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Introduction. By 2050 nearly 70% of the world’s population will live in urban areas, suggesting

a future surge in the density and sprawl of cities1,2. In tandem with an urban expansion, there will

be more frequent and severe heat events as a result  of anthropogenically accelerated climate

change, thus putting individuals at added risk of experiencing heat-related health issues3,4. Cities

encounter  a  phenomenon  known  as  urban  heat  islands  (UHI)  which  occur  when  natural

landscapes  are  replaced  with  pavement  and buildings  that  absorb  and  retain  solar  radiation,

consequently heating up these surfaces5. UHIs and within-city variations referred to as micro-

heat  islands  can  exacerbate  the  severity  of  heatwaves  and  place  individuals  within

socioeconomically  vulnerable  urban  communities  at  greater  risk  of  developing  heat-related

illnesses (HRI) such as hyperthermia, heat exhaustion, and dehydration6. 

In the United States, the incidence rate of HRIs increases by an average of 6% each year,

with most cases being seen during summer months when climate-change induced extreme heat

events (EHEs) generally  occur7.  For example,  in 2006 and 2017, California was struck by a

series of exceptionally severe EHE events that lead to substantial increases in HRIs8,9. In 2006,

most of California experienced numerous record breaking daily maximum temperatures and a

similar series of record breaking temperatures occurred in 20179. EHEs can be amplified by an

absence of structural adaptations such as green or blue spaces, which cities rely on to reduce

ambient temperatures7,10,11. Urban infrastructural climate adaptive strategies can play a significant

role in reducing the temperature of an urban environment on a fine spatial scale12. When looking

at microclimate indicators such as land surface temperature within cities, there is evidence that

differences in these microclimate indicators influence the risk of morbidity/mortality during heat

waves13,14.  
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The geography of California is diverse and heterogeneous trends in temperature have

been previously recorded between different regions of California15. However, to our knowledge,

these differences in temperature responses to climate change have been observed at the regional,

city, or county resolution but not yet at a ZCTA level within cities in California9. In this study,

we narrowed the focus to seven of California’s most populous cities to infer how different urban

landscapes  affect  temperature  changes  over  a  22-year  period.  The  seven  Californian  cities

assessed in this study were Sacramento, San Francisco, Oakland, San Jose, Fresno, Los Angeles,

and  San  Diego  and  are  in  seven  different  counties  across  several  regions  (Figure  1).  By

measuring trends in temperature by comparing ZCTAs within all seven cities over the past 22

years, we identified significant changes in urban landscape temperatures in the same city.

Generally, surface temperatures are higher in urban settings than in nearby rural settings

and a similar trend can occur when looking at different areas within an intracity scale; therefore

individuals living in certain ZCTAs may be especially vulnerable to experiencing HRIs during

extreme heat events16.  In this study, we define UHIs as ZCTAs within cities that have either

unchanged or increased land surface temperature (LST) from 2000 to 2022. LST is the radiative

skin  temperature  of  the  land  surface  recorded  by  NASA’s  MODIS  Terra  Land  Surface

Temperature and Emissivity Daily Global 1km imagery at night and can be used as a proxy to

infer changes in local UHI distribution over time17. We created a 22-year time-series analysis and

categorized LST trends at the ZCTA level in California as decreased, unchanged, or increased

over  our  study  period18.  We  categorize  trends  over  time  based  on  the  assumption  that

temperatures will be increasing across the study area as the result of climate change, however in

some  ZCTAs  the  temperature  will  be  increasing  at  a  significantly  slower  rate  or  possibly

decreasing and therefore were described as “decreased”. If the ZCTA’s temperature appears to
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be  increasing  at  a  significantly  higher  rate  than  the  other  ZCTAs,  we  defined  those  as

“increased”. Once these categorizations were made, we then analyzed the difference in monthly

HRIs  from  two  major  EHE  years  in  California  (2006  and  2017)  to  quantify  the  potential

difference in HRIs due to UHI changes between comparable ZCTAs. 

Our  first  objective  in  this  study  was  to  identify  monthly  ZCTA  temperature  trends

between 2000 and 2022 within seven major cities in California and categorize them as decreased,

unchanged, or increased. The second objective was to determine if there was a decrease in HRIs

in 2017 when compared to 2006 for ZCTAs that we classified as decreased versus unchanged

using propensity scoring and inverse probability weighting. We hypothesize that ZCTAs with

decreased temperature trends would be associated with decreased rates of HRIs between 2006

and  2017  when  compared  with  their  unchanged  or  increased  counterparts,  which  are  areas

considered to be UHIs in this study.

Methods.

Study areas. We focused on seven of the eight most populous cities in California. We omitted

Long Beach, the seventh most populous city, because of its proximity and geographic similarities

to Los Angeles. The seven cities we studied were Sacramento, Oakland, San Francisco, San Jose,

Fresno, Los Angeles, and San Diego which, in this analysis, had 29, 14, 28, 28, 18, 64, and 35

ZCTAs of interest per city, respectively (Table 1). We chose to include three San Francisco Bay

Area cities because of the geographic and temperature heterogeneities between Oakland, San

Francisco, and San Jose19. All seven cities had a population sum of 7,507,023 individuals, with

Los Angeles, San Diego, and San Jose being the top three most populous cities, in that order.
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Data  acquisition.  We  utilized  Google  Earth  Engine  (earthengine.google.com)  to  download

MODIS Terra Land Surface Temperature and Emissivity Daily Global 1km (MOD11A1 V6.1)

imagery  with temperature  value  derived from MOD11_L2 swath  product  for  the entirety  of

California. We extracted monthly land surface temperature values for each ZCTA population-

weighted centroid, which is a single point coordinate versus an area that makes up the ZCTA

boundary,  within the state from March of 2000 to the end of October of 2022. Because the

effects of UHI are most noticeable at night,  we focused on the nighttime LST imagery from

MODIS20. 

For ZCTA level data, we relied on TIGER US Census 5-digit Zip Code Tabulation Areas

2010 data  from the  US Census  Bureau (census.gov).  The centroid  coordinates  found in this

dataset allowed us to weight our mean LST to the most populated areas within each zip code,

which  is  a  common  interpolation  technique21. Demographic  data  was  collected  from  the

American  Community  Survey’s  2017 5-year  estimates  and were  used  to  develop propensity

scores in our model.

To illustrate the potential impacts of different trajectories of UHI on hospital admissions,

we  conducted  a  case  study  in  which  we  focused  on  the  difference  between  two  major

summertime extreme heat events taking place in 2006 and 2017. We obtained HRI data through

the California Health and Human Services Agency. The data contains ZCTA level mortality and

morbidity emergency department (ED) and patient discharge data (PDD) for all of California. In

Supplemental  Table  1,  we  included  the  complete  list  of  heat-related  illnesses  ICD  codes

considered to characterize heat-related illnesses (HRI) for our study. To ensure we had enough
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cases  within  each  ZCTA  to  maintain  sufficient  statistical  power,  we  compared  ZCTA-level

monthly HRI count for both years 2006 and 2017 during the EHE of interest.

Identifying urban heat islands (UHIs). To classify ZCTAs as urban versus rural we relied on

the CalEPA Urban Heat Island Interactive Maps urban and rural ZCTA classifications22. Using

the “urban” and “rural” classifications, we completed sensitivity analyses to determine the most

statistically  meaningful  approach  to  identify  urban  heat  islands  which  can  be  found  in  our

GitHub  repository  (https://github.com/emlasky/TemperatureTrendsAcrossCA.git).  We

determined that, because this study focuses solely on ZCTAs that fall within urban areas, ZCTAs

that were considered “rural” by CalEPA were filtered out of the dataset and excluded from this

study.  Using  only  “urban”  classified  ZCTAs,  we  calculated  temperatures  within  the  95 th

percentile of monthly temperatures within a given year,  which primarily  occurred during the

summer months between June and September and created indices of monthly mean land surface

temperature estimates for each ZCTA over the 22-year period to identify micro heat islands in

the seven cities (Figure 2). We then compared each ZCTA to the ZCTA with the lowest LST at

the start of the study (LST min ¿in the same city’s boundaries (ex: comparing all target ZCTAs in

Los Angeles to the ZCTA with the lowest LST in Los Angeles). Instead of defining an absolute

temperature change threshold for all ZCTAs regardless of city, we defined relative thresholds of

temperature change between ZCTAs in the same city which resulted in differences of amplitude

of temperature change as dependent on the city. We used the  LST min to find the difference in

temperature per ZCTA within that city by pairing the target ZCTA with the LST min for the same

month and year using the following equation:

∆ T i=LST i−(LST min )
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Linear regression comparison of ZCTAs. We categorized our ZCTAs into decreased, 

unchanged, or increased LST trends. We performed linear regression analyses to identify which 

ZCTAs experienced statistically significant positive or negative, or non-significant positive or 

negative trends and mapped their locations (Figure 3) To create our three categories, we 

calculated the slope and p-values of the change in ZCTA’s with LST measurements in the 95th 

percentile from 2000-2022. We used a threshold of p = 0.10 for our main analyses. We mapped 

our ZCTA categorizations using ArcGIS Pro (Version 2.9.3) to identify the locations of our 

ZCTAs. All syntax to reproduce our results in California or elsewhere can be found at the 

following link: https://github.com/emlasky/TemperatureTrendsAcrossCA.git  .   

Determining difference of HRI between decreased and unchanged ZCTAs.  We calculated

the difference in HRIs between the 2006 and 2017 EHEs. We aggregated monthly PDD/ED HRI

data to the annual level and found the difference by subtracting the sum of HRIs for the year

2017 by the sum of HRIs for 2006 for each individual ZCTA(x) in the study using the following

equation:

∆ HRI i=x=∑ HRI 2017i=x−∑ HRI 2006i=x

Inverse  probability  of  treatment  weighting  (IPTW)  estimation.  We  identified  ZCTA

propensity  scores  using  a  logistic  regression  model  conditional  upon  ten  covariates:  total

population, total number of males, percent of population under eighteen, percent of population

over 65, percent of population that is white, total housing units, total commuters over sixteen,

number of individuals with an income below 10,000, total number of individuals with a college

degree, and population without health insurance. We chose these ten covariates based on prior
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literature, which intends to control for a holistic range of sociodemographic variables that may

directly  influence  the  likelihood  of  living  in  a  ZCTA  with  certain  temperature  trends23.

Quantifying the conditional probability of a ZCTA falling into the decreased temperature trend

based  on  specific  covariates  allows  for  us  to  create  a  pseudo-randomized  study  using

observational data by balancing ZCTAs independently of the outcome thus limiting confounding

from variables we are uninterested in observing24,25. Additionally, we incorporated each city as

the random effect in our model to preserve the number of observations while accounting for

unobserved heterogeneity among the ZCTAs in the study.

Based on the estimated propensity scores, we used the inverse probability of treatment

weighting (IPTW) to balance the ZCTA characteristics (i.e. confounders) between decreased and

unchanged ZCTAs26. We then performed logistic regression analyses using ZCTA temperature

trend status as the predictor, the difference in HRI between the two EHE years as the dependent

variable and weighted the model with the IPTW values that we calculated using the propensity

scores (Figure 2). 

All analyses were conducted with RStudio (Version 2021.09.2) using dplyr and tidyverse.

Results.  When observing 216 ZCTAs throughout California during months that fell within the

95th percentile for LST, 43 ZCTAs decreased, 161 were unchanged, and 12 got worse over the

22-year study period (Table 1). Most ZCTAs in each city remain unchanged over 22 years (161

out of 216 or ~75% of the total number of ZCTAs). We potentially observed spatial clustering of

decreased  and  increased  ZCTAs  in  Oakland,  Los  Angeles,  and  San  Jose,  however  an

investigation of this clustering goes beyond the scope of this paper (Figure 3) Los Angeles had
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the greatest number of decreased ZCTAs (26), the largest proportion of ZCTAs (32.7%), and the

greatest population observed in the study (2,456,601) (Table 1). San Diego and Sacramento had

only one decreased ZCTA each. San Diego and San Jose, the second and third most populated

cities  in  the study,  had four increased ZCTAs each,  which was the most  of  all  seven cities

(Figure 4). Los Angeles had the greatest proportion of individuals living in decreased ZCTAs

while San Diego and San Jose had the greatest  proportion of individuals  living in increased

ZCTAs (Figure 4)

In Supplemental  Table 2 and Figure 1,  we show the descriptive statistics  for the ten

covariates we controlled for and the estimated propensity scores and IPTW. Of the 216 observed

ZCTAs, 150 had HRI data for both 2006 and 2017. The largest difference and increase in HRI

between these two EHE years was a ZCTA in Los Angeles that saw an increase of 41 HRIs over

the study period. The greatest  reduction in HRI was a ZCTA in Sacramento that had twelve

fewer HRIs over the study period. The mean ΔHRI for all 150 ZCTAs was 4.5. The mean ΔHRI

for decreased and unchanged ZCTAs was 3.5 and 4.9, respectively (Table 2). When comparing

the  ΔHRI between decreased and unchanged ZCTAs during the 2006 and 2017 EHEs, it was

found that ZCTAs classified as decreased observed a reduction of 3.2 HRIs (Table 3).

Discussion. In this study, we proposed an approach to categorize the micro-heat islands temporal

trends  of  neighborhoods  within  the  most  populated  California  as  decreased,  unchanged,  or

increased. We found that some cities had greater proportions of decreased ZCTAs than others

which had no significant improvement or significantly worsening temperatures over the study

8

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

8



period (Figure 3). Based on preexisting knowledge of cooling methods in urban settings, it may

be inferred that ZCTAs that have decreased temperature trends over time have undergone heat

adaptation strategies such as greening, increasing shade, and other heat reducing infrastructure

choices.  The  opposite  may  be  said  for  ZCTAs  that  have  experienced  no  improvement  or

increased in temperature over time. As an example of the potential correlation between increased

greening and reduced temperatures, an increased change in NDVI in Los Angeles between the

years of 2000 and 2020 was observed for the downtown portion of the city27. In our analysis, the

downtown portion of the city was observed to have decreased temperature trends (Figure 3).

Though  this  provides  some  evidence  of  the  influence  increasing  greenness  may  have  on

temperature  trends,  investigating  the  correlation  between  NDVI  and  decreased  temperature

trends is beyond the scope of this study, and we recommend further research be conducted to

investigate if there is indeed a correlation between heat adaptation strategies and our findings.

Additionally, we have included newspaper articles and planning presentations for some of the

cities researched in this study in our GitHub.

We then analyzed to which extent such being categorized as decreased, unchanged, or

increased was associated with a differential change in heat-related illnesses between two major

extreme  heat  events  across  the  last  two  decades.  We  showed  that  ZCTAs  categorized  as

decreased experienced 3.2 fewer heat-related illnesses over the summertime study period than

unchanged ZCTAs in 2017 when comparing the number of HRIs during the 2006 and 2017 heat

wave years (Table 3). The average number of summertime HRIs by ZCTA in 2006 was 4.3 and

8.8 in 2017, therefore a decrease of 3.2 HRIs is not a trivial reduction (Error: Reference source

not  foundTable  2).  This  study  illustrates  that  ZCTAs  with  lower  summertime  temperatures

reduce the number of HRIs, especially during extreme heat events.
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The first limitation of this study was the spatial resolution at which the temperature data 

(LST) is available. The MODIS satellite records data at a spatial resolution of 1km that may not 

be precise enough to identify temperature differences in smaller ZCTAs that are adjacent to one 

another, and this may be why we perceived clustering in Los Angeles (Figure 3). Other 

alternative remote sensing products may provide more spatially granular data, however these 

satellites do not provide data at the temporal granularity that was essential to this study. Though 

not a limitation, we chose to identify UHIs by finding the difference of the ZCTA with the 

minimum monthly LST to all other ZCTA monthly LSTs in the same city over the study period, 

which we considered to be an effective way of identifying UHIs for the purposes of this study. 

There are different methods to identify UHIs that are equally valid, and our results may have 

differed to an extent had we used a different UHI categorization method28. Finally, we only 

focused on HRI as the primary cause of hospital admission of interest to ensure that these events 

were directly related to heat exposure and to highlight the potential variation in heat burden that 

can be attributable to changes in microclimate environments within a city over time. This 

approach is an underestimation of the total burden attributable of heat exposures but restricting 

our health data to only HRI codes limited ambiguity about how to directly attribute an 

individual’s illness29. 

Temperatures are generally increasing in California and prior studies looking at long-

term  meteorological  station  data  have  shown  regional  differences  in  the  rate  at  which

temperatures are increasing, which may be attributed to geographic phenomena such as coastal

cooling,  fog,  and  wind-related  effects30.  These  studies  have  indicated  differences  in  the

magnitude of change of temperature across different regions of California, therefore the effect of

urban climate adaptation strategies will be dependent on the region each city is situated in and
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even the distinct microclimates within each city15,31. We attempted to limit the effect geographic

variation may have on temperature shifts by finding the slope of temperature trends by ZCTA

using the LSTmin  from the ZCTA’s respective city, however we recommend investigating these

geographic differences and their effect on temperature trends further.

This study demonstrates the importance of analyzing UHIs within major cities. We found

differing  proportions  of  decreased,  unchanged,  increased  UHIs  in  each  city  that  may  have

resulted from some cities undergoing climate adaptive strategies to a greater extent than others32–

35.  The  implications  of  this  study  would  indicate  that  significantly  reducing  temperature  in

ZCTAs decreases the number of HRIs for those ZCTAs, thus suggesting the protective effect

climate adaptive strategies may have on human health during EHEs. Though California has a

reputation for being an ambitious environmental leader and has committed to climate related

policies,  these  commitments  are  not  mandated  on  finer  geographic  scales  and  adoption  and

implementation  of  climate  adaptation  plans  at  the  city-level  varies  across  the  state.  Poorly

designed policies and variance in urgency to invest in climate adaptation strategies may be based

on  the  political  culture  of  the  city  and  proximity  to  other  cities  that  are  adopting  these

strategies33,34. Further, regional differences and sensitivity to the impacts of climate change may

play a significant role in determining the urgency of adopting climate adaptive policies. 

Overall, most of the populations in all seven cities fell within the unchanged temperature 

trend, indicating a public health need for greater adoption of climate adaptation strategies (Table 

1). The 2022 IPCC report on Impacts, Adaptation and Vulnerability (working group II), 

emphasized the necessity of implementing proactive adaptation strategies, since they can reduce 

by more than half the health burden attributable to climate sensitive exposure such as extreme 

heat by the end of the century. Though our investigation looks at change in temperature in cities 
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and not necessarily in response to cooling strategies, as cities in the United States and beyond 

invest heavily in developing their resilience against increasing temperatures, the methodological 

approach we proposed can be used, adapted, and expanded to guide investments to minimize the 

health impacts of extreme heat. 
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