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Abstract

Purpose—Anti-VEGF therapies remain controversial in the treatment of recurrent glioblastoma 

(GBM). In the current study we demonstrate that recurrent GBM patients with a specific diffusion 

MR imaging signature have an overall survival (OS) advantage when treated with cediranib, 
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bevacizumab, cabozantinib, or aflibercept monotherapy at first or second recurrence. These 

findings were validated using a separate trial comparing bevacizumab with lomustine.

Experimental Design—Patients with recurrent GBM and diffusion MRI from the monotherapy 

arms of 5 separate Phase II clinical trials were included: 1) cediranib (NCT00035656); 2) 

bevacizumab (BRAIN Trial, AVF3708g; NCT00345163); 3) cabozantinib (XL184-201; 

NCT00704288); 4) aflibercept (VEGF Trap; NCT00369590); and 5) bevacizumab or lomustine 

(BELOB; NTR1929). Apparent diffusion coefficient (ADC) histogram analysis was performed 

prior to therapy to estimate “ADCL”, the mean of the lower ADC distribution. Pre-treatment 

ADCL, enhancing volume, and clinical variables were tested as independent prognostic factors for 

OS.

Results—The coefficient of variance (COV) in double baseline ADCL measurements was 2.5% 

and did not significantly differ (P=0.4537). An ADCL threshold of 1.24 um2/ms produced the 

largest OS differences between patients (HR~0.5) and patients with an ADCL>1.24 um2/ms had 

close to double the OS in all anti-VEGF therapeutic scenarios tested. Training and validation data 

confirmed baseline ADCL was an independent predictive biomarker for OS in anti-VEGF 

therapies, but not lomustine, after accounting for age and baseline enhancing tumor volume.

Conclusions—Pre-treatment diffusion MRI is a predictive imaging biomarker for OS in patients 

with recurrent GBM treated with anti-VEGF monotherapy at first or second relapse.

Keywords

Diffusion MRI; ADC Histogram Analysis; T1 subtraction; recurrent glioblastoma; bevacizumab; 
cediranib; cabozantinib

INTRODUCTION

Glioblastoma (GBM) is the most common and lethal type of primary brain tumor in adults. 

Median survival for patients diagnosed with a GBM is around 14 months,(1) and fewer than 

10% of patients survive beyond 5 years after diagnosis.(2) The current standard of care for 

newly diagnosed GBM consists of maximum safe surgical resection, followed by 

radiotherapy plus concomitant and adjuvant temozolomide. At recurrence, however, few 

effective therapeutic options exist, and median survival is only around 8–10 months (3–5).

High tumor vascularity resulting from elevated production of pro-angiogenic growth factors, 

including vascular epithelial growth factor (VEGF)(6, 7), has led to the development of 

therapies targeting pro-angiogenic signaling pathways(8). Anti-angiogenic therapies that 

specifically target VEGF and its receptors fall into two general categories: antibodies or 

tyrosine kinase inhibitors (TKIs) (9). Bevacizumab, a humanized monoclonal antibody for 

VEGF-A (Fig 1), was approved for use in recurrent GBM in 2009 after it was shown to 

improve progression-free survival (5, 10). Bevacizumab is often used for the treatment of 

recurrent GBM and almost all patients will receive bevacizumab at some point during their 

treatment. Aflibercept, or “VEGF trap”, is a recombinant fusion protein that has been tested 

in recurrent GBM(11) and similarly acts in the extracellular domain by trapping VEGF 

through use of VEGF-binding portions from the extracellular domains of VEGFR-1 and 

VEGFR-2. Cediranib and cabozantinib, which are both multi-targeted pan-VEGF receptor 
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TKIs (12–17), have also been studied as promising anti-angiogenic agents that inhibit 

different aspects of VEGF signaling, specifically the intracellular kinase domain of the 

VEGF receptors (Fig 1).

Despite promising initial data and widespread exploration of anti-VEGF therapies in 

recurrent GBM, randomized phase II trials have not demonstrated an overall survival (OS) 

benefit for un-selected patients with recurrent GBM. However, recent evidence suggests 

certain subsets of patients with specific imaging characteristics may have a significant OS 

benefit from anti-VEGF therapy. For example, single and multi-center studies have shown 

that high pre-treatment apparent diffusion coefficient (ADC) measured with diffusion MRI 

within the contrast enhancing portion of the tumor is a significant and independent predictor 

of prolonged OS in patients treated with bevacizumab(18–21). Since bevacizumab, 

cediranib, cabozantinib, and aflibercept are all VEGF pathway inhibitors, and all commonly 

have activity against VEGFR-2, we hypothesized baseline diffusion MRI characteristics in 

recurrent GBM may be predictive of survival benefit for all four anti-VEGF therapies. Thus, 

the purpose of this study was to first evaluate whether pre-treatment diffusion MR 

measurements of ADC within the contrast enhancing tumor is an independent, significant 

predictor of OS benefit in recurrent GBM patients treated with anti-VEGF monotherapy by 

examining data in a series of multicenter, phase II trials in cediranib monotherapy 

(NCT00035656), bevacizumab monotherapy (BRAIN Trial, AVF3708g; NCT00345163), 

cabozantinib monotherapy (XL184-201; NCT00704288), and aflibercept monotherapy 

(VEGF trap, NABTC0601; NCT00369590). Lastly, we validated our findings in an 

independent cohort of recurrent GBM patients treated with bevacizumab monotherapy 

versus lomustine monotherapy (BELOB), confirming that diffusion MR phenotypes are 

exclusively predictive for anti-VEGF therapy.

METHODS

Patient Population

A total of 258 anti-VEGF treatment naïve recurrent GBM patients with measurable 

enhancing tumor (>1cm3) and adequate diffusion MRI estimates of apparent diffusion 

coefficient (ADC) available from 5 separate phase II clinical trials were included in this 

study. Data from four trials were used as training cohorts: 1) 30 patients treated with 

cediranib monotherapy (NCT00035656), including two pre-treatment (double baseline) MR 

examinations; 2) 57 patients treated with bevacizumab monotherapy (BRAIN Trial, 

AVF3708g; NCT00345163); 3) 65 patients treated with cabozantinib monotherapy 

(XL184-201; NCT00704288); 4) 25 patients treated with aflibercept monotherapy (VEGF 

trap; NABTC0601; NCT00369590); and one trial was used for validation: 5) 42 patients 

treated with bevacizumab monotherapy and 39 patients treated with lomustine monotherapy 

as part of a phase II validation cohort (BELOB).

Disease progression that led to enrollment in each study was identified on MRI ≤14 days 

before the baseline treatment. All patients on all trials failed initial standard of care 

including concurrent radiotherapy and temozolomide and were required to be at least 8 

weeks from completion of radiation therapy before considered eligible for each trial. 

Karnofsky performance status (KPS) was required to be ≥60 for all trials. Patients receiving 
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corticosteroids were required to be on stable or decreasing dose for at least 5 days prior to 

the baseline scan. All patients enrolled in all trials signed institutional review board-

approved written consent at the respective study sites. Table 1 further outlines patient 

demographic information for each trial included in the current study.

Cediranib Monotherapy

A total of 30 patients of the 31 enrolled in an NCI-sponsored Phase II trial of cediranib, a 

pan-VEGF receptor TKI with additional activity against cKIT and PDGFβ, at the 

Massachusetts General Hospital and Dana-Farber Cancer Institute, (NCI; NCT00035656) 

were included in the current study based on availability of high quality diffusion MR and 

anatomic data. One patient was excluded based on limited drug exposure, as described 

previously(22). Patients were treated with cediranib (AZD2171; AstraZeneca 

Pharmaceuticals, Cheshire, United Kingdom) at 45mg once daily on a 28-day cycle. For 

more information on the trial, therapeutic dosing information, and details on inclusion and 

exclusion criteria, see the following website for the trial: clinicaltrials.gov/ct2/show/

NCT00035656 and final published clinical trial information from Batchelor et al.(22).

Bevacizumab Monotherapy

A total of 57 recurrent, histologically confirmed GBM patients within the bevacizumab 

monotherapy arm in the BRAIN trial (La Roche/Genentech, AVF3708g; NCT00345163), an 

open-label, multicenter (11 sites), randomized, noncomparative phase II trial performed to 

assess the effectiveness of bevacizumab or bevacizumab and irinotecan hydrochloride with 

or without concomitant enzyme-inducing antiepileptic drugs were included in the current 

study based on availability of both high quality diffusion and anatomic MRI at baseline. 

Patients within the bevacizumab monotherapy arm were treated with a dose of 10mg/kg 

every 2 weeks. Patients within the bevacizumab and irinotecan combination arm were not 

included in the current study. For more information on the trial, therapeutic dosing 

information, and details on inclusion and exclusion criteria, see the following website for the 

trial: clinicaltrials.gov/ct2/show/NCT00345163 and final published clinical trial information 

from Friedman et al.(5) (It is important to note that a previous study similar to the current 

study was already published using this dataset (20), but all data has been independently 

reanalyzed using slightly different methodology in the current study.)

Cabozantinib Monotherapy

A total of 65 anti-VEGF treatment naïve, recurrent GBM patients of the 152 originally 

enrolled as part of XL184-201, a multicenter (8 sites), phase II, open-label, uncontrolled 

study of cabozantinib (XL184; Exelixis; NCT00704288), a tyrosine kinase inhibitor with 

principal targets of MET, VEGF receptors, AXL, and RET, at a dose of 140 or 100 mg (free 

base equivalent weight, oral, daily) at first or second relapse were included in the current 

study based on availability of diffusion and anatomic imaging data. Specific inclusion and 

exclusion criteria for this trial can be found at clinicaltrials.gov/ct2/show/NCT00704288.
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Aflibercept Monotherapy

A total of 25 patients with histologically confirmed GBM with evidence of unequivocal 

progression after chemoradiation enrolled in a NABTC and NCI sponsored multicenter (7 

sites), phase II study of aflibercept (VEGF trap; NABTC0601; NCT00369590) were 

included in the current study based on availability of diffusion and anatomic imaging data. 

Patients were treated with a dose of 4mg/kg intravenously every 2 weeks. For more 

information on the trial, therapeutic dosing information, and details on inclusion and 

exclusion criteria, see the following website for the trial: clinicaltrials.gov/ct2/show/

NCT00369590 and final published clinical trial information from de Groot et al.(11)

Single-Agent Bevacizumab versus Lomustine Monotherapy

To confirm that diffusion MR phenotypes are predictive of response to anti-VEGF therapies 

but not cytotoxic chemotherapies, we examined a total of 81 recurrent GBM patients treated 

with either bevacizumab monotherapy (N=42; 10mg/kg every 2 weeks) or lomustine (N=39; 

110mg/m2 every 6 weeks) as part of a multicenter (14 sites), Dutch investigator initiated 

phase II trial exploring bevacizumab, lomustine, or bevacizumab plus lomustine in patients 

with GBM at first recurrence (BELOB; NTR1929). Patients treated with combination 

bevacizumab and lomustine were not included in the current study. For more information on 

the trial, therapeutic dosing information, and details on inclusion and exclusion criteria, see 

the final published clinical trial information from Taal et al.(23)

Anatomic and Diffusion MRI Acquisition

Standard and diffusion MR data were acquired using either a 1.5T or a 3T MR scanner from 

an MR scanner manufactured by Siemens Healthcare (Erlangen, Germany), Philips Medical 

Systems (Best, the Netherlands), GE Medical Systems (Waukesha, Wisconsin), or Hitachi 

Medical Corporation (Tokyo, Japan). The MRI parameters for cediranib (24–26), 

bevacizumab (20, 27), and cabozantinib (28) trials have been published previously. T1-

weighted images were acquired using either a fast spin-echo sequence or a magnetization-

prepared rapid acquisition gradient-echo sequence with repetition time (TR)/echo time (TE)/

inversion time (TI)=400–3209msec/3.6–21.9msec/0–1.2sec; slice thickness=3–6.5mm; slice 

gap=0–2.5mm; number of excitations/averages (NEX)=1–2; matrix size=176–512 × 256–

512; and field of view (FOV)= 240–256mm. Diffusion-weighted MR images (DWIs) were 

acquired before injection of contrast with TE/TR=80–110msec/4–10sec, NEX=1, slice 

thickness=5 with 0–1mm interslice gap, matrix size=128x128, and FOV=220–256mm using 

a monopolar spin-echo echo-planar preparation. ADC maps were calculated offline from the 

acquired DWIs using b=0 s/mm2 and b=1000 s/mm2 images. Post-contrast T1-weighted MR 

images were acquired with identical acquisition parameters shortly after contrast injection 

with gadopentetate dimeglumine (Magnevist; Berlex), at a concentration of 0.1 mmol/kg, or 

a contrast agent with equivalent relaxivity. Additional anatomical T2-weighted fast spin-

echo and T2-weighted fluid-attenuated inversion-recovery (FLAIR) sequences were also 

acquired prior to contrast, but not used in the current study. All examinations were acquired 

within 14 days of starting therapy for all 3 trials, and 29 of the 30 patients used in the 

cediranib trial received two examinations, approximately 1–7 days apart, prior to treatment 

initiation for the purposes of reproducibility testing.
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Contrast-Enhanced T1-Weighted Digital Subtraction Maps (T1 Subtraction Maps)

Contrast-enhanced T1-weighted digital subtraction maps were created by registration, 

normalization, and subtraction of pre-contrast from post-contrast T1-weighted images as 

outlined previously (29). Firstly, affine registration was performed between pre- and post-

contrast T1-weighted images by using a 12 degree-of-freedom transformation and a 

correlation coefficient cost function in FSL (FLIRT; FMRIB Software Library, Oxford, 

England; http://www.fmrib.ox.ac.uk/fsl/). Secondly, the image intensities for both pre- and 

post-contrast T1-weighted images were intensity normalized using custom c-code and bash 

scripts courtesy of the National Institutes of Mental Health Magnetoencephalography 3Core 

Facility (3dNormalize; NIMH MEG Core, Bethesda, Md; kurage.nimh.nih.gov/meglab/Med/
3dNormalize). This normalization was performed by essentially dividing each voxel by the 

standard deviation of the image intensity from the whole brain [SNor(x,y,z)=S (x,y,z)/σWB], 

where S is raw image signal intensity, Nor is normalized, x,y,z are voxel coordinates, and 

WB stand for whole brain. Thirdly, voxel-wise subtraction was performed between intensity 

normalized pre-contrast and post-contrast T1-weighted images (Fig 2A). Lastly, voxels with 

T1 subtraction values greater than zero were isolated, then manual corrections were made to 

exclude vessels or erroneous voxels, resulting in final T1 subtraction maps used to extract 

tumor volumes and act as continuous volumes of interest (VOIs) for ADC histogram 

analysis (Fig 2C), described below. Any satellite enhancing lesions were pooled together 

into a single VOI for subsequent analysis.

ADC Histogram Analysis

T1 subtraction-defined enhancing tumor volumes were used to extract ADC values for ADC 

histogram analysis. Nonlinear regression of a double Gaussian mixed model was then 

performed for the extracted ADC histograms using GraphPad Prism, Version 4.0c 

(GraphPad Software, San Diego, California). The model used for the double Gaussian was 

defined by the following equation:

where p(ADC) is the probability of obtaining a particular value of ADC in the histogram, f 
is the relative proportion of voxels represented by the lower histogram, N(μ,σ) represents a 

normal (Gaussian) distribution with mean, μ, and standard deviation, σ, ADCL represents the 

lower and ADCH represents the higher of the two mixed Gaussian distributions (Fig 2D). 

Resulting model fits were visually inspected and rerun with different initial conditions until 

adequate convergence was obtained. Goodness of fit was determined to be adequate if the 

adjusted R2 > 0.7. This approach is similar to those used previously (18–20, 30).

Statistical Analyses and Interpretation

Reproducibility in ADCL measurements within the enhancing tumor were evaluated by 

calculating the coefficient of variance (COV) of pre-treatment, double baseline MR 

examinations acquired as part of the cediranib trial. Also, a paired t-test was used to 

determine whether a significant difference in ADCL was observed between these two 

baseline time points. To determine whether this variability results in meaningful changes in 
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the classification of ADCL phenotypes for individual patients, the proportion of patients with 

the same ADCL categorization (e.g. high vs. low ADCL) were calculated as a function of 

different ADCL thresholds.

Next, optimal ADCL thresholds were determined by calculating the Mantel-Haenszel hazard 

ratio and corresponding p-values for patients categorized as “high” vs. “low” ADCL by 

changing different ADCL thresholds. This process was performed for both pooled patients 

from all trials as well as patients from each trial separately. Using continuous values of 

volume and ADCL as well as phenotypes based on these thresholds, log-rank and Kaplan 

Meier data and Cox proportional hazard models were used to understand the relationship 

between OS and factors including treatment, patient age, pre-treatment contrast enhancing 

tumor volume (continuous and dichotomized into large and small sizes using the median 

volume of the cohort), and ADCL. Lastly, “risk groups” were defined based on a 

combination of baseline tumor volume and diffusion MR characteristics. Specifically, tumor 

volume was dichotomized into large and small sizes, based on the median tumor volume in 

the sample, and ADCL phenotypes were defined using the optimized thresholds defined 

above. We hypothesized a combination of small tumors with high ADCL measurements 

would have a significant survival advantage compared with large tumors with low ADCL 

measurements when treated with anti-VEGF therapy.

Lastly, using the optimal thresholds defined above, we validated the ability for tumor volume 

and ADCL phenotypes to predict response to anti-VEGF therapy by examining an 

independent cohort of patients treated with either bevacizumab or lomustine monotherapy as 

part of the BELOB trial. Using continuous values of volume and ADCL as well as 

phenotypes based on these thresholds, log-rank and Kaplan Meier data and Cox proportional 

hazard models were used to test whether volume and ADCL phenotypes were significant 

predictors for OS in each of these two therapies.

For all analyses, P < 0.05 was considered statistically significant. No corrections for multiple 

comparisons were performed. Statistical analyses were performed with Stata 12 (2011; 

College Station, TX) or GraphPad Prism v6.0h (GraphPad Software, Inc., La Jolla, CA). All 

errors are presented in standard error of the mean (S.E.M.).

RESULTS

Reproducibility of ADCL Measurements in Recurrent GBM

Repeated (double baseline) ADC measurements prior to initiation of therapy were available 

for 29 of the 30 patients enrolled in the cediranib trial. Measurements of ADCL 

demonstrated a coefficient of variance (COV) of 2.50% ± 0.52% S.E.M. and did not 

significantly differ between the two evaluations (Fig 3A; Paired t-test, P=0.4537). The 

consistency of ADCL phenotype classification, defined as the percentage of tumors with the 

same ADCL classification at a particular threshold (e.g. high vs. low ADCL), ranged from 

79.3% (23 of 29 with same classification) to 100% (Fig 3B).
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Optimized Threshold for Defining ADCL Phenotypes

An ADCL threshold of 1.24 um2/ms produced the largest OS differences between patient 

cohorts when calculating the Mantel-Haenszel hazard ratio and corresponding p-values for 

pooled patients as a function of ADCL thresholds (Fig 3C–D). This threshold was optimal 

for the pooled patient cohort, while other thresholds appeared to emerge as specific to the 

particular anti-VEGF therapy employed (Fig 3E–F). For example, patients treated with 

cediranib appeared to have the largest difference in OS when using an ADCL threshold of 

1.16 um2/ms and patients treated with cabozantinib had the largest difference using an 

ADCL threshold of 1.46 um2/ms, while bevacizumab had a relatively constant HR over all 

ADCL thresholds evaluated. The consistency of ADCL phenotype classification using a 

threshold of 1.24 um2/ms, optimal for generalization across all anti-VEGF therapies tested, 

was approximately 89.7% (26 of 29 with same classification) (Fig 3B) and 55% of these 

patients had a ADCL >1.24 um2/ms.

Univariate Survival Analysis of Training Data

Log-rank analysis after stratification based on an ADCL threshold of 1.24 um2/ms confirmed 

a statistically significant difference in OS (Fig 4A). Notably, patients with high ADCL had 

approximately 49% greater OS compared with patients exhibiting a low ADCL phenotype 

(P<0.0001, HR=0.5303, median OS=7.7 vs. 11.6 months). Subsequent univariate analyses of 

patients within individual treatments showed a significant difference in OS when using a 

threshold of ADCL=1.24 um2/ms in cediranib monotherapy (Fig 4B; P=0.0489, 
HR=0.4980), bevacizumab monotherapy (Fig 4C; P=0.0050, HR=0.4545), cabozantinib 

monotherapy (Fig 4D; P=0.0107, HR=0.4623), and aflibercept monotherapy (Fig 4E; 

P=0.0017, HR=0.3313).

Multivariable Survival Analysis of Training Data

Multivariable Cox proportional hazards analysis considering treatment, patient age, 

enhancing tumor volume, and continuous estimates of ADCL using all anti-VEGF treatment 

naïve patients indicated that age (P=0.0140, HR=1.0165), volume (P < 0.0001, HR=1.0158), 

and ADCL (P=0.0002, HR=0.2555) were all significant predictors of OS (Table 2). 

Multivariable Cox regression in patients treated with cediranib using continuous tumor 

volume and ADCL phenotype (higher or lower than 1.24 um2/ms) suggested age (P=0.0156, 
HR=1.0488) and ADCL phenotype (P=0.0256, HR=0.3901), but not tumor volume 

(P=0.0820, HR=1.0131), were predictive of OS (Table 3). Within patients treated with 

bevacizumab monotherapy as part of the BRAIN trial, data suggested ADCL phenotype 

(P=0.0090, HR=0.4495) was a significant predictor of OS, while volume trended toward 

significance (P=0.0765, HR=1.0157) and age was not a significant predictor (P=0.2492, 
HR=1.0143). Enhancing tumor volume (P=0.0034, HR=1.0114) and ADCL phenotype 

(P=0.0076, HR=0.4195), but not age (P=0.2170, HR=1.0143), were predictive of OS for 

patients treated with cabozantinib. In patients treated with aflibercept, tumor volume 

(P=0.0098, HR=1.0353) was a significant predictor of OS, while ADCL phenotype trended 

toward significance (P=0.0677, HR=0.4266).

Since the combined data from all four trials used as a training cohort suggested enhancing 

tumor volume and ADCL phenotype were significant, independent predictive factors for OS 
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in recurrent GBM patients treated with anti-VEGF therapy, three “risk groups” were defined 

based on a combination of pre-treatment tumor volume and diffusion characteristics. 

Patients included in the Risk I category had the lowest risk, corresponding to small tumors 

(<25cc) with high diffusivity (ADCL > 1.24 um2/ms); patients included in the Risk II 
category were defined as having either small tumors (<25cc) with low diffusivity (ADCL < 

1.24 um2/ms) or large tumors (>25cc) with high diffusivity (ADCL > 1.24 um2/ms); and 

patients included in the Risk III category were had the highest risk corresponding to large 

tumors (>25cc) and low diffusivity (ADCL < 1.24 um2/ms). (Note that patients in the Risk II 
group consisted of both large tumors with high ADCL and small tumors with low ADCL, for 

which there was no difference in OS (Log-rank, P=0.6779)). Results demonstrate the 

combination of enhancing tumor volume and ADCL further enriched the population, with 

small, high ADCL tumors showing more than a three-fold longer OS than patients with 

large, low ADCL tumors (Fig 4H; P<0.0001, HR=0.2653, median OS = 4.7 vs. 14.9 
months).

Validation of ADCL as a Predictive Biomarker for Anti-VEGF Therapy Using BELOB

To verify ADCL is a significant, predictive imaging biomarker for anti-VEGF therapy, we 

examined an independent sample of patients from the BELOB trial treated either with 

bevacizumab or lomustine monotherapy. Multivariable Cox regression analysis including 

age, continuous measures of tumor volume, and continuous measures of ADCL (Table 4) 

showed that volume (P=0.0008, HR=1.0450) and ADCL (P=0.0255, HR=0.0764) were 

predictive of OS in bevacizumab treated patients, whereas only enhancing tumor volume 

(P=0.0034, HR=1.0367), not ADCL (P=0.2483, HR=0.3553), was predictive of OS in 

patients treated with single agent lomustine. Similar trends were observed when examining 

age, continuous measures of tumor volume, and ADCL phenotypes using a threshold of 1.24 

um2/ms (Table 5). Specifically, results showed that tumor volume (P=0.0004, HR=1.0472) 

and ADCL phenotype (P=0.0309, HR=0.4332) were predictive of OS in patients treated with 

bevacizumab, but only tumor volume (P=0.0019, HR=1.0394) was predictive of OS in 

patients treated with lomustine. Consistent with trends in the training data, risk 

categorization based on both tumor volume and ADCL phenotypes showed a significant 

difference in OS between RiskFand Risk III patients treated with bevacizumab (Fig 4G; 

P<0.0001, HR=0.2093, median OS = 5 vs 10.5 months). Interestingly, a much less dramatic, 

but still significant, difference in survival was observed between Risk I and Risk III patients 

treated with lomustine (Fig 4H; P=0.0390, HR=0.4214, median OS = 6.2 vs. 8.3 mo), likely 

driven primarily by differences in tumor volume, as Risk II patients had a slightly longer 

median OS compared with other risk categories (median OS = 11.2 months in Risk II 
patients treated with lomustine).

DISCUSSION

Results from the current study confirm that pre-treatment diffusion MR characteristics 

within contrast enhancing tumor are a predictive imaging biomarker for overall survival 

benefit in recurrent GBM patients treated with anti-VEGF therapies. Although these results 

support previous studies demonstrating the prognostic significance in bevacizumab 

therapy(18–20), findings from the current study further refine this hypothesis, suggesting 
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diffusion MR measurements may predict OS during VEGFR-2 inhibition in recurrent GBM, 

since cediranib, bevacizumab, aflibercept, and cabozantinib all commonly inhibit activity of 

this receptor. Since VEGFR-2 is thought to be the primary mediator of the pro-angiogenic 

effects of VEGF on endothelial cells (31–33) and is one of the primary targets for anti-

angiogenic therapies in glioblastoma (34), a pre-treatment imaging biomarker that could 

identify patients who will receive a significant survival benefit from VEGFR-2 inhibition 

would be valuable for both guiding clinical practice as well as well as for use in future trials 

for patient cohort enrichment trials involving anti-VEGF combination strategies.

Data from the current study suggests an ADCL threshold of 1.24 um2/ms is the optimal 

threshold for the best prediction of OS when evaluating data pooled from four different anti-

VEGF agents that commonly target VEGFR-2, and this threshold for classification 

maintained similar groupings in more 85% of patients during repeated evaluations 1 week 

apart (Fig 3A). This optimized threshold is consistent with the previous work by Pope et al. 
(19, 20), who empirically identified a threshold of 1.2 um2/ms for stratifying OS in patients 

treated with bevacizumab based primarily on the median ADCL within the datasets 

evaluated and not based on optimizing prediction of OS. While data from the current study 

suggests an ADCL threshold of 1.24 um2/ms may be the optimal threshold for the best 

prediction of OS when pooling data from all three anti-VEGF agents, Figs 3E–F implies 

each therapeutic may have their own unique signatures. For example, an ADCL threshold of 

1.46 um2/ms appears to result in the largest difference in OS in patients treated cabozantinib. 

It is conceivable that the specific mechanisms or domains in which these anti-VEGF agents 

act may result in different sensitivity to diffusion MR characteristics. Alternatively, these 

differences may be related to the activity of secondary therapeutic targets in cediranib (e.g. 

cKIT, PDGFRβ) and cabozantinib (e.g. MET, AXL, RET). Although provocative, future 

studies aimed at further eliciting the possible mechanisms for these observations are 

necessary to properly test this hypothesis.

The particular mechanism underlying the association between diffusion MRI measures of 

ADCL and therapeutic efficacy of anti-VEGF drugs remains speculative. A reasonable 

explanation for this association may be that tumors with high ADCL have less total tumor 

burden, since high diffusivity implies more water content and/or less tumor cellularity (i.e. 

less tumor cells and more extracellular water). Thus, treatments like anti-VEGF therapy that 

are known to reduce vascular permeability, and subsequently vasogenic edema, may simply 

consolidate the total tumor burden by removing excess water. While feasible, this 

explanation implies pre-treatment ADCL may be prognostic for all therapies; however, 

previous studies have failed to identify similar relationships with OS in recurrent GBM 

treated with chemotherapies including temozolomide or lomustine(18). Additionally, 

isolation of the lower component of the ADC histogram (i.e. ADCL) may act to “filter out” 

the edematous and necrotic portions of the enhancing tumor known to have higher ADC 

measurements. Hence, ADCL measurements may be more specific to the composition of 

tumor and/or stroma within the lesion.

Consistent with this hypothesis, a recent differential gene expression study from our 

laboratory has identified overexpression of decorin (DCN) as a possible mechanism for this 

altered water diffusivity (35). DCN may increase water diffusivity through direct modulation 
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(softening) of the extracellular matrix (ECM), as DCN acts to modulate the rigidity and 

stiffness of the ECM by binding with various ECM macromolecules and activating specific 

matrix metalloproteinases (MMPs)(36). The protein core of DCN is known to bind with a 

variety of collagen molecules, fibrils, and other macromolecules, acting to significantly 

increase interfibrillary spacing(37). Since ADC is inversely correlated with fluid viscosity 

(38, 39) and tortuosity of the ECM (40–44), it is conceivable that high DCN expression 

results in softer, less viscous tumors with decreased boundaries to fluid within the 

extracellular space from DCM remodeling, ultimately resulting in a higher measured ADCL. 

Future studies aimed at exploring the relationship between diffusion MRI and DCN 

expression, as well as any relationship between DCN expression and OS benefit when 

treated with anti-VEGF agents, are warranted in order to link these observations and 

highlight the underlying mechanism behind both water diffusivity changes and therapeutic 

benefit from anti-VEGF agents.

Study Limitations

The retrospective, multi-center, and international nature of the data in the current study 

inevitably leads to heterogeneity in MRI acquisition and image quality. However, one may 

argue this level of heterogeneity more accurately reflects the variability encountered in the 

real-world, implying diffusion MR may be a robust biomarker suitable for use in clinical 

practice. We posit a standardized protocol that includes identical T1-weighted pre- and post-

contrast scans as well as standardized DWI acquisition, ideally in compliance with the 

recently outlined International Standardized Brain Tumor Imaging Protocol (45), would 

provide increased consistency and lower variability in T1 subtraction map-defined 

enhancing tumor volume and ADC estimation. Additionally, image distortions on diffusion 

MR images obtained using echo planar imaging may have led to inaccuracies when 

estimating the ADC characteristics within the contrast-enhancing lesion. Estimates of 

ADCL, however, have been shown to be relatively robust even in the presence of distortion 

(30) and results from the current study suggest a COV of only 2.5%, suggesting image 

distortion may not have been a critical limitation. Additionally, more in-depth baseline 

characteristics, including information about post-progressive treatment and molecular 

information, were not available for the trials used in the current study. Recent evidence 

suggests MGMT promoter methylation status may predict response to bevacizumab (23, 46); 

however, this information was not available for most trials and this trend has not been 

confirmed in other anti-VEGF therapies. Also, despite there being little evidence that 

subsequent treatments have an effect on post-progression survival after failure of anti-VEGF 

therapies, this is nevertheless a limitation of the current study. Lastly, post-hoc correction for 

multiple statistical comparisons was not performed, in part due to the exploratory nature of 

the current study. Despite a relatively large number of comparisons both within and across 

treatment paradigms, this lack of correction likely did not lead to substantial Type II error, 

since the effect sizes observed for both volume and ADCL tended to be large and consistent. 

Nevertheless, this is a possible limitation to the current study and should be acknowledged.

Conclusion

In summary, the current study suggests diffusion MR characteristics are independent 

predictors of long-term therapeutic benefit in recurrent GBM treated with anti-VEGF 
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therapies, including cediranib, bevacizumab, aflibercept, and cabozantinib. Results suggest 

diffusion MRI signatures can further improve patient stratification, which may be beneficial 

for future cohort enrichment trials involving anti-VEGF combination strategies and 

understanding the therapeutic mechanisms that underscore anti-VEGF efficacy and failure.
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Translational Relevance

Existing therapies for recurrent glioblastoma (GBM) have only modestly improved 

survival. Bevacizumab is one of only 3 drugs approved by the FDA for recurrent GBM. 

Despite favorable early results, subsequent studies in bevacizumab and other anti-VEGF 

therapies have not found a long-term overall survival (OS) benefit in all patients with 

recurrent GBM. There are, however, patients who experienced substantial improvement 

in OS when treated with anti-VEGF therapy. A tool for predicting which patients will 

have an OS benefit from anti-VEGF therapy would have high clinical and economic 

impact, as therapies could be withheld until other options have been exhausted. Using 

data from 5 phase II clinical trials, we demonstrate that diffusion MRI is an independent 

predictive imaging biomarker for OS in recurrent GBM treated with anti-VEGF therapy, 

but not chemotherapy. This information can be used for identifying patients for anti-

VEGF therapy upon recurrence and for patient selection in future trials.
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Fig 1. Targets for inhibition of VEGF and VEGFR activity using cediranib, bevacizumab, 
cabozantinib, and aflibercept
Bevacizumab, a humanized monoclonal antibody for VEGF-A, acts within the extracellular 

domain to inhibit activity through direct inhibition of circulating extracellular VEGF-A, 

which reduces activity for both VEGFR-1 and VEGFR-2 receptors. Aflibercept, or “VEGF 

trap”, is a recombinant fusion protein that sequesters VEGF through use of VEGF-binding 

portions from extracellular domains of VEGFR-1 and VEGFR-2. Cediranib, a pan-tyrosine 

kinase inhibitor (TKI), acts in the intracellular domain to primarily inhibit VEGFR-1, 

VEGFR-2, and VEGFR-3 activity. Cabozantinib, also a TKI, acts within the intracellular 

domain to inhibit VEGF-R1, VEGFR-2, and VEGFR-3 activity.
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Fig 2. Contrast enhanced T1-weighted subtraction maps and apparent diffusion coefficient 
(ADC) histogram analysis in a patient with recurrent GBM
A) Pre-treatment pre-contrast, post-contrast, and T1 subtraction maps in a patient with 

recurrent GBM. B) T1-subtraction defined tumor segmentation overlaid on ADC map. C) 

Resulting ADC histogram analysis results in the same patient. Note: Black filled circles 

indicate ADC measurements extracted from contrast enhancing tumor regions. Red line 

indicates double Gaussian mixed model fit to the underlying ADC histogram.
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Fig 3. Repeatability of ADCL measurements, consistency of resulting ADCL phenotypes for 
different thresholds, and optimal thresholds for predicting overall survival (OS) in recurrent 
GBM treated with anti-VEGF therapies
A) Repeated diffusion MR measures of ADCL in recurrent GBM using “double baseline”, 

repeated pre-treatment examinations, from the cediranib trial. B) Repeatability of ADCL 

phenotypes (e.g. higher vs. lower ADCL) for different thresholds (solid black line, left y-

axis) as well as the proportion of patients higher or lower than this threshold (gray lines, 

right y-axis). C) Mantel-Haenszel hazard ratios (HRs, solid black line) and 95% confidence 

intervals (gray area) for OS in recurrent GBM for different ADCL thresholds in patients 

pooled from all four anti-VEGF therapies. D) Level of significance (p-values) for OS 

differences for different ADCL thresholds in patients pooled from all four anti-VEGF 

therapies. E) Mantel-Haenszel HRs for OS for different ADCL thresholds for individual anti-

VEGF therapies. F) Level of significance (p-values) for OS differences for ADCL thresholds 

in individual anti-VEGF therapies.
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Fig 4. Univariate log-rank survival analysis applied to Kaplan-Meier (KM) curves obtained for 
pooled and individual anti-VEGF therapies for an optimal ADCL threshold of 1.24 um2/ms
A) KM data from all anti-VEGF therapies (P<0.0001; HR=0.5303; median OS = 7.7 vs. 
11.6 months), B) cediranib (P=0.0489; HR=0.4980; median OS = 5.2 vs. 8.2 months), C) 

bevacizumab monotherapy (P=0.0050; HR=0.4545; median OS = 9.0 vs. 17.8 months), D) 

cabozantinib monotherapy (P=0.0107; HR=0.4623; median OS = 7.7 vs. 11.4 months), and 

E) aflibercept monotherapy (P=0.0017; HR=0.3313; median OS = 6.5 vs. 19.2 months). F) 

A combination of baseline tumor volume and ADCL phenotype was a strong predictor of OS 

in anti-VEGF therapies, with “high risk” patients having large volumes and low ADCL (Risk 
III, Median OS=4.7 months) demonstrating a significantly shorter OS (P<0.0001) compared 

with “low risk” patients exhibiting small tumors with high ADCL (Risk I, Median OS=14.9 
months). G) Risk categorization in the BELOB validation cohort suggested a combination of 

baseline tumor volume and ADCL was a significant predictor of OS in bevacizumab 

monotherapy, with “high risk” patients with large volumes and low ADCL (Risk III, Median 
OS=5 months) demonstrating a significantly shorter OS (P<0.0001; HR=0.2093) compared 

with “low risk” patients exhibiting small tumors with high ADCL (Risk I, Median OS=10.4 
months). H) The same combination biomarker stratified OS in lomustine monotherapy, but 

with a smaller difference in median OS between risk categories. “High risk” patients with 

large volumes and low ADCL (Risk III, Median OS=6.2 months) demonstrating a 

significantly shorter OS (P=0.0390; HR=0.4214) compared with “low risk” patients 

exhibiting small tumors with high ADCL (Risk I, Median OS=8.3 months). Multivariable 

Cox regression confirmed that tumor volume was a significant prognostic factor for OS in 

both treatment arms (P=0.0004 for bevacizumab and P=0.0019 for lomustine) but ADCL 
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phenotypes were only predictive for bevacizumab therapy (P=0.0309 for bevacizumab and 
P=0.1455).
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Table 2

Multivariable Cox proportional hazards model results for overall survival in training cohort: Cediranib 

(NCT00035656), Bevacizumab (BCT00345163), Cabozantinib (NCT00704288), and Aflibercept 

(NCT00369590)

Variable Coefficient Hazard Ratio (95% C.I.) P-Value

Treatment −0.1066 ± 0.0769 0.8989 (0.7731 – 1.0451) 0.1656

Age 0.0129 ± 0.0062 1.0130 (1.0007 – 1.0254) 0.0385*

Volume (Continuous) 0.0160 ± 0.0027 1.0162 (1.0108 – 1.0216) < 0.0001****

ADCL (Continuous) −1.2968 ± 0.3323 0.2734 (0.1425 – 0.5244) 0.0001***
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Table 3

Multivariable Cox proportional hazards model results for overall survival in individual anti-VEGF therapies.

Treatment Variable Hazard Ratio (95% C.I.) P-Value

Cediranib (N = 30) Age 1.0488 (1.0090 – 1.0901) 0.0156*

Volume (Continuous) 1.0131 (0.9983 – 1.0282) 0.0820

ADCL Phenotype (1.24 um2/ms threshold) 0.3901 (0.1707 – 0.8913) 0.0256*

Bevacizumab (N = 57) Age 1.0143 (0.9901 – 1.0391) 0.2492

Volume (Continuous) 1.0157 (0.9983 – 1.0333) 0.0765

ADCL Phenotype (1.24 um2/ms threshold) 0.4495 (0.2467 – 0.8189) 0.0090**

Cabozantinib (N = 65) Age 1.0143 (0.9917 – 1.0375) 0.2170

Volume (Continuous) 1.0114 (1.0038 – 1.0191) 0.0034**

ADCL Phenotype (1.24 um2/ms threshold) 0.4195 (0.2216 – 0.7939) 0.0076**

Aflibercept (N = 25) Age 1.0079 (0.9735 – 1.0434) 0.6578

Volume (Continuous) 1.0353 (1.0084 – 1.0628) 0.0098**

ADCL Phenotype (1.24 um2/ms threshold) 0.4266 (0.1710 – 1.0639) 0.0677
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Table 4

Multivariable Cox proportional hazard results for overall survival in single agent bevacizumab and lomustine 

monotherapy (BELOB) using continuous measures of ADCL.

Treatment Arm Variable Coefficient Hazard Ratio (95% C.I.) P-Value

Bevacizumab Monotherapy Age −0.0037 ± 0.0167 0.9964 (0.9643 – 1.0294) 0.8265

Volume (Continuous) 0.0440 ± 0.0131 1.0450 (1.0186 – 1.0721) 0.0008***

ADCL (Continuous) −2.5328 ± 1.1341 0.0764 (0.0086 – 0.7335) 0.0255*

Lomustine Monotherapy Age 0.0108 ± 0.0227 1.0109 (0.9669 – 1.0569) 0.6343

Volume (Continuous) 0.0360 ± 0.0123 1.0367 (1.0120 – 1.0620) 0.0034**

ADCL (Continuous) −1.0349 ± 0.8965 0.3553 (0.0613 – 2.0591) 0.2483
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Table 5

Multivariable Cox proportional hazard results for overall survival in single agent bevacizumab and lomustine 

monotherapy (BELOB) using ADCL phenotype (threshold of 1.24 um2/ms).

Treatment Arm Variable Coefficient Hazard Ratio (95% C.I.) P-Value

Bevacizumab Monotherapy Age −0.0072 ± 0.0172 0.9928 (0.9600 – 1.0268) 0.6742

Volume (Continuous) 0.0461 ± 0.0131 1.0472 (1.0207 – 1.0744) 0.0004***

ADCL (1.24 um2/ms threshold) −0.8365 ± 0.3875 0.4332 (0.2027 – 0.9260) 0.0309*

Lomustine Monotherapy Age 0.0116 ± 0.0233 1.0116 (0.9665 – 1.0589) 0.6194

Volume (Continuous) 0.0386 ± 0.0124 1.0394 (1.0143 – 1.0650) 0.0019**

ADCL (1.24 um2/ms threshold) −0.4901 ± 0.3367 0.6126 (0.3166 – 1.1852) 0.1455
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