
UC Berkeley
UC Berkeley Previously Published Works

Title
3D imaging in volumetric scattering media using phase-space measurements

Permalink
https://escholarship.org/uc/item/4vn880j2

Journal
Optics Express, 23(11)

ISSN
1094-4087

Authors
Liu, Hsiou-Yuan
Jonas, Eric
Tian, Lei
et al.

Publication Date
2015-06-01

DOI
10.1364/oe.23.014461
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vn880j2
https://escholarship.org/uc/item/4vn880j2#author
https://escholarship.org
http://www.cdlib.org/


3D imaging in volumetric scattering
media using phase-space measurements

Hsiou-Yuan Liu, Eric Jonas, Lei Tian, Jingshan Zhong,
Benjamin Recht, and Laura Waller∗

Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley, California, USA
∗lwaller@alum.mit.edu

Abstract: We demonstrate the use of phase-space imaging for 3D
localization of multiple point sources inside scattering material. The effect
of scattering is to spread angular (spatial frequency) information, which
can be measured by phase space imaging. We derive a multi-slice forward
model for homogenous volumetric scattering, then develop a reconstruction
algorithm that exploits sparsity in order to further constrain the problem. By
using 4D measurements for 3D reconstruction, the dimensionality mismatch
provides significant robustness to multiple scattering, with either static or
dynamic diffusers. Experimentally, our high-resolution 4D phase-space
data is collected by a spectrogram setup, with results successfully recover-
ing the 3D positions of multiple LEDs embedded in turbid scattering media.

© 2015 Optical Society of America

OCIS codes: (110.1758) Computational imaging; (110.3010) Image reconstruction techniques;
(290.5825) Scattering theory.
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1. Introduction

Imaging through scattering remains one of the most important problems in optics. Examples
are ubiquitous: imaging in foggy weather, detecting objects behind diffused glass and in vivo
biological studies. In many situations, scattering media does not absorb light, but scatters it
many times, causing images to look diffused. The scattered images still contain significant in-
formation about the object, however, so one has a chance to undo scattering either optically
or computationally. Some approaches aim to filter out the scattered light [1–5], leaving a very
weak signal. Instead, we wish to use the scattered light in reconstructing the signal [6]. Phase
conjugation does this [7–9], but only works at a single point in space. Related methods use the
coherent transmission matrix [10–13] or adaptive optics [14] to undo scattering, either com-
putationally or physically. Here, we demonstrate a new framework for 3D reconstruction of
incoherent point objects (e.g. fluorophores, LEDs) well beyond the single-scattering regime, by
measuring space-angle distributions (phase space).

Although the scattering process is completely deterministic, exact inversion through turbid
media would require full characterization of all scattering events across 3D space and time.
Since this is infeasible with current technology, we turn to statistical methods. In contrast to
previous studies, we work in the 4D phase-space domain, which relates to 2nd order correlations
of the wave-field [15]. Phase space describes light not only by its 2D positional information
(x,y), but also by its 2D distributions of spatial frequency (ux,uy) for each position. Spatial
frequency and angle of propagation are directly related, so phase-space can be thought of as the
wave-optical generalization of light fields [16, 17]. The effect of scattering is to locally spread
light into a statistical distribution of angles (spatial frequencies); hence, it is not surprising that
angle-resolved measurements are useful for imaging through scattering.

The key idea in this paper is that each point source in 3D traces out a unique 2D plane within
the 4D phase space. Just a few parameters (intercepts and slope of the plane) fully define a
point source’s 3D position, so 4D phase-space measurements are extremely redundant. This
redundancy can be exploited to mitigate the effects of volumetric scattering, which blurs phase
space in all dimensions. By modeling the blur as a convolution in 4D phase space and using
it to constrain the image reconstruction procedure, we show that information about the object
remains long after the image appears completely diffused.

Previous studies have used lenslet arrays to recover 2D objects behind thin scattering screens
by utilizing multiple perspectives [18–20], requiring coherent (laser) illumination and moving
diffusers. Other works have used phase retrieval to image through thin diffusers by making
a single-scattering approximation [21–27], including recent work using phase-space measure-
ments for calibrating depth [28]. However, most scattering material is volumetric and dynamic,
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so single or static scattering approximations are not applicable. Here, we demonstrate the va-
lidity of our method both for thick and thin diffusers and both static and dynamic scattering.

The assumptions made here are that our object consists of a sparse set of point sources (i.e.
fewer point sources than the number of 4D pixels) and that the scattering material is homoge-
nous. This holds for situations including fluorophores in biological tissue or vehicle detection
in fog. The measurement system captures phase space with very high resolution [29] by us-
ing spectrogram measurements [30] taken with a digital micromirror device (DMD) array. The
concepts presented here, however, are general and can be used with any phase-space dataset
(e.g. light field cameras).

Our inverse algorithm consists of sparse signal recovery in 4D phase space via constrained
optimization procedures. A multi-slice forward model [31–33] includes multiple scattering and
propagation effects, leading to a well-defined inverse problem. In addition to solving for the 3D
particle locations, our method is also able to estimate the (scalar) scattering coefficient. Success
degrades with increased scattering or decreased sparsity. The limits are difficult to quantify,
since they will have a complicated dependence on the object, geometry and the amount of
scattering. The important point is that the volume and resolution of data that we can reconstruct
will scale not with the number of measurements, but rather with the sparsity, such that this
method could in future be scaled up to very large volumes with high-resolution recovery.

2. Phase space basics

Phase space refers to any function that simultaneously describes space and spatial frequency
(angle) [15, 34]. For example, light fields [16, 17] in geometric optics describe both position
and angle of each ray. To include phase and diffraction effects, the more general wave optics
descriptors of phase space (e.g. Wigner functions, spectrograms) must be used [35,36]. For both
ray and wave optics, propagation is described by a simple shearing operation in phase space,
allowing one to trace rays (waves) backward through 3D space to find depth.

Here, we use the phase-space Wigner function, which incorporates both wave-optical and
geometric effects. The 4D Wigner function, W (r,u), has two transverse spatial coordinates,
r = (x,y), and two spatial frequency coordinates, u = (ux,uy). It is defined as [34]

W (r,u) =
∫∫ 〈

f̃ ∗(u+u′/2) f̃ (u−u′/2)
〉

ei2πu′·rd2u′, (1)

where f̃ is a quasi-monochromatic, partially coherent complex field in Fourier domain, ∗ repre-
sents complex conjugate and 〈·〉 denotes an ensemble average for the case of partial coherence.

Our experimental system does not measure the Wigner function of the light, but rather its
Fourier spectrogram. Spectrograms are measured by scanning an aperture across the signal and
capturing its local power spectrum for each position of the aperture [29]. Here, the aperture is
scanned in Fourier space while collecting real-space images, so the resulting Fourier spectro-
gram is written as

I(r,u) =

〈∣∣∣∣∫ f̃ (u′)a(u′−u)ei2πu′·rd2u′
∣∣∣∣2
〉
, (2)

where a is the window function for the aperture. The Fourier spectrogram is related to the
Wigner function by a simple convolution operation, I(r,u) =W (r,u)⊗Wa(r,u), where ⊗ de-
notes convolution over both r and u and Wa is the Wigner function of the aperture, a. For this
reason, the spectrogram is often called a smoothed Wigner function, and in the limit they be-
come equivalent. A traditional 2D intensity image is a projection of the Wigner function over
all spatial frequencies, Intensity(r) =

∫∫
W (r,u)d2u. Integrating instead over all positions gives

the spatial spectrum, Spectrum(u) =
∫∫

W (r,u)d2r.
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(c)        with scattering(b)     without scattering(a)      3D point sources

Fig. 1. Phase space measurements for three point sources at different depths, with and
without scattering media. (a) The 3D positions of the point sources. (b) A phase-space
slice and intensity cut-line for the case of no scattering. Each point source creates a line
whose intercept with ux = 0 defines its lateral position and slope defines its depth. (c) A
phase-space slice and intensity cut-line for the case of point sources in volumetric scattering
material. The lines blur in proportion to point source’s depth inside the scattering material.

One of the most appealing reasons for using the phase-space framework is that propaga-
tion becomes a geometric shearing operation, independent of the coherence properties of the
light [15, 34]. Denoting the propagation operator as P∆z, we describe propagation of distance
∆z in Wigner space as

P∆zW (r,u) =
∫∫

W (r′,u)δ (r− r′−λ∆zu/nr)d2r′, (3)

where λ is wavelength in vacuum, nr is the refractive index of the material and δ is the Dirac
delta function. This is exactly analogous to the shift-and-add approach for digital refocusing of
light field data [37], since angles and spatial frequencies are related by λu/nr = (sinθx,sinθy),
where (θx,θy) is the angle of propagation represented in the light field framework. When wave-
optical phase-space functions are used, as here, phase and diffraction are fully accounted for.

3. 3D localization of point sources in scattering

Consider the phase-space description of an in-focus point source (dropping the y dimensions
for simplicity). The point source emits light at a single point along x and isotropically in all
directions, so its phase space is a vertical line covering all frequencies (angles). Since propaga-
tion shears phase space (Eq. (3)), moving the point source out of focus will cause the line to tilt
proportionately. Thus, the intersection of the line with ux = 0 defines the transverse position of
the point source and the slope of the line defines its depth above the focal plane (z position):

dux

dx
=

nr

λ z
, (4)

where z is the distance between the point source and the focus plane of the imaging system. This
simple model for 3D positions of point sources is easily extended to multiple point sources that
are incoherent with each other (e.g. fluorophores). Each point source creates a distinct line in
phase space that linearly superimposes with the others (see Fig. 1b). Since any line can be fully
represented by just two parameters (intercept and slope), measuring the full phase space pro-
vides a significant amount of redundant data for 3D localization; this is important for undoing
the scattering. Note that when we consider both x and y dimensions, phase space extends from
2D to 4D and the line becomes a hyperplane in the higher-dimensional space, creating even

#236993 - $15.00 USD Received 26 Mar 2015; revised 18 May 2015; accepted 18 May 2015; published 22 May 2015 
© 2015 OSA 18 May 2015 | Vol. 23, No. 10 | DOI:10.1364/OE.23.014461 | OPTICS EXPRESS 14465 



more redundancy. Thus, determining the 3D positions of point sources becomes a plane-fitting
problem which is highly overdetermined when using 4D phase-space measurements.

When volumetric scattering is introduced, light will be spread along the angle dimension as
it propagates, causing the phase space function to blur along both r and u. Thus, point sources
at deeper depths will be both more tilted and more spread out (see Fig. 1c). In the following
section, we derive an analytical phase-space model for this volumetric scattering of a point
source and use it as a forward model for our inverse algorithm, which attempts to identify the
3D location of many point sources simultaneously.

4. Algorithm

To reconstruct the 3D positions of the point sources from a 4D phase-space dataset, we first
develop an analytic forward model for scattering, which is used in the inverse problem. By
assuming a point source in homogeneous scattering media with Gaussian spreading statistics,
our forward model becomes a tilted 4D Gaussian in phase space. It is derived with a multi-
slice approach, in order to account for multiple scattering. Next, we use this forward model
in solving the inverse problem, where we implement an atomic norm optimization procedure
subject to constraints of sparsity and the physics of our forward model.

4.1. Forward model derivation

The volumetric scattering medium is modeled as a stack of infinitely many transverse planes
of thin dynamic diffusers separated by homogeneous refractive index material. The Wigner
function of the emitted light from a point source is thus propagated and scattered repeatedly
as it passes through the scattering material. First, it propagates through a small distance, ∆z, in
the homogeneous material, as described in Eq. (3). Next, it is scattered by a diffusing plane,
denoted by operator Dη ,

Dσ ,NW (r,u) =
∫∫

W (r,u′)
N

12πσ2 exp
(
− N

12σ2 (u−u′)2
)

d2u′. (5)

Here σ is the scattering coefficient (defined as the standard deviation of the angular spread-
ing) and W (r,u) is the Wigner function of the wave-field immediately before the diffuser.
Thus, scattering is modeled as an in-place Gaussian spreading of the angle (frequency) in-
formation, which accurately describes dynamic diffusers and is a good approximation for static
diffusers. Note that

∫∫
DηW (r,u)d2u =

∫∫
W (r,u′)d2u′, which means that the light spreads

without changing its position or overall intensity. In our multi-slice approach, this process of
propagate-and-scatter is repeated for each z step through the scattering material until it reaches
the exit plane. Multi-slice approaches [31–33] have been used previously for coherent wave-
fields and nonlinear propagation [38]. Here, to apply these ideas in phase space, we seek an
analytical expression for the limit of infinitesimal z steps.

Consider a point source located at (rs,zs), described by the Wigner function, Ws = δ (r−rs).
The light then propagates a total distance ` through the volumetric scattering medium, divided
into N layers. Letting WN(r,u) denote the Wigner function of the 2D field after the last layer of
scattering material (exit plane), we have

WN(r,u) =
(
Dσ ,NP∆z=`/N

)N Ws(r,u). (6)

In order to derive the analytical phase-space model for the case of N→ ∞, W∞(r,u), we use
Feynman path integrals [39],

W∞(r,u) = lim
N→∞

WN(r,u) =
nr

2

2πλ 2`2σ2 exp
(
− nr

2

2λ 2`2σ2 (r− rs−λ`u/nr)
2
)
. (7)
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Equation (7) is our forward model describing the phase space at the exit of the scattering
medium from a point source at depth zs. In our actual imaging system, however, the exit plane
is at axial distance zd , which is not necessarily the native focus plane of the microscope. There-
fore, the phase space that we measure may have an extra propagation operation due to the
imaging system. The light still passes through a distance `= zd− zs of scattering material, and
then is subject to an extra free-space back propagation operation on W∞(r,u) from the exit
plane, z = zd , to the actual focus, z = 0. Note that the interface of different refractive indices
does not affect the phase space function, unlike the light field, since the complex field does
not change across the interface. As a result, the Wigner function at our measurement plane is
described by W (r,u) =P ′

−zd
W∞(r,u), where P ′ represents propagation in air. Accounting for

the difference in the refractive index from air to the scattering medium, the expression becomes,

W (r,u) =
nr

2

2πλ 2(zd− zs)2σ2 exp

(
− nr

2

2λ 2(zd− zs)2σ2

(
r− rs +λ

(
zd−

zd− zs

nr

)
u
)2
)
.

(8)

4.2. Reconstruction

The goal for reconstruction is to find both the transverse position rs and the depth zs of many
point sources simultaneously. Our method is based on minimizing the atomic norm [40], which
promotes sparsity in the solution, in a similar fashion to compressed sensing. Using Eq. (8), we
can calculate the phase space for each possible point source in 3D. The collection of all of these
phase-space functions form an atom set. The phase-space measurement from multiple point
sources will then be a non-negative linear combination of the atoms in this set. Our algorithm
aims to decompose the measurements into a sparse combination of these atoms by minimizing
the reconstruction error while jointly optimizing for a sparse number of atoms.

First, we define the atom set using the forward model in Eq. (8),

A =

{
a(r,u;rs,zs) =

nr
2

2πλ 2(zd− zs)2σ2 e
− nr2

2λ2(zd−zs)2σ2 (r−rs+λ (zd−(zd−zs)/nr)u)2

,∀rs,zs

}
, (9)

where the atom a(r,u;rs,zs) is a 4D function of (r,u) parametrized by the 3D position (rs,zs).
Therefore, the decomposed weighted sum is

Î(r,u) = ∑
rs,zs

c(rs,zs)a(r,u;rs,zs), (10)

where c(rs,zs) is a non-negative coefficient describing the radiating power of a point source
at position (rs,zs). Equation (10) can be regarded as a phase space prediction of the expected
measurement data, given our current estimate of the object. To find the sparse c(rs,zs) that
minimizes the difference between the prediction and the measured data, we solve the following
optimization problem

min
c≥0

∑
r,u

∣∣I(r,u)− Î(r,u)
∣∣2 +µ ∑

rs,zs

|c(rs,zs)|, (11)

where µ is a tuned regularization constant and I(r,u) is the measured phase space. Here the
sum is over the continuous parameter space of all possible locations of sources. In this work,
we discretize the set of candidate positions. After discretization, the non-smooth convex op-
timization reduces to the popular `1-minimization problem, also known as the LASSO [41].
This formulation encourages sparsity in the observed point sources, and performs well in our
experiments. We use an accelerated proximal gradient method [42] which iteratively minimizes
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the reconstruction error (the squared term) and “shrinks” the c vector towards a sparse solution.
We then threshold the recovered c(rs,zs) by τ and spatially cluster it [43], before estimating the
position of each point source as the centroid of each cluster.

While the parameters nr and zd in Eq. (8) can be reasonably assumed to be known (or meas-
ured), the amount of scattering is often unknown and cannot be assumed a priori. Thus, our
algorithm implements an outer loop optimization over different scattering coefficients in order
to solve for σ as well as the point source positions. We generate multiple A sets with different
σ and solve Eq. (11) with the Î given by each A , one at a time. The σ that minimizes Eq. (11)
and the detected points in that optimization are chosen to be the final outcome of the algorithm.

5. Experiments

To measure the Fourier spectrogram (Eq. (2)), we require a programmable aperture in the
Fourier domain of the object [29]. Building a folded 4 f system (FL1=225 mm, FL2=175 mm)
after the object, we place a reflective DMD (DLP®Discovery 4100, .7” XGA) in the Fourier
plane in order to rapidly create and scan the apertures, while capturing real-space intensity im-
ages (see Fig. 2a). Our sCMOS camera (PCO.edge 5.5) is placed at the output of the 4 f system
and fully synced with the DMD controller via hardware link. Acquisition times can achieve
camera-limited maximum frame rates (∼ 1 kHz), but are typically limited by light efficiency to
tens of seconds per dataset. Conveniently, phase-space sampling density can be flexibly traded
off for acquisition time and noise performance. We capture data at the highest resolution pos-
sible, though it may be excessive for the simple objects used here. Alternatively, the optical
system could be replaced by a single-shot light field camera [16], at a cost of lower resolution.

We perform two sets of experiments, using LEDs placed at various locations within a 3D
volume. First, we scan a 1D window (strip) across the DMD and collect 2D phase-space data
for the case of multiple discrete rotating (dynamic) diffusers. Second, we scan a 2D window
across the DMD and collect 4D phase-space data for the case of LEDs embedded in scattering
gelatin, to demonstrate the applicability of the algorithm to volumetric scattering effects.

5.1. 1D object with multiple thin diffusers

The object for the 1D experiment consists of 3 LEDs (dimension 0.9mm×1.5mm) in a line,
which serve as point sources with different transverse (x) and depth (z) positions. The LEDs
have center wavelength 657 nm and bandwidth 38.8 nm; we use a bandpass color filter (650 nm
± 5 nm) to suppress dispersion effects from the DMD. The window has a width of 1.74 mm
and is stepped across 225 positions in angle space (step size 54 µm) to use the full area of the
DMD. The 2D phase space slices are computed along the green line (averaged over a small
area) and plotted at the corresponding ux in Fig. 2. The phase space image is then input to our
algorithm to recover the positions and depths of the point sources. In the algorithm, we setup
up 1000 sample points in the x coordinate and 200 sample planes in z. The sampling size is
11.7 µm in x and 1.5 mm in z. The scattering parameter, σ , was found to be 3× 10−4 for the
case of no scattering and 1.1×10−2 for both the 1-diffuser and 3-diffuser cases.

With no diffusers (non-scattering case), the LED positions are easily determined by the phase
space measurements (Fig. 2b). Each LED prescribes a distinct line through the phase-space
measurement, allowing us to find its lateral and depth position using our algorithm. Notice
that the traditional 2D intensity image (taken with an open window in Fourier space) does not
contain sufficient information for depth detection, even in the non-scattering case.

When a thin rotating diffuser is placed after the LEDs (diffuser 3 in Fig. 2a), the phase space
lines become blurred, with LEDs further away from the camera blurring more, as expected
(Fig. 2c). In this case, the intensity image is completely diffused. However, the three lines in
phase space are still distinguishable, and so the three point sources can still be located with good
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Fig. 2. Experimental localization of LEDs at different depths, with and without rotating
diffusers between them. (a) The setup uses an object consisting of 3 LEDs and a spec-
trogram measurement system that employs a DMD in Fourier space to scan the aperture.
(b-d) Intensity, phase space (along green line) and recovered LED positions for the case (b)
without scattering, (c) with diffuser 3 only, and (d) with all three diffusers. The algorithm
successfully recovers the position and depth of each LED in all cases.

accuracy. Interestingly, as additional diffusers are added between LEDs to create a multiple
scattering situation, the phase space blurring only becomes marginally worse (Fig. 2d). This
demonstrates that the scattering material closest to the exit plane will play the largest role,
since more light passes through it. Even with three rotating diffusers placed between the LEDs,
we are able to successfully recover the position and depth of the LEDs.
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Fig. 3. 4D phase-space experiments with and without volumetric scattering. The first col-
umn contains the 2D intensity images that are captured by a traditional camera and the
second column shows some example phase space 2D slices (along the red lines in the in-
tensity images). The third column shows the recovered x− z positions of point sources (y
not shown) and the last column shows reconstructed 3D positions of the LEDs. Each color
dot corresponds to a successful LED position recovery, while red dots are failures due to
occlusions by the finite size of LEDs.

5.2. 2D object with volumetric scattering material

Next, we extend our experiments to 4D acquisition and a truly volumetric scattering. The target
consists of 8 LEDs (center wavelength 524 nm, bandwidth 32.0 nm) imaged both with and with-
out a surrounding scattering medium of chopped gelatin in air. The air in the gaps between the
diffusing gelatin creates a refractive index mismatch which provides a strong forward-scattering
situation intended to mimic that of biological tissue. The scattering is assumed to be homoge-
neous across the volume since the gelatin is distributed approximately uniformly. The data
collection procedure scans a 2D square window with side length 1.09 mm across 26×26 posi-
tions (step size 365 µm) on the DMD, collecting 676 images (16 bit) in total, each with 5.53M
pixels. This large dataset (∼ 7 GB) demonstrates the ability of our system to capture very high
resolution phase-space data and by implementing our algorithm in a distributed computing en-
vironment, we are able to solve the computational inverse problem. However, since the density
of point sources is small for this experiment, we find that it is sufficient to down-sample the
4D data to 128× 128× 8× 8 before running our algorithm. We reconstruct a 3D result of
128×128×128 voxels and recover a scattering parameter σ of 5×10−3 for the case without
scattering and 1×10−2 for the case with scattering.

The results of this experiment are shown in Fig. 3 for measurements taken both before adding
the scattering gelatin and after. We illustrate the 4D data by showing only a few 2D slices along
ux-x and uy-x of the 4D phase space acquired. Each line in the 2D slice corresponds to a portion
of the plane generated by a point source. After adding the scattering material, the intensity
images blur beyond distinction, and the phase-space slices also blur. However, the phase-space
images still retain sufficient information for localizing each LED. Note that even when the
2D phase-space slices seem completely blurred, there may still be sufficient information for
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localization when considering the entire 4D dataset. Thus, the 3D recovery succeeds, even with
highly multiply scattering situations. Of course, the algorithm will fail with too much scattering
or with reduced phase-space sampling. In our resulting 3D localizations, one can see that the
variance of the estimate in the z direction is somewhat worse than the lateral direction, due to the
small range of angles captured. One of the LEDs is mistakenly localized in an errant position,
which we believe is due to artifacts caused by the blocking of some light by the wire leads
on the LEDs. For non-occluded LEDs, however, the algorithm correctly localizes the LEDs
with good accuracy and recovers a scattering parameter of σ of 5× 10−3 for the case without
scattering and 1×10−2 for the case with scattering, consistent with previous measurements.

6. Discussion

Our setup is analogous to that presented in [29], with several key differences. Instead of plac-
ing the camera in Fourier space and scanning a real-space window, here we choose to place the
camera in real space and scan a Fourier-space window. This leads to better real-space resolution
and a larger field of view, even when down-sampling the aperture positions to reduce acquisi-
tion time. Additionally, since most objects typically have a large DC term, capturing images in
real space (as opposed to Fourier space) tends to alleviate the dynamic range problems encoun-
tered in [29]. Finally, instead of an LCoS modulator, a DMD is used here because it is orders
of magnitude faster in modulating the light. Since the DMD is not polarization sensitive, we
further obtain 2× better photon efficiency for unpolarized objects and avoid crossed polarizer
leakage. The disadvantages of the DMD array are that it suffers color dispersion artifacts and
must be implemented in a folded geometry which can cause aberrations at high angles.

7. Conclusion

The experiments presented here offer a proof of concept for our proposed method using 4D
phase-space measurements to robustly localize a sparse set of point sources through both dy-
namic and volumetric scattering media. The method does not require coherent or active illu-
mination, so works with existing imaging systems. Future work will exploit the large pixel
counts of both our camera and DMD array to capture very large 4D datasets (∼Terabytes) and
localize millions of point sources in scattering media. We plan to implement faster multiplex-
ing methods [44–46] and explore alternate phase-space imaging schemes, such as modified
spectrograms [47], light fields [16] and point scanning systems [48–51].
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