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ABSTRACT OF THE DISSERTATION 
 

Terrestrial and marine carbon cycling insights from models and measurement methods 
 

by 

 

Julia L. Dohner 

 

Doctor of Philosophy in Earth Sciences 

University of California San Diego, 2023 

Professor Ralph F. Keeling, Chair 
 

 

Carbon in the earth system has gained immense relevance to modern society, 

and understanding the controls on and impacts of rising carbon dioxide (CO2) in the 

atmosphere is central to humans’ social well-being in the years to come. Predicting 

future changes requires both global-level knowledge of sources and sinks of CO2 to the 

atmosphere and local-level information about individual ecosystems’ responses to 

changes in environmental conditions thus far. This dissertation addresses three 

components of the greater effort to understand and predict impacts on the earth system 
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of rising CO2. In the first chapter I explore whether the atmospheric CO2 record since 

1900 can be used to better estimate the source of CO2 from land use and land cover 

change to the atmosphere when accounting for uncertainties in the other global sources 

of sinks of CO2 (e.g., fossil fuel emissions, terrestrial and marine drawdown and release 

of CO2) thus far. I show that the atmospheric CO2 record favors land use and land cover 

change CO2 flux estimates with lower decadal variability and can potentially highlight 

erroneous features in some published estimates. Further, this work resolves a 

downward correction to the land use flux mean since 1900 across 20 published 

estimates of 0.35 PgC year−1 to 1.04 ± 0.57 PgC year−1. The second chapter combines 

observations of seawater organic and inorganic carbon in two coral reef ecosystems to 

add resolution to our snapshot of coral reef ecosystems’ biogeochemistry under current 

climatic conditions. The study presents the first inorganic carbon isotope measurements 

collected on a coral reef in Okinawa and finds that the reef has a community 

fractionation factor between -13.4 and -11 ‰ during organic matter fractionation. Finally, 

the third chapter presents the framework for a method to make fast and precise 

measurements of seawater dissolved inorganic carbon, which is one of the primary 

parameters used to quantify changes in the ocean stemming from marine 

biogeochemical processes and rising atmospheric CO2. This chapter shows that the 

presented method is capable of achieving high-precision measurements and can be 

calibrated. The chapter also identifies possible limitations to overall measurement 

precision. 
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INTRODUCTION 

 

The release of carbon dioxide (CO2) into the atmosphere by human activity is 

increasing atmospheric CO2 concentrations at an unprecedented rate. This rise in CO2 

has profound consequences for the climate and environmental conditions on Earth, 

including rising global temperatures, changes in weather patterns, rising sea levels, and 

changes in the makeup and functioning of ecosystems. Predicting and preparing for 

such changes necessitates an understanding of 1. the processes that impact 

atmospheric CO2 levels, and 2. how the Earth system has responded to changes in 

atmospheric CO2 thus far. This dissertation aims to contribute to the understanding of 

global sources and sinks of CO2 to the atmosphere and ecosystem structure and 

function under current conditions.  

The first chapter of this work concerns the major sources and sinks of carbon to 

the atmosphere, which together make up the global carbon budget. In addition to 

burning fossil fuels, humans have impacted atmospheric CO2 levels through 

manipulation of land (e.g., clearing, conversion, and abandonment), activities which 

together are referred to as land use and land cover change (hereafter “land use”) 

(Pongratz et al., 2014). Land use adds a modest amount of CO2 to the atmosphere 

annually (~1/8 of annual emissions from fossil fuel burning (Friedlingstein et al., 2022)) 

but made up a larger proportion of overall emissions in the 19th century and early 20th 

century (Houghton et al., 2012). CO2 exchange from land use is difficult to quantify 

(Bastos et al., 2021), and estimates of early CO2 fluxes have relied on an amalgamation 

of historical data on population and other social indices (Goldewijk et al., 2017a, 2017b). 
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In this work I combine estimates of atmospheric CO2 levels, terrestrial and marine 

uptake of CO2, and CO2 emissions from fossil fuel burning to estimate the magnitude 

and variability of CO2 exchange arising from land use since 1900. This work provides 

constraints on land use CO2 flux estimates that are generated using process-based 

models and ultimately contributes to reducing uncertainty in the behavior of global 

sources and sinks of CO2 to the atmosphere thus far. 

The second chapter shifts to an ecosystem-based perspective of carbon cycling, 

using measurements of organic and inorganic carbon in seawater to understand 

aspects of the biogeochemistry of two coral reef ecosystems under current climatic 

conditions. Coral reef ecosystems play an outsized role in ocean biodiversity (Connell, 

1978; Jackson, 1991) and are relied upon by communities for coastline protection and 

sustaining fishing and tourism economies (Ferrario et al., 2014). Coral reefs’ ability to 

provide these ecosystem services may be hampered under climate change (Costanza 

et al., 2014), with changes such as rising atmospheric CO2 and ocean temperatures 

expected to increase the concentration of algae inhabiting reefs and reduce that of 

calcium carbonate-building taxa (e.g., Agostini et al., 2018; Andersson and Gledhill, 

2013). Tracking such changes requires detailed information about the current state of 

coral reefs' structure and function, part of which can be informed by observations of 

seawater carbon. This chapter combines measurements of organic and inorganic 

carbon in seawater in Okinawa, Japan and Hawai’i, USA to add resolution to our 

understanding of carbon cycling on these reefs. This information can add further detail 

to assessments of current ecosystem structure and function to better track any changes 

in coral reefs in response to rising CO2 and ocean warming.  
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The final chapter of this dissertation presents the basis for a laboratory method to 

make high-precision measurements of dissolved inorganic carbon (DIC) in seawater. 

DIC is a fundamental marine parameter and is central to detecting the impacts of rising 

anthropogenic CO2 on marine processes, including ocean uptake of CO2 from the 

atmosphere (Peng et al., 1998) and marine metabolism (e.g., Chisholm and Gattuso, 

1991; Cyronak et al., 2018). The ability to make high-precision measurements of DIC is 

particularly important for detecting subtle changes, such as those arising from ocean 

uptake of CO2. Such changes occur on the order of tenths to a couple of µmol kg-1 per 

year (Keeling et al., 2004; Kouketsu et al., 2013), which is below the uncertainty level of 

many current measurement techniques (e.g., Hansen et al., 2013). Current techniques 

may limit our ability to detect yet-examined finer-scale variations arising from natural or 

anthropogenic changes. Finally, improved analytical precision may improve calibration 

and diagnosis of systematic errors in other measurement methods. I present a 

continuous flow-through DIC measurement method that is shown to be able to be 

calibrated and achieve a high level of precision. Though the system currently achieves a 

repeatability of 2.5 ‰ (equivalent to ± 5 µmol kg-1 for a sample with 2000 µmol kg-1 DIC), 

I show that under optimal conditions it can make measurements with a repeatability of 

0.16 ‰. Issues currently limiting the performance of the measurement system, which 

include liquid and gas handling stability and CO2 retention in polymeric materials, are 

identified and discussed with possible solutions. 

The work of this dissertation is motivated by the fundamental importance of 

carbon cycling on this planet to humans’ social well-being. Predicting and preparing for 

future environmental conditions requires accurate and abundant information about how 
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the earth system has and is responding to changes in atmospheric CO2 levels. This 

information is acquired through the amalgamation of methods and efforts to understand 

global carbon cycling at different scales. This dissertation presents three such efforts. 
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1  |  INTRODUC TION

The increase in atmospheric CO2 since the turn of the 19th century 

has been driven by anthropogenic emissions from fossil fuel burn-

ing and industry (FF, hereafter “fossil emissions”) and emissions and 

 removals from land use change (LU, hereafter “land use flux”), includ-

ing land management and related land cover changes (Friedlingstein 

et al., 2020). These emissions are offset by natural uptake of CO2 

by the terrestrial biosphere (B, hereafter referred to as the “terres-

trial sink,” for which “natural” is implied) and the ocean (O) (Broecker 

et al., 1979; Siegenthaler & Sarmiento, 1993). The balance of these 

sources and sinks determines the magnitude of the atmospheric 

growth rate (AGR):

where all fluxes are in units of PgC year−1, and positive values for 

each term indicate increasing strength of their source (FF, LU) or 

sink (O, B).

The atmospheric CO2 growth rate is well known from con-

temporary observations and historical reconstructions (Conway & 

(1)AGR = FF + LU − O − B
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Abstract
We explore the ability of the atmospheric CO2 record since 1900 to constrain the 

source of CO2 from land use and land cover change (hereafter “land use”), taking 

 account of uncertainties in other terms in the global carbon budget. We find that the 
atmospheric constraint favors land use CO2 flux estimates with lower decadal vari-

ability and can identify potentially erroneous features, such as emission peaks around 

1960 and after 2000, in some published estimates. Furthermore, we resolve an offset 

in the global carbon budget that is most plausibly attributed to the land use flux. This 

correction shifts the mean land use flux since 1900 across 20 published estimates 

down by 0.35 PgC year−1 to 1.04 ± 0.57 PgC year−1, which is within the range but at the 

low end of these estimates. We show that the atmospheric CO2 record can provide 

insights into the time history of the land use flux that may reduce uncertainty in this 

term and improve current understanding and projections of the global carbon cycle.
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2 Methods 
2.1 Model optimization 

 

Figure 1.1 Estimates of land use flux via bookkeeping-based (H&N, BLUE, OSCAR, in bold) and 
DGVM-based (17 estimates shown here faintly and separately in Figure S1; see Table S2 for 
references), all shown at annual resolution. 
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Tans, 2009; Keeling et al., 2005; MacFarling Meure et al., 2006). As 
the best estimated term of Equation (1), the growth rate has been 
used to constrain the combined land and ocean sinks, treating fossil 
emissions and land use flux as known (Ballantyne et al., 2012; Joos 
et al., 1999). This process has also been reversed and used to ver-
ify fossil emissions (Francey et al., 2010; Peters et al., 2017). The 
terrestrial sink (B) has commonly been calculated as a residual (Bres, 
referred to as the “residual terrestrial sink”) of the other terms of 
Equation (1) (Le Quéré et al., 2016). Finally, the AGR has also been 
used to quantify the land use flux occurring in the 19th century, a 
time when fossil emissions were small and growing atmospheric 
CO2 levels supported the existence of significant emissions from 
land use (Siegenthaler & Oeschger, 1987; Wilson, 1978; Woodwell 
et al., 1983). However, the growth rate has not been previously used 
to constrain the land use flux in the 20th century and later.

The land use flux has been estimated using bookkeeping meth-
ods and dynamic global vegetation models (DGVMs) (Figure 1). The 
bookkeeping approach uses vegetation and soil carbon densities to 
estimate the flow of carbon between the land and atmosphere in 
response to inferred and historical occurrences of land use activities. 
DGVMs simulate effects of both natural and anthropogenic pro-
cesses (including land use) on terrestrial carbon stocks and compare 
simulations with and without land use activity to calculate the land 
use CO2 flux. At present, estimates of the land use flux vary substan-
tially in magnitude and variability across models, and the flux is over-
all considered to be uncertain by ~50% (Friedlingstein et al., 2020).

The estimates of the land use flux vary widely across models related 
to differences in (i) underlying land use reconstructions, (ii) the degree 
of implementation of land use practices, (iii) definitions of the land use 
flux, and (iv) modeling parameterizations and process representation 
(Pongratz et al., 2018): (i) The source and implementation of information 
on changes in agricultural areas and forest management differ across 
studies (Friedlingstein et al., 2022) and substantially influence land use 

flux estimates (Gasser et al., 2020), as does uncertainty in the land use 
reconstructions themselves (Hartung et al., 2021). (ii) Land use practices 
(e.g., drainage, shifting cultivation, wood harvest) are implemented by the 
models to different extents (Arneth et al., 2017) and with varying com-
plexity (Pongratz et al., 2018). (iii) DGVMs typically include synergistic 
effects between natural environmental changes and land use change in 
their land use flux estimates, while bookkeeping approaches leave them 
out (Gasser et al., 2020; Obermeier et al., 2021; Pongratz et al., 2014). 
(iv) Model parameterizations are often not well constrained by observa-
tional data, such that, for example, carbon densities differ substantially 
across bookkeeping models (Bastos et al., 2021); furthermore, the details 
of processes underlying a realistic land use description, such as vegeta-
tion demography, differ widely across DGVMs (Fisher et al., 2018). These 
model aspects continue to be improved (Blyth et al., 2021; Pongratz 
et al., 2018) and observations of proxies relevant to land use emissions, 
such as fires (van Marle et al., 2022), biomass changes (Xu et al., 2021), 
or forest loss (Feng et al., 2022) increasingly provide additional ways to 
evaluate the size and evolution at least of certain components of the land 
use flux. The AGR could provide an additional top- down, independent 
constraint on the plausibility of the complete land use flux.

The land use flux has been difficult to characterize and is a 
primary source of uncertainty in global anthropogenic fluxes of 
CO2 (Riahi et al., 2022). Current estimates of land use fluxes have 
means over 1900– 2019 ranging from 0.76 (Vuichard et al., 2019) to 
2.15 PgC year−1 (Yue & Unger, 2015), with Friedlingstein et al. (2022) 
reporting an average annual flux of 1.32 ± 0.7 PgC year−1 since 1900. 
Booth et al. (2017) show that reducing uncertainty in the land use 
flux can substantially narrow the range in projected future cli-
mate scenarios, which hinge on models tuned to match past fluxes. 
Additional constraints are needed to refine estimates of the land use 
flux and improve projections of the carbon cycle.

Here we examine whether the atmospheric CO2 growth rate in 
Equation (1) can be used to constrain the land use flux since 1900. 
Recognizing that the overall uncertainty in the global carbon budget 
complicates analysis of land use fluxes on timescales shorter than 
decadal, we examine to what extent variations in the atmospheric CO2 
growth rate constrain the magnitude of decade- to- decade variability 
in the land use flux. We address this question by evaluating the com-
patibility of published estimates of the land use flux with the other 
terms in Equation (1) via linear regression fits. We examine the distri-
butions of scalars and error in these fits to draw inferences about defi-
ciencies in the prior estimates of the land use flux. In total, we find that 
the CO2 growth rate favors land use flux estimates with lower decadal 
variability, and also find that the budget requires an additive adjust-
ment, which we argue is most plausibly attributed to the land use flux.

2  |  METHODS

2.1  |  Model optimization

To evaluate the compatibility of various land use flux reconstructions 
(LUj) with the AGR, we employ Equation (1) as a linear regression:

F I G U R E  1  Estimates of land use flux via bookkeeping based 
(H&N, BLUE, OSCAR, in bold) and DGVM- based (17 estimates 
shown here faintly and separately in Figure S1; see Table S1 for 
references), all shown at annual resolution. We use the color map 
batlow (Crameri, 2021) in this study to prevent visual distortion of 
the data and to make this work accessible to readers with differing 
color vision (Crameri et al., 2020).

 13652486, 2022, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16396 by U

niversity O
f California, W

iley O
nline Library on [25/01/2023]. See the Term

s and Conditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable Creative Com

m
ons License



 

10 
 

 
 
2.2 Data description 
2.3 Accounting for uncertainty in budget terms 
 
 
 
Table 1.1 Expressions for generating temporally autocorrelated noise to account for uncertainty 
in the model inputs CO2 (atmospheric CO2 record, used to calculate AGR), FF, and O 
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where subscripts j and k refer to prior estimates of the land use flux 
and terrestrial sink, respectively, as compiled by the Global Carbon 
Project (Friedlingstein et al., 2020), and AGR, O, and FF are compos-
ite best estimates (Friedlingstein et al., 2020), with noise added, as 
discussed in Section 2.3. The parameters α and β are scalars fitted to 
minimize the mean squared error (MSE):

where error denotes the error smoothed with a 10- year moving 
average, and the MSE is calculated over the fitting period in which 
t0 is either 1900 or 1959 and t1 is 2019. The 1900 start was cho-
sen, as opposed to, for example, 1800, to avoid the need to taper 
the fitted constant α (all terms in the budget were zero prior to 
the industrial revolution). The 1959 start was chosen to restrict the 
analysis to the period of direct atmospheric measurements (as op-
posed to including ice core measurements). The decadal smoothing 
ensures that emphasis is placed on the decadal and longer time-
scales that are resolved in the land use flux reconstructions. The 
decadal smoothing also has the effect of smoothing discontinuities 
and changes in interannual variability in datasets due to changes in 
sampling methodology (e.g., atmospheric CO2 data). The optimized 
values for α and β depend on the selected prior estimates for the 
input terms, including LU and B (i.e., α = α jk, β = β jk). Below, we re-
port the error alternately as MSE or as the root mean squared error 
(RMSE = 

√

MSE).

2.2  |  Data description

We select LUj from 20 published land use flux inputs and one hypo-
thetical case of a constant LU. These include three bookkeeping- 
based estimates from Houghton and Nassikas (2017) (hereafter 
H&N), the Bookkeeping Land Use Emissions model (BLUE) (Hansis 
et al., 2015), and OSCAR (Gasser et al., 2020) (all in the updated 
versions as reported in Friedlingstein et al. (2022)), and 17 DGVM 
estimates included in Friedlingstein et al. (2020). We also ex-
plore a case in which the land use flux is held constant (CONST) 
over the entire 1900– 2019 period, which is equivalent to set-
ting LUj = 0 because Equation (2) already contains the additive 
constant α.

For the terrestrial CO2 sink, we select Bk from 17 DGVM esti-
mates included in Friedlingstein et al. (2020). For the atmospheric 
CO2 growth rate, we calculate the growth rate from the monthly 
 atmospheric CO2 record compiled by Joos and Spahni (2008, up-
dated), which combines atmospheric data from the NOAA/ESRL 
global network (1980– 2019) and Mauna Loa, Hawaii (1958– 1979), 
and ice core data from Law Dome, Antarctica (1600– 1957). We use 
annual global estimates of the ocean sink and CO2 emissions from 
fossil fuel burning and industry (including the cement carbonation 
sink) as put forth by Friedlingstein et al. (2020).

2.3  |  Accounting for uncertainty in budget terms

In assessing each land use flux estimate via Equation (2), we apply 
randomly generated temporally autoregressive noise to the atmos-
pheric CO2 record (used to calculate AGR), FF, and O to allow for 
uncertainty in these inputs. The autoregressive noise x(t) is produced 
using the following construction:

where AR1 and AR2 represent the lag 1 and lag 2 autoregressive co-
efficients, C1 =

√

1 − AR12 − AR22 represents a scaling factor that 
normalizes the standard deviation of x(t) to 1, and ε is a Gaussian 
random variable with mean of 0 and standard deviation of 1. Once 
calculated, x(t) is scaled to have a standard deviation matching the 
published decadal uncertainty σ. The specific values used for each 
of the carbon budget terms are detailed in Table 1. This overall 
approach follows the “el camino” method described in Ballantyne 
et al. (2015). Autoregressive errors in FF and B are adopted directly 
from Ballantyne et al. (2015) and Anderegg et al. (2015). The autore-
gressive error in CO2 after 1958 is based on Ballantyne et al. (2012).

To account for errors in the atmospheric CO2 record before 
1958, we construct 10,000 bootstrap simulations of the ice core 
CO2 data between 1600 and 1957. To construct one bootstrapped 
time series, from the observed 79- point ice core record time se-
ries spanning 1600– 1957 we randomly sample with replacement 
79 data points with their associated timestamps. This process is 
repeated 10,000 times. The bootstrap simulations are then joined 
with the direct atmospheric CO2 measurements for 1958– 2019 
and together fit with a smoothing spline. The time series are joined 
before the spline to ensure continuity between the ice core and 
atmospheric records. For each of the 10,000 time series, we use a 
smoothing spline with a cutoff period of 7.6 years for the ice core 

(2)AGR + O − FF = LUj + ! − " ⋅ Bk + error

(3)MSE =
1

(

t1 − t0
)

+ 1

t1
∑

t0

(

error(t)
)2

(4)x(t) = AR1 ⋅ x(t−1) + AR2 ⋅ x(t−2) + C1 ⋅ !(t)

Term AR1 AR2 σ Source

CO2 0.244 0.086 0.51 PgC Ballantyne et al. (2012)

FF 0.95 - 5% Ballantyne et al. (2015)

O 0.9 - 0.4 PgC year−1 Anderegg et al. (2015)

Note: The standard deviation of the generated noise time series is normalized to match published 
values (σ). Noise in FF is scaled at each yearly value to a standard deviation of 5% of the emissions 
in that year.

TA B L E  1  Expressions for generating 
temporally autocorrelated noise to 
account for uncertainty in the model 
inputs CO2 (atmospheric CO2 record, used 
to calculate AGR), FF, and O
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3 Results and discussion 
3.1 Constraints on decadal variability in land use flux 
Figure 1.2 Relationship between regression errors in Equation (2) and decadal variability in the land use flux used as input, with separate analyses for the 1900-2019 (panel [a]) and 1959-2019 
(panel [b]) timeframes.  
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data and 2 years for the atmospheric measurements (! = 25.66, 
1- month data spacing, weights of 1 and 0.069 for ice core and 
atmospheric data, respectively. Parameters are chosen to obtain 
the desired approximate cutoff periods) (Bruno & Joos, 1997; 
Enting, 1987). We opt for a relatively low cutoff period for the ice 
core data as a conservative application of uncertainty. Finally, we 
truncate each of the 10,000 bootstrapped and spline- fit time series 
to the years 1900– 1957. One of each of these 10,000 time series is 
joined with one generation of the CO2 record 1958 and later which 
includes random temporally autoregressive noise. We then differ-
entiate this joined CO2 record to calculate the annual AGR centered 
on July 1 for each model run. This process is repeated for each 
bootstrapped CO2 simulation for data prior to 1958 to produce 
10,000 instances of the AGR.

We allow for uncertainty in the terrestrial CO2 sink via bootstrap 
by randomly choosing with replacement one of 17 DGVM estimates 
(Bk) in Friedlingstein et al. (2020) for each of the 10,000 ensemble 
runs. We include multiple formulations of the terrestrial sink rather 
than applying autoregressive random noise to a central estimate to 
better allow for systematic bias.

Finally, the distribution of error (Equation 2) for each land use 
flux estimate LUj is modeled by creating a 10,000- member ensem-
ble, each member of which includes one pick Bk and one rendering of 
each of the autoregressive functions and bootstraps. Each land use 
flux and each ensemble member therein yield a different estimate 
of the parameters α and β and quality of fit. No special significance 
is attached to pairs of LUj and Bk taken from the same DGVM (i.e., 

j = k). The spread in the 17 inputs for Bk and 10,000 instances of 
AGR, FF, and O are shown in Figure S2.

3  |  RESULTS AND DISCUSSION

3.1  |  Constraints on decadal variability in land use 
flux

We find that land use flux estimates with greater decadal variabil-
ity yield larger errors in Equation (2) for both the 1900– 2019 and 
1959– 2019 timeframes (Figure 2). The model errors increase ap-
proximately linearly with the variance in the land use flux input. This 
relationship appears in both fitting timeframes, with the 1959– 2019 
period showing a tighter relationship and a greater increase in error 
per increase in variance than fits over 1900– 2019.

To illustrate differences in quality of fit, we examine the RMSE 
across the 10,000- member ensembles for three land use cases: 
H&N, BLUE, and CONST. H&N and BLUE are chosen because they 
make up two of the three estimates that are averaged to report the 
global land use flux in the Global Carbon Project, and out of these 
three estimates represent the high-  and low- variance endmembers 
(Figure 1). We also examine the constant land use flux scenario 
 because of its consistently low errors.

As shown in Figure 3, we find that using CONST and H&N 
leads to similar distributions of RMSE with means of 0.50 and 
0.52 PgC year−1 respectively, while BLUE yields a higher average 

F I G U R E  2  Relationship between regression errors in Equation (2) and decadal variability in the land use flux LUj used as input, with 
separate analyses for the 1900– 2019 (panel [a]) and 1959– 2019 (panel [b]) timeframes. The decadal variability in the land use flux is 
represented as the variance of the decadally smoothed land use flux over each period after removing a linear trend, and the model errors are 
shown as the mean annual mean squared error (MSE) over the same period across each land use flux's 10,000- member ensemble. The lines 
and accompanying equations are a linear least- squares fit to the data excluding CONST. All reported data for the grouped land use fluxes 
hereafter exclude model runs for the CONST case.
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Figure 1.3 Panels (a-c) show the distributions of 10,000-member ensemble error (Equation 3) for runs using CONST, H&N or BLUE as input for the land use flux over 1900-2019. Panel [d] 
shows the distributions of the percent differences in error from the 10,000-member ensembles using H&N or BLUE as input for… 
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error of 0.62 PgC year−1. Figure 3d shows the same information, but 

after calculating the percent difference in RMSE between H&N and 

CONST or BLUE and CONST on a point- by- point basis through the 

ensemble (i.e., for identical picks for Bk and time series of noise in 

AGR, O, and FF). This shows that the RMSE for H&N and BLUE are 

both systematically higher than that for CONST, with a larger differ-

ence for BLUE. The RMSE for the CONST ensemble is lower than the 

RMSE for any of the published estimates. The model errors for all 21 

land use flux cases are listed in Table S1.

The strong correlation between average regression error and 

decadal variability in land use fluxes can be understood by exam-

ining their time histories (Figure 4). We focus again on H&N, BLUE, 
CONST, and additionally ISBA- CTRIP as a representative high- 

variance DGVM estimate. The errors of BLUE and ISBA- CTRIP 

both show a prominent positive excursion in the late 1950s, which 

coincides with a large variation in the BLUE and ISBA- CTRIP fluxes 

over the same period. The model errors for CONST and H&N are 

smaller and generally similar to one another, showing an overesti-

mation of atmospheric growth around 1950 and in the mid- 2000s. 

The mid- 2000s error also appears in the ISBA- CTRIP error time 

series.

The compatibility of land use fluxes with the atmospheric CO2 

growth rate can also be examined in relation to the residual terrestrial 

sink that is required to balance the global budget (Bres = FF + LUj –  

O –  AGR). As shown in Figure 5, the residual sink demanded by BLUE 

strengthens rapidly from 1920 to 1960, then reverses trajectory and 

weakens until 1980. This behavior deviates qualitatively from the 

multi- model mean (BGCP) reported by Friedlingstein et al. (2020) 

(shown in pink), which increases more uniformly with time. In con-

trast to BLUE, the terrestrial sink calculated from CONST grows 

more uniformly after 1900 with smaller decadal variations, leading 

to a residual terrestrial sink that also grows relatively uniformly with 

time, in better agreement with models.

The features contributing to error in the higher variability land 

use flux estimates may be tied to known issues with the method-

ology used to produce these estimates. In the case of the BLUE 

and ISBA- CTRIP land use fluxes, for example, the strong land use 

flux peak around 1960 and the corresponding errors (Figure 4c,d) 

coincide with changes in the datasets used as inputs before and 

after 1961. The DGVMs, BLUE, and part of the simulations un-

derlying OSCAR use the harmonized land use change data LUH2 

(Chini et al., 2021; Hurtt et al., 2020), which is based on the HYDE 

population and land use dataset (Goldewijk, Beusen, et al., 2017; 

Goldewijk, Dekker, et al., 2017). HYDE transforms the country- 

level statistics on agricultural areas from the Forest and Agriculture 

Organization (FAO, FAOSTAT, 2021) into spatially explicit maps 

using ancillary data from satellite remote sensing and rules on how 

agricultural land is distributed at the sub- national level. Since the 

FAO estimates only begin in 1961, agricultural areas for earlier time 

periods are approximated by combining population estimates with 

per capita land use estimates that follow a curved trajectory based 

on the (limited) available historical sources. This switch in meth-

odology in 1961 is the likely cause of the high land use flux prior 

to the 1960s and the subsequent drop (Bastos et al., 2021). The 

quickening growth in the land use flux between 1940 and 1960 may 

also be connected to a misrepresentation in the construction of 

these fluxes. There is evidence that LUH2, which underlies BLUE 

and DGVM- based estimates including ISBA- CTRIP, does not accu-

rately capture the increase in terrestrial CO2 uptake associated with 

land abandonment occurring in the former Soviet Union during the 

1940s (Bastos et al., 2016), causing flux estimates to be artificially 

high during this period.

F I G U R E  3  Panels (a-c) show the distributions of 10,000- member ensemble error (Equation 3) for runs using CONST, H&N, or BLUE as 
input for the land use flux over 1900– 2019. Panel [d] shows the distributions of the percent differences in error from the 10,000- member 
ensembles using H&N or BLUE as input for the land use flux compared to the error when using CONST for each member of the ensemble. 
Ensemble errors are shown as the root mean squared error (RMSE). The interquartile range for the H&N distribution in panel (d) is 9.1% and 
for the BLUE distribution in panel (d) 18.3%. The dashed vertical line in panel [d] marks zero percent difference, and for all panels the solid 
vertical lines mark the mean (μ) of each distribution. We hereafter report and discuss results for the 1900– 2019 fitting period by default 
unless otherwise specified.
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3.2 Constraints on the land use mean flux 
 

3.2.1 Additive parameter α 
 

Figure 1.5 Comparison of averaged ensemble error (dark teal) for each land use flux([a] 
CONST, [b] H&N, [c] BLUE and [d] ISBA-CTRIP), shown with an error envelope (±1 σ) 

in lighter teal.  

 

  

Figure 1.4 Comparisons of terrestrial sink estimates, including sinks inferred as the residual of Equation (1) (Bres) assuming 
different estimates for LUj where Bres = FF + LUj – O – AGR, where LUj is either CONST or BLUE.  
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The upswing and corresponding errors in Figure 4 for ISBA- 

CTRIP in recent decades are probably unrelated to a concurrent 

switch in accounting in the underlying dataset HYDE. The HYDE 

dataset switches from using only decadal to using annual data in 

2000, and the consequently higher interannual variability may have 

increased emissions due to the asymmetry of decay and regrowth 

(Friedlingstein et al., 2022) and may be a reason for the higher errors 

in the last decades. However, this switch in accounting applies also 

to BLUE, which relies on the HYDE dataset but does not show signs 

of greater error in recent decades, suggesting that the switch to an-

nual data may not be responsible for the upswing seen in DGVMs.

The errors in Figure 4 for ISBA- CTRIP since 2000 may instead 

be explained by biases in deforestation rates in the LUH2 dataset 

(Bastos et al., 2020). These biases have been corrected in subse-

quent versions (Chini et al., 2021). Therefore, the ISBA- CTRIP esti-

mate we use (from Friedlingstein et al. (2020)) is still subject to these 

biases, but the BLUE estimate (from Friedlingstein et al. (2022)) is 

not. The post- 2000 increase in the ISBA- CTRIP land use flux esti-

mate may also be exacerbated by the inclusion of “loss of additional 

sink capacity” (discussed in Section 3.2.1), which reinforces increases 

in the land use flux and is not represented in bookkeeping- based 

estimates. Overall, these connections between the errors in land 

use flux estimates and their methodologies illustrate the process 

by which the atmospheric CO
2
 growth rate's constraint on decadal 

variability may be used to diagnose underlying issues in land use flux 

estimates.

3.2  |  Constraint on the mean land use flux

3.2.1  |  Additive parameter α

Information on model performance is also contained in the distribu-

tion of the parameter α. Figure 6 shows histograms of α across the 

full ensemble of land use models for both time periods. We find that 
the distributions span zero, with a mean value below zero for both 

time periods. We also find that α is strongly correlated with the time- 

averaged land use flux estimates used for each fit, with an  especially 

strong correlation for the full 1900– 2019 period (Figure 6a and 

Table 2).

What significance is implied by the distributions of α centering 

below zero? To address this question, we start with the hypothesis 

that the ensemble of estimates of the different budget terms, in-

cluding the model- to- model variations in the published estimates 

of LU and B, reflect purely random variations around the unknown 

“true” historical evolution of each of those quantities. If this hypoth-

esis were true, then the distribution of α values associated with the 

20 LU model estimates would be expected to have a mean of zero. 
(This expectation is supported by additional runs using a hypothet-

ical  atmospheric record produced via forward runs driven by the 

 ensemble mean estimates for the budget terms. Method and results 

are detailed in SI.) In contrast, the mean of α across the 20 models 

(histograms in Figure 6) differs from zero by ~2 times the standard 

error on both timeframes (SE = std(α)/sqrt(20- 1) = 0.16 PgC year−1
 

for 1900– 2019 and SE = 0.26 PgC year−1
 for 1959– 2019; distribu-

tions shown in Figure 6 histograms). We calculate the standard error 
using 19 degrees of freedom, conservatively treating the 20 differ-

ent land use cases as the only varying parameters between runs. 

F I G U R E  4  Comparison of averaged 
ensemble error (dark teal) for each land 

use flux ([a] CONST, [b] H&N, [c] BLUE, 

and [d] ISBA- CTRIP), shown with an error 

envelope (±1σ) in lighter teal. The land use 

flux (LU), which has been adjusted by the 

ensemble- averaged fitting parameter α, is 

shown both in the 10- year smoothed (dark 

grey) and unsmoothed (light grey) forms.

F I G U R E  5  Comparisons of terrestrial sink estimates, including 
sinks inferred as the residual of Equation (1) (B

res
) assuming 

different estimates for LUj where B
res

 = FF + LUj − O − AGR, where 
LUj is either CONST or BLUE. Thin pink lines represent estimates 

of individual models of B per Friedlingstein et al. (2020). No 

adjustment is made to the means of the land use fluxes in this 

figure. All data have 10- year smoothing applied.
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Figure 1.6 Comparison of the ensemble-averaged best fit of additive parameter α 
(Equation 2) and the time average of the land use flux specified in the ensemble (LUj), 

fit and calculated over the 1900-2019 (panel [a]) and 1959-2019 (panel [b]) periods. 

Table 1.2 Correlation coefficients and p-values of the relationship between (i) the means of 
fitting parameters α and β across ensemble runs specific to each model input and (ii) means of 

model inputs of the land use flux 
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Thus, we are able to falsify the hypothesis. Of course, one might 
argue that the hypothesis was anyway doubtful because the dif-
ferent models for LU and B share assumptions, methods and input 
datasets. Nevertheless, our ability to falsify the hypothesis using 
atmospheric data has broader implications, because it provides a 
means to identify a specific bias that was previously not recognized.

How should we interpret the strong correlation between α and 
the mean land use fluxes across the 20- model ensemble? We argue 

that this correlation suggests that α is best interpreted as a correc-
tion to the budget imbalance involving LU. This interpretation is sup-
ported by the following points: First, the range in α is larger than the 
uncertainties in AGR, FF, and O, so α cannot be significantly associ-
ated with errors in these terms. Second, a similarly strong correlation 
as that between α and the mean land use flux is not found between 
α and the mean land sink B over either the 1900– 2019 or 1959– 2019 
periods (correlations shown in Table 2; Figures S6 and S7). Third, 

F I G U R E  6  Comparison of the ensemble- averaged best fit of additive parameter α (Equation 2) and the time average of the land use flux 
specified in the ensemble (LUj), fit and calculated over the 1900– 2019 (panel [a]) and 1959– 2019 (panel [b]) periods. Points are shown with 
±1 standard deviation of the value for α in each LUj ensemble. The time average of LUj (denoted as LUj  ) is calculated after applying 10- year 
smoothing. The teal lines and accompanying equations are a linear least- squares fit to the data, whereas the gold lines are fits to the data 
with slopes equal to unity (the gold line is obscured by the teal line in panel [a]). Also shown are histograms of the model- fitted values of α 
across the 20 × 10,000 ensemble runs for each fitting period (panel [a]: μ = −0.35 ± 0.70; panel [b]: μ = −0.48 ± 1.11). Zero is marked with a 
dashed line and the histogram means are marked with a solid line that extends into the scatter. The ensemble means of LUj  + α for each time 
period can be inferred from the projection onto the x- axis of the intersection point of the gold line (slope = 1, line of constant LUj  + α) and 
the zero line.

LUj Bk

1900– 2019 1959– 2019 1900– 2019 1959– 2019

α Correlation 
coefficient

−0.80 −0.60 0.46 0.12

p- value 2.5 × 10−5 0.0049 0.060 0.64

β Correlation 
coefficient

0.0071 0.11 −0.56 −0.62

p- value 0.98 0.63 0.021 0.0083

Note: For example, values of α found when using each of the 20 inputs for LU are compared to 
the means of the respective LU, with the fits performed over the 1900– 2019 fitting timeframe 
and LUj  calculated over 1900– 2019, in the case of the 1900– 2019 column. p- values are calculated 
using the MATLAB corrcoef function. Model inputs LUj are assumed to be independent, as are Bk 
(discussed above). Scatterplots of these data are embedded in Figure 6 and displayed in isolation in 
SI (Figures S6 and S7).

TA B L E  2  Correlation coefficients and 
p- values of the relationship between (i) 
the means of fitting parameters α and 
β across ensemble runs specific to each 
model input and (ii) means of model inputs 
of the land use flux (LUj , where overbar 
denotes the time average) and terrestrial 
sink (Bk )
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Table 1.3 Average values of 𝐿𝑈!----- + α, where α is the ensemble-averaged best fit parameter and is 
the mean across all 20 land use flux cases 

 
Figure 1.7 The residual terrestrial sink (shaded grey) given two land use flux scenarios with 
different 1900-2019 means. The residual sink is calculated as the difference between LU (blue 
line, 1.75 PgC year-1 in panel  
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interpreting α as a correction to B would significantly change the 
time evolution of B by reducing its relative growth since 1900 (dis-
cussed further below). However, adjusting LU by α does not have 
this effect, and the offset in α is similar in magnitude to differences 
in published mean values of LU.

We thus proceed with the assumption that LUj + α can be inter-
preted as an adjusted estimate of the land use flux mean LUj, and re-
port the adjusted flux both for (i) values of α estimated for individual 
land use cases and (ii) when averaging LUj + α across the 20- model 
ensemble. For each land use flux case LUj, we calculate α as the aver-
age value across the 10,000 model runs. The resulting LUj + α value 
for each land use flux case is lower than LUj in the majority of cases 
(Figure 6 and Table S1). Averaging LUj + α across land use flux cases 
yields values that are consistently lower than the average of the 20 
versions of LUj as well as the Friedlingstein et al. (2022) estimate 
(Table 3), which is an average of the three bookkeeping estimates 
H&N, BLUE, and OSCAR. These adjusted land use flux estimates are 
robust to the details of averaging. An unweighted average of the ad-
justed land use flux across the 20- model ensemble (excluding CONST) 
yields 1.04 ± 0.57 PgC year−1 when optimizing over 1900– 2019 and 
1.06 ± 1.04 PgC year−1 when optimizing over 1959– 2019 (Table 3). 
Weighting inversely with model error (MSE) yields 1.06 ± 0.56 PgC 
year−1 and 0.98 ± 1.03 PgC year−1 when optimizing over 1900– 2019 
and 1959– 2019, respectively. The corresponding estimate for the 
CONST scenario (for which LUj = 0) yields 0.75 ± 0.43 PgC year−1 and 
0.74 ± 0.86 PgC year−1 for 1900– 2019 and 1959– 2019, respectively. 
For the 1900– 2019 period, the spread in LUj + α is reduced below the 
designated LU uncertainty of 0.7 PgC year−1 quoted in Friedlingstein 
et al. (2022). The 1959– 2019 period does not show a reduced spread 
in LUj + α because the adjustment incorporates uncertainty in the 
other terms of the budget, particularly fossil fuel emission, which is a 
large source of uncertainty in recent years.

What aspects of the record yield this emergent constraint on the 
mean land use flux? To address this point, we consider the simplest 

case of a constant land use flux, which essentially contains the same 
constraint. The atmospheric budget tightly constrains the time his-
tory of the residual net land flux, Bnet = FF − AGR − O. With this con-
straint, the relative growth in the terrestrial sink, calculated as the 
residual of the budget (Bres), is strongly dependent on the constant 
value assumed for LU. A high value for LU yields much lower relative 
growth in Bres than a low LU mean (Figure 7). A constraint on the rel-
ative growth in B, combined with the assumption that LU is relatively 
constant, is therefore sufficient to constrain LU.

Our ability to constrain the constant α and to interpret this as 
an adjustment to the mean land use flux is therefore strongly con-
ditioned upon the published estimates of LU and B having distinct 
temporal patterns, with LU remaining relatively constant over the 
evaluation periods, and B growing strongly. This aspect of the pub-
lished estimates is clearly rooted in mechanistic understanding. 
The land use flux is driven by competing influences that reduce 
its long- term trend. Although the global population grew fourfold 
from 1900 to 2019, the relative influence of population on land use 
is largely offset by changes in technology (Goldewijk, 2001; Meyer 
& Turner, 1992), such as the advent of industrialized agriculture in 
the post- war era (Pongratz et al., 2008). Hong et al. (2021) showed 
that after 1960 substantial growth in population and agricultural 
production per capita was largely balanced by decreases in land re-
quired per unit of agricultural production associated with agricul-
tural  intensification. And although rates of tropical deforestation 
have  increased since 1900, their resulting CO2 emissions have been 
largely offset by fire suppression and declining deforestation else-
where along with the resulting drawdown of CO2 from regrowth in 
abandoned deforested and agricultural areas (Houghton et al., 2012).

In contrast, the known drivers of the terrestrial sink have all ac-
celerated since 1900. Gross primary production, water use efficiency 
of plants, and biomass production have, all with high confidence, 

TA B L E  3  Average values of LUj  + α, where α is the ensemble- 
averaged best fit additive parameter and LUj  is the mean across all 
20 land use flux cases

LUj  + α

1900– 2019 1959– 2019

All LU cases, unweighted 1.04 ± 0.57 1.06 ± 1.04

All LU cases, weighted by 1/
MSE

1.06 ± 0.56 0.98 ± 1.03

CONST 0.75 ± 0.43 0.74 ± 0.86

Average of 20 LU cases used in 
this study (Figure 1)

1.39 ± 0.7 1.54 ± 0.7

Friedlingstein et al. (2022) 1.32 ± 0.7 1.30 ± 0.7

Note: The averages comprise individual ensemble fits of LUj  + α for each 
land use case in the grouping (e.g., 20 LU cases × 10,000 runs = 200,000 
ensemble runs for “All LU cases”). “All LU cases” does not include the 
ensemble runs for the hypothetical constant land use case CONST. 
Average values of LUj  + α are compared to published estimates (bottom 
two rows). All data are in PgC year−1.

F I G U R E  7  The residual terrestrial sink (shaded grey) given 
two land use flux scenarios with different 1900– 2019 means. 
The residual sink is calculated as the difference between LU (blue 
line, 1.75 PgC year−1 in panel [a] and 1 PgC year−1 in panel [b]) 
and the budget- constrained sign- reversed residual net land flux 
Bnet = FF − AGR − O (green curve). The mean 1900– 1910 net land 
flux is marked with a dashed grey line to highlight the relative 
growth in Bres between 1900 and 2019.
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3.2.2 Implications for the terrestrial sink 

3.2.3 Implications for climate sensitivity 

3.2.4 Implications for airborne fraction 
4 Summary 
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increased (Walker et al., 2020). Nitrogen deposition is also shown 
to have increased since 1900 (Ackerman et al., 2019; Galloway & 
Cowling, 2002), which has enhanced global net primary produc-
tion (Magnani et al., 2007; Reay et al., 2008). Furthermore, fertil-
ization of the terrestrial biosphere by increasing atmospheric CO2 
concentrations has been repeatedly shown to be a primary driver 
of the terrestrial CO2 sink (Ciais et al., 2013; Huntzinger et al., 2017; 
Piao et al., 2013; Sitch et al., 2008; Walker et al., 2020). While the 
sensitivities of the terrestrial CO2 sink to these processes remain 
uncertain, these processes have all clearly increased since 1900, 
supporting strong growth in the terrestrial CO2 sink.

We are aware of at least one driver of LU that may have grown 
similarly to B, that is, the “loss of additional sink capacity” (Pongratz 
et al., 2014). This flux, which is included in DGVMs but not bookkeep-
ing estimates of the land use flux, represents the lost capacity in the 
terrestrial sink due to land use and has similar drivers to the terres-
trial sink. In our model, such a flux would be attributed to a decline in 
the strength of the terrestrial sink β·Bk (discussed in Section 3.2.2). 
Although we would expect such a decline to be reflected in our 
model's terrestrial sink, we do not see an obvious difference in β·Bk 
between models that do (DGVMs) and do not (bookkeeping) include 
lost sink capacity in the land use flux (Table S1). There is currently no 
consensus on how to incorporate the loss of additional sink capacity 
into land use models and this flux is sensitive to the details of the 
modeling approach (Pongratz et al., 2014).

An important question is whether the atmospheric budget 
can resolve changes in the land use flux on a broader range of 
timescales than explored here. Answering this remains difficult 
because of ambiguity in how to assign model error; while the re-
sidual errors in Figure 4 might be due to the land use flux, they 
might also be due to errors in other terms. In line with this rea-
soning, our model cannot be inverted to produce an optimized 
land use flux to a decadal precision better than the RMSE of the 
CONST land use flux case (±0.5 PgC year−1); we take the RMSE 
of CONST as an optimistic (lower bound) estimate of decadal 
model error. Possible decadal changes in the land use flux high-
lighted in other studies, for example, wartime impacts on land 
use (Bastos et al., 2018) and interannual changes in deforestation 
rates (Hansen et al., 2013; Houghton et al., 2012), are therefore 
not challenged by our results.

3.2.2  |  Implications for the terrestrial sink

Although we mainly focus on implications for the land use flux, our 
method also yields insights on the magnitude of the terrestrial sink, 
B. We interpret β as a corrective scaling factor on the terrestrial sink 
pick Bk. Across the 20- LU model grouped ensemble fit over 1959– 
2019, the average value of β·Bk  is 1.99 ± 1.05 PgC year−1 over the 
same  period, which is ~15% smaller than the multi- model mean ter-
restrial sink reported in Friedlingstein et al. (2020) of 2.35 ± 0.60 PgC 
year−1 over the same time period (Table S2). We note, however, that 
the bias suggested by β is not as strong as that suggested by α. If B 

were unbiased, β would bracket unity. Our model finds values for β of 
0.93 ± 0.39 for 1900– 2019 and 0.89 ± 0.50 for 1959– 2019, which are 
closer to unity within the standard error (DOF = 19).

3.2.3  |  Implications for climate sensitivity

The mean land use flux since 1900 is relevant to metrics of climate 
sensitivity that hinge on the ratio of observed warming to cumu-
lative emissions, such as the transient climate response to cumu-
lative emissions (TCRE) (Millar & Friedlingstein, 2018). Millar and 
Friedlingstein use a combination of results by Houghton et al. (2012) 
and Van Der Werf et al. (2010) as reported by Le Quéré et al. (2016), 
including a land use flux with a 1900– 2016 mean of 1.1 PgC year−1 
to estimate the TCRE. If we assume the true land use flux is relatively 
constant and has a 1900– 2019 mean of 1.04 PgC year−1, then the cu-
mulative anthropogenic CO2 emissions (FF + LU) 2016 and prior are 
reduced by ~4%, corresponding to a 4% increase in the TCRE, imply-
ing that future increases in global temperature are underpredicted.

3.2.4  |  Implications for airborne fraction

The adjusted land use flux is also relevant to estimating trends in the 
airborne fraction (AF) of CO2, defined as the annual increment in 
atmospheric CO2 divided by the sum of fossil and land use emissions 
(

AF =
AGR

FF+ LU

)

. Canadell et al. (2007) used a land use flux updated 

from Houghton (2003) with a 1959– 2006 mean of 1.15 PgC year−1 to 
suggest that the AF increased by 2.5% per decade over the same 
period. However, calculating the AF trend across each LUj  + α in the 
20- model grouping (fit over 1959– 2019, with AF trend fit separately 
for every instance of LU, α and inputs [n = 200,000]) yields an aver-
age trend of −0.03 ± 1.52% per decade over 1959– 2019. A dimin-
ished trend was supported by Knorr (2009), who noted the AFs 
sensitivity to the land use flux and estimated the trend at 0.7 ± 1.4% 
per decade after accounting for uncertainties in the global carbon 
budget, as well as by van Marle et al. (2022), who use visibility data 
in forest regions to estimate a new land use flux estimate and report 
a decrease in AF of 0.014 ± 0.010 decade−1 since 1959.

4  |  SUMMARY

We show that the observed atmospheric CO2 growth rate can place 
meaningful constraints on both the decadal variability and mean of the 
land use CO2 flux since 1900 when accounting for variations in the 
major sources and sinks of CO2 to the atmosphere. We use estimates 
of the atmospheric CO2 growth rate, fossil fuel emissions, ocean sink 
and natural terrestrial sink in a regression in which we alternately use 
20 different estimates of the land use flux. We compare the magnitude 
and timing of the regression errors when using each land use flux input, 
as well as examine the significance of the regression fitting parameters.

 13652486, 2022, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16396 by U

niversity O
f California, W

iley O
nline Library on [25/01/2023]. See the Term

s and Conditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable Creative Com

m
ons License



 

17 
 

 
 
 
 
5 References 

 

 

  

7336  |    DOHNER et al.

We find that the observed atmospheric CO2 growth rate 
since 1900 is better simulated using land use flux estimates 
with less decadal variability, and the error in simulating the AGR 
increases roughly in proportion to the amount of decadal vari-
ability in the land use flux. The land use flux estimates have co-
incident features of variability and error between mid- century 
that may be the result of issues in the underlying datasets. Most 
DGVM- based land use flux estimates include large errors after 
2000, which also point to potential errors in the inputs common 
to these estimates. We find that a scenario that assumes the land 
use flux is constant after 1900 matches the atmospheric CO2 
growth rate better than any previously published estimate, even 
after allowing a constant additive adjustment to the published 
estimates.

Our model resolves a budget adjustment that is on average nega-
tive and which we interpret as a correction to the mean of published 
land use fluxes, one of the least well- known components of the 
global carbon budget. This interpretation is based on the additive 
correction being strongly correlated with the average land use flux 
over the last century from different LU estimates but not with the 
terrestrial sink or other terms in the carbon budget. If we alternately 
interpret the additive constant as a correction to the terrestrial sink, 
this greatly reduces the relative growth of the sink since 1900, which 
is inconsistent with the relative growth of published estimates, as 
rooted in mechanistic understanding.

Interpreting the additive constant as a correction to the mean 
land use flux yields an atmospherically adjusted mean land use flux 
of 1.04 ± 0.57 PgC year−1 over 1900– 2019 and 1.06 ± 1.04 PgC 
year−1 over 1959– 2019. These adjusted values are at the low end 
of the distribution of published estimates. The downward ad-
justment to the mean land use flux requires a ~15% reduction in 
the strength of the natural terrestrial sink over 1959– 2019 com-
pared to the multi- model mean published by GCP (Friedlingstein 
et al., 2020). In all, we find that the atmospheric CO2 budget fa-
vors land use flux estimates with less decadal variability and may 
resolve an overall downward adjustment to the mean land use flux 
since 1900.
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Supplemental Information 
 

Figure 1.8 Estimates of the land use flux via DGVMs, all shown at annual resolution. 

  
Supplemental Information 
 

 
Figure S1. Estimates of land use flux via DGVMs (see Table S1 for references), all shown at annual 
resolution. 
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Figure 1.9 Randomly selected display of 500 of the 10,000 versions of inputs (fossil emissions (FF, includes cement carbonation sink), ocean 
sink (O), atmospheric CO2 growth rate (AGR), and natural terrestrial sink (β∙ 𝐵!); see Section 2.3), all with 10-year smoothing applied. 

  

 
 
Figure S2. Randomly selected display of 500 of the 10,000 versions of inputs (fossil emissions (FF, includes cement 
carbonation sink), ocean sink (O), atmospheric CO2 growth rate (AGR), and natural terrestrial sink (β·Bk); see 
Section 2.3), all with 10-year smoothing applied. One of each of the time series that make up the 10,000 versions of 
each input is used per ensemble member. We show the spread in β·Bk rather than across the 17 estimates of B to 
show the full range that the B term can occupy in the Equation 2 regression. 
 
 

Forward run method (from Section 3.2.1) 
 

To confirm that fitting parameters α and β bracket zero and unity, respectively, in the 
circumstance that LU and B lacked any bias, we run the model using an atmospheric CO2 growth 
rate calculated as the residual of the terms in Equation 1. This growth rate, hereafter AGR’, treats 
all terms in the budget, after averaging across variations, as being perfectly compatible with the 
atmospheric CO2 growth rate. We run the model 10,000 times for each of the 20 land use flux 
cases, each time using AGR’ as input. Noise is applied to each of the input terms (e.g., AGR’, 
FF, O, B) as in Section 2.3. In Figures S3 and S4 we display the spread in α and β across the 20-
model ensemble (n = 200,000). Assuming that estimates for LUj and Bk are independent, we 
report the standard errors of the distributions: for 1900-2019 and 1959-2019, α is -0.066 ± 0.69 
(SE = 0.16) and -0.066 ± 1.14 PgC yr-1 (SE = 0.26), respectively, and β is 1.01 ± 0.39 (SE = 
0.089) and 1.03 ± 0.53 (SE = 0.12), respectively. We conclude that across both timeframes, the 
means of the distributions of α and β when modeling with AGR’ are not significantly different 
from zero and unity, respectively. 
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Figure 1.10 Spread in α across the 20 land use model ensembles (n = 200,000) when using as 
input an atmospheric growth rate calculated as the residual of the other input terms (including 
LUj; Equation 1). 
  

Figure 1.11 Same as Figure S3 but for spread in β.  

 
Figure S3. Spread in α across the 20 land use model ensembles (n = 200,000) when using as input an atmospheric 
growth rate calculated as the residual of the other input terms (including LUj; Equation 1). The dashed grey vertical 
lines mark x = 0, and the mean (μ) of each distribution is marked with a solid grey vertical line with the standard 
deviation. 
 

 
Figure S4. Same as Figure S3 but for spread in β. The dashed grey vertical lines mark x = 1, and the mean (μ) of 
each distribution is marked with a solid grey vertical line with the standard deviation. 
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Figure 1.12 Correlation between fitting parameters α and β on both fitting timescales. α has units of PgC yr-1 while β is unitless. 
 

 

  

Figure 1.13 Relationship between i) the 1900-2019 means of LUj or Bk chosen as input with ii) model-fitted parameters α and β 
when fit over the 1900-2019 period.  

 
Figure S5. Correlation between fitting parameters α and β on both fitting timescales. α has units of PgC yr-1 while β 
is unitless. 
 

 
Figure S6. Relationship between i) the 1900-2019 means of LUj or Bk chosen as input with ii) model-fitted 
parameters α and β when fit over the 1900-2019 period. R denotes the correlation coefficient and P denotes the p-
value for testing the hypothesis that there is no relationship between the x and y variables. The correlation 
coefficients and p-values are calculated using the MATLAB function corrcoef and assume that the x variables in 
each plot (estimates of LUj or Bk) are independent. Overbars on LUj!!!! and B"$$$ denote time averages of LUj and Bk. 
Values of α and β are averaged across the 10,000-member ensembles for each choice of LU (no fixed B) or the 
~11,000 runs for each choice of B (no fixed LU, B chosen randomly in runs hence inexact ensemble count). 
Correlation coefficients and p-values for each scatterplot are also listed in Table 2.  
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Figure 1.15 Same as Figure S6 but for 1959-2019. 
 

  

Figure 1.14 Distributions of LUj!!!!!!! + α across the 20-model grouped ensemble (n = 200,000) optimizing over the 1900-2019 (panel (a)) 
and 1959-2019 (panel (b)) periods. The mean (μ) of each distribution is marked with a grey vertical line with the standard deviation. The means of the original unadjusted land use 
flux estimates (μorig.) are also shown. 
 

 
Figure S7. Same as Figure S6 but for 1959-2019. 
 
 

                 

 
Figure S8. Distributions of LUj!!!! + α across the 20-model grouped ensemble (n = 200,000) optimizing over the 1900-

2019 (panel (a)) and 1959-2019 (panel (b)) periods. The mean (μ) of each distribution is marked with a grey vertical 

line with the standard deviation. The means of the original unadjusted land use flux estimates (μorig.) are also shown. 
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Figure 1.17 Distributions of β ∙ B"$$$ across the 20-model grouped ensemble (n = 200,000), where β ∙ B"$$$ is optimized to the atmospheric CO2 
growth rate over 1900-2019 (panel (a)) or 1959-2019 (panel (b)).  

 

  
Figure 1.16 Spread of 200,000 versions of the terrestrial sink β·Bk for fitting scenarios of the 20-model grouped ensemble using different estimates of the land use flux as prior. We show the mean (dark teal) ± 1 standard deviation (teal shaded region) of the 200,000 instances of β·Bk.  

              

 
Figure S9. Distributions of β·B"$$$across the 20-model grouped ensemble (n = 200,000), where β·Bk is optimized to 
the atmospheric CO2 growth rate over 1900-2019 (panel (a)) or 1959-2019 (panel (b)). Runs are repeated allowing 
for variations in the other inputs to account for uncertainty, producing the distributions shown here. The mean (μ) of 
each distribution is marked with a grey vertical line and labeled with the standard deviation. 
 
 
 

 
                 

Figure S10. Spread of 200,000 versions of the terrestrial sink β·Bk for fitting scenarios of the 20-model grouped 
ensemble using different estimates of the land use flux as prior. We show the mean (dark teal) ± 1 standard deviation 
(teal shaded region) of the 200,000 instances of β·Bk. Each instance of β·Bk is optimized to the atmospheric CO2 
growth rate over 1900-2019 (panel (a)) or 1959-2019 (panel (b)). 
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Figure 1.18 Each of the 20 land use flux estimates used as input with means adjusted to match the values optimized to the atmospheric CO2 growth rate over 1900-2019 (LUj### 

+ α) 

  

 

 

 

Figure S11. Each of the 20 land use flux estimates used as input with means 
adjusted to match the values optimized to the atmospheric CO2 growth rate over 
1900-2019 (LUj!!!! + α). Panel (a) shows adjusted bookkeeping estimates with 
adjusted DGVM-based estimates shown faintly in the background; panels (b-c) 
show adjusted individual DGVM-based estimates. Original and optimized means 
are detailed in Table S1. All data are shown at annual resolution. 
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Table 1.4 Original (𝐿𝑈$#####) and optimized ((𝐿𝑈$#####) + α) mean land use fluxes listed with ensemble averaged RMSE (Equation 3). 

 

  

Table S1. Original (LUj!!!!) and optimized (LUj!!!! + α) mean land use fluxes listed with ensemble average RMSE 

(Equation 3). LUj!!!! is listed only for 1900-2019. Also shown is the ensemble average of the optimized scaling 

parameter β of each ensemble run multiplying the time average of terrestrial sink B"$$$ used in the ensemble run when 

using each LUj as input. LUj!!!! and RMSE values are shown with ±1 standard deviation of the 10,000-member 

ensembles. All values are in PgC yr-1. 

 References LUj!!!! LUj!!!! + α 
Ensemble-averaged 

RMSE 
β·B"$$$ 

   1900-2019 1959-2019 1900-2019 1959-2019 1900-2019 1959-2019 

CONST N/A N/A 0.75 ± 0.43 0.74 ± 0.86 0.50 0.40 1.11 ± 0.42 1.66 ± 0.88 

H&N Houghton and 
Nassikas (2017) 0.86 0.71 ± 0.42 0.85 ± 0.88 0.52 0.46 1.08 ± 0.42 1.78 ± 0.90 

BLUE Hansis et al. 
(2015) 1.78 0.48 ± 0.42 -0.16 ± 0.79 0.62 0.43 0.84 ± 0.41 0.78 ± 0.81 

OSCAR Gasser et al. 
(2020) 1.32 0.80 ± 0.45 0.40 ± 0.83 0.59 0.41 1.16 ± 0.44 1.34 ± 0.85 

CABLE-
POP 

Haverd et al. 
(2018) 1.50 1.43 ± 0.53 1.27 ± 0.92 0.68 0.47 1.78 ± 0.52 2.19 ± 0.93 

CLASSIC Melton et al. 
(2020) 0.94 1.49 ± 0.51 2.18 ± 1.02 0.63 0.59 1.84 ± 0.50 3.09 ± 1.04 

CLM5.0 Lawrence et al. 
(2019) 1.88 1.04 ± 0.48 1.20 ± 0.91 0.64 0.49 1.40 ± 0.47 2.12 ± 0.93 

DLEM Tian et al. (2015) 1.93 0.77 ± 0.44 0.79 ± 0.87 0.65 0.51 1.13 ± 0.43 1.72 ± 0.89 

IBIS Yuan et al. 
(2013) 1.38 1.31 ± 0.51 1.31 ± 0.93 0.62 0.46 1.67 ± 0.50 2.22 ± 0.95 

ISAM Meiyappan et al. 
(2015) 1.12 1.06 ± 0.47 1.47 ± 0.95 0.67 0.58 1.41 ± 0.47 2.39 ± 0.97 

ISBA-
CTRIP 

Delire et al. 
(2020) 0.89 1.27 ± 0.50 1.66 ± 0.97 0.70 0.63 1.62 ± 0.49 2.58 ± 0.99 

JSBACH Mauritsen et al. 
(2019) 1.20 1.42 ± 0.52 1.65 ± 0.98 0.62 0.49 1.78 ± 0.51 2.57 ± 0.99 

JULES-ES Sellar et al. 
(2019) 1.47 1.31 ± 0.51 0.99 ± 0.88 0.60 0.42 1.67 ± 0.50 1.91 ± 0.90 

LPJ-
GUESS 

Smith et al. 
(2014) 1.50 1.13 ± 0.48 1.08 ± 0.89 0.63 0.51 1.49 ± 0.47 2.01 ± 0.90 

LPJ Poulter et al. 
(2011) 1.15 0.82 ± 0.44 1.06 ± 0.89 0.56 0.49 1.18 ± 0.43 1.99 ± 0.91 

LPX-Bern Lienert and Joos 
(2018) 0.78 0.84 ± 0.44 0.86 ± 0.87 0.57 0.46 1.20 ± 0.43 1.78 ± 0.89 

OCNv2 Zaehle and 
Friend (2010) 1.64 1.03 ± 0.48 0.94 ± 0.88 0.69 0.50 1.38 ± 0.47 1.86 ± 0.90 

ORCHIDE
E-v3 

Vuichard et al. 
(2019) 0.76 0.70 ± 0.43 0.54 ± 0.84 0.59 0.48 1.06 ± 0.42 1.47 ± 0.86 

SDGVM Walker et al. 
(2017) 1.98 0.64 ± 0.43 0.52 ± 0.84 0.70 0.53 1.00 ± 0.42 1.47 ± 0.86 

VISIT Kato et al. (2013) 1.52 0.97 ± 0.47 0.82 ± 0.87 0.61 0.43 1.33 ± 0.46 1.75 ± 0.89 

YIBs Yue and Unger 
(2015) 2.15 1.55 ± 0.55 1.80 ± 0.99 0.64 0.47 1.91 ± 0.54 2.71 ± 1.01 
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Table 1.5 Average terrestrial CO2 sink over two time frames, both directly estimated from models (B) and inferred as the residual of the global carbon 
budget (Bres). 

 

  
Table S2. Average terrestrial CO2 sink over two time frames, both directly estimated from models (B) and inferred 
as the residual of the global carbon budget (Bres). The GCP estimate of B is the 17-model mean terrestrial sink 
reported in Friedlingstein et al. (2020). The GCP estimate of Bres is calculated as the residual of the budget terms 
(AGR, FF, O, LU) reported in Friedlingstein et al. (2020). B estimated in this study is based on the average and 
standard deviation of β·Bk across the 20*10,000 ensemble runs (Section 2.3). Bres for this study is calculated as the 
residual across the same optimized ensembles. Estimates from 1900-2019 and 1959-2019 were calculated from fits 
over the same periods. All values are in PgC yr-1. 
  1900-2019  1959-2019 

B 

this study 
(β·B"$$$) 1.39 ± 0.56  1.99 ± 1.05 

GCP 2020 
(multi-model mean) 1.57 ± 0.43  2.35 ± 0.60 

     

Bres 
this study 1.39 ± 0.56  1.99 ± 1.06 

GCP 2020 1.79 ± 0.36  2.34 ± 0.40 
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CHAPTER 2: Insights from seawater isotopic carbon observations into coral reef 

metabolism and community function 

 

 

 

  



 

31 
 

1 Introduction 

As rising atmospheric CO2 levels induce changes in ocean conditions, including 

rising temperatures and declining dissolved oxygen concentrations and pH, marine 

ecosystems around the world are expected to undergo shifts in community structure 

and diversity (Doney et al., 2009; Poloczanska et al., 2013). In coral reef ecosystems, a 

shift in community structure from calcifying taxa such as corals towards algal-

dominance is expected under high-pCO2 and low-pH conditions (Agostini et al., 2018; 

Andersson and Gledhill, 2013; Contreras-Silva et al., 2020; Enochs et al., 2015; 

Fabricius et al., 2011). Among other changes, an algae-dominant reef system will be 

depleted in habitat provided by calcium carbonate structures and will have major 

implications for the ecosystem services coral reefs provide, such as coastline protection 

and revenue generated through tourism and fishing (Costanza et al., 2014). Planning 

and adaptation to mitigate damage stemming from declines in these services will be 

required. 

At present, the biogeochemical state of coral reef ecosystem function is 

frequently described using measurements of seawater dissolved inorganic carbon (DIC) 

and total alkalinity (TA) (Chisholm and Gattuso, 1991; Cyronak et al., 2018; Smith, 

1973; Suzuki and Kawahata, 2003; Watanabe et al., 2006). These measurements 

provide insight into reef metabolism and signal shifts in the state of the ecosystem, for 

example between net calcification and net dissolution (Courtney et al., 2018; Cyronak et 

al., 2018; DeCarlo et al., 2017; Kayanne et al., 2005; Muehllehner et al., 2016; Suzuki 

and Kawahata, 2003). However, these measurements alone provide no information 

about which and how much the different major taxa on a reef (e.g., coral, coralline 
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algae, macroalgae, seagrass) contribute to the inorganic and organic carbon cycles as 

well as to the overall reef metabolism. Having additional chemical tracers that can 

elucidate coral reef ecosystem composition and function will be valuable for tracking 

reef-scale shifts in community function under changing ocean conditions. 

Measurements of bulk seawater δ13C-DIC may provide functional group-level 

information about reef metabolism. During photosynthesis, 12C is more readily taken up 

by plants than the heavier 13C isotope (Park and Epstein, 1961; Vogel, 1980), with the 

preferential uptake reported in per mil (‰) difference. This phenomenon, called isotopic 

fractionation, results in the generated organic material having a different ratio of heavy 

to light carbon isotopes than the source material and alters the isotopic composition of 

the source material in the process. The degree to which carbon is fractionated in such a 

process is represented by a fractionation factor 𝛼, defined as: 

𝛼 = 	
𝑅"
𝑅#

 

where A is the reactants and B is the products and, 

𝑅 = 	
𝐶	$%

𝐶	$&
 

This expression can be rewritten to give the more commonly utilized “fractionation 

factor,” ε: 

𝜀 ≈ (𝛼 − 1) ∗ 1000 

Values of ε differ among major taxa and plant types depending on their pathways for 

carbon uptake and forms of inorganic carbon assimilated (Maslin and Thomas, 2003; 

O’Leary, 1988; Smith and Epstein, 1971; Vogel, 1993). DIC in seawater, which serves 

as the source of carbon to photosynthetic primary producers, has an isotopic 
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composition that typically ranges between -1 and 2 ‰ (Kroopnick, 1985). Relative to the 

isotopic composition of seawater DIC, photosynthetic taxa that rely on passive diffusion 

of CO2 into cells produce organic matter that is ~10 to 40 ‰ depleted in the heavier 13C 

isotope (Carvalho et al., 2015; Riebesell and Wolf-Gladrow, 1995). Some marine taxa 

have evolved to utilize carbon concentrating mechanisms, which allow for the use of 

HCO3- ions in photosynthesis, producing organic matter with an isotopic composition of 

carbon that is more similar to the source seawater (~0 to 30 ‰ depleted in 13C relative 

to the surrounding seawater) (Sharkey and Berry, 1985). Many marine taxa employ a 

combination of CO2 and HCO3- uptake during photosynthesis, resulting in an 

intermediate (~10 to 30 ‰) depletion in 13C of produced organic carbon relative to the 

source material (Bidwell and McLachlan, 1985; Close and Henderson, 2020; Giordano 

et al., 2005; Hemminga and Mateo, 1996; Raven et al., 2002; Sand-Jensen and 

Gordon, 1984; Wilkes and Pearson, 2019). The isotopic signature of calcium carbonate 

structures in corals has been shown to be close to that of the surrounding seawater 

(Emrich et al., 1970; Gischler et al., 2009; Smith et al., 1985; Turner, 1982), indicating 

that the fractionation associated with carbon assimilation during calcification is low 

compared to that during marine photosynthesis.  

Fractionation factors can be considered on an ecosystem-wide scale, summing 

the metabolic contributions of all taxa present. Koweek et al., (2019) used this principle 

to show that the community fractionation factor, hereafter “εOM”, for different sections of 

a reef flat off the Great Barrier Reef reflected the composition of the underlying benthos. 

They estimated local εOM using the expression: 

𝜀'( ;∆𝐷𝐼𝐶 −	
∆*"
&
? = 𝐷𝐼𝐶+ ∗ ∆𝛿$%𝐶,-. − ;

∆*"
&
? ∗ 𝜀./.'%   (1) 
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where DIC0 is the DIC concentration of the water entering a reef section, ∆ implying the 

change in each parameter from that of the incoming water (outside of the reef flat 

section being studied for Koweek et al. (2019), offshore for this study), δ13C-DIC is the 

carbon isotopic composition of seawater (notation described in Methods), and εCaCO3 is 

the assumed fractionation factor associated with calcium carbonate precipitation. 

Koweek et al. (2019) showed that signals of benthic community composition could be 

detected in δ13C-DIC measurements, with greater changes in seawater δ13C-DIC 

occurring in a region of higher non-calcifying algae abundance compared to a region 

with a greater proportion of corals and calcifying algae, which in net (considering both 

organic matter and calcium carbonate production) fractionate carbon relatively weakly 

(Heikoop et al., 2000). As such, changes in εOM may illuminate shifts in the relative 

proportions of calcification and primary production contributing to overall reef 

metabolism. εOM may also be able to illuminate shifts in community structure not only 

relating to the balance of calcification and photosynthesis in overall reef metabolism but 

also among photosynthetic taxa employing different methods of inorganic carbon 

uptake.  

The δ13C of particulate organic carbon (POC) in reef seawater is another 

parameter that integrates the metabolic contributions from taxa on the reef while 

retaining links to the contributing major taxa. POC is technically defined as organic 

carbon that does not pass through a given filter (usually 0.5 to 0.7 microns) and can 

comprise phytoplankton, zooplankton bacteria, plant matter and other organic detritus 

(Close and Henderson, 2020; Volkman and Tanoue, 2002). In the case of reef 

ecosystems, POC can also come from external sources, such as oceanic inputs, 
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terrestrial runoff, or sewage (Lamb-Wozniak, 2008; Smith et al., 1981). Although the 

isotopic composition of the source material for POC is determined by a variety of factors 

including physiological differences among organisms (Laws et al., 1995; Popp et al., 

1998) and ambient conditions (e.g., DIC (Popp et al., 1989; Rau et al., 1991a), 

temperature (Sackett et al., 1965; Sarmiento, 2013)), major taxa groupings tend to 

retain characteristic isotopic compositions (Parker, 1964; Rodelli et al., 1984; Sackett 

and Thompson, 1963; Shultz and Calder, 1976), such as terrestrially-derived POC 

spanning 20 to 30 ‰ depletion in 13C (Fry, 2002; Haines and Montague, 1979; Smith et 

al., 1985; Williams and Gordon, 1970), marine phytoplankton 20 to 28 ‰ (Briand et al., 

2015; France, 1995; Lamb-Wozniak, 2008; Sackett et al., 1965), macroalgae 10 to 20 

‰ (Lamb and Swart, 2008; Raven et al., 1995; Smith et al., 1985), and seagrass 3.5 to 

15 ‰ (Briand et al., 2015; Ostrom and Fry, 1993). Thus observations of POC isotopic 

composition have been used to broadly characterize the sources and magnitude of 

organic matter input to reef ecosystems (Cao et al., 2015; Haines and Montague, 1979; 

Smith et al., 1985; Tuerena et al., 2019; Wissel et al., 2005; Zanden and Rasmussen, 

2001). 

In this study we present and combine δ13C-POC and δ13C-DIC measurements 

from spatial surveys with measurements of POC, dissolved organic carbon (DOC), total 

organic carbon (TOC), particulate organic nitrogen (PON), and δ15N-PON to 

characterize carbon cycling on a barrier reef in Kāne’ohe Bay, Hawai’i and a fringing 

reef in Okinawa, Japan. We explore the information about reef structure that can be 

derived from these observations and more broadly interpret these data in the context of 

carbon cycling on the reef. Observations of POC, PON, and δ15N-PON can provide 
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information about the influence of marine vs. terrestrial sources of organic matter to the 

reef, while TOC and DOC can further provide insights into organic carbon cycling in the 

reef ecosystems. We include DIC and TA data collected on these reefs, though we limit 

our discussion of these parameters to estimating a reef-wide organic matter production 

fractionation factor and quantifying the relative importance of primary production vs. that 

of calcification on these two reefs. More in-depth analysis of trends in DIC and TA are 

presented in other work (Kekuewa et al., in prep.). We also carry out measurements of 

seawater salinity, sea surface temperature, and dissolved oxygen concentrations, which 

we report here but do not discuss. The data we present and their subsequent 

discussion serve to illuminate the current metabolic landscape and provide data for 

tracking changes in the community function of these two reef ecosystems. 

 

2 Methods 

Seawater samples were collected on a barrier reef in Kāne’ohe Bay, Hawai’i, USA 

(21°27'46.9"N 157°48'58.8"W) on November 12, 2016 (Courtney et al., 2018) and on a 

fringing reef near Onna-son, Okinawa, Japan (26.449720°N, 127.794245°E) on October 

17, 21, and 22, 2019 (Kekuewa, et al., in prep; Rintoul et al., 2022). 
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Figure 2.1 Study sites in Kāne’ohe Bay, Hawai’i (1.a, b) and Onna-Son, Okinawa, Japan 
(2.a, b) with sampling stations marked by white circles. Satellite images source: Google 
Earth. 
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2.1 Study site description 

Okinawa 
 

The Okinawa study site (Figure 2.1 (2.a, b)), which lies on the central western 

edge of the main island of Okinawa, encompasses a 3 km along-coast and 1.5 km wide 

fringing reef area consisting of a forereef, reef flat, and lagoon. The fore reef, 

characterized by steep spur and groove formations, crests at a pavement reef flat of 

approximately 2.8 km by 150 m and 1.3 m deep. Crustose coralline algae (CCA), sand, 

and small chunks of rubble and turf algae cover the reef flat pavement. The lagoon 

extends between the reef flat and the coastline, ranging from 750 m to 1.35 km in width 

and 3 to 4 m in depth. The shallow lagoon floor is mostly sand, with some coral rubble 

in the deep lagoon, and small patch reefs and “coral farms” (areas in which captive-

raised corals are mounted on artificial structures) and are scattered across the deep 

lagoon.  

The lagoon drains to the open ocean through several channels, the two largest of 

which frame the basin in the north and south. The northern channel is ~100 m wide and 

~12-15 m deep, while the southern channel consists of a network of deeper channels 

(>20 m deep), with the network ranging from 200 to 500 m in width. A smaller, artificial 

channel (~5 m) crosses the center of the lagoon to allow boats in the Maeganeku fishing 

port to exit the reef. The residence time of seawater on this reef has not yet been 

quantified. 

Kāne’ohe Bay 

The Kāne’ohe Bay barrier reef study site (Figure 2.1 (1.a, b)), located on the 

eastern shore of O’ahu, Hawai’i, spans a 6.1 km by 2 km area consisting of a reef crest, 
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a highly productive hard-bottom reef flat, a sand reef flat and a lagoon. Coral covers 5-

20% of the reef flat area (Franklin et al., 2013), with the remaining benthos comprising 

sand, coral rubble, and volcanic rock covered in benthic algae including CCA, Halimeda 

spp. and turf algae, interspersed between the coral (Jokiel, 1991; Smith et al., 1981). 

The shallow sandbar Ahu’olaka sits between the estuarine bay and the barrier reef. Low 

flow, or “quiet-water,” corals make up a fringing reef that lines the shore and the patch 

reefs that dot the lagoon (Smith et al., 1981). Kāne’ohe Bay is subject to strong 

terrestrial inputs due to the deltas feeding the Bay and anthropogenic inputs from a 

population of nearly 40,000 to the south of the Bay (U.S. Census Bureau, 2020). 

Waves, with secondary effects from wind and tides, are the primary driver of water 

circulation in the bay, forcing flow toward shore over the barrier reef flat (Jokiel, 1991; 

Lowe et al., 2009; Smith et al., 1981). Two channels at the northern and southern 

termini of the reef flat (5-10 m and 10-20 m deep, respectively), of which the northern 

channel has been directly dredged for ship transit, allow for recirculation of water in the 

bay to the open ocean. The residence time of the water in Kāne’ohe Bay varies 

depending on the location, with residence time ranging between one to several days on 

the reef flat and over one month in the southern lagoon (Lowe et al., 2009).  

 

2.2 Predominant environmental conditions during study 

Okinawa 

During the four surveys, daytime mean and maximum PAR (recorded by a 

sensor moored at 0.8 m depth on the reef flat) was 589.27 and 1538 μmol m−2 s−1 on 
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October 17, 717 and 1328 μmol m−2 s−1 on October 21, and 574 and 1562 μmol m−2 s−1 

on October 22 (Rintoul et al., 2022). 

Lateral circulation of seawater on the reef as captured by drifter and sensor 

measurements was <15 cm s-1 on October 17 and 22, and >15 cm s-1 on October 21 

(Rintoul et al., 2022). On October 21, the drifter tracks followed the benthic pattern 

visible in satellite imagery (Figure 2.1 (2.b)), flowing from the reef crest towards shore 

and tracing the northern and southern circulation cells towards the channel outlets. On 

October 17 and 22, drifters deployed at the reef crest traversed a considerably lesser 

distance than on October 21 before turning back towards and over the reef crest 

(Rintoul et al., 2022). 

Kāne’ohe Bay 

On November 12, PAR as recorded by a sensor moored at Station 24 (Figure 

2.5) at 1.8 m depth was moderate (maximum ~500 μmol m−2 s−1) relative to brighter 

days that month (max 1206 μmol m−2 s−1) (Page et al., 2019).  

Current speed data show that water flowing from the ocean into the bay diverges 

at the southeast channel into southeast- and southwest-flowing currents, which was 

confirmed by nearby drifter deployments (Page et al., 2019). The strength of the 

currents in the southwest direction were generally weaker than the currents in the 

southeast direction over the course of the month in November 2016, with the current 

speeds varying mainly between 0 – 20 cm s-1 and never exceeding 30 cm s-1.  
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2.3 Seawater sampling 

In Okinawa, four spatial surveys were conducted across three days (Table 2.1). 

Seawater samples for DOC and TOC analysis were collected at all sampling stations, 

and samples for POM analysis were collected at five stations on each sampling day. 

Seawater samples for inorganic carbon analysis were also collected using a 5 L Niskin 

bottle (General Oceanics) at the sea surface (0.5 – 1.0 m depth) to fill 250 mL Pyrex 

glass bottles (Kekuewa, et al., in prep). 60 mL Pyrex glass bottles were also filled from 

the 5 L Niskin bottle deployment during the October 17 2019 spatial surveys for δ13C-

DIC analysis. 

 

Table 2.1 Schedule of spatial surveys conducted in Kāne’ohe Bay and Okinawa. 

Location Date Morning Afternoon 

Kāne’ohe Bay November 12, 2016 9:33– 16:18 

Okinawa October 17, 2019 8:50 – 11:25  14:29 – 16:23 

Okinawa October 21, 2019  13:44 – 15:27 

Okinawa October 22, 2019  12:52 – 14:42 
 

In Kāne’ohe Bay, a single spatial survey was conducted on November 12, 2016 

(Table 2.1). Seawater samples for DOC, TOC, and POM analysis were collected at 14 

of the 41 stations. Seawater samples for inorganic carbon analysis were collected by 

submerging 250 mL sample bottles to 0.25 m depth (Courtney et al., 2018). No 

seawater samples were collected for δ13C-DIC analysis. 

Seawater samples for organic carbon analysis were collected using 5 L plastic 

carboys that had been prepared via acid-rinsing to remove organic carbon. For DOC 

and TOC collection, two 40 mL glass vials were filled from a carboy at each site. The 
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vial for TOC analysis was filled directly from the carboy while the vial for DOC analysis 

was filled with water that had passed through a pre-combusted 47 mm GF/F glass 

microfiber filter (WHA1825047, Whatman®) attached to the carboy spigot. Two drops of 

31% UltrapurTM-grade hydrochloric acid (18078-1B, Kanto Chemical Co., Inc.) in 

Okinawa and trace metal-grade 37% p.a. hydrochloric acid (J.T.Baker®) at Kāne’ohe 

Bay was added to each sample. The GF/F filter was replaced every 10 samples. For 

particulate organic matter (POM) analysis, the carboys for organic matter analysis were 

filled each day and transported to a laboratory in a cooler for filtration. 3 L of water was 

passed through a pre-combusted 25 mm GF/F glass microfiber filter (WHA1825025, 

Whatman®) using a peristaltic pump. The filters were then folded, wrapped in aluminum 

foil, and stored in a -80˚C freezer before being transported to California on dry ice for 

analysis. At both sites, inorganic carbon seawater samples were immediately poisoned 

with 100 µL of a saturated HgCl2 solution following (Dickson et al., 2007) for DIC and TA 

analysis. In-situ measurements of temperature, salinity, and dissolved oxygen (DO) 

were made using a YSI Professional Plus (± 0.28 ˚C, ± 1%, and ± 6.25 µmol L-1 

accuracy for temperature, salinity, and DO, respectively) (YSI Inc. / Xylem Inc.) in In 

Kāne’ohe Bay and a YSI 556 Handheld Multiparameter Instrument (± 0.15˚C, ± 1%, and 

± 6.25 µmol L-1 accuracy for temperature, salinity, and DO, respectively) (YSI Inc. / 

Xylem Inc.) in Okinawa. 

 

2.4 Analytical methods 

TOC and DOC sample vials were analyzed using a Shimadzu TOC-VWP Wet 

Oxidation TOC Analyzer (Shimadzu Scientific Instruments) as described in (Koester et 
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al., 2022). POM samples were thawed, acid fumed, desiccated, baked at 60˚ C, 

weighed, and packaged before sending to the University of California, Davis Stable 

Isotope Facility for analysis (detailed preparation protocol can be found at 

cce.lternet.edu/research). POC concentration, δ13C-POC, PON concentration, and δ15-

N-PON were quantified using an elemental analyzer interfaced with a continuous flow 

IRMS.  

Analyses of seawater samples for DIC and TA are reported in (Courtney et al., 

2018) and (Kekuewa, et al., in prep). Briefly, DIC was analyzed using an Automated 

Infra-Red Inorganic Carbon Analyzer (Marianda) with a LI-COR 7000 (LI-COR 

Biosciences) for carbon detection. TA was measured using an open-cell potentiometric 

acid titration system developed in the Dickson lab at Scripps (Dickson et al., 2007). For 

Kāne’ohe Bay and Okinawa samples, the accuracy was quantified as the mean offset 

(listed here ± 1 SD) from Certified Reference Materials bottles provided by the Dickson 

group. The accuracy for TA and DIC in Kāne’ohe Bay were 1.3 ± 1.3 µmol kg-1 and 1.6 

± 1.4 µmol kg-1, respectively (n not available), and for Okinawa were 0.01 ± 2.06 µmol 

kg-1 (n = 14) and 0.7 ± 2.19 µmol kg-1 (n = 28), respectively. 

Seawater samples in 60 mL bottles were prepared for δ13C-DIC analysis using 

the gas vacuum-extraction system developed in the Scripps CO2 group (Lueker et al., 

2020). Delta notation (δ) refers to the ratio of abundant to rare isotope in a sample 

compared to in a standard, expressed as follows in units of per mil (‰), using the 

example of carbon isotopes: 

𝛿$%𝐶(‰) =

⎝

⎜
⎛
E 𝐶	$%

𝐶	$&
F G

0/1234

; 𝐶	$%
𝐶	$&

F ?
05/67/87

− 1

⎠

⎟
⎞
∗ 1000 
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For nitrogen isotopes, 15N content is compared to 14N. For carbon delta notation, the 

standard Pee Dee Belemnite is used, for nitrogen isotopes, air, and for oxygen, Vienna 

Mean Standard Ocean Water. For stable isotope analysis of carbon and oxygen in DIC, 

a subsample of seawater is acidified to convert all DIC species to CO2. The CO2 is then 

isolated using cryogenic traps and transferred into a glass vial under vacuum for 

subsequent analysis. Stable isotope measurements of the isolated CO2 were made 

using a dual-inlet Optima isotope ratio mass spectrometer (IRMS) (Optima Machinery 

Corporation).  

 

2.5 Flagging δ13C-DIC data 

Upon analysis, it was revealed that the seawater in 10 of the 40 total samples 

collected in 60 mL bottles in Okinawa may have been contaminated. The grease in the 

stoppers containing many of the bottles contained streaks that may have allowed the 

headspace in the sample bottle to exchange with ambient air. While most samples had 

DIC that differed from the duplicate 250 mL bottles (collected from the same Niskin fill) 

by 0 – 40 µmol kg-1 (with the 60 mL bottles having on average 10.5 ± 7.5 µmol kg-1 

higher DIC than the 250 mL bottles), 10 60 mL samples showed deviations of 80 – 180 

µmol kg-1 from the 250 mL bottle duplicates (Figure 2.2). Further, these 10 samples had 

relatively negative values of δ13C-DIC (-1.5 – -0.2 ‰, compared to 0 – 0.8 ‰ for the 

samples that more closely matched the 250 mL bottle DIC values). These 10 samples 

are excluded from the analysis in this study. 
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Figure 2.2 Indicators of contamination of 60 mL seawater samples collected in Okinawa 
on October 17; (a) the difference between the measured DIC for the 60 mL samples 
and the 250 mL samples collected in duplicate from the same Niskin bottle are plotted 
against the time of sample collection. (b) δ13C-DIC of 60 mL seawater samples. Each 
marker is labeled with the number of the station at which the sample was collected 
(Figure 2.5). Marker color separates data that was included in the study (pink) and 
excluded (purple). We use the color map turku (Crameri, 2021) in this study to prevent 
visual distortion of the data and to make this work accessible to readers with differing 
color vision (Crameri et al., 2020). 
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3 Results  
 

 

Figure 2.3 Spatial variability in δ13C-DIC, TOC, DOC and POM parameters (POC, δ13C-
POC, PON, δ15N-PON, POC:PON) in Kāne’ohe Bay for November 12, 2016, and 
Okinawa for October 17, 21, and 22, 2019. Tick labels on the left side of the color bar 
show color values for the Kāne’ohe Bay plot, and on the right side for the Okinawa 
plots. Color bar scaling is universal across the four Okinawa plots for a given parameter. 
Contour lines appear at intervals of 0.05 ‰ (δ13C-DIC, Okinawa only), 2 and 1 µmol L-1 
(TOC), 1.5 and 1 µmol L-1 (DOC), and 1.5 µmol L-1 (POC), for Kāne’ohe Bay and 
Okinawa, respectively. Contour lines appear at 0.5 ‰ (δ13C-POC), 0.5 µmol L-1 (PON), 
0.2 ‰ (δ15N-PON), and 0.5 (POC:PON) for Kāne’ohe Bay.  
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Figure 2.4 Spatial variability in SST, salinity, DIC, TA and DO in Kāne’ohe Bay for 
November 12, 2016 (Courtney et al., 2018) and Okinawa for October 17, 21, and 22, 
2019 (Kekuewa, et al., in prep). Tick labels on the left side of the color bar show color 
values for the Kāne’ohe Bay plot and on the right side for the Okinawa plots. Color bar 
scaling is universal across the four Okinawa plots for a given parameter. Grid cells are 
tinted white for surveys in which the data of interest was not collected. Flagged δ13C-
DIC data are not shown. Contour lines appear at intervals of 0.2 and 0.1 ˚C (SST), 0.05 
and 0.05 ‰ (salinity), 15 and 7.5 µmol kg-1 (DIC), 15 and 2.5 µmol kg-1 (TA), and 10 and 
5 µmol L-1 (DO), all for Kāne’ohe Bay and Okinawa, respectively. 
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surveys in Okinawa, salinity varied between 35.2 and 36.2 ‰ with a mean of 35.8 ± 0.3 

‰ (Figure 2.4). Salinity was lowest in the morning of Oct 17 and increased across the 

following three spatial surveys (means = 35.2 ± 0.1, 35.7 ± 0.14, 36.0 ± 0.1, 36.1 ± 0.1 

‰, respectively).  

Kāne’ohe Bay 

Sea surface temperature (SST) ranged between 26.2 and 27.9 ˚C in Kāne’ohe 

Bay on November 12, with an average SST of 26.6 ± 0.3 ˚C (Figure 2.4). The highest 

temperatures during the spatial survey were recorded in the shallowest, central part of 

the reef (with a depth of ~0.5 m, appearing as the central light patch in Figure 2.1 (1.b)), 

while temperatures elsewhere were lower and generally uniform. Salinity varied 

between 34.4 and 34.9 ‰, with a mean of 34.8 ± 0.1 ‰. 
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Table 2.2 Descriptive statistics (mean (± 1SD), range, minimum, and maximum) of observations collected during two 
of four total spatial surveys in Okinawa, Japan. 
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Table 2.3 Descriptive statistics (mean (± 1SD), range, minimum, and maximum) of 
observations collected during a single spatial survey in Kāne’ohe Bay, Hawai’i, USA. 

  November 12, 2016 
13:44 – 15:27  

  Mean Min Max Range 

TOC (µmol L-1) 72.2 ± 4.7 65.8 90.2 24.4 

DOC (µmol L-1)  69.8 ± 3.7 64.8 77.6 12.8 

POC (µmol L-1) 7.0 ± 4.1 3.3 19.3 16 

δ13C-POC (‰) -25.2 ± 1.9 -28.2 -22.5 5.7 

PON (µmol L-1) 1.1 ± 1.0 0.3 4.4 4.1 

δ15N-PON (‰) 3.8 ± 0.6 2.9 5.2 2.3 

POC:PON  6.8 ± 1.3 4.4 10.1 5.7 

SST (˚C) 26.6 ± 0.3 26.2 27.9 1.7 

Salinity (‰) 34.8 ± 0.1 34.4 34.9 0.5 

 
 

 
Figure 2.5 Study sites labeled with station number for Kāne’ohe Bay (a) and Okinawa 
(b). Okinawa stations are also labeled with benthic groupings assignments. Sample 
stations are grouped according to Kennedy et al. (2021) based on wave exposure, 
depth, and benthic cover.  
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3.2 Variability in isotopic and organic matter parameters 
 

Okinawa 

Seawater δ13C-DIC was significantly more enriched (two-sample t-test, p < 0.05) 

in the afternoon survey (mean = 0.7 ± 0.11 ‰) than in the morning survey (mean = 0.38 

± 0.17 ‰) on October 17 (Figure 2.3). Within surveys, δ13C-DIC show a gradient 

between the open ocean and inshore. In the morning survey, δ13C-DIC is the most 

depleted over the reef flat and deep lagoon (means of 0.33 ± 0.29 ‰ and 0.33 ± 0 ‰ (n 

= 1) for the reef flat and deep lagoon, respectively), and in the afternoon the deep 

lagoon and shallow lagoon regions were the most enriched with respect to δ13C (means 

of 0.81 ± 0.04 ‰ and 0.75 ± 0.06 ‰, respectively). 

TOC levels were greatest in the October 21 and 22 surveys (means of 62.7 ± 1.5 

µmol L-1 and 62.5 ± 3.2 µmol L-1, respectively), although DOC was greater than TOC on 

October 21 (64.6 ± 3.7 µmol L-1 and 62.7 ± 1.5 µmol L-1, respectively) (as well as the 

October 17 morning survey), suggesting possible contamination of the samples 

(possible sources of contamination include boat exhaust fumes and engine leakage). 

The means of the morning and afternoon October 17 DOC observations differ 

significantly, with the mean DOC being lower in the afternoon survey (means of 62.5 ± 

4.5 µmol L-1 and 59.8 ± 2.0 µmol L-1 for morning and afternoon, respectively), again the 

morning data were possibly impacted by contamination. The means of the morning and 

afternoon October 17 TOC observations are not significantly different. 

DOC possibly decreases from the open ocean to the shoreline sites in the 

October 17 and 21 afternoon surveys, but the trend is not obvious. TOC may also show 

a faint spatial gradient from the open ocean to the shallow lagoon on the same days, 
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where TOC increases away from the open ocean, but this trend is even less clear than 

that of DOC and is not consistent across surveys. 

δ13C-POC was a maximum in the October 17 afternoon survey (mean = -20.9 ± 

1.3 ‰) compared to the October 21 (mean = -23.7 ± 3.1 ‰) and October 22 (mean = -

24.1 ± 2.2 ‰). Mean daily PAR was greatest on October 17 out of the survey days, and 

the October 17 afternoon survey occurred later in the day than the other afternoon 

surveys. Though the day-to-day differences in δ13C-POC were small, the high irradiance 

paired with slower circulation time on October 17 likely contributed to greater overall 

productivity and positive δ13C-POC observations. These observations also coincided 

with the greatest offshore to inshore decreases in DIC and TA of all the spatial surveys 

(Kekuewa, et al., in prep).  

POC and δ15N-PON were also greatest in the October 17 afternoon survey 

(mean = 3.5 ± 2.7 µmol L and 3.3 ± 3.8 ‰, respectively) but with high variance in both 

parameters for that day. POC:PON was lower in the October 17 afternoon survey 

(mean = 6.1 ± 0.6) compared to the other surveys (mean = 6.6 ± 0.7 and 6.6 ± 0.4 for 

October 21 and 22, respectively).  

While POC measurements show no clear spatial trend, δ13C-POC appears to be 

more negative towards the open ocean (mean of -26 ± 2.4 ‰ across afternoon open 

ocean observations). PON and δ15N-PON generally increase as the water circulates 

through the reef, though this gradient is disrupted by an anomalously high-PON high-

δ15N-PON measurement (1.4 µmol L-1 and 9.9 ‰, respectively) on October 17 in the 

central shallow lagoon.  
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Kāne’ohe Bay 

Organic carbon and nitrogen observations (DOC, TOC, POC, δ13C-POC, PON, 

δ15N-PON) in Kāne’ohe Bay tended to have local extrema over the shallowest part of 

the reef and the northwest end of the reef (Figure 2.3). DOC, POC, and δ13C-POC were 

largest over the shallowest part of the reef, and TOC, POC, PON, and δ15N-PON were 

elevated towards the northwest end of the reef. POC:PON was at a minimum in the 

northwest end of the reef. The largest offshore to onshore changes in DIC appeared to 

occur over the shallowest portion of the reef (Figure 2.4, (Courtney et al., 2018)). 

 

3.3 Estimation of εOM in Okinawa 

We use δ13C-DIC observations combined with observations of DIC and TA 

collected in Okinawa (Kekuewa, et al., in prep) to estimate the community fractionation 

factor εOM (Equation 1). We use the Koweek et al. (2019) mass balance expression and 

plot (𝐷𝐼𝐶+ ∗ ∆𝛿$%𝐶,-.) − ;
∆*"
&
? ∗ 𝜖./.'% against (∆𝐷𝐼𝐶 − ∆*"

&
) to obtain εOM from the slope 

(Figure 2.6). Using this method, we find εOM to be between -13.4 and -11 ‰ for the 

range of εCaCO3 values between -5 and 5 ‰ (per Koweek et al. (2019)). If we divide the 

data into reef region-based groupings (Figure 2.5) and calculate εOM for each region 

assuming 0‰ for εCaCO3, we find an εOM of -9.1 ‰ over the reef crest, -7.6 ‰ over the 

reef flat (excluding an outlier, see Figure 2.6), -16.5 over the deep lagoon and -10 over 

the shallow lagoon. The slope of data collected over the deep lagoon region shown in 

Figure 2.6 differs significantly from that of the reef flat and of the shallow lagoon (p < 

0.05). Otherwise, there are no significant differences between slopes. Including a low 
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value (marked with a triangle in Figure 2.6) changes the Reef Flat εOM from -7.6 ‰ to -

23.7 ‰. 

 

 

Figure 2.6 Regressions (DIC0 * ∆δ13CDIC) – (∆TA/2) against (∆DIC-∆TA/2) per Koweek 
et al. (2019) for observations in Okinawa separated by region. The slope of each 
regression provides an estimate of the local community fractionation factor εOM. The 
Reef Flat triangle marker datum is excluded from the regression. The community 
calcification fractionation factor εCaCO3 is assumed to be 0 ‰. 

 

4 Discussion 

4.1 Insights from organic matter in Okinawa 

Observations of organic carbon and nitrogen in Okinawa can add resolution to the 

metabolic landscape as described by δ13C-DIC observations. The southernmost δ13C-

POC observation collected closest to shore is -18.8, -19.6 and -24.3 ‰ on October 17, 

21, and 22, respectively; the relatively depleted δ13C-POC observation on October 22 
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suggests that terrestrial inputs (δ13C-POC of < -25 ‰) (Lamb-Wozniak, 2008; McNevin 

et al., 2007; Roeske and O’Leary, 1984; Williams and Gordon, 1970) may be present. 

This possibility is supported by the anomalous values of DOC, salinity, DIC, and 

dissolved oxygen observations when compared to the same location in other afternoon 

surveys (Kekuewa, et al., in prep). The POC:PON ratio in the same station is also 

relatively high, further supporting this theory, as terrestrial organic matter has a 

characteristically higher ratio of organic C:N than does marine organic matter (~30 to 50 

for terrestrial organic matter, ~4 to 10 for marine POM) (Cao et al., 2015; Ertel and 

Hedges, 1985; Lamb-Wozniak, 2008; Libes, 2011; Redfield, 1963; Thorp et al., 1998)). 

Reef seawater DOC and TOC levels have been shown to rise in accordance with rates 

of primary production (Haas et al., 2011; Ziegler and Benner, 1999) and are also 

associated with the presence of bacterioplankton, which consume DOC and DO (Haas 

et al., 2011, 2013; Ziegler and Benner, 1999). While some studies report a net 

consumption of DOC in coral reef ecosystems by microbial communities (Haas et al., 

2013; Nelson et al., 2011), spatial trends in DOC and TOC in our surveys are generally 

too weak to draw conclusions about net production or loss of DOC or TOC. 

We also note that δ13C-POC showed a strong negative relationship with DIC in both 

Okinawa and Kāne’ohe Bay (Figure 2.7 (b,d)). One possible explanation of this 

relationship is DIC-dependence of fractionation, in which organisms fractionate carbon 

less in carbon-limited environments (Freeman and Hayes, 1992; Jasper and Hayes, 

1994; McCabe, 1985; Popp et al., 1989; Rau et al., 1991a, 1991b). Another possible 

explanation is that this relationship occurs due to the addition of POC by reef taxa that 

produce organic matter that is enriched with respect to 13C compared to the initial 
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seawater entering the reef. Spatial plots of δ13C-POC in Figure 2.3 suggest that 

seawater δ13C-POC becomes enriched in 13C as seawater transits the reef. As water 

entering the reef is successively exposed to POC-producing taxa that produce relatively 

enriched organic carbon, DIC decreases while POC increases (Figure 2.7 (a,b)), and 

the overall δ13C-POC signature of the seawater will steadily increase. For the Okinawa 

data, using a community fractionation factor of -12.1 ‰ (assuming εCaCO3 = 0 ‰) and 

assuming the water entering the reef has a δ13C-POC of -27.5, the seawater with the 

lowest DIC and δ13C-POC of -19 ‰ comprises ~55% POC produced on the reef and 

~44% POC produced outside the reef. The slope of the δ13C-POC vs. DIC relationship 

is less steep for Kāne’ohe Bay than for Okinawa, suggesting that the POC-producing 

processes in Kāne’ohe Bay fractionate more strongly than do those in Okinawa, 

resulting in a lesser overall change in δ13C-POC per unit change in DIC. This 

interpretation aligns with the notion that organic matter production, which fractionates 

less strongly than calcification, makes up a larger fraction of overall reef metabolism in 

Okinawa than in Kāne’ohe Bay. At the least, the systematic change in δ13C-POC with 

changing DIC clearly indicates that POC is actively being produced on both the 

Okinawa and Kāne’ohe Bay reefs. 
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Figure 2.7 Property-property plots of POC vs. DIC and δ13C-POC vs. DIC data from 
Kāne’ohe Bay (a,c) and Okinawa (b,d). One high-POC outlier in the Kāne’ohe Bay and 
Okinawa data is marked in pink and excluded from the model-II geometric mean 
regression fits to each survey’s data across all plots. The regressions yield (a) POC = -
0.055*DIC + 113 (R2 = 0.62), (b) POC = -0.022*DIC + 45.6 (R2 = 0.1), (c) δ13C-POC = -
0.043*DIC + 58.4 (R2 = 0.51), and (d) δ13C-POC = -0.11*DIC + 179 (R2 = 0.62). 
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Although no δ13C-DIC data that would allow characterization of community εOM 
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information about major taxa metabolism. δ13C-POC is most enriched (~ -22 to -19 ‰) 

over the shallowest portion of the bay, indicating a strong local influence of marine 

productivity. DOC, which is linked to production, and TOC are both high in this region, 

further implying high local production. These signals agree with the high degree of DIC 

drawdown occurring over this shallow region (Figure 2.4, (Courtney et al., 2018)). 

Conversely, mean δ13C-POC (-25.2 ± 1.9 ‰) on the reef overall is low compared to 

offshore values (~ -22 to -20 ‰) (Bauer, 2002; Druffel et al., 1992), suggesting inputs of 

terrestrial organic carbon, which is in agreement with a previous study of sources of 

organic matter in Kāne’ohe Bay based on isotopic measurements (Smith et al., 1985). 

Observations from a single sampling station in the northwest region of the bay 

(Station 15) exhibit the maximum values of TOC, POC, δ13C-POC, PON, δ15N-PON and 

minimum values of C:N of POM, salinity, and TA (Courtney et al., 2018) for the entire 

spatial survey. Microbial data indicate that this station was the site of a bloom of the 

photosynthetic prokaryote Synechococcus (Köster, personal communication). An 

excess of Synechococcus can explain the high local TOC and POC signals. Regarding 

δ13C-POC, laboratory studies have suggested differing values of maximum carbon 

fractionation achieved by Synechococcus during photosynthesis during CO2(aq)-replete 

scenarios, including -33 ‰ (Erez et al., 1998), -18 ‰ (Popp et al., 1998) and -17 ‰ 

(Wilkes and Pearson, 2019). However, another study in which Synechococcus was 

collected off the Scripps Pier (Bertilsson et al., 2003) reported a δ13C-OM of -25 ‰ for 

the collected Synechococcus. According to these studies, fractionation by 

Synechococcus depends on a variety of factors including cell growth rates, surface 

area, and volume as well as seawater temperature and CO2(aq) concentrations. The 
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fractionation of carbon by Synechococcus appears to be too variable to confidently 

relate the enriched δ13C-POC signal at this site to the Synechococcus bloom. A study of 

organic nitrogen in marine phytoplankton indicates that nitrogen in Synechococcus has 

a δ15N signature of 5.4 ‰ (Needoba et al., 2003), just above the maximum signal 

across the survey at this site of 5.15 ‰, supporting the contribution of Synechococcus 

to local organic matter cycling. However, the organic C:N in Synechococcus of 7.3 

(Bertilsson et al., 2003) is inconsistent with the anomalously low POC:PON observation 

(4.43) at this site. The low local POC:PON also cannot be explained by terrestrial input, 

which tends to have a high POC:PON (Lamb-Wozniak, 2008; Sampei and Matsumoto, 

2001). However, the low local salinity and high δ15N-PON observations suggest that the 

bloom is concurrent with terrestrial input to the bay at this site. Inputs to reef systems 

with relatively low δ15N-PON include nitrogen assimilation and fixation and atmospheric 

dinitrogen (1 to 3, 0 to 1, and 0 ‰, respectively), while sewage, upwelling, and 

especially human and animal waste have relatively high signatures (2 to 8, 4 to 7, and 

10 to 21‰, respectively) (Cao et al., 2015; Lamb-Wozniak, 2008). The relatively high 

δ15N-PON suggests that anthropogenic and agricultural waste may be part of the input. 

The hypothesized terrestrial input in the northwest region of the bay is supported by the 

finding in Smith et al. (1981) that 60% of the freshwater inputs occurred in the northwest 

region of the bay. They also found that such inputs can carry elevated levels of 

particulate organic matter.  

δ13C-POC is generally more depleted towards the southeast end of the bay and 

aligns with higher C:N ratios in the same region, which are indicative of a terrestrial 

source. On the other hand, δ15N-PON over the southeast region is relatively depleted 
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compared to the rest of the reef. The observations of low δ15N-PON towards the 

southeastern end of the bay suggest a diminished influence of urban runoff, which 

contrasts with the observations of high POC:PON and low δ13C-POC. However, it is 

possible that terrestrial runoff in the southeastern end is generally low in sewage and 

waste content such that the runoff imparts a mostly terrestrial but non-urban or 

agricultural signature in the bay water. The Smith et al. (1981) study on Kāne’ohe Bay 

after decades of sewage input to the bay was diverted in 1977 showed that overall 

particulate organic matter content decreased because of the runoff diversion. They 

recorded that POC fell from over 20 µmol kg-1to between 14 and 17 µmol kg-1, and bay-

wide PON fell from 2.8 to 2.1 µmol kg-1. Observations in our study of POC (mean of 7.0 

± 4.1 µmol L-1) and PON (mean of 1.1 ± 1.0 µmol L-1) based on a single day of data are 

both lower than these post-diversion values, possibly indicating that the bay may have 

continued to recover since the diversion. 

Compared to observations collected in Okinawa, observations in Kāne’ohe Bay 

of POC, PON, and POC:PON are elevated, δ13C-POC relatively depleted and δ15N-

PON relatively enriched. These differences suggest that Kāne’ohe Bay receives a 

greater input from terrestrial runoff, which elevates particulate organic matter and raises 

the POC:PON ratio further from the Redfield value of 6.6. Such increased runoff also 

explains the depleted δ13C-POC and enriched δ15N-PON, both of which are 

characteristic of terrestrial input. 
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4.3 Insights from εOM in Okinawa 

Estimation of εOM on the Okinawa (-13.4 to -11 ‰ in this study) reef suggests that 

primary production on this reef is associated with relatively weak fractionation when 

compared to regions studied by Smith and Kroopnick (1981) or Koweek et al. (2019) (-

16 ‰ to -14 ‰ for the region with lesser calcifier abundance). The relation of changes in 

TA and DIC (Figure 2.8 (a), Kekuewa, et al., in prep)) suggest that metabolism in the 

Okinawa study site is dominated by primary production, requiring a ~75% contribution to 

overall metabolism from primary production and a ~25% contribution from calcification. 

The taxa that contribute to primary production and inhabit the Okinawa reef benthos 

include corals, brown algae (Phaeophyceae), green algae (Ulvophyceae), and eelgrass 

(Zostera marina). Eelgrass and other seagrasses fractionate carbon to a lesser degree 

(their tissues comprising carbon with a δ13C of -13.5 to -3.5‰ (Bj and Fry, 1987; Briand 

et al., 2015; Hemminga and Mateo, 1996; Ostrom and Fry, 1993; Smith and Epstein, 

1970; Yamamuro, 1999)) than other reef producers. Fractionation in benthic 

macroalgae is more variable but on average greater, the δ13C of their tissues ranging 

between -25 to -7 ‰ (Briand et al., 2015; Lamb-Wozniak, 2008; Ostrom and Fry, 1993; 

Raven et al., 1995). Marine phytoplankton fractionate to an even greater degree on 

average, with δ13C of tissues ranging from -28 to -16 ‰ (Briand et al., 2015; France, 

1995; Lamb-Wozniak, 2008).  

Coral metabolism includes both calcification by coral polyps and primary 

production by the mutualistic zooxanthellae symbionts; while calcification is associated 

with relatively weak fractionation, organic matter production by zooxanthellae produces 

organic carbon with an isotopic signature of between -16 and -10 ‰ (Heikoop et al., 
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2000; Land et al., 1975; Swart et al., 2005). Organic matter production in corals is 

understood to be largely concurrent with and closely tied to calcification in corals 

(Cohen et al., 2016; Gattuso et al., 1999; Mallon et al., 2022). Because calcification 

accounts for only ~25% of overall reef metabolism, we assume that the magnitude of 

organic matter production in corals is limited to a comparable proportion of overall reef 

primary production. We thus rule out the possibility that organic matter production by 

zooxanthellae strongly influences the overall reef εOM. In all, a more positive overall εOM 

is indicative of a large contribution to reef primary production by weakly fractionating 

organic matter-producing taxa. Thus, we suspect that weakly-fractionating (and non-

coral) producers, ones that utilize a greater proportion of HCO3-, are responsible for a 

larger share of primary production on the reef than taxa that use a greater share of CO2 

during photosynthesis. 

 

Figure 2.8 Differences between offshore and sample station values for salinity-
normalized dTA vs. dDIC (Kekuewa, et al., in prep). Model-II geometric mean 
regressions are fit across the four surveys (dTA = 0.51dDIC + 1 (R2 = 0.7) and to data 
grouped by region (slopes = 0.83, 0.63, 0.39, and 0.44 for Reef Crest, Reef Flat, Deep 
Lagoon, and Shallow Lagoon, respectively). The slope of 0.51 across all data suggest 
that net primary production was responsible for ~75% of the overall reef metabolism. 

-120 -100 -80 -60 -40 -20 0 20 40 60

dDIC ( mol kg-1)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

dT
A
(
m
ol
kg

-1
)

Okinawa - October 17 (am)
Okinawa - October 17 (pm)
Okinawa - October 21
Okinawa - October 22

-120 -100 -80 -60 -40 -20 0 20 40

dDIC ( mol kg-1)

-80

-70

-60

-50

-40

-30

-20

-10

0

10
Okinawa - Reef Crest
Okinawa - Reef Flat
Okinawa - Deep Lagoon
Okinawa - Shallow Lagoon

(a) (b)



 

63 
 

We also calculated εOM for specific regions of the reef to investigate whether 

more localized signals of production could be observed. We expect production in the 

shallow lagoon to be dominated by eelgrass. This expectation is reflected in the lower 

slope of dTA:dDIC (0.44), therefore higher production to calcification ratio, in the 

shallow lagoon relative to the overall reef (Figure 2.8). Indeed, the local εOM of -10 ‰ 

falls between the estimated ranges based on the δ13C of organic tissue in seagrasses 

and benthic macroalgae. From photographs not shown, the deep lagoon appears to 

have a greater abundance of benthic macroalgae and a lesser abundance of eelgrass 

than the shallow lagoon region. Assuming the same fractionation factors for benthic 

macroalgae and seagrasses as before, the εOM of -16.5 ‰ again agrees with the 

increase in benthic macroalgae and therefore stronger fractionation of carbon during 

production.  

The εOM of -9.1 ‰ over the reef crest and εOM of -7.6 ‰ over the reef flat fall just 

above the range of estimated fractionation by zooxanthellae, though other 

photosynthesizing taxa are presumably important as well. We can see in Figure 2.3 that 

the spatial coverage of δ13C-DIC observations over the reef crest is generally sparse, 

and including more observations could have added greater confidence to the εOM we 

calculate for the reef crest. 

We note that while our calculated εOM fall within reasonable ranges, these 

estimations are based on few data from a single day, and in most cases our estimated 

values of εOM do not differ significantly between regions. Further, changes in local 

seawater chemistry include imprints of biogeochemistry from other parts of the reef 

ecosystem and are influenced by several factors, such as residence time and flow 
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speed, which need to be constrained before assigning greater confidence to our 

estimates of local εOM. 

 

5 Summary 

In this study, we report observations of organic and inorganic carbon isotopes in 

seawater on a fringing reef in Okinawa, Japan, and a barrier reef in Kāne’ohe Bay, 

Hawai’i. With coral reef ecosystems' composition and function expected to transform 

under multiple anthropogenic stressors, the data we present provide snapshots of the 

state of each ecosystem as a reference for future observations to signal changes in 

community function. In Okinawa, these isotopic observations suggest a strong influence 

of benthic macroalgae and seagrasses on overall ecosystem metabolism. In Kāne’ohe 

Bay, organic matter observations reveal terrestrial inputs to bulk organic matter on the 

reef and imply high production over the shallowest region of the reef. We note that the 

data we present represent limited spatial coverage and affirm that greater coverage in 

future surveys would increase confidence in characterizing reef composition and 

function. Observations of organic and inorganic carbon isotope data offer a useful 

means of monitoring changes in coral reef ecosystems and should be included in reef 

seawater surveys when possible. 
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CHAPTER 3:  Development of a high-precision seawater DIC analysis system 
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1 Introduction 

Measurements of dissolved inorganic carbon (DIC) concentrations in seawater 

provide fundamental information about natural and anthropogenic processes acting on 

the ocean, such as rates of photosynthesis or long-term uptake of anthropogenic CO2 

(Peng et al., 1998). DIC concentrations in the ocean span the range of ~1900–2400 

µmol kg-1, and changes in DIC concentrations due to biogeochemical processes can 

differ depending on the spatial and temporal scales. In shallow and productive coastal 

ecosystems, such as coral reefs, DIC concentrations can oscillate by as much as ± 200 

µmol kg-1 over a diel period (Koweek et al., 2015), while anthropogenic CO2 uptake in 

Pacific surface waters has been estimated to increase DIC on the order of tenths to a 

couple of µmol kg-1 yr-1 (Keeling et al., 2004; Kouketsu et al., 2013). 

Seawater DIC can currently be measured through one of several techniques. 

Most common are coulometric (Johnson et al., 1993), non-dispersive infrared (Goyet 

and Snover, 1993; Kaltin et al., 2005), photometric (Stoll et al., 2001), and 

spectroscopic (Bandstra et al., 2006; Bass et al., 2012b, 2012a; Huang et al., 2013) 

methods, which achieve repeatability between ±1.5-3 µmol kg-1. At present, the most 

precise DIC measurements (± 0.5 µmol kg-1) are accomplished via manometry, where a 

seawater sample is acidified to convert all DIC to CO2 gas, the gas is extracted and 

isolated, and then DIC is calculated from an equation of state for CO2 using information 

about the pressure, temperature, and volume of the isolated gas sample (Lueker et al., 

1998). This technique, which is currently employed by the Scripps CO2 group to make 

ocean time-series measurements (Karl and Lukas, 1996; Michaels and Knap, 1996) is 

highly labor- and time-intensive. Extraction of CO2 gas from the sample requires ~60-90 
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minutes of hands-on time, followed by a processing time on a similar order in a custom 

manometric device. The equipment needed for such extractions is custom-built and not 

available for commercial purchase. Further, a high level of technical skill is required to 

perform these measurements. 

Here we present a method for measuring seawater DIC concentrations that 

achieves a repeatability on the order of 0.5 μmol kg-1, needs minimal hands-on time 

after startup, and can be automated to run multiple samples in series. This method 

involves the removal of CO2 from an acidified seawater by flowing the sample through a 

reverse-flow contactor, which comprises a gas-permeable membrane with a CO2-free 

carrier gas flowing outside the membrane in the opposite direction. The carrier gas then 

flows to a cavity ringdown spectrometer to quantify CO2 concentration. By repeatedly 

switching the seawater flow between sample and reference, the method allows precise 

comparison of sample and reference. This method was verified using certified reference 

materials and running samples from the Bermuda Atlantic Time Series (BATS) station 

that were also measured in duplicate via manometry. This method is still under 

development to achieve improved repeatability on measurements and also has the 

potential to be combined with a system to concurrently measure total alkalinity (TA) (Li 

et al., 2013) or be interfaced to a quantum cascade laser (QCLS) multi-pass system for 

stable isotope analysis of dissolved inorganic carbon (δ13C-DIC). 

 

2 Methods 

Our “contactor system” method centers on a gas-permeable membrane 

“contactor,” with a carrier gas and acidified seawater flowing on opposing sides of the 
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membrane to strip and deliver seawater DIC in the form of CO2 to a gas analyzer for 

quantification of DIC of the sample. The schematic of the contactor system is shown in 

Figure 3.1.  

 
Figure 3.1 Schematic of continuous-flow DIC measurement “contactor system.” The 
overall system can be divided into two flows: (A) liquid flow (direction shown with 
dashed green lines) and (B) gas flow (direction shown with dashed orange lines). Gas is 
flowed into the system from a high-purity nitrogen tank (bottom right), with two pressure 
controllers (one just downstream of the cylinder, the other just upstream of the CRDS) 
regulating the flow rate. The dashed-line inset box (marked with a pink star) is enlarged 
and re-illustrated in the upper left corner of the schematic (marked with a larger pink 
star).  

 
2.1 Membrane “contactor” 

The removal of inorganic carbon from seawater is achieved by flowing the liquid 

sample through the CO2-permeable membrane “contactor.” The contactor consists of 

thin-walled Teflon AF 2400 tubing (119 cm in length, 0.73 mm OD, 0.61 mm ID, 0.64 µm 
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wall, Biogeneral, San Diego, CA), which is highly permeable to CO2 gas, housed in 0.63 

cm OD, 0.39 cm ID Pyrex glass tubing. Acidified seawater flows through the Teflon AF 

2400, with a CO2-free carrier gas (high-purity N2) stream flowing outside the Teflon 

tubing in the opposite direction. CO2 (and CH4) gas diffuses across the Teflon 

membrane into the carrier gas stream towards the CRDS. The glass tubing of the 

contactor was melted into a coil shape (length 119.5 cm, diameter ~25 cm) so that the 

contactor can sit in a water bath for short-term temperature stabilization. Temperature 

sensors record the water bath temperature. The Teflon AF 2400 portion of the liquid line 

is connected to the Hastelloy C lines using Loctite 7649 primer and Loctite UK-05FL 

polyisocyanate urethane adhesive (www.loctiteproducts.com).  

After passing through the contactor, the N2 – CO2 gas mixture flows to a cavity-

ringdown spectrometer (CRDS) (Picarro G2301 Gas Concentration Analyzer, 

www.picarro.com). The CRDS makes simultaneous measurements of CO2, CH4, and 

water vapor, and new data for each species is available every 2-3 seconds. A dry ice-

ethanol slurry trap is installed downstream of the contactor before the gas stream 

reaches the CRDS to prevent liquid from entering the analyzer should either of the 

Teflon-Hastelloy connections of the contactor fail.  

 

2.2 Liquid flow path 

The seawater is alternately sourced from seawater reference or from one of 

several samples using a three-way valve and a selector valve (valves and configuration 

further described in Section 2.4). The seawater flow rate (0.27 mL min-1) is set by a VICI 

M6 positive displacement pump (volume precision <0.5% coefficient of variation at a 
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delivered volume of 125 µL). A second identical pump flows 85% phosphoric acid at 

0.03 mL min-1 from a glass bottle via PEEK tubing. Self-heating of pumps (and any 

potential impacts on pump performance) is mitigated by two fans directed towards the 

pumps. The seawater and acid streams exit the pumps via Hastelloy C tubing of equal 

lengths and join at a Valco Hastelloy C tee (www.vici.com). The acidified mixture flows 

through a length of Hastelloy C tubing (52 cm at 0.3 mL min-1) to promote diffusive 

mixing between the acid and seawater components. The Hastelloy C and PEEK tubing 

constituting the liquid flow path have identical dimensions of 1/16” OD (0.16 cm) and 

0.03” ID (0.076 cm). A needle valve near the waste port of the water line is used to 

adjust the backpressure in the water line. The pressure immediately upstream of the 

needle valve is measured using a 0-5 PSIG diaphragm-type pressure gauge 

(www.measureman.com) attached to a gauge guard (Plast-O-Matic GGMEB1-PP 

Gauge Guard, www.plastomatic.com). The pressure at this point is kept between the 1-

2.5 PSIG range, which we found was helpful to mitigate bubble formation in the liquid 

line, which causes aberrations in the CO2 signal.  

 

2.3 Gas flow path 

The high-purity N2 carrier gas is delivered via a high-pressure cylinder containing 

compressed dry air with a pressure regulator metering the flow. The carrier gas passes 

through the interstice of the contactor, stripping CO2 from the acidified seawater across 

the permeable membrane, and finally flows to the CRDS analyzer. Before reaching the 

gas analyzer terminus, the gas flow passes through four points of regulation: 1. a 

pressure transducer (100-PSIA MKS 850B Baratron Pressure Transducer; 
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www.mksinst.com) and control valve (and MKS Type 248 Control Valve; 

www.mksinst.com) immediately downstream of the cylinder, 2. a needle valve attached 

to a Cole-Parmer correlated variable area flowmeter (Cole-Parmer correlated variable 

area flowmeter; www.coleparmer.com, PMR1-010647) downstream of 1., 3. a needle 

valve downstream of the contactor, and 4. the CRDS, the destination of the gas flow, 

which maintains a nearly constant pressure of 140 ± 0.024 torr in the instrument cavity. 

Voltages from the pressure transducer are converted to digital signals and are recorded. 

Gas flow is also monitored and recorded by a mass flow meter (Alicat Scientific M 

Series: Mass Flow Meter, 200 sccm, www.alicat.com) downstream of the contactor and 

upstream of 3. Volume flow recorded by the mass flow meter, which is dependent on 

temperature, generally falls between 55.5 and 56 standard cubic centimeters per minute 

(sccm). The volume of the gas interstice is roughly between 30 and 40 cm3. 

 

2.4 Sample-reference comparison 

For precise comparison between sample and reference material, seawater 

samples are alternated for analysis with a seawater standard at 7.5-minute intervals. 

This interval was chosen as the shortest time interval at which the CO2 signal 

sufficiently stabilizes after sample sweepout. As a first step in the data reduction, we 

process CRDS signals to compute normalized differences in per mil (‰) units. We 

begin with the expression for the CRDS signal 𝜒.'& (the raw reported CO2 signal on the 

analyzer):  

𝜒.'& = 𝑒 ∗ E9!
9"
G ∗ 𝐷𝐼𝐶:,0/1234 	           (1) 
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where e is the percent efficiency of the contactor, Fw is the volumetric flow of the sample 

in L min-1 (not including acid flow), Fg is the gas flow in µmol min-1, and DICV is the DIC 

concentration of the sample in µmol L-1. As the pump establishes a nominally constant 

volumetric (rather than mass) flow, the CRDS signal is expected to scale with DIC in 

volumetric rather than mass units. 

We compare the signals of a sample and a reference according to  

𝛿(𝒳.'&) = E 𝒳#$%,'()*+,

𝒳#$%,-,.,-,/0,
− 1G ∗ 1,000       (2) 

where 𝒳.'& is the mole fraction of CO2 as recorded by the CRDS. We combine 

Equations 1 and 2 to yield: 

𝛿(𝐷𝐼𝐶:,0/1234) = E ,-.1,'()*+,

,-.1,-,.,-,/0,
− 1G ∗ 1000 (3) 

Finally, 𝛿(𝐷𝐼𝐶:,0/1234) can be converted to DIC reported as a volume concentration 

(µmol L-1) using the expression ‰ according to: 

𝐷𝐼𝐶:,0/1234 = 	𝑎 ∗ 𝛿 + 𝐷𝐼𝐶:,84=4846>4   (4) 

in which a is empirically derived and DICV,reference is the DIC concentration in volume 

units of the reference material. We hereafter differentiate DIC in volume units from DIC 

in mass units using the abbreviations DICV and DICM, respectively. These are related 

according to DICv = ρ DICM where ρ is seawater density. 

The liquid metering pumps deliver at a constant volume both sample and 

reference. Temperature influences the mass delivered by the pumps and therefore the 

resulting 𝛿(𝒳.'&) values. However, because the temperature effects on the sample and 

standard are very similar, 𝛿(𝒳.'&) is largely independent of the pump temperature. We 
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thus treat 𝛿(𝒳.'&) as valid for DIC measured in μmol L-1 of seawater at a reference 

temperature of 20 ˚C (rather than the pump temperature). 

Sample and reference are alternately pulled by a metering pump, with switching 

between sample and reference enabled by a Norgren Kloehn V6 Syringe pump (used 

as a changeover valve with the syringe removed, www.norgren.com). The syringe pump 

is connected to the sample and standard via separate 16-cm lines of Hastelloy C tubing 

(1/16” ID). Two-piece 1/16” PEEK fingertight fittings (www.idex-hs.com) connect the 

tubing to the syringe pump. 

 

2.5 Seawater sample and reference materials 

As a reference we use local seawater (DIC = 2016.1 µmol kg-1, TA = 2222.1 

µmol kg-1, Sal = 33.3 ppt; “JDCS-BagD" in Table 3.1) stored in a 10L Cali-5-Bond multi-

layer foil sampling bag (www.calibrated.com) to mitigate the formation of a gaseous 

headspace. The seawater was poisoned with 200 µL saturated HgCl2 solution per 1L 

seawater following (Dickson et al., 2007) and was passed through combusted 47mm 

GF/F filters during filling. We also begin and end each run with analysis of a “low DIC” 

bag (“JDCS-BagC” in Table 3.1), which consists of poisoned water certified reference 

material diluted with DI water to which salt has been added proportionately to maintain 

the seawater’s original salinity. For calibration of the contactor system, we used a 

combination of seawater sample bottles collected from the Bermuda Station S site and 

seawater collected off the Scripps Pier in La Jolla, CA.  
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Table 3.1 Seawater sample and reference materials used in the study. “Use” refers to 
their function relating to calibration of the contactor system. 

Name Description Use DICM 
(µmol kg-1) 

DICV 
(µmol L-1) 

TA 
(µmol kg-1) 

pCO2  
at 20˚C 

(µatm) 

Salinity 
(ppt) 

WHW-
BagA 

Filled May 2018 
from Scripps 
Pier faucet, 

currently sulfuric 
smell. 7L when 

received 

Reference 2279.1 2333.5 
2253.2 

(Dec 1, 2022) 
 

2266.1 
(Feb 1, 2023) 

2539.4 
(Dec 1, 2022) 

 
2302.8 

(Feb 1, 2023) 

33.8 

WHW-
BagB 

Filled May 2018 
from Scripps 
Pier faucet, 

currently sulfuric 
smell. 3L when 

received 

Sample N/A N/A N/A N/A N/A 

JDCS-
BagC 

Waste CRM 
plus DI and 

NaCl 

“Low-DIC” 
Sample 1932.2 1977.6 1968.3 1357.6 33.4 

JDCS-
BagD 

Filtered Scripps 
Pier water Reference 2016.1 2063.4 2222.1 512.2 33.3 

BERM Bermuda station 
samples Sample 2048.0 – 

2097.9 
2096.3 – 
2152.8 

2358.0 –
2405.1 

~328 – 
342 

36.3 – 
36.8 

CRM 

Dickson 
Certified 

Reference 
Material, 

Batch #201 

DIC 
calibration 2048.2 2096.3 2207.6 643 33.3 

 

2.6 Independent measurement of DIC, TA, and salinity 

DIC, TA, and salinity of seawater samples from Bermuda and reference materials 

(Table 3.1) were independently quantified. Samples were analyzed for DIC content via 

vacuum-line gas extraction, in which samples are acidified and the released CO2 gas is 

isolated using a liquid nitrogen trap and stored in glass break-seal tubes, followed by 

manometric analysis, in which volume, pressure and temperature are measured to 

convert the liquid sample volume to number of moles of CO2 gas (Lueker et al., 1998). 

The method requires ~60 mL of sample in a specialized pipette for DIC analysis. 

Aliquots were transferred from bags to the pipette using a syringe, while seawater 

samples in bottles could be directly transferred to the pipettes by pressurizing the bottle 
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headspace. Bermuda samples were vacuum extracted on the same day that they were 

run on the contactor system; the samples were first opened to remove the aliquot for 

vacuum extraction before being connected to the contactor system. Bottles that were 

analyzed were resealed and stored for TA and salinity analysis within one week. TA 

was analyzed using an open-cell titration with coulometrically-analyzed hydrochloric 

acid (Dickson et al., 2003). Salinity was measured relative to IAPSO Standard Seawater 

using a Guildline Autosal Model 8400 conductive salinometer. 

 

2.7 Sample selection 

The system allows for analysis of multiple seawater samples in sequence. 

Switching between samples is achieved via an 8-position Model C25Z VICI Flow-

through Flowpath Stream Selector (www.vici.com). The stream selector contains 17 

ports: eight inlet ports, eight individual outlet ports, and one common outlet port. Each 

inlet port on the selector valve has a corresponding outlet port such that an inlet port is 

directly connected to its corresponding outlet when the inlet is not actively selected for 

analysis. Each unselected outlet port is connected to PEEK tubing terminating in a 

plastic stopcock; sample is flowed through each of the ports’ outlet tubing and 

stoppered before running so that no air sits in the unselected ports’ flow paths. Sample 

bottles are stoppered with rubber plugs with two small openings, one for the tubing line 

and the other for letting air in to fill the headspace as sample is drawn. 

  



 

86 
 

3 Results and Discussion 

3.1 Illustration of system performance 

 

 
Figure 3.2 Contactor system CO2 signal output (top and middle panels) and subsequent 
δ values (bottom panel) when running a bag containing seawater (WHW-BagB) against 
a seawater working reference (WHW-BagA). Integrated data for calculating δ (Equation 
2) are highlighted in pink (sample) and dark blue (reference) and are separated by data 
that is masked out to avoid transitions. A magnified view of the sample-reference 
comparisons is shown in the middle panel. Vertical dashed lines in the middle panel 
mark the time at which the valve controlling seawater input to the system switches 
between sample and reference. A signal aberration assumed to have originated from a 
bubble formed in the liquid line appears just after 19:00 and is excluded from the δ 
calculations. We use the color map batlow (Crameri, 2021) in this study to prevent 
visual distortion of the data and to make this work accessible to readers with differing 
color vision (Crameri et al., 2020). 

 
 

Figure 3.2 shows the response of the CRDS analyzer to 7.5-minute switching 

between sample and reference. After each switch, the signal remains stable for around 

3.5 minutes before the CRDS signal shows any response. The new signal begins to 

stabilize after ~7.5 minutes. Here we integrate the signal in the 8-to-11-minute window 

18:00 18:30 19:00 19:30 20:00
Sep 02, 2022

216

218

220

CO
2
(p
pm

)

08:00 10:00 12:00 14:00 16:00 18:00 20:00
Sep 02, 2022

216

218

220

CO
2
(p
pm

)

08:00 10:00 12:00 14:00 16:00 18:00 20:00
Sep 02, 2022

14.6

14.8

15

sample

reference reference reference reference reference reference reference

sample sample sample sample sample sample sample



 

87 
 

for calculating δ values (Figure 3.3), an interval over which the signal has largely 

stabilized but prior to the arrival of the next transition. This windowing leads to at most 

very small scale contraction due to incomplete sample-reference sweepout, as 

discussed in Section 3.3. We accept this contraction as a tradeoff with introducing 

additional drift in the CRDS signal resulting from a longer switching timescale. These 

switches are repeated to yield a collection of estimates of δ by comparing the sample 

and reference signals (Figure 3.2c). 

Prior to calculating δ values, the CRDS signal is filtered by removing jogs that 

contain signal aberrations arising from bubbles (deviations of > 0.75 ppm from the 

mean). We then filter δ values in a single pass by excluding those that are greater than 

2 standard deviations away from the mean of δ for the given sample.  

 
 

 
Figure 3.3 Illustration of the timing of data that is averaged with respect to the time of 
switching. The switch is marked with a vertical grey dashed line at time = 0.  

 
 
A measure of short-term precision is provided by the spread in values of δ for a 

given sample-reference pair. On September 2, 2022 (Figure 3.2), the precision 

achieved in δ is ± 0.135 ‰ for a single measurement (1 SD). The precision of 

measurements for the eight runs performed between August 26, 2022 and September 

8, 2022 is on average ± 0.16 ‰ for a single measurement. The level of measurement 
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precision declined slightly but steadily between September 8, 2022 and March 2023 

(e.g., Figure 3.5, Figure 3.14). 

 

3.2 Zero enrichment 

 
Figure 3.4 Same as Figure 3.2, but for a zero-enrichment run, in which sample and 
reference inlets are connected to the same source. CRDS signal impacted by bubbles 
(12:50, 14:35) is excluded from the calculation of δ. The dominant high frequency 
fluctuations apparent in the signal are related to liquid handling pump performance 
(discussed in Section 4.4.2). 

 

 
Figure 3.5 Values of δ (Equation 2) for zero enrichment runs between August 2022 and 
March 2023. 
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Runs were also carried out to calculate the “zero enrichment”, i.e., the apparent δ 

value when running the same seawater sample on both the sample and reference lines. 

These runs were carried out by connecting the sample and reference lines to a 

stainless-steel tee at the outlet of a seawater bag. Zero enrichment runs were 

performed on August 26, September 29, October 14, November 14, November 17, 

November 22, November 29, November 30, December 1, December 20, December 23, 

2022 and on February 27, 2023. Sample output from February 27, 2023 is shown in 

Figure 3.4, and the calculated δ values across all runs are shown in Figure 3.5. 

On average, the calculated zero enrichment δ values show a -0.06 ± 0.4 ‰ (1 

SD) offset that is stable over time (Table 3.2). When aggregating δ values across days 

in which zero-enrichment was tested, the mean δ differs significantly from 0 (mean = -

0.115, SD = 0.395, Student’s t-test (77) = -2.574, p = 0.0120). However, for a given day, 

the δ of zero enrichment is not significantly different from zero, and because the mean 

zero enrichment is relatively small, we do not use the zero-enrichment data to produce 

a correction factor. Oscillations appearing in Figure 3.4 are thought to originate from 

instability in the liquid handling pumps (discussed further in Section 4.4.2) and are not 

related to switching between sample and reference (marked with vertical dashed lines).  
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Table 3.2 Statistics of zero enrichment runs between August 26, 2022 and February 27, 
2023. Differences in standard deviation between days are thought to arise from signal 
distortion by bubbles and oscillations in the pump delivery. 

Date n(δ) Mean  
(‰) 

Standard 
deviation  

(‰) 

Standard error  
(‰) 

August 26, 2022 19 -0.11 0.13 0.03 
September 29, 2022 24 -0.11 0.4 0.08 

October 14, 2022 16 -0.1 0.51 0.13 
November 14, 2022 4 0.2 0.48 0.24 
November 17, 2022 16 -0.15 0.5 0.12 
November 22, 2022 6 -0.05 0.41 0.17 
November 29, 2022 15 0.26 0.41 0.11 
November 30, 2022 13 -0.02 0.42 0.12 
December 1, 2022 13 0.05 0.37 0.1 
December 20, 2022 19 -0.18 0.53 0.12 
December 23, 2022 21 -0.11 0.36 0.08 
February 27, 2023 12 -0.19 0.15 0.04 
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3.3 Calibration 

 

 
Figure 3.6 Measured δ referenced to seawater from JDCS-BagD vs. DICV of analyzed 
seawater samples. The solid line is the least squares linear fit to the data while the 
dashed line represents the theoretical relationship between DICV and δ based on 
Equation 3. Points are colored by and labeled with pCO2 values. 
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one another on February 25, 2023 to derive a conversion for samples measured against 

WHW-BagA to being referenced against JDCS-BagD (such that JDCS-BagD becomes 

the zero value across all runs). Results are shown in Figure 3.6. 

We computed two lines through the data, the first being a linear least squares fit 

and the second being a line that runs through the DICv of the reference and δ = 0 but 

has a slope defined by Equation 3, in which we replace 𝒳.'& with DICV. The comparison 

of these two slopes provides a measure of the scale contraction, which estimates the 

degree by which the response variable under- (or over-) realize the “true” response. 

This comparison suggests that the scale contraction amounts to 0.68%, i.e., our 

observed response is 0.68% lower than the theoretical response. This scale contraction 

reflects the degree to which the CRDS signals are under-realized in the 7.5-minute 

switching scheme used here, suggesting that 7.5 minutes allows the CRDS signal to 

come very close to its full potential value. 

The residuals in δ relative to the regression fit have a residual standard error of ± 

2.5 ‰, suggesting an external precision of ± 5 μmol kg-1 for a seawater sample with 

DICM of 2000 μmol kg-1. This precision is worse than was expected from short-term 

reproducibility suggested from the results prior to September 8, 2022 (Figure 3.2). 

Possible limitations to the performance of the contactor system are discussed in Section 

4. 

 

3.4 Contactor CO2-removal efficiency 
 

We estimate the efficiency e of CO2 removal from the seawater stream (Equation 

1) using a test that is based on the assumption that the system achieves 100% 
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efficiency at very low seawater flow rates. We varied the flow rate of seawater across 55 

flow rates spanning 0.05 mL min-1 to 0.6 mL min-1. As shown in Figure 3.7a, the CO2 

signal increases quasi-linearly with the flow at low flows, but the slope decreases 

towards higher flows. We interpret the deviation from an initial linear slope as reflecting 

a loss of efficiency in CO2 extraction as the seawater spends progressively less time in 

the contactor at higher flow rates.  

To resolve the initial linear slope, we fit a linear regression to the data at flow 

rates of <0.15 mL min-1 (Figure 3.7), with a point at zero flow, zero signal included in the 

fit. At 0.3 mL min-1 flow, the estimated extraction efficiencies are 95.6%, 94.5%, and 

92.1% on October 1, February 17, and February 19, respectively. The February 19 

efficiency test used a higher proportion of phosphoric acid (9:2 seawater to acid ratio, 

compared to the 9:1 ratio otherwise used throughout the study). The lower efficiency on 

February 19 is not understood but may be related to slower diffusion of CO2 in 

concentrated acid leading to slower escape of CO2 from the core of the contactor. 

Because e cancels in the ratio XCO2,reference/XCO2,reference in Equation 2, a precise 

knowledge of e is not relevant for calibrating the system. Nevertheless, high efficiency is 

desirable, both to reduce sensitivity to temperature fluctuations or any factors which 

might alter the efficiency and to obtain higher CO2 signals on the CRDS. Potential 

causes of below-100% efficiency are discussed in Section 4.2 and Section 4.4.4. 
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Figure 3.7 Illustration of CO2 removal efficiency on three days (normalized to slope = 1 
and overlaid in panel (d)) and the relationship between CRDS CO2 signal and liquid flow 
rate through the system on October 1, 2022 (a), February 17, 2023 (b) and February 19, 
2023 (c). A line is fit to estimate the rate of change at low flow rates, which is taken as 
the CO2 signal at 100% CO2 extraction efficiency. A parabolic fit to the data that is 
forced through the origin is also shown, which is used for interpolation. The data and 
parabolic fits are normalized to their respective slopes at low flow and plotted together 
in (d). The dashed line in panel (d) represents the assumed signal at 100% extraction, 
and the proportions of the curves to that line represents the efficiency achieved at a 
given flow rate. The seawater and acid were flowed at a proportion of 9:1 on October 1, 
2022 and February 17, 2023, and 9:2 on February 19, 2023.  
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3.5 Impacts of differences in sample salinity  

To test if the residuals of the data to the calibration (Figure 3.6) could be 

explained by salinity differences, we prepared samples with a range of salinities but with 

only small variations in DIC and TA (Table 3.3). These samples were prepared using 

500 mL glass bottles filled with seawater from a single carboy containing seawater 

collected off the Scripps pier poisoned with HgCl2. Seawater was siphoned from the 

carboy into an Erlenmeyer flask, into which NaCl was added. Two bottles were then 

filled from the Erlenmeyer flask. This process was repeated five times with different 

quantities of NaCl additions. All 10 bottles were analyzed in the contactor system over 

two days, with each bottle analyzed for salinity and alkalinity after analysis on the 

contactor system. Two bottles were also independently analyzed for DICV via 

manometry on the same day that they were analyzed using the contactor system. DICV 

for all other bottles were assigned as the average DICV between the two samples that 

were analyzed manometrically. 

We found that samples having a lesser salinity relative to the reference tended to 

yield δ values that fall below the linear regression fit to all δ values (Figure 3.8), though 

the relationship is weak. This relationship suggests a need for additional calibrations for 

seawater samples at different salinities to better resolve this potential effect. 
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Table 3.3 Seawater bottles used for salinity calibration. The seawater was collected at 
Scripps pier and manipulated via NaCl additions. Bottles were created in duplicate, 
which are listed together in each row. Salinity and alkalinity for bottles listed first in each 
table cell were analyzed independently after being run on the contactor system. Only 
two of the 10 bottles (JDCS-Sa-20 and JDCS-Sa-26) were independently analyzed for 
DIC content. DIC values marked with asterisks were calculated as the average of the 
two analyzed bottles. pCO2 is calculated using the independently-measured DIC and TA 
values. 

Name Salinity 
(ppt) 

DICM 
(µmol kg-1) 

DICV 
(µmol L-1) 

TA 
(µmol kg-1) 

pCO2  
at 20˚C 
(µatm) 

JDCS-Sa-26 
JDCS-Sa-21 33.3 2021.2 2068.6 2221.1 491.0 

JDCS-Sa-27 
JDCS-Sa-22 34.52 2016.6* 2065.8* 2217.4 502.4 

JDCS-Sa-23 
JDCS-Sa-28 35.82 2016.6* 2067.8* 2214.0 528.1 

JDCS-Sa-24 
JDCS-Sa-29 36.92 2016.6* 2069.5* 2211.5 549.7 

JDCS-Sa-20 
JDCS-Sa-25 38.3 2012.0 2066.9 2208.6 562.1 

 
 

 
Figure 3.8 The difference between measured δ values and δ via the linear regression 
against DICV (Figure 3.6), denoted ∆δ, plotted against the salinity of a given sample.  
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3.6 Impacts of differences in sample TA 

Table 3.4 Bagged standards used for assessment of contactor system on sample TA. 
The seawater was collected at Scripps pier and manipulated via additions of NaOH, DI 
water, or HCl (see Description column). All pCO2 values are calculated at 20 ˚C. 

Name Description Use DICM 
(µmol kg-1) 

DICV 
(µmol L-1) 

TA 
(µmol kg-1) 

pCO2  
at 20˚ C 

(µatm) 
Salinity 

(ppt) 

JDCS-
TA-B1 

Filtered pier 
water plus 

NaOH  

TA 
calibration 
(high TA) 

2017.4 2064.8 2881.7 62.9 33.3 

JDCS-
TA-B2 

Filtered pier 
water plus DI 

water 

TA 
calibration 
(control) 

2017.3 2064.6 2268.6 384.4 33.3 

JDCS-
TA-B3 

Filtered pier 
water plus HCl 

TA 
calibration 
(low TA) 

2004.7 2051.7 1614.6 12176.7 33.3 

 
 

To isolate any effects of differences in TA on δ, we analyzed seawater from three 

bags with differing TA (Table 3.4). Each bag of seawater contained the same source 

seawater, which was passed through combusted 47mm GF/F filters during filling. A 

small volume of 85% HCl solution was injected into one of the bags and 22% NaOH 

solution into another. A small volume of DI water was injected into the bag that received 

no acid or base. These additions also changed pCO2 in the samples, with the low TA 

bag having a high pCO2 of ~ 12247 ppm. These runs were carried out against the 

reference (JDCS-BagD) which has a pCO2 of 486 µatm. 

We found that δ values calculated for the low TA sample fell below the 

regression line in Figure 3.6. Examining the switching data, the signal appears to 

overshoot the higher DIC reading and undershoot the lower DIC reading (Figure 3.9) 

specifically when running the low-TA sample. We hypothesize that polymeric 

components of the liquid line upstream of the contactor absorb and desorb CO2 

according to concentration gradients, such that in the presence of a high pCO2 sample, 
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CO2 is absorbed into the polymers and is released when the flowed seawater is 

switched to a lower pCO2 sample. The lines themselves are made from Hastelloy, but 

the Kloehn valve and M6 pumps both contain polymeric components. Their location in 

the line exposes them to the initial pCO2 of the sample and reference as the Kloehn 

valve switches back and forth. This could explain the CO2 depletion (and signal 

undershoot) of the lower DIC, higher pCO2 sample as CO2 is absorbed into the 

polymers before stabilizing, and the CO2 overload (and signal overshoot) in the higher 

DIC, lower pCO2 reference sample as CO2 is released from the polymer into the liquid 

stream again before stabilizing. 

Rather than resolving a true sensitivity to TA, these tests suggest a limitation of 

the current configuration of the system. Even though the 7.5-minute switching cycle 

appears sufficiently rapid to achieve ~100% replacement of sample and reference within 

the contactor, it appears insufficient to condition the lines to changes in initial variations 

in pCO2 between sample and reference. Despite this limitation, we nevertheless 

processed the jogs with the normal windowing to yield δ values. With the over- and 

undershoots in the CRDA signal arising from pCO2 differences between the sample and 

reference, using the same sample-reference switching scheme to calculate δ would 

result in the absolute value of δ being artificially large (large difference in CRDA signal 

between sample and reference), with the overshoot integrated into the reference signal 

and undershoot integrated into the sample signal. Similarly, we expect a sample with 

higher DICV and higher pCO2 than the reference to have an artificially small positive δ 

as the CRDA signals converge with the addition of CO2 to the lower-DICV reference 
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signal, resulting in these δ again falling below the fitted and theoretical δ-DICV curves. 

These relationships are detailed in Table 3.5. 

We note that the CRDS signal appears to respond more quickly to switches 

when running the JDCS-TA-B1 and JDCS-TA-B2 bags against JDCS-BagD (Figure 3.9, 

response of ~60 seconds compared to the standard 3.5 minutes). Because using the 

standard integrating scheme includes data from the sweepout in this scenario, we 

reduce the amount of data averaged from 8 to 11 minutes post-switch to 8 to 8.5 

minutes post-switch. The faster response time for these samples has yet to be 

explained. 

 
Table 3.5 Impacts of differences in sample and reference pCO2 on CRDS CO2 signal 
and subsequent calculation of δ. 

Sample 
DICV 

Sample 
pCO2 

Impact on signal Expected 
signal Actual signal 

Above or 
below fit in 
Figure 3.6 

Higher Higher 

Sample signal 
loses CO2, 

reference signal 
gains CO2 

Signals 
converge Positive δ 

Positive δ with 
smaller absolute 

value (less 
positive) 

Below 

Lower Higher 
Sample signal 

loses CO2, 
reference signal 

gains CO2 

Signals 
diverge Negative δ 

Negative δ with 
larger absolute 

value (less 
positive) 

Below 

Higher Lower 

Sample signal 
gains CO2, 

reference signal 
loses CO2 

Signals 
diverge Positive δ 

Positive δ with 
larger absolute 

value (more 
positive) 

Above 

Lower Lower 

Sample signal 
gains CO2, 

reference signal 
loses CO2 

Signals 
converge Negative δ 

Negative δ with 
smaller absolute 

value (more 
positive) 

Above 
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Figure 3.9 Same as Figure 3.2, for referencing a moderate-pCO2 low-DIC sample 
(JDCS-BagC, 12:15 – 13:30), a high-pCO2 sample moderate-DIC sample (JDCS-TA-
B3, 13:30 – 14:15), a low-pCO2 moderate-DIC sample (JDCS-TA-B1, 14:15 – 16:00), a 
moderate-pCO2 moderate-DIC sample (JDCS-TA-B2, 16:00 – 17:15), and again the 
same moderate-pCO2 low-DIC sample (JDCS-BagC, 17:15 – 18:45) against a reference 
(JDCS-BagD). The middle panel shows the over- and under-shooting of the signals of 
the sample (pink) and reference (blue) for the high-pCO2 sample. For JDCS-TA-B1 and 
JDCS-TA-B2, the response of the system to a change in input occurs faster than for the 
other samples (60 seconds vs. 210 seconds), so a shorter timeframe (30 seconds vs. 
180 seconds) of data is integrated in the calculation of δ. This data is marked in orange.  

 
 
4 Further Discussion 

4.1 Effects of water line pressure on δ 

We tested the effects of increasing and decreasing the pressure of the water 

lines both upstream and downstream of the liquid handling pumps on δ. This was 

achieved by raising and lowering the seawater inputs to the pumps (upstream) and 

opening and closing the water line needle valve (downstream). The water line pressure 
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upstream of the pumps did not appear to affect δ (Figure 3.10). The CRDS CO2 signal 

was sensitive to changes in pressure and decreased at higher pressure downstream of 

the pumps. Water line flow data collected by the balance downstream of the contactor 

indicated that the flow rate changed according to changes in water line pressure, thus 

we attribute the pressure dependence of the CRDS signal to the pumps’ backpressure 

sensitivity. However, the signals for both sample and reference were impacted equally 

such that the δ values remained consistent across pressures. We thus show that 

changing the pressure in the water lines in either location does not significantly impact δ 

values.  

 

 
Figure 3.10 Relationship between inlet water pressure measured on September 13, 
2022 δ (a) and between pressure of the water line downstream of the pumps as 
measured by a pressure gauge (see Figure 3.1) and δ measured on October 6, 2022 
(b). 
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timescale of the acidification reaction and the timescale of diffusive mixing of acid in 

seawater in relation to the liquid transit time in the mixing line. 

Of the chemical steps involved in the seawater acidification reactions, the 

slowest is the conversion of bicarbonate and H+ ions to CO2 and H2O (called the 

dehydration reaction), which ultimately determines the speed of the overall conversion 

of dissolved inorganic carbon species to CO2 (Zeebe and Wolf-Gladrow, 2001). 

Acidifying the seawater with 85% H3PO4 in a 9:1 ratio results in a solution of pH ≈ 2. 

Using a pH of 2, the timescale of decay in the conversion from HCO3- to CO2 can be 

calculated using the rate constant 2.66 * 10-4 kg mol-1 sec-1 (Johnson, 1982; Zeebe and 

Wolf-Gladrow, 2001) The e-folding time for this reaction to approach equilibrium is 

2.1*10-2 seconds, which is much shorter than the transit time of the seawater sample 

through the line of Hastelloy before reaching the contactor:  

𝑇58/60?5 =
𝐿

𝑣𝑜𝑙𝑢𝑚𝑒	𝑓𝑙𝑜𝑤 ∗ 𝜋𝑟& =
154	𝑐𝑚

0.3	𝑚𝐿	𝑚𝑖𝑛@$	 ∗ 	𝜋 ∗
(0.038	𝑐𝑚)& = 2.33	minutes 

where L (length) and r (radius) are dimensions of the Hastelloy tubing. Thus, even the 

slowest reaction will not limit the conversion and extraction of CO2. The line of Hastelloy 

upstream of the contactor also serves the purpose of increasing the physical interaction 

between the acid and seawater before the mixture reaches the contactor membrane. 

The magnitude of interaction is in part governed by the diffusivity of phosphoric acid in 

water. We use 85% phosphoric acid in a 1:9 ratio with seawater so that the resulting 

phosphoric acid percentage becomes 8.5%. We use the diffusivity for 8.5% phosphoric 

acid at 25.15 ˚C of 7.8*10-6 cm2 sec-1 (Lang et al., 2014) to calculate the diffusion 

timescale with the expression: 
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𝑇 =
𝑟&

𝐷  

where r is the radius of the tubing and D is the diffusivity. Thus, for a tubing radius of 

0.038 cm, the timescale of diffusion becomes: 

𝑇 =
(0.038	𝑐𝑚)&

7.8 ∗ 10@A𝑐𝑚& sec@$ 	 = 185.13	seconds = 3.09	minutes	 

Though the diffusion timescale is longer than the transit time (ratio of diffusion 

time to transit time = 1.32), the flows converge abruptly at a tee just downstream of the 

pumps. Assuming that mixing of the seawater and acid is achieved only through 

molecular diffusion, we conclude that the 2.33-minute transit time of the solution through 

the Hastelloy line before reaching the contactor is insufficient time for the solution to 

mix. Nevertheless, this appears not to be a major issue because of the apparently high 

efficiency of CO2 extraction in the contactor (Section 3.4). 

 

4.3 Impact of dissolution of gas into water line 

The bulk flow of carrier gas (N2) into the CRDA can in principle be modulated by 

gain or loss of N2 and O2 from the liquid via diffusion through the contactor. To show 

that this effect is small we take the solubility of N2 gas into seawater with a salinity of 

35.5 ppt at 20˚C to be 554.51 µmol kg-1 (Weiss 1970). For a water stream of 0.27 mL 

min-1 (assuming a seawater density of 1.02 kg L-1), 0.15 µmol of N2 gas at this solubility 

can dissolve into the water flow per minute. An N2 gas stream of 56 sccm is equivalent 

to a flow of 0.0025 mol min-1 at STP. Dividing the rate of dissolution of N2 gas into the 

seawater stream by the flow rate of the N2 gas yields a ratio of 6.1 * 10-5, meaning that 

complete dissolution of N2 gas into the liquid stream (clearly an extreme scenario) could 
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impact a CO2 signal of 200 ppm by a negligible 200 ppm * 6.1 * 10-5 = 0.0122 ppm. For 

a seawater sample with a typical dissolved oxygen concentration of 243.75 µmol L-1 (7.8 

mg L-1), assuming that 100% of dissolved oxygen is extracted into the carrier gas, 0.066 

µmol O2 is added to the carrier gas per minute. This O2 gas adds a volume of 0.0015 

mL min-1 to the 56 sccm carrier gas flow (not including the volume from extracted CO2), 

resulting in a 0.0027% increase in the gas flow rate, causing a change in the CO2 signal 

of a negligible 200 * 2.7 * 10-5 = 0.0054 ppm. 

We consider instrument noise in the CRDS gas analyzer as having a negligible 

contribution to overall system measurement uncertainty. For data averaged over 7.5 

minutes, instrument precision is estimated at 10-2.9 ppm via an Allan Deviation plot 

published by Picarro for the G2301 analyzer. A 10-fold deterioration in instrument 

precision would increase this value to 10-1.9 ppm, which is negligible in scale compared 

to other sources of noise (e.g., pump oscillations (discussed in Section 4.4.2)). 

 

4.4 Limitations to performance 

4.4.1 Stability of bagged references  

We elected to use the multi-layer foil sampling bags to store seawater references 

assuming that the absence of a gaseous headspace would reduce drift in the reference 

DIC. Our data nevertheless show clear indicators of drift in the DIC in the bags. The first 

indicator is based on looking closely at a possible time dependence of the relationship 

between δ (referenced against JDCS-BagD) shown in Figure 3.11 and DICv as inferred 

from the contactor system using Equation 3. Figure 3.11 shows a ~2.4 µmol L-1 month-1 

rise in the mismatch between the DICV values obtained using the contactor system 
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versus the expected DICV values based on Equation 3. This drift suggests a small but 

clear upward drift in DICV of the JDCS-BagD reference, and may explain residuals from 

the linear fits in Figure 3.6. Because Figure 3.6 shows bottle samples, which were 

measured independently on the day that they were run on the contactor system, 

referenced against JDCS-BagD, the trend in Figure 3.11 is likely a relatively accurate 

representation of the drift in this reference. 

The second indicator is based on looking at changes in δ values between pairs of 

bags (i.e., when using one as the reference for the other). The drift in δ when running 

the “low DIC” bag (JDCS-BagC) used throughout runs in 2023 against JDCS-BagD as 

reference is particularly large (0.8 ‰ day-1, Figure 3.13). The drift in δ when running 

WHW-BagA against WHW-BagB (Figure 3.12) amounts to roughly -0.02 ‰ day-1, which 

is surprisingly low considering the strong smell and changing alkalinity of WHW-BagA 

(suggesting bacterial respiration occurring in the water contained), but it is possible that 

the bags, which both were filled from the same source at the same time and had strong 

smells, were drifting concurrently. Because JDCS-BagC was referenced against JDCS-

BagD, which appears to have been drifting towards higher DIC, it is possible that the 

drift in δ shown in Figure 3.13 underestimates the actual drift in DIC in JDCS-BagC. 

Drift in the reference reduces the overall precision at which the measurement system 

can be calibrated by increasing the uncertainty of intercomparison of δ values 

calculated from different days. 
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Figure 3.11 Mismatch between measured and theoretical values of DICV over time for 
all data points shown in Figure 3.6 (slope = 0.08 µmol L-1 day-1, referenced against 
JDCS-BagD). Datapoints are colored by DICV of the given sample. 

 
 
 

 
Figure 3.12 Values of δ for WHW-BagB referenced against WHW-BagA between 
August 29, 2022 and February 27, 2023 (slope = -0.02 ‰ day-1). 

 
 
 
 

 
Figure 3.13 Values of δ JDCS-BagC (“low DIC bag”) when referenced against JDCS-
BagD between January 17, 2023 and March 2, 2023 (slope = 0.8 ‰ day-1). 
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4.4.2 Stability of pumps  

The stability of the CRDA CO2 signal is in part dependent on the stability of liquid 

delivery rate by the two pumps flowing seawater and acid. While the liquid delivery 

appears to be stable on timescales of > 5 minutes (as measured through liquid outflow 

data collected on a balance (Figure 3.1)), oscillatory patterns in the CRDA signal are 

detectable with a period of ~2-3 minutes (Figure 3.15). We attribute these oscillations to 

variations in liquid handling pumps because (1) the oscillation period is highly consistent 

within a day’s run (between 2 and 2.75 minutes depending on the day, with a standard 

deviation of < 1 second), suggesting an electronic source, (2) the amplitude of the 

oscillations has been shown to rise when the water line pressure downstream of the 

pump increases, and (3) the oscillation amplitude rises when the water line pressure 

upstream of the pumps decreases. The second and third factors both affect the 

pressure gradient experienced at the pumps, increasing the strain on the pumps.  

The amplitude of the high-frequency oscillations in the CRDA signal, while in part 

dependent on the pressure gradients at the pumps, has also appeared to increase 

overall over the past six months (Figures 3.14). Comparing actual volume delivery (after 

accounting for density differences between seawater and 85% phosphoric acid) to the 

prescribed volume delivery also suggests a longer-term decline in performance, with the 

actual volume delivery equaling 99% of the prescribed delivery in October 2022 and 

declining to 90% in February 2023 (Figure 3.14). Finally, mass flow data as recorded by 

balance measurements shows that when compared to flow rate changes on October 1, 

2022, the change in actual flow rate on February 17, 2023 responds much more slowly 

to a change in prescribed flow rate in February 2023 (Figure 3.16).  
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The oscillations cause inconsistencies in the integrated CO2 signals for sample 

and reference that decrease the precision of the resulting δ values. This issue is 

apparent in the decreased precision of data collected in later months.  
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Figure 3.14 Relationship between prescribed pump rates (flow rate as set by computer) 
and measured liquid flow rate through monitoring changes in mass output for October 1 
(a), February 17 (b) and February 19 (c). Seawater and acid are flowed at a proportion 
of 9:1 on October 1, 2022 and February 17, 2023, and 9:2 on February 19, 2023. 
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Figure 3.15 Illustration of high-frequency oscillations in the CRDS CO2 signal. Data in 
(a) and (b) were collected during zero enrichment runs (switch times are marked with 
vertical dashed lines) and data in (c) was collected when seawater was connected 
directly to the pump with no switching.  
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Figure 3.16 Liquid flow rate through system approximated by rate of seawater effluent 
onto balance during runs on October 1, 2022 (a) and February 17, 2023 (b) when 
prescribed seawater pump rates were changed rapidly according to the same regimen 
(regimen used for estimating contactor efficiency). 
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is not linear and appears to depend on other factors. While δ values are independent of 

gas flow rate if the flow remains stable across analysis of both sample and reference in 

the δ determination, the temperature of the gas flow cannot be controlled and may vary 

over the course of the day and may unevenly impact analyses of sample and reference, 

decreasing the precision of the δ measurements.  

 

4.4.4 Limited sample-membrane interfacing 
 

The contactor strips CO2 from water at the membrane wall where the water 

touches the membrane surface, whereas water at the core of the membrane tubing 

loses CO2 only by diffusion. The time scale for CO2 to diffuse from the center to the wall 

is thus relevant to the contactor efficiency. The transit time of the solution in the 

contactor is: 

𝑇58/60?5 =
𝐿

𝑣𝑜𝑙𝑢𝑚𝑒	𝑓𝑙𝑜𝑤 ∗ 𝜋𝑟& =
118	𝑐𝑚

0.3	𝑚𝐿	𝑚𝑖𝑛@$	 ∗ 	𝜋 ∗
(0.0305	𝑐𝑚)& = 1.15	minutes 

Taking a diffusivity of CO2 in seawater of 2 * 10-5 cm-2 sec-1 (Park and Choi, 2020) yields 

a characteristic timescale of diffusion as a function of the membrane radius: 

𝑇 =
𝑟&

𝐷 =
(0.038)&

2 ∗ 10@B = 3.1	minutes 

such that the ratio of diffusion time to transit time = 2.7. In early experiments, we 

attempted to address this issue in the past by inserting a wire into the contactor 

membrane to eliminate a center core of seawater, but the liquid handling pumps were 

not able to work against the added resistance. We choose to leave the membrane as is 

and accept that the possible incomplete contact of seawater with the membrane 

contributes more to a reduction in extraction efficiency and overall precision.  
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4.4.5 Bubbles 

Thanks to the transparency of the glass housing for the contactor, we have been 

able to visually detect the transit of air bubbles through the length of the contactor. 

These bubbles are followed by aberrations in the CRDA signal (Figure 3.17), with small 

bubbles resulting in small jumps of ~1% of the signal (either up or down in CO2) lasting 

1-2 minutes, and large bubbles resulting in high amplitude, short period and tight 

sinusoid (deep decline followed by large spike) of ~7-15% (the drop having a greater 

amplitude), then a slow decline to the original signal level, the whole process lasting as 

long as 7 minutes. These data are selected for elimination from δ calculations by eye, 

and δ are thereafter filtered to remove any values > 2 SD from the mean, which can 

catch CRDA signals impacted by smaller bubbles or residual anomalies from larger 

bubbles. 

We found it possible to limit bubble formation by increasing the pressure of 

throughout the lines downstream of the pumps by adjusting the needle valve upstream 

of the balance in Figure 3.1. This action reliably reduces bubble formation but carries 

the risk of increasing the water line pressure to a degree that induces higher oscillations 

in the CRDA signal originating from the liquid handling pump. Higher water pressure 

also increases the risk of failure of the glued Hastelloy-Teflon connections fail due to 

too-high pressure in the water line.  
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Figure 3.17 Examples of signal aberrations arising from the formation of bubbles in the 
liquid line (a-e) or introduction of air into the liquid line (f). 
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elastomers to equilibrate with water is equal to or longer than the 7.5-minute switching 

period between sample and reference. Though it is possible to integrate a shorter, 

stabilized segment of CRDA signal to avoid including the over- and undershoots in 

calculating δ, averaging less data increases the influence of oscillatory noise in the 

CRDA signal and decreases the precision in δ. Extending the switching timescale 

between sample and reference from 7.5 minutes increases the influence of longer-term 

drift into the δ calculations, also reducing precision in δ.  

 

5 Summary of recommendations for continued development 

We have demonstrated the system’s capability of achieving high measurement 

precision via the low standard deviation of δ across all zero-enrichment runs (± 0.38 

‰),) and in earlier sample runs (e.g., September 2, 2022 (1 SD = ± 0.135 ‰), Section 

3.1). However, obstacles to achieving this level of precision reliably in measuring 

samples clearly persist. 

Though already high, CO2 removal efficiency by the contactor can be further 

increased by including a physical mechanism for mixing in the line upstream of the 

contactor and/or extending the length of the contactor membrane. 

Engineering an improved setup for storage of reference material will improve 

measurement repeatability. Assuming the drift in the bagged seawater DIC arises from 

CO2 exchange with the ambient atmosphere, drift could possibly be mitigated by placing 

the bags inside larger vessels of water of roughly equivalent DIC content. Alternatively, 

the bags could be used instead as bladders for glass bottles of seawater material; 
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removal of seawater from the bottle causes the bag to expand to fill the depleted 

headspace such that the seawater in the bottle has no exposure to ambient air.  

Improving measurement repeatability likely also involves replacing the liquid 

handling pumps with a more stable liquid delivery system, such as one that relies on 

pressure gradients that are established via another means (e.g., upstream gas pressure 

or diaphragm). Like addressing the liquid flow stability, improving gas flow control can 

also increase stability in the CRDS signal.  

To ensure full contact of seawater CO2 with the membrane wall, rebuilding the 

contactor with a longer length of Teflon AF-2400 membrane may mitigate the issue of 

incomplete interfacing of CO2 in the solution with the membrane.  

Regarding samples with a very different pCO2 from the reference material, the 

measurement repeatability may be improved by replacing the sample-reference 

switching hardware with hardware that lacks polymers, such as the glass capillary open 

split interface commonly used for sample and reference delivery to mass spectrometers. 

This change may also shorten the overall system response time. The feasibility of this 

option is not explored in this work. 

Nevertheless, we have shown that this system is able to be calibrated and has 

potential to make high-precision measurements of DIC in seawater requiring limited 

sample volume and hands-on time. 
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