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Abstract
Summary: perox-per-cell automates cumbersome, image-based data collection tasks often encountered in peroxisome research. The software 
processes microscopy images to quantify peroxisome features in yeast cells. It uses off-the-shelf image processing tools to automatically 
segment cells and peroxisomes and then outputs quantitative metrics including peroxisome counts per cell and spatial areas. In validation 
tests, we found that perox-per-cell output agrees well with manually quantified peroxisomal counts and cell instances, thereby enabling 
high-throughput quantification of peroxisomal characteristics.
Availability and implementation: The software is coded in Python. Compiled executables and source code are available at https://github.com/ 
AitchisonLab/perox-per-cell.

1 Introduction
Peroxisomes are membrane-bounded organelles found in all 
eukaryotic cells. Originally defined based on their production 
of hydrogen peroxide from oxidative reactions, peroxisomes 
perform various functions including fatty acid oxidation, lipid 
biosynthesis, and reactive oxygen species metabolism. 
Peroxisomes are produced in cells either through de novo bio-
genesis, where the organelle is assembled anew, or through 
growth and division. In humans, mutations in genes encoding 
proteins required for peroxisome biogenesis cause severe devel-
opmental defects, collectively referred to as the Zellweger spec-
trum of Peroxisome Biogenesis Disorders. While some of the 
molecular mechanisms underlying peroxisome biogenesis have 
been uncovered, our understanding of the process remains in-
complete (Farr�e et al. 2019, Mast et al. 2020). Motivated by a 
need for high-throughput analyses to reveal critical compo-
nents contributing to this process, we developed open-source 
software called perox-per-cell for image-based quantification 
of peroxisome characteristics in yeast cells. The software auto-
mates several time-consuming, traditionally manual image 
processing tasks including the segmentation of yeast cells and 
their peroxisomes as well as the collection of quantitative met-
rics such as the number of peroxisomes in individual cells, the 
spatial areas of cells and peroxisomes, and the luminal signal 
intensity within segmented peroxisomes. Through this auto-
mation, we have substantially increased the speed at which we 

can assess and quantify the impact of cellular and genetic per-
turbations on peroxisome number and size. Here, we detail 
the methods underlying perox-per-cell and demonstrate its va-
lidity for accurately quantifying metrics relevant for 
peroxisome research.

2 Materials and methods
perox-per-cell was developed to analyze microscopy data col-
lected from yeast cells stained with Calcofluor white demar-
cating cell boundaries and producing green fluorescent 
protein (GFP) tagged with peroxisome targeting sequence 1 
(PTS1) to locate peroxisomes. The software enables rapid as-
sessment of peroxisomal phenotypes from 3D-imaging Z- 
stacks of the Calcofluor and GFP signals captured at the 
same physical position. With perox-per-cell we aimed to im-
prove on previous work (Niemisto et al. 2006) and create a 
rigorously tested, publicly available tool for the re-
search community.

perox-per-cell first projects the Z-stacks onto a single 2D im-
age plane for both the Calcofluor and GFP channels and then 
segments the cells and peroxisomes using automated tools. It 
then assigns peroxisomes to individual cells based on the over-
lap between the cell and peroxisome segmentation masks 
(Fig. 1A and B). Finally, the number of peroxisomes in each cell 
and additional metrics are output to an Excel spreadsheet.
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Figure 1. (A) Architecture of the perox-per-cell computational pipeline. (B) Example comparison of deconvolved images (top) used for manual counting 
and the cell and peroxisome masks generated by perox-per-cell (bottom). Scale bar: 5 μm. (C) Scatterplots with trendlines (solid) and unity lines (dashed) 
showing correlation between manual and auto-generated peroxisome counts (left) and number of cells (right) across test images. R, Pearson’s 
correlation coefficient; P, correlation P-value; n, number of observations at coordinates. (D) Distribution of peroxisome counts (left) and number of cells 
(right) derived manually or via perox-per-cell for three images where agreement between the methods was most representative of the overall agreement 
across test images. Distributions are shown using adjacent jitter, box, and half-violin plots. (E) Distribution of peroxisome counts (left) and areas (right) 
from images most representative of a given strain’s peroxisomal features across test images. FDR-adjusted P-values from Wilcoxon rank-sum tests 
comparing mutant strains to WT are shown above plots.
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2.1 Z-stack intensity projections
Imaging files are read into perox-per-cell using Bio-Formats 
(https://github.com/CellProfiler/python-bioformats). perox- 
per-cell uses file metadata to initialize 3D arrays of appropri-
ate dimension to store the Z-stack intensity values in the 
Calcofluor and GFP channels. The program is designed to 
process input data consisting of two imaging channels, one 
for segmenting peroxisomes and the other for cells. After 
reading in the Z-stacks, a 2D maximum intensity projection 
is generated from the peroxisome channel Z-stack to ensure 
that each peroxisome, regardless of its position in the 
Z-dimension, is represented. The cell channel Z-stack is also 
converted into a 2D image so that it can be processed by the 
cell segmenter. For the cell channel, we use an average inten-
sity projection because this resulted in more accurate segmen-
tations in initial tests. Such projections may de-emphasize the 
presence of high intensity Calcofluor signals localizing on 
bud scars, generating a more even intensity profile along cell 
boundaries. We note that perox-per-cell can also process 2D 
images; a full 3D Z-stack is not required for either channel.

2.2 Cell segmentation
Several machine learning (ML) tools for automatic segmenta-
tion of yeast cells have become available in recent years (Lu 
et al. 2019, Dietler et al., 2020, Salem et al. 2021). Based on vi-
sual inspection, applying the computational methods used by 
the YeastSpotter tool (Lu et al. 2019), which segments 2D 
images using a region-based convolutional neural network, gave 
sufficiently accurate segmentations. We initially chose 
YeastSpotter because it outperformed other established methods 
for segmenting fluorescently imaged cells (Lu et al. 2019). We 
also tested YeastNet (Salem et al. 2021); however, it was trained 
on brightfield images and did not identify any cells when ap-
plied to test images. We also compared YeastSpotter’s perfor-
mance against the multiple prediction models available in 
Cellpose, a generalist, ML-based cell segmentation package 
(Stringer et al. 2021). When tested for accuracy against manual 
cell counts, results from YeastSpotter and the best performing 
Cellpose model (“cyto3”) gave comparable performance. To 
implement YeastSpotter segmentation, we adapted the code at 
https://github.com/alexxijielu/yeast_segmentation, only making 
a minor change to ensure our tool loads the underlying model 
weights correctly when deployed as a standalone application. 
After performing cell segmentation on the Calcofluor channel 
2D projection, perox-per-cell saves the resulting image mask 
where all pixels corresponding to an individual cell share a 
unique intensity value.

2.3 Peroxisome segmentation
To segment peroxisomes, we adapted one of a suite of scripts 
in the Allen Cell & Structure Segmenter package (https:// 
www.allencell.org/segmenter.html), which provides work-
flows for automated segmentation of various subcellular 
structures. After exploring example workflows in the imaging 
software Napari, we adapted the “gja1” workflow, which 
segments punctate features. Our workflow performs 
Gaussian smoothing on the 2D projection from the peroxi-
somal imaging Z-stack followed by spot detection via 
Laplacian of Gaussian filtering. Spot detection sensitivity is 
set via a user-defined input parameter that can be adjusted if 
too many, or too few, puncta are being detected as peroxi-
somes. By default, this parameter is set to a value that results 
in reasonable peroxisome segmentation based on initial test 

images of various yeast strains. An additional user-specified 
parameter sets the minimum peroxisome size, in pixels. 
Segmented peroxisomes below this size, which specifies the 
limit below which peroxisomes cannot be identified with 
high confidence, are removed from downstream analysis. 
Following these steps, a binary mask of the segmented perox-
isomes is output, as well as a mask where pixels within indi-
vidual peroxisomes share a unique label.

2.4 Quantification of peroxisome abundance and 
other metrics
To quantify the number of peroxisomes in each cell, perox- 
per-cell iterates over individual cells in the cell segmentation 
mask and counts the number of peroxisomes in the peroxi-
some segmentation mask found within each cell’s boundary. 
Cells with pixels on the image border are excluded because 
their full areas may not be represented, which can lead to 
undercounting. Each individual peroxisome is assigned to 
only one cell. If a peroxisome overlaps with multiple cells, it 
is assigned to the cell with the greatest overlap. In cases where 
a peroxisome’s maximum overlap is the same across multiple 
candidates, the peroxisome is assigned to the cell containing 
the greater signal intensity from the peroxisome channel pro-
jection image. If still unassigned after these steps, the peroxi-
some is randomly assigned to one of the candidates. The 
number of peroxisomes in each cell is tabulated and then out-
put to a spreadsheet.

perox-per-cell also generates metrics for peroxisomal phe-
notypes, including the physical areas of each cell and peroxi-
some, the total summed intensity of the peroxisomal channel 
within cell boundaries, and the same summed intensity ex-
cluding signals from segmented peroxisomes. Accurate quan-
tification of cell and peroxisomal physical areas requires that 
the physical size of pixels be specified in the input image 
metadata. To compute physical areas, perox-per-cell reads in 
metadata formatted according to the OME-XML standard 
(Goldberg et al. 2005) embedded in the input image. To accu-
rately quantify areas, users should ensure that pixel width, 
height, and associated units are included in that metadata.

2.5 Software implementation, availability, 
and execution
The software is implemented in Python and available at 
https://github.com/AitchisonLab/perox-per-cell. We have 
also deployed perox-per-cell as a standalone, Windows exe-
cutable package. When run, the software provides a GUI for 
selecting the imaging file(s) to process and for adjusting 
analysis parameters controlling peroxisome detection sensi-
tivity, minimum peroxisome area, and the maximum possible 
intensity value in the peroxisomal channel. This last parame-
ter should be set based on the bit depth of the peroxisome 
channel imaging data, equivalent to 2(bit depth) – 1.

3 Results
To evaluate perox-per-cell, we compared its performance 
against manually quantified data. We collected 44 two-channel, 
14-bit Z-stacks from various yeast strains including WT as well 
as inp1Δ, inp2Δ, pex30Δ, and vps1Δ mutants. These strains 
were selected because, together, they encompass a variety of 
peroxisomal densities and cellular distributions among strains 
relevant to peroxisome research. For example, vps1Δ cells pre-
dominantly have a single peroxisome whereas pex30Δ mutants 
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show elevated peroxisome counts (Vizeacoumar et al. 2003, 
Hoepfner et al. 2001). Each imaging data set consisted of a Z- 
stack of Calcofluor-stained cells and a Z-stack from the same 
position to image GFP-PTS1 (see Supplementary methods). For 
manual counting, stacks were first deconvolved and then con-
verted to maximum-intensity projections. Two individuals man-
ually counted the number of peroxisomes in each cell from 
these images using blinded samples. We then ran perox-per-cell 
on the same imaging data and compared the results against 
manual counts. The imaging data used for this evaluation as 
well as the manual peroxisome counts are available at https:// 
doi.org/10.5281/zenodo.11375101 (Neal et al. 2024).

3.1 Validation against manual peroxisome and 
cell counts
perox-per-cell results correlated strongly with manual counts 
(Fig. 1C, left and Supplementary Fig. S1). On average, the 
median number of peroxisomes per cell estimated by perox- 
per-cell in an image differed by -0.44 peroxisomes compared 
to the average of the two manual counters (Fig. 1D, left). 
Comparing perox-per-cell to manual counters 1 and 2 inde-
pendently, this difference was -0.91 and 0.03, respectively. 
The difference between manual counters was 0.94, illustrat-
ing that perox-per-cell estimates fall within the variability 
that exists between manual counters. We also assessed the 
agreement between perox-per-cell and manual counts in 
terms of cell-to-cell variability. The average difference be-
tween the interquartile ranges (IQRs) of perox-per-cell and 
manual peroxisome counts was -0.33 across images. The 
IQR from manual counter 1 was 0.45 peroxisomes per cell 
higher than counter 2 on average, also indicating that soft-
ware estimates fall within manual counter variability.

perox-per-cell also showed strong correlation with manual 
cell number counts (Fig. 1C, right and Supplementary Fig. S2). 
Across images, perox-per-cell detected a median value of 6.4% 
fewer cells (IQR¼ 6.5%) when compared to average counts 
recorded manually (Fig. 1D, right). Inspecting images with the 
largest discrepancies between manual and automated counts, 
we found that cells not detected by perox-per-cell tended to 
have lower signal intensities and were crowded by neighboring 
cells. We have also noticed that the cell segmentation tends to 
not detect very small buds, possibly due to relatively lower 
Calcofluor staining and, thus, lower signal intensity. We there-
fore encourage users to ensure that cell staining is sufficiently 
strong, and that cell crowding is minimal in input images.

3.2 Detecting altered peroxisome characteristics 
in mutants
We investigated whether the results from perox-per-cell could 
be used to detect statistically significant alterations in cellular 
peroxisome counts among mutant strains with peroxisomal 
defects. For each strain represented in our set of 44 test 
images, we selected a representative image for each strain 
(Supplementary methods), then compared peroxisome count 
distributions in mutant strains to WT. As part of this analy-
sis, we also included a set of four images from a pex3Δ strain 
(H€ohfeld et al. 1991) in which no peroxisomes were visually 
detected. We found that for all mutant strains tested, statisti-
cal comparisons against WT were significant with FDR- 
adjusted P-values ≤1.1e-06 for each strain (Fig. 1E, left).

We also tested whether peroxisome areas differed between 
strains and found that inp1Δ and vps1Δ had significantly 
higher areas compared to WT (Fig. 1E, right). We note that 

using the GFP channel intensities for this quantification is a 
proxy for peroxisomal area; differences in area could also 
represent differential PTS1 import. Together, these results in-
dicate that perox-per-cell results can reveal statistically signif-
icant alterations in peroxisome characteristics in strains with 
known defects.

4 Discussion
Our results show that perox-per-cell accurately quantifies per-
oxisome counts from imaging data and that its estimates fall 
within the variability between manual counters. On a standard 
Windows workstation, the program processes images such as 
those used here in <90 s. Therefore, we anticipate it will be use-
ful for rapidly and accurately assessing peroxisome characteris-
tics in yeast cells, which, as we show here, can reveal 
statistically significant differences in peroxisome phenotypes be-
tween strains using one imaging instance per strain (Fig. 1E).

We note that perox-per-cell currently quantifies peroxi-
some characteristics from 2D projections derived from 3D 
Z-stacks, not directly from the Z-stacks themselves. 
Extending the software to support 3D segmentation could 
potentially improve the software’s accuracy and would add 
volumetric features to its list of quantifiable peroxisome char-
acteristics. We also note that the peroxisome marker GFP- 
PTS1 used in this study is an exogenous reporter and that less 
abundant, endogenously-tagged proteins may result in dim-
mer puncta, possibly impacting peroxisome segmentation. 
We have found that in a strain endogenously producing GFP- 
tagged PEX3, perox-per-cell can produce accurate peroxi-
some segmentations despite dimmer puncta after adjusting 
the sensitivity parameter that controls peroxisome detection.

While Calcofluor staining was used to delineate cell bound-
aries in data used for this study, other staining methods may 
be applicable for use with perox-per-cell. The ML model 
used for cell segmentation was trained on fluorescent cell nu-
clei images; therefore, it may perform optimally for fluores-
cence imaging of more spherical cells. As additional studies 
are performed to assess the software’s generalizability across 
other cell types, staining methods, and image modalities, 
perox-per-cell can be enhanced with alternative methods and/ 
or customization options for cell segmentation that broaden 
its applicability across the research community.

Additionally, the software’s peroxisome segmentation 
method is not specific for peroxisomes and could be used for 
segmenting other types of intracellular puncta provided that 
the user-defined parameters for peroxisome segmentation 
(see Section 2) are tuned accordingly.

With perox-per-cell we aim to facilitate peroxisome research 
in the domain of big data and its attendant analytical methods. 
The software opens new vistas for statistically powered investi-
gations that establish or refine definitions of peroxisomal 
defects and that uncover novel phenotypes of known mutants 
unresolvable through coarse-grained analyses.
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