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Abstract 

The dilemma of employing high-capacity battery materials and maintaining the electronic and 

mechanical integrity of electrodes demands novel designs of binder systems. Here, we developed a 

binder polymer with multi-functionality to maintain high electronic conductivity, mechanical adhesion, 

ductility, and electrolyte uptake. These critical properties are achieved by designing polymers with 

proper functional groups. Through synthesis, spectroscopy and simulation, electronic conductivity is 

optimized by tailoring the key electronic state, which is not disturbed by further modifications of side 

chains. This fundamental allows separated optimization of the mechanical and swelling properties 

without detrimental effect on electronic property. Remaining electrically conductive, the enhanced 

polarity of the polymer greatly improves the adhesion, ductility, and more importantly, the electrolyte 

uptake to the levels of those available only in non-conductive binders before. We also demonstrate 

directly the performance of the developed conductive binder by achieving full-capacity cycling of 

silicon particles without using any conductive additive. 
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Introduction 

 

Energy storage is a critical but weak link in the chain of sustainable energy applications. Developing 

high-capacity battery systems without sacrificing the safety, cost, power, and stability standards remains 

a formidable challenge, and requires optimized performance of every battery component1,2. Besides other 

elemental parts in batteries, such as electrodes and the electrolyte, an efficient binder is critical to 

maintain both the electronic and mechanical integrity of battery electrodes. An ideal battery binder 

should provide inexhaustible tolerance of the large volume change of high-capacity materials during 

battery operation. Traditional binder systems involving non-conductive polymer and conductive 

additives encounter technical challenges when applied in high-capacity electrodes. For example, the Li-

ion alloying capacity of silicon is 4200 mAh/g to the Li22Si5 phase, more than ten times higher than that 

of the current graphite anode; about 3,500 mAh/g is accessible during electrochemical lithiation to the 

Li15Si4 stage3,4. However, around 300% of volume expansion was observed when Si is fully 

electrochemically lithiated. In a conventional binder system, this violent volume change disrupts the 

electrode integrity during the charge and discharge cycles3-8. Although approaches to overcome the 

adverse effects of the volume change in high-capacity electrodes have been extensively explored, such 

as metal alloy, Si/C composite9,10, Si wire11,12, tube13-16, and especially nano-engineering17-19, an efficient 

battery binder system is the ultimate solution for assembling high-capacity but severe-volume-change 

electrodes, and has not been developed. 

A traditional binder system is dual-component based, essentially with two components for two 

different functionalities. Polymer binders, such as polyvinylidene fluoride (PVDF), mechanically hold 

the active materials and additives together. Electronically conductive additives, such as acetylene black 

(AB), are necessary to ensure electrical conductivity of the entire electrode. In a porous composite 

electrode, the non-conductive polymer binder combines with AB conductive additives to maintain the 

electrical connection. In addition to the mechanical adhesion and electrical connection, the polymer 

covers the active material surfaces, so the polymer should swell in electrolyte to provide enough ionic 

conductivity. Although such classic dual-component binder design is popular in the current Li-ion 

batteries, it does not work well for the high-capacity electrodes with large volume change20-22. 
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Mechanically, high-capacity electrode materials tend to generate more than an order of magnitude 

higher stress in the electrode than those of graphite during lithiation. The stress disrupts the mechanical 

integrity, leading to electrode fracture and delamination23. More seriously, the electronic integrity of 

electrodes relies on the connections between the non-adhesive conductive additives and active materials. 

Even with extensive amount of conductive additive, this connection will break after extended cycles of 

large volume change24,25.  
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Electrolyte uptake in binder 
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Figure 1. Schematic of an ideal binder system for high-capacity battery electrodes. The binder 

developed in this work features optimized electric conductivity in lithium environment, strong 

mechanical adhesion, ductility, and high electrolyte uptake. All these optimized functionalities were 

integrated into one conductive polymer. 

 

Therefore, an ideal battery binder system for high-capacity electrodes should be able to provide: (1) 

inherent electronic conductivity under the Li-ion battery environment, (2) mechanical adhesion and 

ductility with inexhaustible tolerance of large volume change, and (3) electrolyte uptake to warrant high 

ionic conductivity (Fig. 1). Conductive polymers with improved adhesion to active material particles 

have shown potential for improving the electronic connection in Si anodes26-29. Our previous work 

showcased the power of utilizing advanced spectroscopy and simulation for optimizing the electronic 

property of conductive polymer in Li-ion battery environment. Cycling of Si with capacity of 2,100 
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mAh/g has been demonstrated with conductive polymer binder30. Based on the established methodology 

for synthetically controlling the electronic property of conductive polymers, here we report an ideal 

binder system through a new conceptual design with combined chemical synthesis, quantum calculation, 

spectroscopic, and mechanical testing tools. The developed polymer exhibits great electronic and 

mechanical properties, as well as enhanced electrolyte uptake, meeting all the aforementioned 

challenges of an ideal binder system. Full capacity (3,750 mAh/g) cycling of commercial Si particles 

without using any conductive additive is realized through this conceptual change on the battery binder, 

i.e., from the traditional multi-component to the developed single-component multi-functionality 

system. 

 

Results and Discussion 

Design of conductive polymer as battery binder 

Fig. 2 shows the design concept and synthesis schematic of the conductive polymer. Three types of 

functional groups were introduced to polyfluorene (P) type conductive polymers for optimizing the 

electronic, mechanical, and electrolyte-uptake properties. First, fluorenone (F) was incorporated to tailor 

the electronic structure of the polymer, so the polymer could be cathodically doped under the reducing 

lithium environment to improve its overall electric conductivity30. Second, benzoate ester (M) groups 

were copolymerized to improve the chain flexibility of the polymer, and therefore strengthen the 

mechanical adhesion force between the active materials and the polymer binder. Third, triethyleneoxide 

monomethylether (E) side chains were introduced to the conductive polymer to enhance its electrolyte 

uptake capability.  
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Fig.2 
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Figure 2. Synthetic scheme and the design purpose of the functional groups incorporated in the 

polymer binder. Functional groups contribute specific functionalities when the polymer is used as a 

binder in Li-ion batteries. 

 

The challenge for designing a single-component battery binder is that modifications for improving the 

individual functionality should not be detrimental to each other. In our polymer system, this challenge is 

circumvented by modifying only the side chains on the backbone of the PF conductive polymers. 

Below, we first establish the fundamental that the ether side chains do not contribute to the relevant 

electronic states pertaining to the electronic conductivity, as justified by spectroscopy and calculations 

(Fig. 3). Partially replacing octyl side chains with triethylenoxide monomethylether moieties 

significantly enhanced the polarity of the polymers, leading to much improved electrolyte uptake (Fig. 

4a-b). Additionally, incorporation of the ether moiety in the polymer increased both the interface 

adhesion and the ductility (Fig. 4c-f) to better eliminate stress-induced fracture31-33. In fact, 

polyethyleneoxide (PEO) is known to form stable interface layer between lithium metal and the PEO 
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electrolyte; therefore, it is chemically suitable in the anode environments34. PF Polymers with such ether 

side chains are thus able to maintain high levels of electrical conductivity, mechanical flexibility, and 

electrolyte uptake individually. 

 

Figure 3. Electronic states relevant to electrical conductivity. (a) Synchrotron-based soft x-ray 

absorption spectra of a series of polymer binders with different chemical structures. Here we focus on 

low-energy onset states, which correspond to the LUMO-derived bands. All polymers with F units 

display a low-energy LUMO state that is about 0.7eV below the LUMO in the P polymer. E and M 

functional groups only affect high-energy features (Supplementary Fig.S1). (b) The DFT calculation 

confirms all polymers with F group feature a low-energy LUMO state (red), with different high-energy 

states. This is consistent with the spectroscopic data. The special LUMO state (red) sits lower in energy 

than the Li state (green) (see supplementary Fig.S2 for other polymers), leading to effective electron 

doping if the materials are used in lithium battery environment. 

 

Maintaining key electronic states for optimized electronic properties 

We have previously shown that tailored electronic structure by introducing fluorenone (F) group into 

the polyfluorene will lead to optimized electronic conductivity in a reducing lithium environment30. The 

binding energy of lithium to the F group (2.46 eV) is close but a bit higher than that of the Si (2.42 eV), 

so Li will be bonded to the polymer on the F group first. A special lowest unoccupied molecular orbital 
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(LUMO) state derived from the F group sits lower in energy than that of the Li state (Fig.3b). The 

electron distribution of this particular LUMO state is extended into the polymer backbone, leading to 

effective in-situ electron doping for improving the polymer’s electric conductivity30.  

Fig. 3 shows the synchrotron-based soft x-ray absorption spectroscopy (XAS) results, collected at the 

Advanced Light Source (ALS), and the DFT calculated band structures, performed at the National 

Energy35 Research Scientific Computing Center (NERSC). This spectroscopy was done to screen the 

materials and verify that the beneficial low-energy LUMO state from the F groups is maintained in the 

polymers with further modifications of the side chains. X-ray absorption spectroscopy is a direct probe 

of the unoccupied states through excitations of core-level electrons to the unoccupied states. So, the 

lowest energy features in XAS data correspond to the LUMO states with empty core-holes36. Although 

detailed line-shape analysis of XAS is a powerful tool for revealing both the physical and chemical 

processes of battery materials35, the analysis here focused only on the LUMO states manifested by the 

absorption onsets of the spectra. The results showed clearly that a low-energy shoulder feature exists for 

all polymers with F groups, but not for the P polymer. Modifying the side changes, E and M, only lead 

to spectroscopic difference at higher energies away from the LUMO states (Supplementary Fig.S1), thus 

has no effect on electrical conductivity. 

The origin of this low-energy LUMO state was confirmed by the DFT calculations (Fig.3b), which are 

consistent with the spectroscopic experiments. The F group derives an electron band much lower in 

energy than other electron states, including the state introduced by Li (Supplementary Fig.S2). The 

calculation also confirmed the experimental evidence that adding E and M functional groups to the 

polymer only affects the high-energy electron states, which are not relevant to the materials’ electronic 

conductivity. As experimentally verified in PEFM (Supplementary Fig.S3), and previously in the PFM 

polymer30, such optimized electronic structure leads to in-situ electron doping of the polymers under the 

Li-ion chemistry, which intrinsically improves its electrical conductivity if used in lithium batteries. The 

conductivity of polymers with F group reaches 4.90×10-6 S/cm after the first lithiation cycle. The 

conductivity is lower than that of AB conductive additive particles used in classic composite electrode, 

because the doped electrons are somewhat localized as indicated by the isosurfaces30. The specific 

conductivity of AB is typically in the range from 0.1 to 100 S/cm37, but both the particles and particle-to-
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particle connections for electron transport are rigid. AB composite tends to lose electronic conductivity 

entirely due to volume change of the Si materials. Therefore, such moderate improvement on 

conductivity of the conductive polymer binder over that of the nonconductive polymer binder has led to 

tremendous improvement of the Si electrode performance, as demonstrated previously in PFM polymer30 

and PEFM in this work. 

Electrolyte uptake 

Li-ion transportation in the binder system is critical for achieving the full capacity of the high-capacity 

materials in battery electrodes, because the binder coats the surface of the active material and may 

impede the Li-ion diffusion. Although ion mobility in the doped conductive polymer system has been 

demonstrated, strategies to further improve the ion mobility are still necessary38,39. In our polymer system, 

this issue is tackled by improving the electrolyte uptake through the incorporation of the polar E side 

chains. 

The enhanced polarity of the PEFM polymer results in a three-fold electrolyte uptake (Fig. 4a-b). The 

better swelling is due to the increased polarity of the polymer, which is indicated by the water contact 

angle measurements (Fig 4a). The static contact angle is 90.9° for PEFM with the E group, versus 

101.0° for PFM. The ether side chains tend to distribute uniformly in the polymer because they are 

chemically attached to the backbone. The uniform distribution of the ether moieties in the binder helps 

to improve the overall electrolyte uptake. Although PFM also swells in the electrolyte solution, the total 

electrolyte uptake is about 10 percent of its final weight. In swelled PEFM films, the electrolyte uptake 

is tripled, accounting for 30 percent of the final swelling weight (Fig. 4b). This number is similar to the 

non-conductive PVDF swelling in the electrolyte40. As explained above, the enhanced electrolyte uptake 

is important for allowing facile Li-ion transportation through the polymer binder to the active materials.  
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Figure 4. Electrolyte uptake and mechanical properties. (a) Water contact angles on the surfaces of 

PEFM and PFM films. The E side chains in PEFM increase the polarity, and thus improve the swelling 

of the polymer. Therefore the PEFM has a lower contact angle with water. (b) The swelling tests of 

PEFM and PFM polymer film in the 1M LiPF6 EC/DEC (1:1) electrolyte. The electrolyte uptake in 

PEFM is three times higher than that in PFM, and is at the same level as that for conventional non-

conductive PVDF binder. (c-d) The scratch tests of PEFM/Si (c) and PFM/Si (d) composite electrodes. 

The SEM image of the scratch morphology of PEFM shows a very smooth scratch path with little crack. 

(e) The PEFM/Si electrode displays higher friction coefficiency than that of the PFM/Si, indicating the 

higher binding strength of PEFM. Both have the same level of caustic emission. (f) Nano-indentation 

force of the PEFM is lower than the PFM at a given indentation depth. PEFM with the ether side chains 

shows lower modulus, thus higher ductility, than that of the PFM. 

 

Mechanical adhesion and ductility 

Another important benefit associated with the increased polarity of the polymer is the significantly 

improved adhesion force of the binder with the Si particles, and with the current collector. The photo of 

the peel result (Supplementary Fig.S4) shows that almost the whole PEFM laminate persists on the 

current collector, while for the PFM, the delamination takes place between the electrode laminate and 

the current collector. This clearly shows that the large adhesion force of the PEFM binder is beyond the 

testing range of such conventional peeling test, which is a standard technique widely used in battery 



 

11 

industry. Although the force to delaminate the PEFM-based laminate electrode is too strong to be 

measured, the great improvement on adhesion among the laminate, current collector, and particles is 

obvious.  

The better initial adhesion in the binder system has been found to result in better cyclability and 

lifetime performance, although the adhesion may change as the electrolyte wets the laminates and after 

the electrode cycles41,42. The greatly improved binder adhesion force can be explained as follows: as the 

binder’s polarity increases, the binder adheres with the polar silicon dioxide (SiO2) surfaces of the Si 

particle and the copper oxide (CuO) surface of the Cu current collector more effectively43.  

In addition to the adhesion force, a compliant polymer is highly preferred for battery binder systems, 

because it can accommodate the stress from the active material expansion and maintain mechanical 

stability of electrodes. This requirement becomes critical for high-capacity electrodes because the 

volume expansion is at much higher scale. For example, the stress generated by Si volume expansion 

causes fracture of the electrode. The fracture takes place within the binder itself, and/or at the binder/Si 

interface, but not in the Si particles. Therefore, the issue is to address the ductility of the binder and the 

interfacial strength between binder and active materials6,44.  

Unfortunately, most of the conductive polymers are rigid molecules that tend to have higher Young’s 

modulus (elastic modulus) and are very brittle45. They tend to fracture under a high stress situation. In 

our PEFM conductive polymer, the ether moieties are much harder to pack, and assume a more random 

molecular configuration, than that of the octyl moieties46. Therefore, incorporating a short ether moiety 

increases the ductility of the polymers. The more-compliant PEFM better accommodate the volume 

change of active materials, and they accumulate less stress in the binder and at the interface between the 

binder and the active materials. This improvement in molecular scale can be visualized and quantified 

via a scratch test and nano-indentation tests47,48. The morphology of the electrode after a scratch test 

between the PFM and the PEFM binder-based electrodes has shown drastic differences (Fig. 4c-d). The 

scratch track of the PEFM electrode is very smooth, with very limited cracks of the electrode laminate. 

However the PFM shows major crack patterns on its scratch track. Because the scratch test simulates the 

stress induced by the volume change of active materials, this result essentially demonstrates that the 
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more compliant PEFM binder provides great tolerance of the volume change through its optimized 

ductility49,50. 

The friction coefficient during the scratch test and nano-indentation of the composite electrode reflect 

the composite nature of the laminate electrode, as well as the binder mechanical properties (Fig. 4e-f). 

The friction coefficients of the two laminates are close because the composites are dominated (67%) by 

the active Si materials. The slightly higher friction coefficient of PEFM is consistent with the higher 

binding strength of PEFM with its improved adhesion, which leads to stronger interaction with the polar 

diamond tip used in the tests. The negligible acoustic emission indicates that the breakage of the 

composite takes place within the binder and/or at the interface, rather than in the Si particles, which is 

consistent with previous reports6,44. Since the breakage during the scratch test is not in the Si active 

material, the contrast on the nano-indentation results reflects the different binder properties. The 

obviously lower modulus of the PEFM/Si electrode is highly beneficial to enhance the tolerance of the 

volume change.  

 

Demonstration of the ideal polymer binder in polymer/Si electrodes 

Besides the comprehensive electronic and mechanical verifications, the performance of the conductive 

polymer binder in battery electrodes is demonstrated in this section. Because Si anodes are known to 

suffer the most serious volume-change problem, they provide a challenging system to demonstrate the 

outstanding performance of our polymer binder. 
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Figure 5. Electron microscope images polymer/Si electrodes before and after cycling. (a) SEM, 

electron diffraction pattern, and high resolution TEM image of a fresh composite electrode with 

conductive polymer binder and Si nanoparticles. TEM was taken on a Si particle. The lattice structure of 

crystalline Si particles is visible. (b) Images of the PFM/Si composite electrode after one lithiation and 

delithiation cycles. The diffraction spots suggest the existence of crystalline Si particles. TEM confirms 

the existence of crystalline Si domains. (c) Images of the PEFM/Si composite electrode after one 

lithiation and delithiation cycle. Both the electron diffraction and TEM image indicate completely 

amorphous Si particle in the composite electrode. 

 

To facilitate direct comparisons, electrodes were fabricated with similar Si loading of 0.22 mg/cm2 and 

67% of the total electrode mass, at both the PFM and PEFM base binders. The ratio of the Si to the 

conductive polymer binder was optimized between the Si and PFM binder in our early work, with 33% 
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of binder showing the best performance30. The composite electrodes exhibited very similar and typical 

morphology (Fig. 5a, Supplementary Fig.S5) with polymer binder coating Si particles throughout the 

battery operation (Supplementary Fig.S6). Due to the inelasticity of the Si materials, the first lithiation 

converted crystalline Si into amorphous Si. For the PFM/Si electrode, Si became largely amorphous 

after one complete charge and discharge cycle. However, the electron diffraction image shows clear 

diffraction points, indicating the existence of a large number of crystalline domains, as seen in 

transmission electron microscopy (TEM) images (Fig. 5b). The crystalline Si domains suggest that some 

of the Si material did not participate in the cycling of the PFM/Si electrode. On the contrary, Si particles 

in the PEFM/Si electrodes were completely converted into the amorphous phase after only one cycle. 

This is confirmed by the completely blurred electron diffraction image, as well as the high-resolution 

TEM image (Fig. 5c). 

The electron microscope images are in good agreement with the electrochemical testing data. Fig. 6 

shows that the cycling capacity of Si particles in the initial cycle reaches theoretical capacity (3,750 

mAh/g) in the PEFM/Si electrodes, indicating 100 percent utilization of Si material embedded in the 

PEFM binder. This is corresponding to 2500 mAh/g capacity of the entire laminate weight when the 

weight of conductive binder is included, and a 1200 mAh/cm3 volumetric energy density of the 

electrode. In both the PF/Si and PFM/Si electrodes, the delithiation capacity of Si in the first cycle is 

much lower. The discharge capacity and voltage plateau hold up very well in the initial cycles 

(Supplementary Fig.S7). The specific delithiation is stable and higher in PEFM/Si than that in PFM/Si 

electrodes over extended cycles (Fig. 6).  
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Figure 6. Cycling and rate performance of conductive polymer/Si electrodes without any conductive 

additive. (The current density at C-rate is 0.92 mAh/cm2) (a) Cycling performance of polymer/Si 

composite electrodes. A PEFM conductive polymer, as an ideal binder, enables the cycling with full 

theoretical capacity of Si at 3,750 mAh/g. At this capacity, the volume change of Si is 100% higher than 

that of the PFM-based binder at 2,500 mAh/g. (b) Coulombic efficiency and area specific capacity of 

the PEFM/Si electrode. (c) The rate performance of the polymer/Si electrodes with PEFM (solid) and 

PFM (dotted) binder. The capacity retention of Si is much higher in PEFM than that in the PFM.  
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It is noteworthy that the electrode Si loadings are similar, so the improved gravimetric specific 

capacity of Si results in higher area specific capacity of the electrode. The higher gravimetric capacity 

of Si materials was proportional to the higher volume expansion. The Si in the PEFM/Si has close to 

100% higher volume expansion than that in the PFM/Si, but the PEFM binder effectively maintained 

stable capacity over the 50-cycle test. The discharge capability of the electrode at different current 

density was measured and compared between the two binder systems. The PEFM/Si electrode 

maintained the same level of rate performance with higher specific capacity. Almost full theoretical 

capacity was accessed at C/10 in the PEFM system. In the case of PEFM/Si where full utilization of Si 

is achieved, the Li needs to diffuse through the full size of the Si particles. Therefore, the Li-ion 

transport in the Si material itself may be limiting the rate performance, which was not a topic of this 

work. Additionally, the capacity decay of PEFM/Si is more than that of the PFM/Si in the first 20 

cycles, which is again likely due to the Si material. Nonetheless, the 2C rate (half an hour delithiation) 

data still show superior specific capacity compared to the slow C/25 rate performance of the PFM/Si 

electrode, indicating the benefit of utilizing a PEFM conductive polymer as an ideal binder for high-

capacity anodes. 

 

Conclusions 

This work reports the design, synthesis, and testing of an ideal polymer binder for high-capacity 

battery anode systems. We successfully integrated three critical functionalities into a single-component 

n-type conductive polymer. Electrical, mechanical, and electrolyte-uptake properties are optimized 

individually without detrimental effect to each other. The electronic properties were verified through 

advanced theoretical and experimental techniques, and demonstrated by the outstanding performance of 

a polymer/Si composite electrode without any conductive additive. The electrolyte uptake, adhesion, 

and ductility were measured through comprehensive mechanical testing experiments. Being electronic-

conductive, the developed PEFM polymer exhibited similar or higher levels of mechanical and swelling 

properties compared to non-conductive binder like PVDF. Full-capacity cycling of Si was accessed in 

this conductive polymer binder with excellent rate performance. 
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This work demonstrates that the conceptual design of a battery binder system could be based on a 

single-component conductive polymer with multi-functionality. Incorporating proper functional groups 

into a conductive polymer could reach balanced swelling and mechanical properties while maintaining 

the electronic conductivity. Large volume change of electrodes remains one of the major issues 

restricting the development of high-capacity batteries. The design concept, methodology, and practical 

application of a PEFM-conductive polymer are extendable for other high-capacity electrodes other than 

Si anodes.  

 

Materials and Methods 

Raw Materials All the starting chemical materials for synthesis the conductive polymer were 

purchased from Sigma-Aldrich. Anhydrous N-methylpyrrolidone (NMP) with 50 ppm of water content 

was purchased from Aldrich Chemical Co. Silicon nanoparticles were purchased from Nanostructured 

& Amorphous Materials Inc. The particle sizes were below 100 nm in diameter. Lithium-ion 

electrolytes were purchased from BASF, including 1 M LiPF6 in ethylene carbonate (EC) and diethylene 

carbonate (DEC) (1:1 w/w), 1 M LiPF6 in EC and fluorinated ethylene carbonate (FEC) (7:3 w/w). 

Synthesis 2,7-Dibromo-9,9(di(oxy-2,5,8-trioxadecane))fluorene 2,7-dibromofluorene (5.0 g, 15.4 

mmol) was dissolved in dried THF solution (30 mL). Sodium hydride (1.0 g, 40 mmol) was added to the 

THF solution at room temperature and refluxed for five hours. 10-Tosyloxy-2,5,8-trioxadecane46 (11.8 g, 

37 mmol) in 20 mL of dry THF was added dropwisely to the refluxed solution. The mixture was 

allowed to reflux overnight, then cooled down, poured into distill water, and extracted with chloroform 

(2 × 100 mL). The combined organic solutions were washed with saturated NaCl solution (2 × 100 mL), 

distilled water (1 × 100 mL), dried over MgSO4, and concentrated under reduced pressure. Crude oil was 

further purified by column chromatography to provide a 5.7 g product in 60% yield. 1H NMR (500 

MHz, CDCl3) δ (ppm): 2.34 (t, 4H), 2.77 (t, 4H), 3.10–3.60 (m, 22H), 7.40-7.60 (m, 6H).  

Synthesis Poly(2,7-9,9-dioctylfluorene-co-2,7-9,9-(di(oxy-2,5,8-trioxadecane))fluorene-co-2,7-

fluorenone-co-2,5-1-methylbenzoic ester) (PEFM) A mixture of 9,9-dioctylfluorene-2,7-diboronic acid 

bis(1,3-propanediol) ester (1.10 g, 1.97 mmol), 9,9-(di(oxy-2,5,8-trioxadecane))fluorine(0.44 g, 0.71 



 

18 

mmol) 2,7-dibromo-9-fluorenone (0.24 g, 0.72 mmol), methyl2,5-dibromobenzoate (0.21 g, 0.72 

mmol), (PPh3)4Pd(0) (0.082 g, 0.072 mmol), and several drops of Aliquat 336 in a mixture of 13 mL of 

THF and 5 mL of 2 M Na2CO3 solution was refluxed with vigorous stirring for 72 hours under an argon 

atmosphere. After the reaction stopped, the solution was concentrated by vacuum evaporation, and the 

polymer was precipitated from methanol. The resulting polymer was further purified by precipitating 

from methanol twice. The final polymer was collected by suction filtration and dried under vacuum. 1H 

NMR (500 M Hz, CDCl3) δ (ppm): 8.17 (s, Ar-H, 8.07 (s, Ar-H), 7.87 (m, Ar-H), 7.68 (m, Ar-H), 7.38-

7.43 (d, Ar-H), 3.67 (s, OCH3), 2.60-3.50 (m, -OCH2CH2O-), 2.10 (br, CH2), 1.72 (br, CH2), 1.17 (m, 

CH2), 0.80-0.90 (m, CH2, CH3). GPC (THF, PS standard): Mn = 34,000, PDI = 2.3 

X-ray Absorption Spectroscopy Synchrotron-based Carbon-K XAS Spectra were collected at beamline 

8.0.1 of the Advanced Light Source at LBNL. The undulator and spherical grating monochromator 

supply a linearly polarized photon beam with resolving power up to 6000. Polymers were spin coated on 

clean gold (Au) surfaces then loaded into an experimental chamber with base pressure of about 8×10-10 

torr. To avoid artificial effects from radiation damage, experiments were done at 85 K temperature with 

a deliberately defocused and low-flux x-ray beam. All the samples have been measured multiple times 

with different flux, scan period, and on different spots. Data have been carefully checked to make sure 

they are free of radiation damage effect. The XAS spectra shown here were collected in the total 

electron yield mode by registering the sample current normalized to the photon flux, which was 

measured simultaneously by the photocurrent of a clean Au mesh. The experimental resolution of the 

shown XAS spectra is better than 0.1 eV. All spectra plotted here were collected in one experiment with 

all samples mounted on the same holder to guarantee that the relative shift of the LUMO level is 

reliable. 

Quantum Chemistry Calculations The calculations were performed at the National Energy Research 

Scientific Computing Center (NERSC) facility. Electronic structure of the polymers and Li binding 

energies to the polymers were calculated using density functional theory (DFT) in local density 

approximation (LDA), as implemented in the VASP code51. The projector augmented wave method was 

used for the pseudo-potentials52. A 400 eV plane wave cutoff was used, and the atomic relaxation was 

stopped when the atomic forces are smaller than 10-2 eV Å-1. The k value in Fig. 3 is along the polymer 
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chain direction, with c as the period length. Absolute energy values are relative to vacuum level, which 

was set at zero energy. 

Micro-scratch and nano-indentation The scratch tests were performed on a CSM nano/micro scratch 

tester. A constant load of 30 mN was applied during the test using a Vickers indenter with the radius of 

20 nm. The scratch length was 2 mm and the speed was 1mm/minute. 

 

Acknowledgements  

This work is funded by the Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies 

of the U.S. Department of Energy, under the Batteries for Advanced Transportation Technologies 

(BATT) Program and by University of California, Office of the President through the University of 

California Discovery Grant. Soft x-ray Spectroscopy was performed at the Advanced Light Source 

(ALS). Calculations used resources of the National Energy Research Scientific Computing Center 

(NERSC).  Electron microscopy experiments were conducted at the National Center for Electron 

Microscopy (NCEM). All four facilities are located at Lawrence Berkeley National Laboratory (LBNL), 

and are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US 

Department of Energy under contract no. DE-AC02-05CH11231. NV is supported by European 

Community FP7 Marie Curie Career Integration Grant (ELECTROMAT) and Serbian Ministry of 

Science (project ON171017). 

 

Supporting Information Available: Description of the material included. This material is available 

free of charge via the Internet at http://pubs.acs.org. 

 

 

References 

 (1)  Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. 

 (2)  Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Energ. Environ. Sci. 2012, 5, 7854. 



 

20 

 (3)  Li, J.; Dahn, J. R. J. Electrochem. Soc. 2007, 154, A156. 

 (4)  Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. J. Electrochem. Soc. 1981, 128, 725. 

 (5)  Renganathan, S.; Sikha, G.; Santhanagopalan, S.; White, R. E. J. Electrochem. Soc. 2010, 157, 

A155. 

 (6)  Christensen, J.; Newman, J. J. Solid State Electr 2006, 10, 293. 

 (7)  Hatchard, T. D.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A838. 

 (8)  Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J. M. J. Electrochem. Soc. 2008, 

155, A158. 

 (9)  Wang, J.; Du, N.; Zhang, H.; Yu, J.; Yang, D. J. Mater. Chem. 2012, 22, 1511. 

 (10)  Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. Nat. Mater. 2010, 9, 

353. 

 (11)  Ge, M.; Rong, J.; Fang, X.; Zhou, C. Nano Lett. 2012, 12, 2318. 

 (12)  Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. Nat. 

Nanotechnol. 2008, 3, 31. 

(13)  Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; 

Yang, Y.; Hu, L.; Cui, Y. Nat. Nanotechnol. 2012, 7, 309. 

(14)  Song, T.; Cheng, H.; Choi, H.; Lee, J.-H.; Han, H.; Lee, D. H.; Yoo, D. S.; Kwon, M.-S.; Choi, 

J.-M.; Doo, S. G.; Chang, H.; Xiao, J.; Huang, Y.; Park, W. I.; Chung, Y.-C.; Kim, H.; Rogers, J. A.; 

Paik, U. Acs Nano 2012, 6, 303. 

(15)  Song, T.; Xia, J.; Lee, J.-H.; Lee, D. H.; Kwon, M.-S.; Choi, J.-M.; Wu, J.; Doo, S. K.; Chang, 

H.; Il Park, W.; Zang, D. S.; Kim, H.; Huang, Y.; Hwang, K.-C.; Rogers, J. A.; Paik, U. Nano Lett. 

2010, 10, 1710. 

(16)  Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Nano Lett. 2009, 9, 

3844. 

(17)  Jeong, J. H.; Jung, D. W.; Kong, B. S.; Lee, J.; Oh, E. S. Journal of Ceramic Processing 

Research 2011, 12, S105. 

 (18)  Ma, H.; Cheng, F.; Chen, J.; Zhao, J.; Li, C.; Tao, Z.; Liang, J. Adv. Mater. 2007, 19, 4067. 

 (19)  Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y. Nano Lett. 2012, 12, 3315. 

 (20)  Cui, L.-F.; Hu, L.; Wu, H.; Choi, J. W.; Cui, Y. J. Electrochem. Soc. 2011, 158, A592. 

 (21)  Kasavajjula, U.; Wang, C.; Appleby, A. J. J. Power Sources 2007, 163, 1003. 



 

21 

 (22)  Winter, M.; Besenhard, J. O. Electrochim. Acta 1999, 45, 31. 

 (23)  Ryu, J. H.; Kim, J. W.; Sung, Y. E.; Oh, S. M. Electrochem. Solid St 2004, 7, A306. 

 (24)  Zhang, W.-J. J. Power Sources 2011, 196, 13. 

 (25)  Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J. Chem. Soc. Rev. 2010, 39, 3115. 

 (26)  Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N.-S.; Cho, J. Angew. Chem. Int. Edit. 2012, 51, 

8762. 

(27)  Joyce, C.; Trahey, L.; Bauer, S. A.; Dogan, F.; Vaughey, J. T. J. Electrochem. Soc. 2012, 159, 

A909. 

 (28)  Guo, J.; Wang, C. Chem. Commun. 2010, 46, 1428. 

 (29)  Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Nat. Commun. 2013, 4, 6. 

 (30)  Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V. S.; 

Wang, L.; Yang, W. Adv. Mater. 2011, 23, 4679. 

 (31)  Chen, L.; Xie, X.; Xie, J.; Wang, K.; Yang, J. J. Appl. Electrochem. 2006, 36, 1099. 

 (32)  Chen, Z. H.; Christensen, L.; Dahn, J. R. Electrochem. Commun. 2003, 5, 919. 

 (33)  Libao, C.; Xiaohua, X.; Jingying, X.; Ke, W.; Jun, Y. J. Appl. Electrochem. 2006, 36, 1099. 

 (34)  Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature 1998, 394, 456. 

 (35)  Yang, W.; Liu, X.; Qiao, R.; Olalde-Velasco, P.; Spear, J. D.; Roseguo, L.; Pepper, J. X.; 

Chuang, Y.-d.; Denlinger, J. D.; Hussain, Z. J. Electron. Spectrosc. Relat. Phenom. 2013, 

10.1016/j.elspec.2013.03.008. 

(36)  de Groot, F.; Kotani, A. Core Level Spectroscopy of Solids; CRC Press Taylor & Francis Group: 

Boca Raton, 2008. 

(37)  Bansal, R. C.; Bhowmick, A. K.; Custodero, E.; Donnet, J.-B.; Funt, J. M.; Gerspacher, M.; 

Herd, C. R.; Hess, W. M.; Julien, P. C.; Kuhner, G.; Mechaute, A. L.; Probst, N.; Rivin, D.; Sifleet, W. 

L.; Tomme, M.; Tricot, C.; Voll, M.; Wang, M.-J.; Wolff, S. Carbon Black; 2nd ed.; Marcel Dekker, 

Inc.: New York, 1993. 

 (38)  Jow, T. R.; Shacklette, L. W. J. Electrochem. Soc. 1988, 135, 541. 

 (39)  Pei, Q. B.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416. 

 (40)  Liu, W. R.; Yang, M. H.; Wu, H. C.; Chiao, S. M.; Wu, N. L. Electrochem. Solid St 2005, 8, 

A100. 

 (41)  Lee, J.-H.; Paik, U.; Hackley, V. A.; Choi, Y.-M. J. Power Sources 2006, 161, 612. 



 

22 

 (42)  Park, H.-K.; Kong, B.-S.; Oh, E.-S. Electrochem. Commun. 2011, 13, 1051. 

 (43)  Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, 

T. F.; Luzinov, I.; Yushin, G. ACS Appl. Mater. Interfaces 2010, 2, 3004. 

 (44)  DeLuca, C. M.; Maute, K.; Dunn, M. L. J. Power Sources 2011, 196, 9672. 

 (45)  Hu, X. D.; Jenkins, S. E.; Min, B. G.; Polk, M. B.; Kumar, S. Macromol. Mater. Eng. 2003, 288, 

823. 

 (46)  Liu, G.; Baker, G. L. Soft Matter 2008, 4, 1094. 

 (47)  Li, X. D.; Bhushan, B. Mater. Charact. 2002, 48, 11. 

 (48)  Jardret, V.; Zahouani, H.; Loubet, J. L.; Mathia, T. G. Wear 1998, 218, 8. 

 (49)  Gao, B.; Kim, J. K.; Leung, C. K. Y. Compos. Sci. Technol. 2004, 64, 2557. 

 (50)  Owens, J. F. P.; Lee-Sullivan, P. Int. J. Adhes. Adhes. 2000, 20, 47. 

 (51)  Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. 

 (52)  Blochl, P. E. Phys. Rev. B 1994, 50, 17953. 

 



 

23 

 

TOC 

 


