of the 16S data. This study incorporates prokary-

otic 16S and fungal ITS amplicon sequencing—the former being analyzed using both legacy

operational taxonomic unit (OTU)-analysis of 16S communities—as well as phospholipid

fatty acid (PLFA) analysis to examine microbial community diversity more than individual

taxa. As outlined by Tripathi et al. (2018), there are still significant gaps in microbial

ecology databases for non–host-associated microbiomes, suggesting that environmental mi-

crobiology studies, particularly in poorly-described habitats like terrestrial soils, should use

community-based descriptions rather than try to draw conclusions about community func-

tions, given the ubiquity of undescribed or poorly described taxa at the ASV or even species

level.

Furthermore, to properly address soil microbial community activities, DNA-based stud-

ies can only imply potentials, rather than actual activities. Relic DNA from dead microbes

whose DNA is not yet degraded can persist in dry, terrestrial environments for long periods

(Carini et al., 2016). Use of PLFA-based analysis can help mitigate this effect for calcula-

tions of diversity because PLFAs degrade more quickly than DNA; thus PLFAs are more

likely to represent living organisms than is DNA. However, this approach is unable to ac-

count for expression and activity of functional genes. Functional activity for some processes

can be captured for soils, and is being conducted for the samples in this study (Dove et al.,

2020), but is limited to processes for which established assays exist.
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Methods

Soil Collection

Soil pits were excavated by hand at 20 sites within the United States (including two in

Puerto Rico) representing the 10 Critical Zone Observatories (Lin et al., 2011; Critical Zone

Observatory Network, 2018), shown in Table 1 and Figure 1. At most sites, soil pits were

dug to at least 100 cm or refusal. In addition, if a particular profile extended beyond

100 cm, an optional sample of the last 10 cm to refusal were also collected. The sites from

the Intensively Managed Landscape CZO and Christina River Basin CZO were sampled by

core auger due to personnel constraints (Christina was composited from 4 cores). For all

but two sites, soil from the pit or core was collected sterilely using either a soil knife or

a coring auger inserted into the pit wall horizontally, integrating soil in 10-cm increments

(i.e., 0–10 cm, 10–20 cm, etc.). In contrast, the Luquillo CZO sites were collected at every

10-cm interval, covering plus-or-minus 3 cm, except for the surface which was sampled for

the first 6 cm (i.e., 0–6 cm, 7–13 cm, 17–23 cm, etc.).

Once collected, samples were sent to the University of California, Riverside by overnight

delivery without freezing, but kept cool with ice packs to minimize microbial community

changes and activity after collection.

Collection dates were planned based on local peak greenness as estimated from Nor-

malized Difference Vegetation Index and Enhanced Vegetation Index measured by NASA’s

MODIS (MODerate-resolution Imaging Spectroradiometer) instrument aboard the Terra

satellite.
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Figure 1: A map of the sampling sites used. The twenty sites were selected by collaborators
at each of the ten Critical Zone Observatories, and represent a variety of biomes and soil
types.
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CZO Site Description Code Location

Boulder Creek Gordon Gulch Meadow MEAD 40.02, -105.47

Gordon Gulch North-Facing Slope NSLP 40.01, -105.46

Calhoun Hardwood Forest (R7H1) HARD 34.60, -81.72

Pine Forest (R7P1) PINE 34.60, -81.72

Catalina/Jemez Catalina—Granite Profile CTNA 32.43, -110.77

Catalina—Schist Profile SCST 32.43, -110.76

Christina White Clay Creek (Flood Plain) FLUD 39.86, -75.78

White Clay Creek (Agricultural Site) AGRI 39.86, -75.78

Intensively Managed Goose Creek (Corn field) GOOS 40.43, -88.55

Sangamon River Forest Reserve PRAR 40.42, -88.60

Luquillo Icacos ICAC 18.28, -65.79

El Verde LVRD 18.32, -65.81

Reynolds Creek Whisky Hill (Granite Profile) GRNT 43.19, -116.81

S. Upper Sheep Creek (Basalt Profile) BSLT 43.11, -116.72

Shale Hills Shale Hill SHAL 40.66, -77.90

Garner Run GARN 40.69, -77.91

South Sierra San Joaquin Experimental Reserve SJER 37.10, -119.73

Providence PROV 37.06, -119.19

Table 1: This table shows a list of all of the 18 sites included in this project. Local names
and descriptions are provided where available.
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Soil Processing

Upon arrival to UC Riverside, a portion of each field sample was sieved (2 mm opening,

ASTM No. 10), and the sieved portion was homogenized by shaking and/or mixing the

sample within the sterile sample bag. The sieved, homogenized samples were divided into

subsamples for further analysis, some stored at 4°C, −20°C, and −80°C. For some soils

(particularly some wet, finely textured depth intervals), sieving was not practical under field-

fresh conditions. These samples were homogenized by mixing, but during the subsampling

process, larger root fragments and granules were excluded by visual observation. In addition,

SHAL samples from 70–100 cm consisted almost entirely of medium-sized rocks (“cobbles”

in USGS nomenclature); soil was collected both by manually crushing rocks to pass through

the sieve and by scraping soil from the faces of the cobbles.

Soil profile classification

Due to personnel constraints, in situ characterization of soil profiles was not possible, so

the identity of the observed soil series was inferred using a combination of soil survey data

and empirically obtained data. Geospatial location was used to identify the soil map unit

as described in the Natural Resources Conservation Service and the National Cooperative

Soil Survey (Survey, 2018; Staff et al., 2018). Soil map units which contained multiple

co-occurring series were more precisely identified by comparing soil texture, total profile

depth, and landform position. The NCSS official series descriptions were used to infer

soil taxonomic order, dominant vegetation type, primary biome, and moisture/temperature

regimes.

DNA Extraction

DNA was extracted using the MoBio PowerLyzer PowerSoil DNA Purification Kit with

modifications to increase yield based on the assumption that some sites and depths would
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have a relatively low microbial biomass. Specifically, 0.25 g of soil was weighed in triplicate

(i.e., 3 × 0.25g = 0.75g total soil per sample) from a frozen aliquot of the sieved soil (from

a subsample reserved only for DNA extractions). Extractions on the replicates proceeded

in parallel until the stage when DNA was adsorbed to the spin filter; replicates were pooled

at this point onto a single filter, and the extraction proceeded from this point as a single

sample. In addition, the final step of elution of the DNA from the filter in solution C6 was

done with 50 µL instead of 100 µL, and the initial flow-through was reapplied to the filter

and passed through a second time to further increase yield.

16S Sequencing Analysis–OTU-based approach

Paired-end reads were joined using a 25% maximum difference in overlapping sequences.

The pair-joined sequences were then quality filtered, using default parameters in QIIME

(truncating sequences after three or more base calls below a Q4 Phred score, while also

requiring at least 75% of the reads in the overall sequence to be above that threshold. Op-

erational Taxonomic Unit (OTU) picking was conducted in QIIME using an open-reference

strategy. Briefly, the first step involves a closed-reference OTU picking against the Green-

genes 13.8 database at 97% identity clustering. A random subset of the sequences that fail

to match the database are then clustered de novo, with cluster centroids being used as a new

reference database for an additional round of closed-reference OTU picking. The remaining

unclustered sequences are then clustered de novo, forming the final set of OTUs. OTUs

that were observed only once in the entire dataset (singletons) were discarded as probable

artifacts. While the main analysis used un-rarefied tables, the resulting OTU tables were

rarefied at various depths and analyzed in parallel to confirm that read count was not a

biasing factor in our analyses.

During this analysis, it was observed that a subset of sites exhbited a sharp decrease

in diversity as measured by the Exponent of Shannon Diversity metric described by Jost
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(2006), while the remaining sites showed no statistically significant decrease in diversity

or showed no statically significant separation in ordinations or by permutational ANOVA.

For the purposes of this study, such sites were classified as “gradient” or “uniform” profiles,

respectively.

16S Sequencing Analysis–ASV-based approach

Separately, raw reads were processed following the DADA2 1.16 pipeline as implemented in

the dada2 R package (Callahan et al., 2016). Since read quality profiles did not show strong

decreases in quality, no pre-trimming was applied before the DADA2 denoising algorithm

using all other recommended settings. Paired-end reads were joined requiring at least 12

overlapping bases with identical sequences. Taxonomy was assigned through the dada2

package, using Silva version 138 as the reference database.

ITS Sequencing Analysis–ASV-based approach

Sequence analysis of fungal ITS amplicons proceeded largely as described above, following

the DADA2 1.16 pipeline. However, pre-trimming was required on reverse-orientation reads,

and the threshold of expected errors in the quality filtering step was raised to 4 per read

for both forward and reverse reads. Taxonomy was assigned using the UNITE 8.2 Fungi

reference database. Many samples showed very few reads per sample, with almost no reads

surviving quality filtering. This contrasted with the 16S sequencing, so for community

comparisons a threshold of 8000 reads was used for a sample to be included (Figure 2).

Community analysis

Community analysis utilized a variety of packages in R (R Core Team, 2020), primar-

ily vegan (Oksanen et al., 2019), ape (Paradis and Schliep, 2018), ggpubr (Kassambara,

2020), and DESeq2 (Love et al., 2014), with additional support from packages including
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Figure 2: In contrast to 16S sequencing, the ITS amplicon showed a large subset of samples
with very low read counts, requiring exclusion of some samples.
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tidyr (Wickham and Henry, 2020), aqp (Beaudette et al., 2013), and soiltexture (Beaudette

et al., 2013). Community diversity was calculated for each sample using the exponent of

Shannon diversity metric as described by Jost (2006). Beta diversity between samples was

estimated using Bray-Curtis dissimilarities for 16S communities, but for ITS communities,

which showed a much sparser distribution across samples, the Clark distance metric was

used, as implemented in the vegan package. Principal coordinates analysis was implemented

via the ape package for visual representation of community dissimilarities. To assess the

effects of variable read counts between samples, a variance stabilizing transformation was

applied from the DESeq2 package, followed by a Euclidean distance metric. Symmetric

Procrustes analysis between the normalized Euclidean and un-normalized Bray-Curtis dis-

tance matrices for 16S sequences showed a high degree of overlap (R > 0.75, p < 0.001), and

no differences were seen in significance levels between the dissimilarity measures. Visually,

however, principal coordinates analysis of the Bray-Curtis dissimilarities were clearer, so

Bray-Curtis derived PCoA plots are used throughout for 16S comparisons. For ITS se-

quences, on the other hand, a strong difference was observed between Clark distances and

VST-normalized Euclidean distances, possibly due to the sparseness of ITS feature table,

so normalized-Euclidean distances are used.

Statistical analysis

Permutational ANOVAs were used to assess statistical differences between categories of

sites, implemented in R using the vegan package. Procrustes analysis was also implemented

via vegan. Differentially abundant taxa were assessed using the DESeq2 package, using a

fold-change threshold of 2, and an adjusted alpha of 0.01. For clustering, communities were

compared based on the ASV abundances. Using the ape package and base R, complete

linkage clustering, centroid-based clustering, and the BIONJ clustering algorithm (Gascuel,

1997) were all used on dissimilarity matrices based on un-normalized Bray-Curtis distances
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and normalized Euclidean distances, but none of these showed differences in the high-level

clustering. BIONJ trees based on Bray-Curtis dissimilarities (for consistency with PCoA

plots) were exported in Newick format and loaded into the Interactive Tree of Life online

tool (Letunic and Bork, 2019) to generate figures. Procrustes analysis (α = 0.01) was

used to compare dissimilarity matrices to determine if they represented similar groupings of

samples within ordination spaces. Correlation coefficients were calculated using Pearson’s

correlation method as implemented in the ggplot2 R package.

Results

16S diversity analysis

Initial analysis of the OTU-based sequences showed that according to both Bray-Curtis

dissimilarity and normalized Euclidean distances, 16S communities of most soil profiles

were fairly similar, some samples below 40 cm showed a strong divergence from this cluster

(Figure 3A). As seen in Figure 3B, this occurred in only a subset of sites (5 of 18). This

divergence coincided with a stronger decrease in diversity below 40 cm for the five sites

with a decrease in diversity (for this paper, termed “gradient” sites), as seen in Figure 3 (C–

D). While the bowing or arching pattern seen in Figures 3A and B can often indicate

extremely high beta diversity that cannot be captured by the ordination, the key feature

is that the samples that were subsequently classified as deep, gradient soils are highly

similar to each other. Notably, the bowing pattern does not form a “horseshoe” that could

indicate that highly dissimilar communities appear graphically close to each other due to

constraints of a two-dimensional ordination. This dichotomy was not readily apparent

under ASV-based analysis using the same methodology. Instead, under both Bray-Curtis

and normalized Euclidean dissimilarity metrics (not shown), samples were grouped by soil

taxonomic order (Figure 4) and by dominant vegetation type (Figure 5). In permutational
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Figure 3: Some sites show a strong decrease in diversity with depth based on OTU analysis.
In (A), it is clear that all samples shallower than approximately 40 cm are much more
similar to each other than soils below 40 cm, which show a broader distribution, indicating
greater dissimilarity between communities. In (B), it is apparent that only a subset of sites
exhibit this trend (colors are collaposed by CZO for visual identification; only the South
Sierra CZO had two sites with different patterns). In (C) and (D), the sites that were shown
to exhibit a shift in community composition as observed in panels A and B are classified as
gradient sites, while others are termed uniform. This distinction corresponds with a drop
in diversity that is seen both linearly (C) and when using 40 cm as a cutoff between deep
and shallow portions of the soil profiles (D).
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ANOVA (PERMANOVA) analysis, each factor independently yielded a strong explanatory

value (R2 > 0.15, p < 0.001), and the interaction of both soil order and vegetation type

showed an R2 > 0.32, p < 0.0001.
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Figure 4: Principal Coordinates Analysis of 16S communities by soil taxonomic order.
Distances are calculated using the Bray-Curtis dissimilarity method.
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Figure 5: Principal Coordinates Analysis of 16S communities by inferred dominant vegeta-
tion type. Distances were calculated using the Bray-Curtis dissimilarity method.
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Hierarchical cluster analysis

Clustering of 16S communities based on ASVs showed that the “deep” (> 40 cm) soil

samples from the sites categorized as “gradient” sites under OTU-based analysis formed

a unique cluster that included some of the “shallow” samples from the gradient sites, but

notably no samples from any depth of the “uniform” sites (Figure 6). In this way, using

an independent analysis method of the underlying sequencing data, the gradient-uniform

dichotomy first derived from OTU-based analysis was recaptured in the ASV-based analysis

using different analytical methods. The hierarchical clustering also reinforced the finding

that 16S communities are strongly linked to soil taxonomic order. In particular, soil profiles

classified as mollisols formed a unique cluster, while the rest of the soil orders show less

differentiation from each other (Figure 7). This reinforces the Bray-Curtis spatial separation

seen in Figure 4 for ASV-based community analysis.
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Figure 6: Hierarchical clustering tree comparing 16S communities across all samples. Clus-
tering used the BIONJ algorithm, and coloring reflects profile type according to the gradient-
uniform dichotomy initially observed in OTU-based analysis.
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Figure 7: Hierarchical clustering tree comparing 16S communities across all samples. Clus-
tering used the BIONJ algorithm, and coloring reflects inferred soil taxonomic order.
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Phospholipid fatty acid analysis

The gradient-uniform dichotomy was also seen independently in phospholipid fatty acid

(PLFA) analysis (Figure 8). Note that the bowing or arching effect seen is not necessarily

a distortion based on high beta (between-sample) diversity between all samples; instead, it

appears to be caused by a strong differentiation between the deep samples from gradient

profiles from all others. Biomass, as measured by PLFA analysis, indicates that while there

is a positive relationship between total soil biomass and diversity (R = 0.42, p << 0.0001),

that effect is almost totally driven by the stronger relationship between biomass and diversity

in gradient-profile soils (R = 0.53, p < 0.0001). This relationship is statistically absent in

uniform-profile soils (R = 0.0051, p = 0.96) (Figure 9).
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Figure 8: Principal Coordinates Analysis of total phospholipid fatty acid content. The
binned depth is defined such that deep soils are those below 40 cm, and shallow soils are
those from the surface to 40 cm. The gradient-uniform dichotomy is derived from patterns
first observed in the independent OTU-based 16S sequencing analysis. Distances were
calculated using Clark distance metric to account for the sparseness in the PLFA feature
table.
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Figure 9: Exponent of Shannon diversity is positively correlated to log10(biomass). Biomass
is reported in units of nanomoles of carbon in fatty acid methyl esters (FAME) per gram of
soil. Shaded area shows 95% confidence interval for the global correlation. Coefficients are
for Pearson’s correlations.

22



Results

ITS and 16S community diversity

A comparison of ITS and 16S community (ostensibly fungal and prokaryotic, respectively)

diversity showed a strong positive correlation (R = 0.47, p ll0.0001). This was robust across

both gradient and uniform soil types (Figure 10), as well as across vegetation type and both

gradient uniform soils (not shown).
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Figure 10: Comparison of ITS (fungal) and 16S (bacterial/prokaryotic) diversity. There is
a strong correlation between the diversity of ITS and 16S communities across a wide range
of soil types.
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Discussion

Gradient-uniform dichotomy

Although gradient-uniform dichotomy observed in this study was initially observed in an

OTU-based analysis, which is no longer considered the gold standard for microbiome anal-

ysis (Knight et al., 2018), the validity of that classification is reinforced by a variety of

other findings. In particular, the PLFA-based results (Figure 8) are independent of DNA-

based biases. Although it is surprising that the dichotomy is not as readily observed in

ASV-based analysis of 16S or ITS sequences by ordination, it is still readily apparent in

clustering analysis (Figure 6) and by similar comparisons as used in OTU-based analysis

(see Figures S2 & S3). While none of the mollisols or entisols were classified as gradient

profiles, it is not readily apparent what sets the two groups apart—i.e., why do the gradient

soils show a decrease in diversity and biomass? Potential factors that have been recog-

nized as important factors related to soil microbial community composition such as pH,

water content, and soil texture were not found to be correlated with any diversity indica-

tors when accounting for between-site differences. This is distinct from previous studies

that have found such factors to be significant drivers of 16S communities (Thompson et al.,

2017; Seaton et al., 2020), but did not examine differences between communities observed

at differing depths.

Contrast with other studies

While neither soil textural composition at the sample level nor textural class at the profile

level were associated with changes in diversity of 16S or ITS communities, or for PLFA-

defined communities, a recent study by Seaton et al. (2020) found that soil textural hetero-

geneity was a strong determinant of fungal diversity, but not of bacterial diversity. While

that finding can’t be precisely compared because texture in this study was determined gravi-

25



Discussion

metrically (rather than by laser granulometry), the two studies may not even be generally

comparable because of vastly different soil textural properties between both studies. While

the Seaton et al. (2020) study of soils in Wales examined highly silty topsoils, this study

had an abundance of extremely sandy soils (Supplemental Figure S1). While this project

draws different conclusions from earlier studies (Eilers et al., 2012) that found stronger dif-

ferences by depth than between sites, most such studies were focused on smaller geospatial

displacements.

Caveats

For a project of this type, due to the importance of soil taxonomy and soil profile charac-

terization in general, pedological expertise is vital to future efforts. Personnel trained to

characterize soil profiles should be involved during soil pit excavation. When that is not

possible, extensive photographic documentation of the site and pit wall must be under-

taken. When possible, site selection should be managed such that for vital criteria such as

soil taxonomic order and dominant vegetation type, statistically relevant analyses can be

performed.

This study underlines the conclusions noted by Tripathi et al. (2018) that microbial com-

munity studies, particularly in terrestrial biomes require extensive advances in databases.

One of the key limitations of this study was the lack of annotated 16S sequences. Notwith-

standing the diffiiculties in ascribing actual relative abundances to PCR-dependent amplicon-

based sequencing plans (Knight et al., 2018), 99.2% of observed ASVs could not be assigned

to the species level, presenting a major challenge for inferring functional potentials from such

DNA-based surveys.
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Conclusion

As these challenges are met by intensive shotgun sequencing programs, this study should
provide some parameters for the breadth of terrestrial soil samples to be included in such
programs. In particular, variations in soil taxonomy and dominant vegetation type need to
be accounted for. While previous studies have seen important changes in overall microbial
communities with depth, this study suggests that at broader (continental) scales, microbial
community composition is driven more by ecological setting than by variances of depth
within soil profiles. Further research across a more focused set of soil profiles can provide
important insights into the environmental factors that drive the distinction between gradient
and uniform profiles. The importance of the gradient-uniform dichotomy, in particular, as
well as soil taxonomic order, must be accounted for in studies that seek to examine how
microbial communities are structured by depth.
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Supplemental Figures

Figure S1: Particle size distribution of all samples in this study. Particle size distribution
by mass contribution, classified according to USDA/NCSS descriptions. (S = Sand, C =
Clay, SI = Silt, L = Loam; e.g., SL = Sandy loam, SICL = Silt clay loam)
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Supplemental Figures

Figure S2: Increasing depth in gradient soils shows a decrease in diversity measured by
the exponent of Shannon diversity. While this data represents ASV-based analysis, the
gradient-uniform dichotomy is derived from OTU-based analysis.
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Supplemental Figures

Figure S3: When binned by depth (“deep” soils being more than 40 cm from the surface),
gradient soil profiles show a strong drop in diversity measured by the exponent of Shannon
diversity. While this data represents ASV-based analysis, the gradient-uniform dichotomy
is derived from OTU-based analysis.
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